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a b s t r a c t 

Precise individualized EEG source localization is predicated on having accurate subject-specific Lead Fields (LFs) 
obtained from their Magnetic Resonance Images (MRI). LF calculation is a complex process involving several 
error-prone steps that start with obtaining a realistic head model from the MRI and finalizing with computation- 
ally expensive solvers such as the Boundary Element Method (BEM) or Finite Element Method (FEM). Current 
Big-Data applications require the calculation of batches of hundreds or thousands of LFs. LF. Quality Control is 
conventionally checked subjectively by experts, a procedure not feasible in practice for larger batches. To facili- 
tate this step, we introduce the Lead Field Automatic-Quality Control Index (LF-AQI) that flags LF with potential 
errors. We base our LF-AQI on the assumption that LFs obtained from simpler head models, i.e., the homogeneous 
head model LF (HHM-LF) or spherical head model LF (SHM-LF), deviate only moderately from a "good" realistic 
test LF. Since these simpler LFs are easier to compute and check for errors, they may serve as "reference LF" 
to detect anomalous realistic test LF. We investigated this assumption by comparing correlation-based channel 
𝜌min ( 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) and source 𝜏min ( 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) similarity indices (SI) between "gold standards," i.e., very accurate FEM 

and BEM LFs, and the proposed references (HHM-LF and SHM-LF). Surprisingly we found that the most uncom- 
plicated possible reference, HHM-LF had high SI values with the gold standards —leading us to explore further 
use of the channel 𝜌min ( 𝐻 𝐻 𝑀 − 𝐿𝐹 , 𝑡𝑒𝑠𝑡 ) and source 𝜏min ( 𝐻 𝐻 𝑀 − 𝐿𝐹 , 𝑡𝑒𝑠𝑡 ) SI as a basis for our LF-AQI. Indeed, these 
SI successfully detected five simulated scenarios of LFs artifacts. This result encouraged us to evaluate the SI on 
a large dataset and thus define our LF-AQI. We thus computed the SI of 1251 LFs obtained from the Child Mind 
Institute (CMI) MRI dataset. When 𝜌min ( 𝐻 𝐻 𝑀 − 𝐿𝐹 , 𝑡𝑒𝑠𝑡 ) and source 𝜏min ( 𝐻 𝐻 𝑀 − 𝐿𝐹 , 𝑡𝑒𝑠𝑡 ) were plotted for all 
test subjects on a 2D space, most were tightly clustered around the median of a high similarity centroid (HSC), 
except for a smaller proportion of outliers. We define the LF-AQI for a given LF as the log Euclidean distance 
between its SI and the HSC median. To automatically detect outliers, the threshold is at the 90th percentile of 
the CMI LF-AQIs (-0.9755). LF-AQI greater than this threshold flag individual LF to be checked. The robustness 
of this LF-AQI screening was checked by repeated out-of-sample validation. Strikingly, minor corrections in re- 
processing the flagged cases eliminated their status as outliers. Furthermore, the "doubtful" labels assigned by 
LF-AQI were validated by neuroscience students using a Likert scale questionnaire designed to manually check 
the LF’s quality. Item Response Theory (IRT) analysis was applied to the questionnaire results to compute an 
optimized model and a latent variable 𝜃 for that model. A linear mixed model (LMM) between the 𝜃 and LF-AQI 
resulted in an effect with a Cohen’s d value of 1.3 and a p-value < 0.001, thus validating the correspondence of 
LF-AQI with the visual quality control. We provide an open-source pipeline to implement both LF calculation and 
its quality control to allow further evaluation of our index. 
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. Introduction 

Electroencephalographic (EEG) Source Imaging (ESI) is a widely
sed neuroimaging modality ( Michel et al., 2004 ) that estimates the
rimary current sources that generate the observed electrophysiological
ignals. This estimation is an inverse problem based on the correspond-
ng forward problem defined by the EEG Lead Field ( LF ), a continuous
inear operator that maps the primary current to the observed activity
f "leads" 1 . 

This operator maps the brain’s primary current density, also known
s source or generator current density, into the electric potential that is
bserved at the sensors Eq. (1) . 

 ( 𝐫 𝑠 , 𝑡 ) = ∭ 𝐤 ( 𝐫 𝑠 , 𝐫 𝑔 )·𝑖 ( 𝐫 𝑔 , 𝑡 ) 𝑑𝑉 𝐫 𝑔 (1)

here the dynamic scalar field 𝑣 ( 𝐫 𝑠 , 𝑡 ) ∈ ℝ at the sensors’ spatial domain
𝐫 𝑠 ∈ ℝ 

3 and in the time domain 𝑡 describes the electric potential (in
olt’s units); the dynamic vector field 𝑖 ( 𝐫 𝑔 , 𝑡 ) ∈ ℝ 

3 at the sources’ spatial
omain ∀𝐫 𝑔 ∈ ℝ 

3 and in the time domain 𝑡 describes the primary current
ensity (in units of Amp/m 

3 ); and the “leads ” 𝐤 ( 𝐫 𝑠 , 𝐫 𝑔 ) ∈ ℝ 

3 , for each
ensor 𝐫 𝑠 a vector field in the sources’ spatial domain ∀𝐫 𝑔 ∈ ℝ 

3 describes
he ELF (in Ohm’s units). The LF depends on the properties of the head as
 volume conductor and is usually derived from the quasistatic version
f Maxwell’s equations ( Nunez, P. L., and Srinivasan, 2006 ) (see section
.2, 5.6) ( Kn and Haueisen, 2022 ) (see section 5.1.2.5). 

Selecting a set of Ns electrodes and then defining Ng sources at fixed
rain positions originates a discretization known as the LF operator. This
perator is an Ns x Ng x 3 LF tensor (multidimensional array) 𝐊 , Rows
 (∶ , j , k) and columns 𝐊 ( 𝑖, ∶ , k) , are indexed by the leads and sources,

espectively. The tubes 𝐊 ( 𝑖, j , ∶ ) are known as the “Lead Vectors ” (LV) of
ead I, for source j. The set of all LVs for a given lead is its Lead Vector
ield (LVF) K(i,:,:), and its plot is the LVF plot for that lead. 

The voltage difference at a given lead of any source dipole inside
he volume conductor is the dot product of the LV and the dipole
 Malmivuo, 2000 ). These LVs are the local operators that transforms
 unit current source into a lead voltage difference. Thus each LVs are
he component along each cartesian axis of the unit dipole forward op-
rators (UDFO), projecting the location and direction of a single dipole
ith unit strength on an EEG lead ( Kn and Haueisen, 2022 ). 

Any ESI estimation technique’s accuracy depends crucially on the
orrectness of the Forward problem. Unfortunately, one does not know
he actual LF tensor for a given subject, which has to be estimated from
ata. Obtaining an individualized LF involves three critical steps: 1) MRI
egmentation and artifact removal, 2) realistic head modeling (volume
onductor model), and 3) LF computation. Some basic theory about the
orward problem is contained in Appendix 10.1 and 10.3. Information
bout the inverse problem and its dependency on the LF is mentioned
n Appendix 10.3. 

The uncertainty in this estimation has two primary sources. The
rst source is the volume conduction model’s specification, including
he head tissue geometry and conductance definition. Initial simplistic
olume conductor models were spherical, being sets of nested spheres,
ach with a known conductance (Spherical Head Model LF) SHM-LF . An
ven simpler model is a brain floating in an infinite pool with the same
onductance (Homogeneous Head Model LF) HHM-LF . These simplistic
olume conductor models have been superseded by increasingly sophis-
icated ones that use patient-specific images (such as MRI) to achieve
igh fidelity. The second source of uncertainty is the actual calculation
f the LF tensor from the volume conductor model. Simplistic models
hat led to LF produce closed analytical expressions that are very accu-
ate ( Nolte and Dassios, 2005 ; Nunez and Srinivasan, 2006 ). The more
1 Leads are voltage differences between the activity recorded in two electrodes 
V1-VR). In ESI, VR is common to all leads ( Hu, Yao, Bringas-Vega, Qin, & 

aldes-Sosa, 2019 ), and we use the terms "lead" and "electrode" interchange- 
bly. 

𝐽

i
h

2 
ealistic models require a more elaborate numerical procedure that may
e less tolerant of slight misspecification of the volume conductor. 

We underscore the importance of accurate LF matrices for ESI as
llustrated in Fig. 1 , which is based on Helmholtz’s reciprocity princi-
le ( Helmholtz, 1876 ; Malmivuo, 1995 , 2000 ),which states (for a given
ead): “the lead field is identical to the electric current field that arises
nt the volume conductor if a unit current, called reciprocal current 𝐼 𝑅 is
ed to the lead ” as discussed in ( Malmivuo, 2000 ) (page 5, section 16.2)
nd in their Fig. 16.1 “RECIPROCITY ”. This reference clarifies that 𝐼 𝑅 is
btained by imposing a given voltage 𝑉 𝐿 at that lead. 2 Thus, if we im-
ose a unit reference voltage difference only at the lead being studied
nd zero elsewhere, we will induce in the volume conductor, a vector
eld proportional to that of the Lead Vectors. Consequently, any reason-
ble inverse solution should reconstruct, from the unit voltage, a vector
led proportional to the LVF PLOT. 

Now to Fig. 1 . The top row shows LVF PLOTs corresponding to the
lectrode F10-average reference lead) throughout the volume conduc-
or model. 3 On the left is an LVF PLOT from an accurate LF obtained
rom an individual MRI with the OpenMEEG BEM. In the middle is the
VF plots for the LF based on a homogeneous head model– a simplistic
ead model with a brain assumed in an infinite homogenous conductive
edium. For these two LVF plots, as expected from electrostatic theory,

he LVs of sources close to the electrode are larger and pointed towards
he electrode. The LVF plots from a realistic but artifactual LF is on the
ight, and this expected pattern is absent. 

The consequences of LF accuracy are illustrated in the bottom row
f Fig. 1 , which contains the minimum norm estimation (MNE) of the
VF plot produced by the unit voltage difference imposed at electrode
10. We can see on the left that LVF plot for an accurate LF (on the
op) is proportional to the MNE estimate of the LVF plot on the bot-
om —decreasing with the distance from the electrode and pointing to-
ards it. This statement holds up surprisingly well for the homogenous

ead field model in the middle. The LVF plots and their MNE estimate
or an artifactual lead field do not correspond to electrostatic theory. 

Quality control of individual LFs is thus crucial for the validity of
SI. However, this process is only partially automatic and relies heavily
n subjective judgment. This dependence on user intervention becomes
 limiting factor when creating LFs with automated pipelines applied to
xtensive databases. With the availability of High-Performance Comput-
ng (HPC) setups, it is common to see LFs computed in bulk or batches for
arge datasets with 100 s and 1000s of MRIs. Manual inspection of this
rocess is time-consuming, taking days or weeks. Thus, automated, effi-
ient quality control methods for all three steps are needed for working
ith large datasets, an objective that has only been partially achieved
 Michel et al., 2004 ; Schirner, Rothmeier, Jirsa, McIntosh, and Ritter,
015 ). 

The first step of LF calculation is segmenting the MRI to define pri-
ary brain structures and other tissue boundaries and volumes from the

ndividual MRI, as shown in Fig. 2 a. Robust algorithms to distinguish
everal head tissues, such as the scalp, skull, cerebrospinal fluid (CSF),
nd gray and white matter, are currently available ( Clarke et al., 1995 ;
espotovi ć, Goossens, and Philips, 2015 ; Heckemann, Hajnal, Aljabar,
ueckert, and Hammers, 2006 ). These techniques are available in pop-
lar toolboxes such as FreeSurfer ( Fischl, 2012 ), FSL ( Jenkinson, Beck-
ann, Behrens, Woolrich, and Smith, 2012 ), and Ciftify ( Dickie et al.,
018 ), where, before the segmentation, MRI artifact removal is carried
ut. MRI segmentations are compared to standard segmented brain MRIs
 IBSR, 2013 ) or assessed by clinical experts ( Despotovi ć et al., 2015 ).
2 We note that In Malmivou’s explanation his notation differs from ours, his 
 𝐿 ( 𝑖, 𝑗, 𝑘 ) are our 𝐾( 𝑖, 𝑗, 𝑘 ) 
3 According to the 10/10 electrode system. Also known as the channel E1 

n 128 Channel EGI Hydrocel Sensor Nets, supplied by electrical geodesics, 
ttps://www.egi.com/research-division/geodesic-sensor-net 
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Fig. 1. Comparison of LVF plots and MNE estimates are 3-D visualizations of magnitudes for 8002 sources obtained with LF with different accuracies. All The LVF 
plots in the top Row shows the lead field vectors for the electrode F10 (the inset in the middle row shows the LVF plots in greater detail). The MNE estimation in the 
bottom row shows the inverse solution (minimum norm) for a unit voltage at F10.). The vectors are in red and the electrode F10 is a yellow dot. From left to right 
the columns correspond to accurate, simplistic, and artifactual LFs. The realistic LF was computed from BEM numerical calculations with an accurate head model 
(OpenMEEG toolbox) with a 3-shell BEM head model with conductivity values set at 0.33, 0.0042, and 0.33. The middle column corresponds to an analytically 
computed LF, calculated from a simplistic homogeneous head model. The right column is for an artifactual LF produced in a similar way to the accurate lead field but 
with a head segmentation that produces numerical instability It is evident that a good quality Lead Field results in LVF plot and MNE estimation that are proportional, 
decrease in strength with distance to the electrode. An artifactual LF lacks these properties. Note that vector lengths represent magnitude. The number of sources 
was chosen relatively small for visualization purposes only, numerical analysis was with a larger number (287,682). 
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he model proposed by ( Heckemann et al., 2006 ) to check the quality
f MRI segmentation still requires some manual intervention. 

The second step, as shown in Fig. 2 b, uses the tissue segmentation
f step 1 to construct discretized head models and surface and vol-
me mesh for the boundary element method (BEM) and finite element
ethod (FEM), respectively. This step must ensure the necessary con-
itions for stability in BEM and FEM computations. Realistic volume
onductor and source head models are obtained using the tissues ex-
racted from MRI segmentation and the correct alignment of electrodes
n the head. Several toolboxes implement this step, such as BrainVISA
 Geffroy et al., 2011 ), EEGLAB-NFT ( Delorme and Makeig, 2004 ), Open-
EEG ( Gramfort, Papadopoulo, Olivi, and Clerc, 2010 ; A. 2011 ), MNE

 Gramfort et al., 2014 ), Brainstorm ( Mosher et al., n.d. ; Tadel, Bail-
et, Mosher, Pantazis, and Leahy, 2011 ), also the latest FEM calcula-
ors, DUNEuro ( Schrader et al., 2021a ) and FieldTrip ( Oostenveld, Fries,
aris, and Schoffelen, 2011 ; Vorwerk, Oostenveld, Piastra, Magyari,

nd Wolters, 2018a ). Unfortunately, although they may include some
uilt-in quality control criteria, discretization methods within these
ools always require manual tuning ( Jas et al., 2018 ; Vorwerk, Aydin,

olters, and Butson, 2019 ). 
The third step uses the meshes constructed from step 2 to carry out

he numerical calculation of LFs ( Fig. 2 c), for which there exist accurate
nd state-of-the-art methods ( A. Gramfort et al., 2011 ; Medani et al.,
021a ). There are several methods for computing the LF. In most BEM
mplementations, the LFs are computed with head models defined by
oncentric compartments with homogeneous conductivity. These com-
artments are enclosed surfaces with defined surface potentials. An
xample of a three-compartment model comprises the cortex, inner
3 
kull, and outer skull ( Akalin Acar and Makeig, 2013 ; Ermer, Mosher,
aillet, and Leahy, 2001 ; Fuchs, Kastner, Wagner, Hawes, and Eber-
ole, 2002 ; Huang, Mosher, and Leahy, 1999 ; Mosher, Leahy, and
ewis, 1993 , 1999 ; Opitz, Paulus, Will, Antunes, and Thielscher, 2018 ;
ahmouni, Adrian, Cools, and Andriulli, 2019 ; Vatta, Meneghini, Es-
osito, Mininel, and Di Salle, 2010 ). BEM is relatively fast and can
e used with increasingly sophisticated models as one adds differ-
nt compartments. Nevertheless, for greater realism, the Finite El-
ment Method (FEM) uses 3D meshes ( Dannhauer, Brooks, Tucker,
nd MacLeod, 2012 ; M. Dannhauer, Lanfer, Wolters, and Knösche,
011 ; Hallez et al., 2007 ; Nolte and Dassios, 2005 ; Piastra et al.,
020 ; Vorwerk et al., 2014 , 2018a ; Windhoff, Opitz, and Thielscher,
013 ; Yamaguchi, 2014 ). FEM can deal with inhomogeneous and
nisotropic conductivities but requires a higher computational burden.
oth these procedures are available in several toolboxes, i.e., Brain-
ISA ( Geffroy et al., 2011 ), EEGLAB-NFT ( Delorme and Makeig, 2004 ),
penMEEG ( Gramfort et al., 2010 ; A. 2011 ), MNE ( Gramfort et al.,
014 ), Brainstorm ( Mosher et al., n.d. ; Tadel et al., 2011 ). The latest
EM calculators are DUNEuro ( Schrader et al., 2021b ) and FieldTrip
 Oostenveld et al., 2011 ; Vorwerk et al., 2018a ). We note that there
re other, less used LF calculation methods, such as the Finite Dif-
erence method (FDM) ( Cuartas Morales, Acosta-Medina, Castellanos-
ominguez, and Mantini, 2019 ; Hallez et al., 2007 ; Vatta et al., 2010 )
nd finite volume method (FVM) ( Cook and Koles, 2006 ; Grant and Low-
ry, 2009 ; Xie, Yuan, Xinshan, and Guan, 2001 ) which are not dealt in
his paper. 

Although methods for step 3 are very accurate, they may depend
ritically on the correctness of the previous two stages. Quality control of
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Fig. 2. Forward model shown in three steps. 
(a) First step (MRI segmentation), which ex- 
tracts different brain and non-brain tissues. In 
this case FreeSurfer was used to extract the 
cortex and FSL was used to extract inner and 
outer skull along with scalp. (b) Realistic head 
model is generated by generating BEM or FEM 

meshes for extracted tissues and combining 
them with proper alignment. In this case BEM 

meshes were generated to create head model. 
This step also includes accurate alignment and 
placement of electrodes on the scalp. (c) Visu- 
alization of the Lead Field for channel F10 is 
shown on the cortex. In this case LF was com- 
puted using OpenMEEG BEM. 
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he final result of the whole process has received little attention, despite
ts importance for correct EEG source localization. Checking the overall
orrectness of the LF is the focus of our attention in this paper. To date,
uch quality control also requires human evaluation of some criteria for
he source distribution of LF orientations and amplitudes ( Mosher et al.,
993 , 1999 ; Nunez, P. L., and Srinivasan, 2006 ; Vatta et al., 2010 ). 

BEM and FEM are complex numerical procedures that are error-
rone since they depend on the conductivity profiles and (possibly) the
nisotropic nature of different tissues between sources and electrodes.
hese may lead to numerical instabilities. To date quality of BEM or FEM

s checked by manual inspection ( Mosher et al., 1993 , 1999 ; Nunez, P.
., and Srinivasan, 2006 ; Vatta et al., 2010 ). This manual technique for
uality control is even more time-consuming than the first two steps of
F calculation and, therefore, quite impractical for extensive data sets.
here have been a preliminary study in this context ( Vega et al., 2021 ).

We propose a novel measure, the Lead Field Automatic-Quality Con-
rol Index (LF-AQI), to facilitate quality control of the numerical com-
utations of extensive LF datasets. Our LF-AQI is based on the fol-
owing premise: we assume that the BEM or FEM "test" LF, as shown
n Fig. 1 (first column), is roughly like a more simplistic "reference"
F shown in Fig. 1 (middle column), which can be calculated analyti-
ally, thus eliminating the possibility of numerical inaccuracies shown
n Fig. 1 (third column). The reference LF, though less accurate, is as-
umed to be sufficiently like the test LF to allow its use for screening.
he simplest possible Lead-Field ( Nunez, P. L., and Srinivasan, 2006 ),
hich we adopt as a reference, is the HHM-LF, as also shown in Fig. 3 c.

In other words, we assume that each test LF in the dataset should
e only a moderate transformation of reference head model LF. This
ransformation might vary depending on the complexity of the head
odel, but the two LFs should be correlated to each other when com-
ared numerically. The similarity of test and reference LF is measured
y the channel and source-wise Pearson correlation between two LFs. If
n LF does not have any numerical computational errors, the correlation
4 
alues and LF-AQI should be high, with low values indicating LF with
roblems. 

To test this assumption on correlations between test and reference
F, we analyze different types of LFs, Spherical, BEM, and FEM, com-
aring them with a highly realistic model that includes anisotropy
 Piastra et al., 2020 ). Based on these comparisons, we analyze how cor-
elations change in simulated artifactual LFs, which leads us to define
he LF-AQI. Finally, we verify the utility of our index by analyzing a
arge MRI dataset. The LF-AQI evaluation of this dataset is then com-
ared with manual quality control. A description of the associated open-
ource pipelines is also given. 

. Materials and methods 

In what follows, we employ the following mathematical notation.
owercase letters denote scalars, e.g., 𝑥 . Lowercase bold letters denote
olumn vectors, e.g., 𝐱 ∈ ℜ 

𝑛 with 𝑛 the number of rows. Upper case bold
etters denote matrices, e.g., 𝐗 ∈ ℜ 

𝑛 ×𝑚 with 𝑚 the number of columns.
lements of a vector or matrix are scalars denoted with the same letter
s the object of which they are a part and with subindices indicating the
omponent referred to, e.g., 𝑥 𝑖 and 𝑥 𝑖,𝑗 . 𝐱 · 𝐲 denotes the scalar product

f these vectors. |𝐱| = 

√
𝐱 · 𝐱 is the norm of a vector. Table 1 shows the

xplanations of different symbols in the paper. 

.1. Lead fields studied 

The head modeling comprises three components. These are 

• The volume conduction or head model specifies all head compart-
ments for brain and non-brain tissues. It also assigns conductivity
values to these compartments. For BEM models, these conductivities
are constant within each compartment, and only the surfaces sep-
arating them are required. For FEM models, the conductivities are
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Fig. 3. a) HHM-LF 𝐾 hom , which is computed 
via fully analytical methods in a boundary-free 
volume conductor model and with constant 
conductivity defined as an average in head tis- 
sue. b) Spherical LF 𝐊 

𝑠𝑝 , which is computed 
via stable semi-analytical methods employing 
a spherical approximation of the piecewise vol- 
ume conductor model of the head, which also 
includes the skull. c) BEM LF 𝐊 

𝐵𝐸𝑀 in a mod- 
erately detailed piecewise conductor model ex- 
tracted from a segmentation of the MRI and in- 
cluding the skull. 

Table 1 

Symbols used in the paper and their explanation. 

Symbol Acronym Description 

UDFO A unit dipole forward operator 
LV Lead Vector 

𝐊 LF Lead field tensor or matrix 
𝑁 𝑐 , 𝑁 𝑠 , 𝑁 𝑖 – Number of channels, sources, and individuals 
𝐊 𝑡𝑒𝑠𝑡 ∈ ℜ 

𝑁 𝑐 ×𝑁 𝑠 Test 𝑡𝑒𝑠 𝑡 𝑖 LF of subject 𝑖 
𝐊 𝑟𝑒𝑓 ℜ 

𝑁 𝑐 ×𝑁 𝑠 Ref Reference head model LF 𝑟𝑒 𝑓 𝑖 of subject 𝑖 
𝐊 hom HHM-LF Homogenous head model LF 
𝐊 𝑠𝑝 SHM-LF Spherical head model LF 
𝐊 𝐵𝐸𝑀 BEM Boundary Element Method LF 
𝐊 𝐹𝐸𝑀 FEM Finite Element Method LF 
𝐾 

3 𝑐 FEM,3c FEM LF, 3 tissue head model 
𝐾 

4 𝑐 FEM,4c FEM LF, 4 tissue head model 
𝐾 

6 𝑐 Fem,6c FEM LF. 6 tissue head model, Gold standard LF 
𝐊 𝑎𝑟𝑡 art Simulated Artifactual LF 
𝜌( 𝑐; 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) CSP Channel Similarity Profile (Correlations) 
𝜌min ( 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) CSI Channel Similarity Index (Minimum correlation) 
𝜏( 𝑠 ; 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) SSP Source Similarity Profile (Correlations) 
𝜏min ( 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) SSI Source Similarity Index (Minimum correlation) 
( 𝜗 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 , 𝜗 𝑠𝑜𝑢𝑟𝑒𝑐𝑒 ) HSC High Similarity Centroid (Median of CSI and SSI) 
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specified for each component of a volume tessellation. When consid-
ering anisotropic conductivity, each component has a conductivity
tensor of a scalar value. 

• As the introduction mentions, the general discretized Lead Field 𝐊 is
a tensor with rows 𝐊 (∶ , j , k) , columns 𝐊 ( 𝑖, ∶ , k) , and tubes 𝐊 (∶ , ∶ , k) .
However, in this paper, we project the tensor’s Lead Vectors (tubes)
onto the 𝛍𝑠 , the unit vector, which is normal to the cortex. The tube
𝐊 (∶ , ∶ , k) is substituted by 𝐊 (∶ , ∶ , k) · 𝝁𝑠 , transforming the tensor
into a matrix, with the rows and columns of this matrix represent-
ing projected lead and sources, respectively, with the dimensions
𝑁 𝑐 ×𝑁 𝑠 . Note that we retain the same matrix symbol as the tensor. 

• The Electrode positions 𝐲 𝑐 , 𝑐 = 1 , ⋯ , 𝑁𝑐and the sources are specified
by each source’s location 𝐱 𝑠 , 𝑠 = 1 , ⋯ , 𝑁𝑠 

The LF matrices we consider 𝐊 ∈ ℜ 

𝑁 𝑐×𝑁 𝑠 have elements { 𝑘 𝑐,𝑠 } . Test
F ( 𝐊 

𝑡𝑒𝑠𝑡 ) is the actual lead field to be examined for artifacts. Reference
F ( 𝐊 

𝑟𝑒𝑓 ) is the simpler lead field used to screen artifacts in the 𝐊 

𝑡𝑒𝑠𝑡 . The
ifferent types of 𝐊 

𝑡𝑒𝑠𝑡 and 𝐊 

𝑟𝑒𝑓 considered in this paper are defined in
he following sub-sections (2.2.1–2.2.4). When there is a need to specify
he number of individuals used to calculate both reference and test LF,
e add the suffix 𝑖 = 1 , ⋯ 𝑁𝑖 . 
5 
.1.1. Homogenous head model lead field 

The homogenous head model LF 𝐊 

hom is based on a head model with
onstant conductivity when the brain is in an infinite and homogeneous
edium. A visual representation of 𝐾 

ℎ𝑚 is shown in Fig. 3 -left column,
here the blue color codes the uniform connectivity of the head and

he infinite surrounding media. This type of LF only depends on the
lectrode and source coordinate positions while assuming that the brain
s placed in an infinite homogeneous medium, as mentioned in Equation
.7 of the book "Electric Fields of the Brain – The neurophysics of EEG"
 Nunez, P. L., and Srinivasan, 2006 ). With the electrode positions and
ource model, we have a slightly modified version of this equation: 

 

hom 
𝑐,𝑠 = 

1 
4 𝜋𝜎𝑏𝑟𝑎𝑖𝑛 

( 𝐫 𝑐,𝑠 · 𝝁𝑠 |𝐫 |3 
) 

(2)

Here 𝐫 𝑐,𝑠 = 𝐲 𝑐 − 𝐱 𝑠 is the difference vector between the source 𝑠 and
hannels 𝑐, 𝜇 the orientation of the source dipole, and 𝜎𝑏𝑟𝑎𝑖𝑛 the homo-
eneous conductivity similar to the brain, which in this case is constant
ecause of an infinite homogeneous medium, so Eq. (2) can be rewritten
s: 

 

hom 
𝑐,𝑠 = 𝛼

𝐫 𝑐,𝑠 · 𝝁𝑠 |𝐫 |3 (3)

Where 𝛼 = 

1 
4 𝜋𝜎𝑏𝑟𝑎𝑖𝑛 

because the conductivity of the model is constant.

pon analyzing the dataset described in 2.2.4, we found that for the
ources close to a specific electrode, the expression in Eq. (3) blows up
details are in the discussion section). Therefore, we placed a variable 𝑒
n Eq. (3) that limits the effect of 1 ∕ |𝐫|as shown in Eqs. (4) and 5 . After
esting several values 𝑒 , we selected the value ( 𝑒 = 0 . 007 met er s ) that
aximizes the correlation between these theoretical and actual LFs. 

 

hom 
𝑐,𝑠 = 

1 
4 𝜋𝜎𝑏𝑟𝑎𝑖𝑛 

( 𝐫 𝑐,𝑠 · 𝝁𝑠 

max ( |𝐫 |3 , 𝑒 3 ) 
) 

(4)

 

hom 
𝑐,𝑠 = 𝛼

𝐫 𝑐,𝑠 · 𝝁𝑠 

max ( |𝐫 |3 , 𝑒 3 ) (5)

However, Eqs. (4) and 5 are theoretical equations that, for calcula-
ion and implementation purposes, Eq. (5) can be written as: 

 

hom 
𝑐,𝑠 = 𝛼

cos 
(
𝜓 𝑐,𝑠 

)
𝑠 

max ( |𝐫 |2 , 𝑒 2 ) (6)

Here, 𝜓 𝑐,𝑠 the angle between 𝐫 𝑐,𝑠 and 𝛍𝑠 . 
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5 To select a robust minimum of 𝜏( 𝑠 ; 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) we, select the value of the 
1 st percentile for all sources. This percentile is found from the distribution 
.1.2. Spherical head hodel lead field 𝐊 

𝑠𝑝 

The spherical head model 𝐾 

𝑠𝑝 is more realistic than 𝐾 

ℎ𝑚 yet easy
o calculate. We estimate the closest fitting spheres from the electrode
onfiguration to obtain this model. Spherical head models compute LFs
hile assuming the brain is inside one or multiple spheres (3 spheres in
ur case) with different conductivities, as shown in Fig. 3 b. The spher-
cal head models used in this study are from the METH toolbox. 4 The
pecific head model computed was based on the study of Nolte et al.
 Nolte and Dassios, 2005 ), with conductivities of each sphere set as 0.33,
.0042, and 0.33 𝑆 ∕ 𝑚 

, respectively. The head model and conductivities
re visualized in Fig. 3 -middle column. 

.1.3. BEM realistic lead fields 𝐊 

𝐵𝐸𝑀 

The BEM LFs in this study are computed using the BEM volume con-
uction model proposed by ( Akalin Acar and Makeig, 2013 ; Ermer et al.,
001 ; Fuchs et al., 2002 ; Huang et al., 1999 ; Mosher et al., 1993 , 1999 ;
atta et al., 2010 ). We used the OpenMEEG ( Gramfort et al., 2010 ;
. 2011 ) toolbox embedded in the Brainstorm software. The conduc-

ivity values for the scalp, skull, and brain were set at 0.33, 0.0042, and
.33 𝑆 ∕ 𝑚 

, respectively. These LF matrices have 𝑁 𝑠 = 8002 (number of
ources) and 𝑁 𝑐 = 129 (number of electrodes). 

.1.4. FEM realistic lead fields 𝐊 

𝐹𝐸𝑀 

The FEM LFs used in this study are from Piastra et al., who com-
uted three FEM head models using the DUNEuro toolbox ( Medani et al.,
021b ; Piastra et al., 2020 ; Schrader et al., 2021b ). The LF matrices for
hese head models have 𝑁 𝑠 = 278621 and 𝑁 𝑐 = 81 . They computed three
ead models by considering three, four, and six types of brain and non-
rain tissues and called them the 3C, 4C, and 6C head models. For this
urrent study, we will refer to these models as 𝐾 

3 𝑐 , 𝐾 

4 𝑐 , 𝐾 

6 𝑐 . This 6C
odel includes the properties of white matter (anisotropic), gray mat-

er, CSF, skull compacta, skull spongiosa, and scalp. 𝐊 

𝐹𝐸𝑀, 6 𝑐 is the most
etailed and accurate LF in this study and is taken as a gold standard. 

.2. Quantifying the similarities of test and reference lead fields 

The similarity profiles between the test LF 𝐊 

𝑡𝑒𝑠𝑡 and reference LF 𝐊 

𝑟𝑒𝑓 

s assessed with two measures based on the Pearson correlation coeffi-
ient. 

The first measure assesses the Channel Similarity Profile (CSP),
hich is, for each channel 𝑐, the correlation between the values of both

ypes of LF: 

( 𝑐; 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) = 

𝑁 𝑠 ∑
𝑠 =1 

( 

𝑘 𝑟𝑒𝑓 𝑐,𝑠 − 𝑘 𝑟𝑒𝑓 𝑐 

) (
𝑘 𝑡𝑒𝑠𝑡 𝑐,𝑠 − 𝑘 𝑡𝑒𝑠𝑡 𝑐 

)
√ 

𝑁 𝑠 ∑
𝑠 =1 

( 

𝑘 𝑟𝑒𝑓 𝑐,𝑠 − 𝑘 𝑟𝑒𝑓 𝑐 

) 2 𝑁 𝑠 ∑
𝑠 =1 

(
𝑘 𝑡𝑒𝑠𝑡 𝑐,𝑠 − 𝑘 𝑡𝑒𝑠𝑡 𝑐 

)2 
(7)

here 𝑘 𝑡𝑒𝑠𝑡 𝑐 = 

1 
𝑁𝑠 

𝑁𝑠 ∑
𝑠 =1 

𝑘 𝑡𝑒𝑠𝑡 𝑐,𝑠 and a similar definition for 𝑘 𝑟𝑒𝑓 𝑐 . 

The Channel Similarity Profile can be visualized as a topographic
lot, as in Fig. 4 (left pane), displaying each channel’s correlation value.

The Channel Similarity Index (CSI) is defined as 𝜌min ( 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) =
𝑖𝑛 
∀𝑐 

𝜌( 𝑐; 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) and summarizes the worst correlations over all chan-

els between reference and test LF. 
The second type of similarity profile measure assesses, for each

ource 𝑠 , the correlation between the values of both types of LF. A naïve
xpression would be: 

𝑛𝑎𝑖𝑣𝑒 ( 𝑠 ; 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) = 

𝑁 𝑐 ∑
𝑐=1 

( 

𝑘 𝑟𝑒𝑓 𝑐,𝑠 − 𝑘 𝑟𝑒𝑓 𝑠 

) (
𝑘 𝑡𝑒𝑠𝑡 𝑐,𝑠 − 𝑘 𝑡𝑒𝑠𝑡 𝑠 

)
√ 

𝑁 𝑐 ∑
𝑐=1 

( 

𝑘 𝑟𝑒𝑓 𝑐,𝑠 − 𝑘 𝑟𝑒𝑓 𝑠 

) 2 𝑁 𝑐 ∑
𝑐=1 

(
𝑘 𝑡𝑒𝑠𝑡 𝑐,𝑠 − 𝑘 𝑡𝑒𝑠𝑡 𝑠 

)2 
(8)
4 https://www.nitrc.org/projects/meth/ 

o

𝑚

6 
here 𝑘 𝑡𝑒𝑠𝑡 𝑠 = 

1 
𝑁𝑐 

𝑁 𝑐 ∑
𝑐=1 

𝑘 𝑡𝑒𝑠𝑡 𝑐,𝑠 and a similar definition for 𝑘 𝑟𝑒𝑓 𝑠 . 

However, this variant of the Source Similarity Profile

𝑛𝑎𝑖𝑣𝑒 ( 𝑠 ; 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) are correlations calculated with fewer samples than
he Channel Similarity Profile. In preliminary calculations, we found
hat this leads to very variable estimates across sources with an excess
f outliers. To decrease correlation variability, we increase the degrees
f freedom of the estimator by spatial smoothing of 𝜏𝑛𝑎𝑖𝑣𝑒 ( 𝑠 ; 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) as
 weighted average of the spatially nearest neighbors: 

( 𝑠 ; 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) = 

𝑘 ∑
𝑖 ∈𝑁 ( 𝑠,𝑑𝑡ℎ ) 

𝜔 𝑖 𝜏𝑛𝑎𝑖𝑣𝑒 ( 𝑖 ; 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) (9) 

here 𝑁( 𝑠, 𝑑𝑡ℎ ) is the set of the nearest neighbors of the source
 𝑖 = 

𝐫 𝑖,𝑠 
𝑘 ∑

𝑗∈𝑁( 𝑠,𝑘 ) 
|𝐫 𝑗,𝑠 | whose Euclidean distance from 𝜏( 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) =

in 
𝑠 

𝑟𝑧𝑠𝑐𝑜𝑟𝑒 ( 𝜏( 𝑠 ; 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) , 1 ) i s less than an empirically selected thresh-

ld 𝑑𝑡ℎ (values equal to 20 mm in our case), and 𝜔 𝑖 = 1 − 

|𝐫 𝑖,𝑠 |
𝑘 ∑

𝑗∈𝑁( 𝑠,𝑘 ) 
|𝐫 𝑗,𝑠 | .,

here |𝐫 𝑖,𝑠 | is the distance between a source and its nearest neighbors.
he smoothed Source Similarity Profile can be visualized as cortical
lots, as in Fig. 4 (right column), displaying each source’s correlation
alue. We found this naïve definition to be susceptible to the presence
f outliers. We, therefore, use a robust estimate 𝜏( 𝑠 ; 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) , excluding
hese outliers. 5 

We call this Source Similarity Index (SSI) which is denoted as

min ( 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) . 

.3. Simulation of artifactual lead fields 

To simulate an artifactual LF, 𝐊 

𝑎𝑟𝑡 we corrupted the gold standard
 6 𝑐 by adding a large value to specific sets of rows and columns. The

easoning behind this simulation is that the computation of the LF is
 complex numerical calculation, iteratively solving high-dimensional
inear equations ( Gramfort et al., 2010 ; Medani et al., 2021b ; Nolte and
assios, 2005 ). When this process does not converge, or the parts of the
ead model are incorrect, the LF matrix may exhibit substantial values
eflecting artifacts ( Adjerid and Weinhart, 2011 ; Bird, Coombs, and Gi-
ni, 2019 ). We found these substantial values by empirically analyzing
he set of LFs in this study. These values are one of the many outcomes
hat reflects artifacts in LFs when linear solvers do not converge. Unfor-
unately, the tools based on these linear solvers to compute LFs do not
eturn a runtime error when these solvers do not converge. Instead, they
ither return the most recent value in the iteration and save the specific
lement 𝑘 𝑐,𝑠 of the LF (OpenMEEG), or the error message has to be vi-
ualized manually at the of LF computation (DuNeuro) ( Gramfort et al.,
010 ; Schrader et al., 2021b ). Formally the simulations take the form: 

 

𝑎𝑟𝑡 
𝑐,𝑠 = 𝑘 𝐹𝐸𝑀, 6 𝑐 

𝑐,𝑠 + 𝑎 ∀𝑎 ∈ 𝐴 (10)

Where the set 𝐴 = {−∞, −1000 , −100 , −10 , −5 , −1 , 0 , 1 , 5 , 10 , 100 , 1000 ,
} specifies the values for which we simulated the corrupted parts of the

F matrix. These values were selected empirically for the LFs used in this
tudy. These values are relative to the entries of LF and can be selected
rom the set 𝐴 based on the LF being used. The simulation figures used
n this paper were generated from the value 100; overall, we tested a set
f values from 𝐴 , and they yielded the same outcomes. In this research,
e studied 5 scenarios illustrated in Fig. 5 . 
f the robust z-scores of the smoothed source correlations: 𝑧 𝜏 ( 𝑠 ; 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) = 
0 . 6745( 𝜏( 𝑠 ; 𝑟𝑒𝑓 ,𝑡𝑒𝑠𝑡 )− 𝑚𝑒𝑑𝑖𝑎𝑛 ( 𝜏( 𝑠 ; 𝑟𝑒𝑓 ,𝑡𝑒𝑠𝑡 ) ) ) 

𝑀𝐴𝐷 
where Median Absolute Deviation is 𝑀𝐴𝐷 = 

𝑒𝑑𝑖𝑎𝑛 ( |𝜏( 𝑠 ; 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) − 𝑚𝑒𝑑𝑖𝑎𝑛 ( 𝜏( 𝑠 ; 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) ) |) ( Howell, 2014 ). 

https://www.nitrc.org/projects/meth/
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Fig. 4. An example of the channel and source 
similarity profile between a reference lead field 
( 𝐊 

hom ) and a test LF ( 𝐊 

𝐹𝐸𝑀, 6 𝑐 ) . Left: Topo- 
graphic view of the Channel Similarity Pro- 
file 𝜌( 𝑐; 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) . Right: Multiple views of the 
Source Similarity Profile 𝜏( 𝑠 ; 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) . 

Fig. 5. Five different scenarios in which artifacts are added to the gold standard LFs. 
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Fig. 6. Pipeline for Lead Field computation explaining the three steps involved, 
from MRI segmentation to realistic head modeling to LF computation. 

 

 

 

 

 

 

 

 

.4. Analysis of the child mind institute (CMI) mri-eeg dataset 

To explore the properties of BEM LFs for a large open-science dataset,
e selected the ChildMind Institute (CMI) EEG-MRI repository that con-

ains information from 1251 subjects from the Healthy Brain Network
nitiative ( Alexander et al., 2017 ). MRIs were collected using Siemens
T Tim Trio MRI scanner. EEG was a High-Density EEG data recorded
sing a 128-channel EEG geodesic hydroCel EGI system, available at
ttp://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/in 
ex.html . 

Using standard modules, BEM LFs were obtained from all subjects
sing an in-house pipeline developed at Joint CC-Lab, UESTC, China
 Areces-Gonzalez, 2020 ; Areces-Gonzalez et al., 2023 ). 

This pipeline (shown in Fig. 6 ) estimates the LF for each subject in
hree steps 1) HCP structural pipeline, 2) Realistic head model, and 3) LF
omputation. This pipeline uses functions from HCP structural pipeline
 Glasser et al., 2013 ) based on the FreeSurfer toolbox ( Fischl, 2012 )
nd Ciftify (HCP)( Dickie et al., 2018 ). Later, we computed realistic
ead models using the built-in BEM functionality of Brainstorm Tool-
ox ( Tadel et al., 2011 ). In the last step, we computed LFs using Open-
EEG ( Gramfort et al., 2010 ), which uses BEM based volume conduc-

ion model for LF computation. We now give more details for each step
f the pipeline: 

1) In the first step, we processed raw T1 MRI images using the
Freesurfer toolbox to perform segmentation, denoising, normaliza-
tion, and co-registration of different brain and non-brain tissues. In
this step, we used the "recon_all" function of the Freesurfer toolbox
7 
( Fischl, 2012 ). The output from the Freesurfer toolbox was given
as input to the Ciftify toolbox ( Dickie et al., 2018 ) to convert the
Freesurfer directory into the CIFITFY space or HCP format direc-
tory ( Dickie et al., 2018 ; Glasser et al., 2013 ). We applied the same
"recon_all" function to get this standard output compatible with the
Brainstorm toolbox (Mosher et al., n.d.; Tadel et al., 2011 ). At the
end of this step, we performed a quality check to identify the topo-
logical defects and verify the gray matter, white matter, and CSF
segmentation. 

http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/index.html
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Fig. 7. LVF plot used for manual quality control, (a) good lead field with all LVs pointing towards the EEG sensor under observation (marked by a green circle), and 
a decay in the magnitude of LVs of all cortical dipole sources. (b) artifactual lead field with no visible magnitude decay or proper direction for the of LVs towards 
the EEG sensor. 
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2) Upon verifying the quality of the segmented and co-registered MRIs,
we checked if the registration of these MRIs with brain and non-brain
tissues was accurate. Next, we computed realistic head models with
the scalp, skull, CSF, and cortex surface boundaries using a BEM-
based head modeler embedded in Brainstorm. Later, we checked the
alignment of the cortex and electrodes with head models. 

3) In the end, the BEM volume conduction model proposed by
( Akalin Acar and Makeig, 2013 ; Ermer et al., 2001 ; Fuchs et al.,
2002 ; Huang et al., 1999 ; Mosher et al., 1993 , 1999 ; Vatta et al.,
2010 ) was used to compute individual LFs. We used the OpenMEEG
( Gramfort et al., 2010 ; A. 2011 ) toolbox embedded in the Brainstorm
software. Before computing the LFs, the conductivity values must be
selected based on the volume conduction model. In this case, the con-
ductivities for Scalp, Skull, and Brain were set at 0.33, 0.0042, and
0.33 𝑆 ∕ 𝑚 

, respectively. The eventual LFs have 8002 dipole sources
for each individual. 

.5. Manual quality control of lead fields 

The LF of all 1251 CMI subjects was subjected to a manual quality
ontrol exercise. Towards this end, we first generated LVF plots for all
Fs in the dataset. These LVF plots represent each electrode and show
he LVs placed at the specific location in the lead. These LVs in the
VF plots should show their direction pointing towards the electrode
ccording to the standard text on electromagnetic signal propagation
roperties ( Malmivuo, 1995 , 2000 ; Nunez, P. L., and Srinivasan, 2006 ).
ts intensity decreases as we move away from the electrode. Following
hese concepts mentioned in section 16.2 of ( Malmivuo, 2000 ), figure
1.19 of ( Malmivuo, 1995 ), and section 5.6 of ( Nunez, P. L., and Srini-
asan, 2006 ), the LVF plots were checked for two main properties: 

• The LVs of dipole sources point towards the electrode for which these
LVF plots were made 

• The size of LVs decreases as the distance of the corresponding dipole
source increases from that electrode 

Fig. 7 shows two LVF plots for “accepted ” ( Fig. 7 on the left) and
doubtful ” ( Fig. 7 on the right) LFs classified by LF-AQI. Red-filled cir-
les represent the EEG sensor location on the scalp, and the green-filled
ircle is the EEG sensor being observed for the LVF plot. Blue dots show
he location of the dipole source on the cortex, and the size of the blue
ot and its corresponding arrow shows the strength of LV corresponding
8 
o the source, contributing to the eventual voltage measured at the EEG
ensor (green-filled circle). 

Fourteen evaluators from different educational backgrounds study-
ng Neuroscience at our lab evaluated these LFs. These evaluators
nalyzed the LVF plots using a questionnaire designed to evalu-
te the plots based on the theory from the abovementioned books.
he questionnaire is available at: ( https://docs.google.com/forms/d/
NcQ5tzkGO99ONZetiRLECOzdLBXKNcjvKliFfqMZVtc/edit ). Some ite
s in the questionnaire were directly relevant to the quality of the LVF
lots, cortex, and electrode alignment with the head model. However,
thers were irrelevant and included as controls. We requested that the
valuation indicate the level of confidence. The evaluators ranked their
nswers on a Likert scale of 1–5, considering one a confident yes re-
ponse and five a confident no. Though all evaluators did not revise all
Fs, we did ensure that every LF was checked by multiple evaluators’
stimates and accounted for evaluator bias. The visual quality control
uestionnaire is as follows: 

Q1 Head, Cortex, and Electrodes are aligned? 
Q2 What is the accuracy of LVs pointing toward the EEG sensor? 
Q3 How well is the symmetry of decay for the LVs according to their

distance from the electrode? 
Q4 Based on the above inputs, rate the lead field. 
Q5 What is the confidence level of the opinion? 
Q6 What was the difficulty level of analyzing the LVF plots for the

above questions? 

We performed an Item Response Theory (IRT) analysis on the ques-
ionnaire results. IRT is a mathematical model that reconstructs a la-
ent factor based on measured items/questions scores when items are
ategorical and not continuous. The scale for our questionnaire ranges
rom 1 to 5; thus, we have used a polytomous IRT ( Beaujean, 2014 ;
. Chalmers, 2015 ). We have used the R package MIRT ( R. P. Chalmers,
012 )for this analysis. We constructed a latent factor from the six ques-
ions and used a generalized partial credit model ( R. P. Chalmers, 2015 ;
ollitt and Hutchinson, 1987 ), which implements multiple 2PL models
or each adjacent category ( Wu, Tam, and Jen, 2016 ). We tested the IRT
odel using factor loadings (how well a question is loading on the latent

ariable, a higher value is better), and item discrimination scores 𝜂 tell
ow well a question differentiates between evaluators; larger 𝜂 indicates
igh discriminability). Moreover, TRACE plots or Item Response Cate-
ory Characteristic Curves were used to see if evaluators used all the
ategories from the scale and if the scale matched the behavior of eval-

https://docs.google.com/forms/d/1NcQ5tzkGO99ONZetiRLECOzdLBXKNcjvKliFfqMZVtc/edit
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Fig. 8. Channel-wise and Source-wise Correlations between LFs computed from 𝐊 

ℎ𝑜𝑚 , 𝐾 

𝑠𝑝 , 𝐊 

𝐹𝐸𝑀, 3 𝑐 , 𝐊 

𝐹𝐸𝑀, 4 𝑐 and 𝐊 

𝐹𝐸𝑀, 6 𝑐 LFs. Channel-wise correlations as a topo- 
graphic map on the head and source-wise as a cortical map. 
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for sources. 
ators. A good question should show a trace plot where the evaluators
se all categories. 

We employed all six questions to load onto the latent factor for the
nitial model. We have analyzed the factor loadings, item discrimina-
ion scores, and item trace plots to check if all the answer categories
re visible at the theta level 𝜃 (latent factor). We then optimized the ini-
ial model based on the findings above and compared both models using
he R "ANOVA" function ( Anderson-Cook, 2007 ; Fox, 2015 ; Hand, 1987 ;
’Brien and Kaiser, 1985 ). We implemented Akaike’s Information Cri-

eria (AIC), Bayesian Information Criteria (BIC), and Log-likelihood as
odel selection criteria. Based on the AIC and BIC, we selected one of

he models and used it to get the latent factor scores for further analysis.
After generating the latent factor scores 𝜃 for manual QC using IRT,

e compared these scores with automated quality control variables to
alidate our proposed Quality Index. We implemented multi-level mod-
ls for repeated measures to describe the relationship between manual
C IRT scores and automated QC variables. The generic notation for
ulti-level models or linear mixed models (LMMs) is 

 = 𝛽𝑋 + 𝛾𝑍 + 𝜀 (11)

Here 𝑌 is the outcome variable, 𝑋is the fixed effect variable, and a
rouping variable 𝑍for random effects. 𝑎 and 𝛾 are estimated parame-
ers for fixed and random effects, respectively. We applied three LMM
odels ( Eq. (11) ) with different outcome variables ( 𝑌 ) . The three LMM
odels were for 𝜌min ( 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) , 𝜏min ( 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) , and a quality index LF-
QI (defined below). All three variables were scaled using Fisher’s z-

ransform before LMM ( Zucker, 1965 ). Latent manual QC score ( 𝜃) was
he fixed effect ( 𝑋) , and evaluators were the random effects ( 𝑍) . 

 ∼ 𝜃 + 𝑟𝑎𝑛𝑑 𝑜𝑚 ( 𝐸 𝑣𝑎𝑙𝑢𝑎𝑡𝑜𝑟𝑠 ) (12)

" lme " ( Linear, Mixed, Models, Fit, and Hmisc, 2022 ) function in R
as used to estimate the coefficients and p-values for fixed and random
9 
erms. Additionally, Cohen’s d effect size for LMM was estimated using
 lme.dscore " function from the EMAtools ( Kleiman, 2021 ). A Cohen’s
 value of 0.2–0.7 means a small to medium effect size, and a value of
.8 or greater means a large effect. 

. Results 

.1. Similarity profiles between lead fields with increasing complexity 

To see how well LFs with increasing complexity approximate each
ther, we computed scalp topography of 𝜌( 𝑐; 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) and the cortical
opography of 𝜏( 𝑠 ; 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) between 𝐾 hom , 𝐾 𝑠𝑝 , 𝐾 3 𝑐 , 𝐾 

4 𝑐 and 𝐾 

6 𝑐 .
ig. 8 shows a matrix plot for these comparisons. The upper triangle
rea shows the topographic maps for all 𝜌( 𝑐; 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) , and the lower tri-
ngle shows the posterior view of the cortical map of all 𝜏( 𝑠 ; 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) .
nly the posterior view is shown for the latter since it had the great-
st variability. The detailed cortical view of 𝜏( 𝑠 ; 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) between 𝐾 hom 
nd 𝐾 6 𝑐 was already shown in Fig. 4 . The diagonal of the plot shows
he histogram of the 𝜌( 𝑐; ℎ𝑜𝑚, 𝑡𝑒𝑠𝑡 ) and 𝜏( 𝑠 ; ℎ𝑜𝑚, 𝑡𝑒𝑠𝑡 ) for all test LFs. We
ummarize our findings in Fig. 8 as follows: 

• Channel 𝜌( 𝑐; 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) and 𝜏( 𝑠 ; 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) Source Similarity Profiles be-
tween the different types of lead fields studied in this paper are sur-
prisingly high. 

• Both 𝜌( 𝑐; 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) and 𝜏( 𝑠 ; 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) decreases for more complex head
models when HHM-LF is considered reference LF but still give values
above 0.6 and 0.5, respectively. 

• The similarity profiles comparing all types of realistic lead fields are
very high ( > 0.95) 

• Despite being lower than when using realistic LF as a reference,
𝜌( 𝑐; ℎ𝑜𝑚, 𝑡𝑒𝑠𝑡 ) , 𝜌( 𝑐; 𝑠𝑝, 𝑡𝑒𝑠𝑡 ) 𝜏( 𝑠 ; ℎ𝑜𝑚, 𝑡𝑒𝑠𝑡 ) and 𝜏( 𝑠 ; 𝑠𝑝, 𝑡𝑒𝑠𝑡 ) are much
higher than initially expected, more than 0.6 for channels and 0.5
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Fig. 9. Sensitivity of similarity profiles to artifactual LFs: The first column shows the artifacts simulated in the LF matrix. The second column shows a topographic 
map of artifacts on different channels. The third and fourth columns shows cortical maps of artifacts. 
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The histograms at diagonals also endorse this claim when look-
ng at the summary measures. If we look at histograms from sim-
le LF to complex ones, it is evident that histograms move away
rom the highest values of the correlation coefficient. However, this
alue does not go below 0.6 in the case of channels and 0.5 in
ources. 

Interestingly, both 𝜌( 𝑐; ℎ𝑜𝑚, 𝑠𝑝 ) and 𝜏( 𝑠 ; ℎ𝑜𝑚, 𝑠𝑝 ) are remarkably high
nd have good correlations with the realistic LF, suggesting that either
ould be used as a computationally inexpensive references. However,
 hom can be computed an order of magnitude faster than 𝐾 𝑠𝑝 . We hence-

orth adopted 𝐾 hom as the reference LF and searched for an automatic
F quality control index using it. 
10 
.2. Sensitivity of the similarity profiles to artifactual lead fields 

We tested five different scenarios to produce noise distortions to as-
ess the sensitivity of channel and Source Similarity Profiles to the sim-
lated "artifactual LF, " as described in Section 3.3 . Fig. 9 illustrates the
ix cases considered (including 𝐊 

𝐹𝐸𝑀, 6 𝑐 ), with the corresponding sim-
larity profiles below. These scenarios are (listed here in the order of
ig. 8 , from left to right): 

1 No artifact: 𝐊 

𝐹𝐸𝑀, 6 𝑐 as taken as a test, LF and compared to the 𝐊 

ℎ𝑜𝑚 

reference exhibited large channel 𝜌( 𝑐; ℎ𝑜𝑚, 𝑠𝑝 ) and 𝜏( 𝑐; ℎ𝑜𝑚, 𝑠𝑝 ) Source
Similarity Profiles. 
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Fig. 10. Scatter plot of the CSI and SSI for all 1251 LFs from the CMI dataset. 
Note that the cluster of LFs with high similarities has as its centroid (HSC) at 
(0.80,0.79). 
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2 Localized channel artifact : The expected lower 𝜌( 𝑐; ℎ𝑜𝑚, 𝑠𝑝 ) values
in the Channel Similarity Profile result from corruption in the test LF
of all sources for a group of closely spaced channels. This channel-
wise artifact also has a widespread decrease in source correlations. 

3 Source region of interest (ROI) artifact : When the sources in the
LF corresponding to an ROI in the sources are corrupted across all
channels, the cortical similarity profiles plots show low correlations
for the specific area in which sources have artifacts. However, the
similarity profile across all channels is degraded, as expected. 

4 Combined localized channel cortical ROI artifact : Corrupting the
LF using a blend of scenarios 2. and 3. produces a scalp similarity
profile akin to that of the cortical ROI artifact and a Source Similarity
Profile akin to that of the localized channel artifact. 

5 Circumscribed channel and source artifact : In this fifth scenario,
the LF is corrupted for a group of adjacent channels belonging to
a cortical region of interest. The results on the topographical plots
show noise in the channels that have artifacts. Similarly, cortical
plots also show artifacts in the area where we only have added noise.

6 Sparsely distributed artifact: In the last scenario, simulated
sources and channels LF entries have noise added in a sparse pat-
Fig. 11. Top: Histogram of LF-AQI with the threshold for "doubtful" LFs

11 
tern. The scalp topographic maps exhibit a random pattern of low
values. Cortical plots show low correlations in the patches where we
have added simulated noise. 

These simulations of artifactual LF show the similarity profiles
𝜌( 𝑐; 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) and 𝜏( 𝑠 ; 𝑟𝑒𝑓 , 𝑡𝑒𝑠𝑡 ) are sensitive to corruption of a ref-
erence lead field, with circumscribed ROI artifacts easily identi-
fied. 

.3. Distribution of the similarity indexes across subjects for the cmi bem lf 

As described in detail in Section 2.5 , we calculated the BEM LF for
251 HBN subjects from the EEG-MRI repository. A scatter plot of the
ource Similarity Indices versus Channel Similarity Indices for all sub-
ects are shown in Fig. 10 . The scatter plot shows a concentrated clus-
er of points centered at the point (0.80, 0.79) with straggling horizon-
al and vertical lines of outliers that indicate possible artifacts for the
ources or channel elements of fewer LFs. A reasonable hypothesis is
hat the cluster corresponds to well-calculated LFs. This idea is the basis
or our definition of the Lead Field Automatic Control Index (LF-AQI)
roposed in the next section. We shall call the centroid (median of all
ata points of 1251 LFs) in Fig. 10 the high similarity centroid (HSC)

nd denote it as ( 𝜗 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 , 𝜗 𝑠𝑜𝑢𝑟𝑐𝑒 ) . Its value is (0.80, 0.79) in this sample.

.4. The lead field automatic-quality control index (LF-AQI) 

As seen in the previous section, most of the LFs studies have high
hannel and Source Similarity Indices, forming what we have called a
igh similarity cluster. It is easy to identify the centroid of this cluster
hich allows us to define our index. 

The Lead Field Automatic-Quality Control Index (LF-AQI) is the log 10 
f Euclidean distance between the HSC and the LF of the individual 𝑖 to
e tested: 

F − AQ I 𝑖 = lo g 10 

( ‖‖‖‖‖
[ 
𝜌min 

(
hom 𝑖 , 𝐵𝐸 𝑀 𝑖 

)
𝜏min 

(
hom 𝑖 , 𝐵𝐸 𝑀 𝑖 

)] − 

[ 
𝜗 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 
𝜗 𝑠𝑜𝑢𝑟𝑐𝑒 

] ‖‖‖‖‖
2 

2 

) 

(13) 

Fig. 11 (top) shows the histogram of the sample LF-AQI. We decided
o identify LF-AQI values larger than the 90th percentile as possibly
rtifactual and needing to be checked. In this particular case, the LFs
re the ones that have LF-AQI greater than − 0.9755. 
. Bottom: Histogram of LF-AQI threshold of 500 random samples. 
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Fig. 12. Top: Histogram of CSI and SSI for 1251 subjects. Bottom: High similarity centroids for 500 random samples shown in a zoomed-in scale between (0.78,0.81). 
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Fig. 13. LF-AQI pipeline showing each step involved in computing and applying 
LF-AQI on a large dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We used a cross-validation technique to ensure that the HSC, LF-
QI, and threshold have out-of-sample validity. Specifically, we carry
ut repeatedly the following procedure (500 times): 

• Randomly divide the CMI dataset into training and testing sets with
a ratio of 50% each 

• Obtain an HSC from the training dataset 
• Obtain the LF-AQI from the test set 

Fig. 11 (bottom) shows the histogram of the LF-AQI threshold from
00 random samples, and it shows that LF-AQI and its thresholds are
alid for out-of-sample testing. Similarly, Fig. 12 (top) shows the sim-
larity index for all 1251 subjects, showing most LFs have high values
nd some LFs have low values of CSI and SSI. Fig. 12 (bottom) shows
hat high similarity centroids for 500 random samples have almost no
ariation, and they are around (0.80, 0.79). 

.5. An lf-aqi pipeline 

As a result of the developed methods, a pipeline for LF-AQI was
reated, shown in Fig. 13 . The pipeline takes bulk LFs 𝐊 

𝑡𝑒𝑠𝑡,𝑖 pro-
uced by standard LF workflows as input. Our pipeline then computes
 

ℎ𝑜𝑚,𝑖 against each LF and computes the CSI and SSI for those LFs. The
ipeline then projects these CSI and SSI on a 2D space and computes
n HSC by taking the median of CSI and SSI, respectively. Using HSC,
t computed the LF-AQI using the formula in Eq. (14) . Once LF-AQI is
omputed, the pipeline tags the LFs as accepted LFs and "doubtful." We
hen re-analyze MRIs and head models that computed these "doubtful"
Fs for corrections. 

.6. Visualizing and correcting the artifacts using the lf-aqi 

We analyzed all 60 LFs declared as "doubtful" by the LF-AQI pipeline
nd 40 LF samples from the 1251 LFs of the CMI dataset. We found three
easons why the LFs were screened as "doubtful": 

1 The first reason was the blurred/noisy MRI causing inaccurate
segmentation. Fig. 14 a shows, as an example, three views of a
blurred/noisy MRI in the first row. The second row shows that
these MRIs do not produce correct tissue boundaries. Eventually,
these result in incorrect tissue segmentation and the reconstructed
tissues from the segmentation of these MRIs generate a distorted,
12 
"spiky" surface mesh, as shown in the third row. However, Fig. 14 b
shows another cleaner/smoother MRI (first row), in which the tis-
sue boundaries are identifiable (second row). This MRI produces
accurate tissue segmentation and reconstruction, as shown in the
third row. Numerical instability emerges in many situations due
to the skull layer’s close disposition and low conductivity rela-
tive to the gray matter sources ( Akalin Acar and Makeig, 2013 ;
M. Dannhauer et al., 2011 ; Vorwerk et al., 2019 ). Conductivity het-
erogeneities at the boundary between the scalp and the air may con-
tribute to such numerical instability, but in less measure, since this
boundary is more distant to the gray matter 

2 Fig. 15 a shows an evident misalignment of the cortex inside the
head. Thus, the LF computed from this head modeling is also de-
clared "doubtful." Fig. 15 b shows a properly aligned cortex without
noticeable artifacts; hence, the LF computed from this head model
passed the LF-AQI test. 
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Fig. 14. Degraded MRIs that produce artifactual LF and clean ones. (a) First row: Blurred/Noisy MRI, Second row: Tissue boundaries are not identifiable, causing 
wrong segmentation, Third row: Due to improper segmentation, tissue reconstruction is distorted. (b) First row: Clean/Smooth MRI, Second row: Tissue boundaries 
are identifiable, making a basis for accurate segmentation, Third row: Proper segmentation yield accurate tissue segmentation. 

Fig. 15. Cortical alignment with head vol- 
ume (a) Cortical alignment for an LF declared 
"doubtful" by LF-AQI. The electro-head align- 
ment is not correct. (b) Cortex alignment of LF 
was declared accurate by LF-AQI. 

Fig. 16. EEG electrode alignment affects LF 
quality (a) Electrode alignment of LF declared 
"doubtful" by LF-AQI. (b) Electrode alignment 
of LF was declared accurate by LF- AQI. 
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3 Fig. 16 a shows that the LF’s electrode alignment with artifacts needs
distance correction and realignment. Fig. 16 b shows corrected and
realigned electrodes on the head. 

The next step was removing the mentioned artifacts and re-
omputing the LFs. 

The next step is to remove the mentioned artifacts and compute the
Fs again. In case of incorrectly segmented MRIs, we first try to reper-
orm the MRI segmentation steps to achieve proper segmentation. How-
13 
ver, in cases where MRIs still cannot be properly segmented, we pro-
eed by substituting HCP structural outputs and FSL nonbrain tissue of
n individual subject with chosen template outputs. The templates are
seable to perform approximated electrophysiological source imaging
rom the EEG. A specific parameter in the pipeline configuration files
llows switching individualized or predetermined template anatomy to
acilitate this process. This feature helps correct the second type of ar-
ifact we found in the "to-be-checked" labeled LFs. The last correction
s to correct the sensor layout. Since we have already performed auto-
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Fig. 17. Left: Scatter plot of the CSI and SSI for all 1251 LFs from the CMI dataset. Note that the cluster of LFs with high similarities has as its centroid (HSC) at 
(0.80,0.79). Right: Scatter plot of LFs that were corrected after screening with LF-AQI. 

Table 2 

IRT initial model result, factor loadings, and 
item discrimination for each question. 

Questions Factor 
loadings 

Item 

discrimination 

Q1 0.596 1.265 
Q2 0.979 8.281 
Q3 0.989 11.54 
Q4 0.991 12.461 
Q5 0.446 0.848 
Q6 0.324 0.584 
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Table 3 

Results for IRT model 2 with only the most rel- 
evant questions, factor loadings, and item dis- 
crimination for each question. 

Questions Factor 
loadings 

Item 

discrimination 

Q2 0.980 8.484 
Q3 0.989 11.556 
Q4 0.988 10.91 

Table 4 

model comparative indices. 

Models AIC AICc SABIC BIC Log Likely 

Model 1: All Questions 9424.2 9425.5 9486.5 9581.8 − 4682.08 
Model 2: Q2, Q3, Q4 4523.0 4523.3 4554.2 4601.8 − 2246.50 
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atic sensor correction during the head modeling step, we manually
orrect the electrode alignment and placement on the scalp. During the
ipeline batch mode, the flagged files are post-processed by the module
edicated to Lead Field computation alone. 

Once we have completed the corrections, we pass these LFs through
he LF-AQI pipeline. Fig. 17 (left) shows the CSI and SSI scatter plot for
he first run, showing that some lead fields have low correlations. Chan-
el and Source similarity profiles for extreme cases of LFs with low cor-
elations are shown in Fig. 18 (top row). The right side of Fig. 17 shows
he scatter plot of CSI and SSI for the LFs after correction, and LF-AQI
hen accepted these LFs. Channel and Source similarity profiles for ex-
reme cases after corrections are shown in Fig. 18 (bottom row). 

.7. Contrasting the lf-aqi with manual quality control 

Once we had values for LF-AQI, we then performed manual quality
ontrol, and we compared the results to the LF-AQI results. We collected
he manual quality control and LF-AQI results and performed the IRT
nalysis explained earlier. 

The initial IRT model that we tested had all questions from the man-
al quality control questionnaire. Table 2 shows the results for that
odel. Each question has a label with a "Q" followed by a number from
-to 6. Q2, Q3, and Q4 loaded very well on the latent factor with val-
es > 0.9, whereas Q 6 has weak loading. The item discrimination scores
14 
ere low for Q 5, Q6 ⟨ 1.0, whereas Q1 was marginal at 1.2. In contrast,
2, Q3, and Q4 showed high discrimination values ⟩ 8.0. 

The plots for the initial model are in Fig. 19 . The x-axis is the latent
ariable 𝜃, and the y-axis is the probability of theta 𝑃 ( 𝜃) , where P1 to
5 are the curves for each answer category. The plot shows the spread
or each response category across different levels of 𝜃. All response cat-
gories for Q3 and Q4 are a likely choice for some level of the latent
ariable 𝜃. In contrast, Q1 has only the two most probable response cat-
gories. The overall model explained 60% variance. 

Based on the initial model factor loadings, item discrimination
cores, and trace plots, we have implemented another model with just
2, Q3, and Q4 as these questions had high loadings, discrimination

cores, and balanced trace plots. The results for the modified model
re in Table 3 . The factor loadings and item discrimination scores are
lightly different from the initial model. However, the variance ex-
lained is 97%. 

The results for the ANOVA between both models are in Table 4 . The
nformation Criterion shows that the second model is better, having
ow values (4523.0 & 4601.8) of AIC and BIC compared to the previ-
us model’s values (9424.2 & 9581.8). All the other model fit indices
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Fig. 18. First Row: Left - Similarity profile of 
subject having worst CSI. Right - Source Simi- 
larity Profile for a subject with the worst SSI, 
orange spots showing sources with low corre- 
lations. Second Row: Similarity profiles of both 
subjects after distance corrections. 

Table 5 

LMM fixed effect estimates with respective p-values and Cohen’s d 
effect size. 

LMM Estimate p-value Cohen’s d 

𝜗 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 ∼ 𝜃 + 𝑟𝑎𝑛𝑑 𝑜𝑚 ( 𝐸 𝑣𝑎𝑙𝑢𝑎𝑡𝑜𝑟 ) 0.15 < 0.001 1.4 
𝜗 𝑠𝑜𝑢𝑟𝑐𝑒 ∼ 𝜃 + 𝑟𝑎𝑛𝑑 𝑜𝑚 ( 𝐸 𝑣𝑎𝑙𝑢𝑎𝑡𝑜𝑟 ) 0.00005 0.974 0.002 
LF − AQI ∼ 𝜃 + 𝑟𝑎𝑛𝑑 𝑜𝑚 ( 𝐸 𝑣𝑎𝑙𝑢𝑎𝑡𝑜𝑟 ) − 0.098 < 0.001 − 1.3 
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reatly improved when we only applied IRT in Q2, Q3, and Q4. Thus,
e selected the second model and generated the latent factor scores for

urther analysis. 
After generating the latent factor scores from model 2 for each

ample/subject, we compared these scores with the respective auto-
ated quality control scores for each CMI subject. A Fisher’s z-transform

caled the automatic quality control values. Table 5 shows LMM mod-
ls and the estimates for fixed effects with respective p-values and ef-
ect sizes. The latent factor theta is positively associated with CSI, re-
ulting in a highly significant p-value ( < 0.001) and a large effect size
 d = 1.4). LF-AQI has a similar trend with a negative association (p-
alue < 0.001, d = − 1.3). The LF-AQI values increase and deviate from
he acceptable range as the quality of LF goes from good to unaccept-
ble values; that is the reason for the negative association. In con-
rast, the association between manual quality control and SSI is not
ignificant because, in manual quality control, we only analyzed LVF
lots. 
15 
. Discussion 

Assessing the quality of 100 s and 1000s of lead fields (LFs) using
onventional manual quality control methods is tedious and sometimes
mpractical. That is why there is a need to develop an automatic quality
ontrol method that checks the quality of LFs and declares them use-
ble for source localization. In this study, an automatic lead field quality
ndex (LF-AQI) is proposed to check for “doubtful ” LFs form a bulk of
EG LFs. Channel and source similarity profiles (CSP, SSP) between sim-
ler reference LF, homogeneous head model LF (HHM-LF), and realistic
ead models LFs, Boundary Element Method (BEM), and Finite Element
ethod (FEM) show high similarity profiles (correlations). These high

alues of the similarity profiles suggested that the HHM-LF can be used
o detect numerical errors in realistic LFs. 

To test this assumption, we conducted numerical simulations to as-
ess the sensitivity of the CSP and SSP. We created a set of artifactual LFs
y adding large values to the LF as the gold standard in this paper. These
ensitivity checks revealed that similarity profiles are susceptible to any
imulated artifacts. While the CSP and SSP help reveal the nature of the
umerical problems encountered, they can be summarized by their min-
mum values, Channel and Source Similarity Indices, abbreviated as CSI
nd SSI, respectively. 

Subsequently, we computed the CSI and SSI of 1251 LFs from MRIs
btained from the Child Mind Institute (CMI) dataset. We plotted the
CSI, SSI) points for all individuals on a 2D space. Most of the (CSI,
SI) points were clustered around a high similarity centroid (HSC), in-
icating the correspondence to the HHM-LF. However, there were out-
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Fig. 19. Trace plots for each question. P1 to 
P5 is the answer scale. The X-axis is the value 
of the latent variable ( 𝜃), and the y-axis is 
the probability 𝑃 ( 𝜃) , which shows the chance of 
occurrence for each response category across 
different levels 𝜃. Q3 and Q4 show a well- 
balanced trace plot where all answer categories 
are likely to answer at some level 𝜃. Q2 and Q5 
have four likely answer categories rather than 
five. In Contrast, Q1 has only two answer cate- 
gories. 

Fig. 20. Illustration of the volume conductor model and geometrical elements 
describing the electric potential 𝑣 ( 𝐱) produced at any location 𝐱 from volumet- 
ric primary current density currents 𝛊( 𝐱 ′′) distributed at locations 𝐱 ′′ ∈ 𝔾 . The 
medium is composed of volumes or compartments delimited by boundaries or 
closed surfaces 𝕎 𝑖𝑗 , modeled as piecewise homogeneous conductors with 𝜎𝑠𝑐𝑎𝑙𝑝 

and 𝜎𝑠𝑘𝑢𝑙𝑙 identifying these conductivities. A principle of superposition builds 
the potential 𝑣 ( 𝐱) based on contributions from the region 𝔾 of actual currents 
𝛊( 𝐱 ′′) and from the boundaries 𝔾 𝑖𝑗 of virtual currents, which are proportional to 
the oriented surface elements 𝐝𝐰 

′
𝑠𝑘𝑢𝑙𝑙,𝑠𝑐𝑎𝑙𝑝 at locations 𝑥 ′. 
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iers corresponding to LFs with a low value of either CSI or SSI. We
efined our LF-AQI as the log 10 of Euclidean distance between HSC and
he (CSI, SSI) point for an LF as the LF-AQI for a given LF. We selected
he 90th percentile of the LF-AQI for all 1251 LF-AQIs to find a thresh-
ld ( − 0.9755 for the CMI dataset). This threshold allowed us to identify
he LFs with LF-AQI greater than this value as doubtful and needing re-
ision. This categorization helped attain the goal of automatic quality
hecks of LFs since the LF-AQI did not exceed the threshold after the
evision of the suspect LFs. 

We note that the LF-AQI was tested for out-of-sample validity, which
romises its effectiveness for new datasets. This feature helps use LF-AQI
or datasets it was not trained before or for those recorded in different
eographical conditions and age groups. 

An interesting observation in our study is that for more accurately
odeled LFs, even though modeling more tissue layers affect the even-

ual LF of a realistic and accurate head model, the dominating factor
n calculating the eventual LF matrix remains the distances between
16 
ources and electrodes, and their orientation towards those electrodes.
his conclusion results from the high correspondence between these re-
listic LF and the much simpler HHM-LF. 

When a dipole is placed in an infinite homogenous medium, there
ill be a singularity when the distance between the electrode and the
ipole approaches zero. This phenomenon seems to cause the “blow
p ” of LF values described in Section 2.1.1 , for which we introduce the
orrection. In fact, in many publications ( Drechsler, Wolters, Dierkes,
i, and Grasedyck, 2009 ; Piastra et al., 2018 ; Wolters, Köstler, Möller,
ärdtlein, and Anwander, 2007 ) the voltage produced by the HHM-LF

s known as the “singularity potential ” 𝑣 ∞ ( 𝑣 hom in our notation). For re-
listic LFs, the behavior of 𝑣 ∞is attenuated by a “correction potential, ”
hich implies a correction to the LF. The expression of the correction
otential for BEM is in section 10.4 of appendix Eq. (17) . For FEM, this
s most clearly seen when stating the difference method with calculating
he LF ( Eq. (18) of singularity paper). When working with either FEM
r BEM LFs, we did not observe the “blow up ” observed in the HHM-
F. We speculate that this “good ” behavior of these realistic LFs may be
ue to the correction factors just mentioned. Of course, if by some mis-
ake the head model erroneously places electrodes too near sources, this
blow up ” might occur. To avoid the singularity, we introduce the cor-
ection in equations 4&5 to take advantage of the speed and simplicity
f HHM-LF. 

A practical outcome of this study is an LF-AQI pipeline, which applies
he LF-AQI on a bulk set of LFs. This pipeline can work independently
rom subjective evaluations and indicate doubtful LFs already computed
rom other EEG LF pipelines. LF-AQI pipeline can also be embedded as
 subpart of other pipelines and checks the quality of LFs on the go. This
ipeline does not grade LFs from best to worst; instead, it flags them as
ccepted or doubtful. To our knowledge, this is the first and currently,
nly automatic quality control method that checks the quality of sin-
le or bulk LFs. Previously it was necessary to do this evaluation using
anual, resource- and time-consuming techniques. As an illustration of

he resource savings, we report that the automatic quality took less than
0 min of assessment time for 1251 LFs, while the manual quality as-
essment took 14 evaluators seven days. 

We note that LF-AQI declared most LFs as acceptable and some as
oubtful. When the LFs which were declared doubtful were investigated,
hree reasons for found for possible artifacts in the LFs: 1) blurred/noisy
RIs that can cause poor or inaccurate tissue segmentation, causing

naccurate tissue modeling, 2) incorrect alignment of cortex inside the
ead and 3) incorrect alignment of the electrodes. When these reasons
ere corrected, and newly computed LFs were assessed again using the
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Fig. 21. A head model simulating a dipole under three pla- 
nar conductors simulating the brain, skull, scalp, and air. 
We are recording the voltage on the scalp while assuming 
only the area inside the tube has conductivity, and the rest 
of it has zero conductivity. 

Fig. 22. A comparison of HHM-LF and Realistic LF values plotted against the 
distance(log-scaled) between the source and EEG sensor. As the distance de- 
creases (for sources near the electrode), the value of realistic LF has dipped in 
their trend, which is not the case for the HHM-LF. The blowing up of these values 
is beyond a critical point, as the intersection of two red dotted lines. 
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F-AQI pipeline, it labeled those LFs as accepted. This exercise shows
hat LF-AQI accurately detects the LFs with artifacts, and correcting the
easons for those assessments generates LF without any glaring problems
nd is more suitable for source localization. Like any other screening
ethod, LF-AQI has false negatives and positives. 

The equivalence of manual and automatic quality control was care-
ully controlled. Towards this end, the automatic LF-AQI check of the
MI database mentioned above was statistically compared to manual
hecking. We found that the quality of the LFs scored with the Likert
17 
cales via a structured instrument yielded latent factors highly corre-
ated with our measure. 

In this study, the LFs used to develop similarity profiles are highly
ccurate FEM-based LFs. However, the bulk LFs used in this study to test
F-AQI were BEM based. A future direction can be assessing bulk LFs
omputed using FEM, Finite Difference (FDM), and Finite Volume (FVM)
ased methods. This study would allow us to confirm the authority of LF-
QI for all currently used methods. Using LF-AQI to assess the quality
f LFs generated for other imaging methods like MEG can be another
uture direction of this study. Lastly, developing quality check methods
or other steps, i.e., MRI segmentation and realistic head modeling for
issues used for LF computation, can also be a future direction of this
tudy. 

Finally, we wish to emphasize that LF-AQI does NOT totally elimi-
ate the need for human supervision of LF quality control. Instead, it
elps focus on those LFs that might require supervision with the obvi-
us savings in time. Moreover, the source spectra from the LFs passed
y LF-AQI are being used in these studies ( Riaz, 2021 ; Riaz et al., 2021 ;
iaz et al., 2021 ) with the LF passed through the LF-AQI pipeline. 

. Conclusion 

This study proposes LF-AQI, an automated quality index for assessing
he LFs computed from automated pipelines. Although these pipelines
alculate LFs automatically, they eventually need human involvement
o assess the quality of intermediate outputs and the LFs manually. This
anual quality control becomes even more time-consuming and ineffi-

ient when working with a large dataset. We compute LF-AQI by com-
aring the test lead field with a homogenous lead field computed while
onsidering the brain in an infinite and homogenous medium. LF-AQI
as optimized using channel and source-wise correlation of complex, re-
listic, and gold standard LF first and then large dataset LFs from the CMI
atabase. Later, we conducted a manual quality control exercise to vali-
ate LF-AQI results. The results from manual quality control and LF-AQI
ere highly associated. However, LF-AQI’s time to measure the quality
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as many folds less than the manual quality control. Thus, measuring
he quality of LFs in large datasets using the LF-AQI is automated, quick,
nd reliable and will not have errors that might occur due to human in-
ervention. The LF-AQI is working alongside an automatic pipeline for
ead modeling and source localization installed at joint CC-LAB, UESTC,
hina. The future extension of this study could be the development of
utomatic quality control indices for other intermediate steps involved
n the computation of LFs. In addition, the LF-AQI could be extended
or lead fields computed from other imaging modalities, i.e., Magne-
oencephalography (MEG) and transcranial brain stimulation. 
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ppendix 

ayesian inverse approach and its dependence on LF 

Electroencephalographic (EEG) Source Imaging is an imaging modal-
ty that uses the EEG to estimate the source, defined as the macroscopic
rimary current density 𝛊( 𝐱 𝑠 , 𝑡 ) , a 3-directional vector stochastic process
n time 𝑡 and at every gray matter location 𝐱 𝑠 (M. Hämäläinen, Hari,
lmoniemi, Knuutila, and Lounasmaa, 1993 ; Riera and Fuentes, 1998 ).
he stochastic process 𝛊( 𝐱 𝑠 , 𝑡 ) originates primarily from the ensemble
ehavior (at a macroscopic scale of millimeters) of the postsynaptic
otentials of geometrically aligned pyramidal cells in cortical columns
 Freeman, 1975 ; Valdes-Sosa et al., 2009 ; Vinck and Perrenoud, 2019 ).
18 
btaining the sources 𝛊( 𝐱 𝑠 , 𝑡 ) from the EEG is an inverse problem that
equires a Forward Model: 

 

(
𝐱 𝑐 , 𝑡 

)
= 𝐤 

(
𝐱 𝑐 , 𝐱 𝑠 

)
𝛊
(
𝐱 𝑠 , 𝑡 

)
+ 𝛏

(
𝐱 𝑐 , 𝑡 

)
𝑟 

 ( 𝑡 ) = 𝐊 𝛊 + 𝛏( 𝑡 ) 
(14) 

This equation specifies how sources are reflected in scalp voltage
ifferences (M. S. Hämäläinen and Ilmoniemi, 1994 ). Forward models
re summarized with a linear forward operator 𝐤 ( 𝐱 𝑐 , 𝐱 𝑠 ) ( Eq. (14) ), a
-dimensional column vector. The vector 𝐤 ( 𝐱 𝑐 , 𝐱 𝑠 ) describes the rela-
ionship between the primary current density 𝛊( 𝐫 𝑔 , 𝑡 ) and the measure-
ents of electric potentials (EEG) or magnetic fields (MEG) 𝐯 ( 𝐱 𝑐 , 𝑡 ) at

ensor locations 𝐱 𝑐 . Where the forward operator 𝐊 (in matrix nota-
ion), also denominated electric or magnetic Lead Field in neuroimaging
 Baillet, Mosher, and Leahy, 2001 ), is a 𝑁 𝑐 ×𝑁 𝑠 or 𝑁 𝑐 ×𝑁 𝑠 × 3 matrix
esulting from the forward model calculations over 𝑁 𝑐 ( ∼ 10 2 ) sensor lo-
ations and over 𝑁 𝑠 ( ∼ 10 4 ) locations in a gray matter discretization. The
otation 𝑁 𝑐 ×𝑁 𝑠 or 𝑁 𝑐 ×𝑁 𝑠 × 3 depends upon if the LF is in cartesian
oordinates format or projected perpendicularly to the cortex plane t.
 ( 𝑡 ) and the sensor noise 𝛏( 𝑡 ) are both 𝑁 𝑐 dimensional vector stochastic
rocesses while 𝛊( 𝑡 ) is a 3 𝐺dimensional vector stochastic process. 

Achieving precision in the inverse modeling of source activity 𝛊( 𝐱 𝑠 , 𝑡 ) ,
s an important issue ( He et al., 2019 ; Reid et al., 2019 ), and it de-
ends critically on the accuracy of the forward model ( Akalin Acar and
akeig, 2013 ). Instability, multivariate, and nonlinear effect of the for-
ard model on even the simplest inverse model, have been abundantly

llustrated in the literature ( Brookes et al., 2007 ; Friston et al., 2008 ;
rave De Peralta Menendez, Murray, Michel, Martuzzi, and Gonzalez
ndino, 2004 ; Hauk, 2004 ; Mattout, Phillips, Penny, Rugg, and Friston,
006 ; Michel et al., 2004 ; R.D. Pascual-Marqui, Michel, and Lehmann,
994 ; Roberto D Pascual-Marqui et al., 2006 ; Paz-Linares et al., 2023 ; D.
az-Linares et al., 2017 ; Trujillo-Barreto, Aubert-Vázquez, and Valdés-
osa, 2004 ; Van Veen, Van Drongelen, Yuchtman, and Suzuki, 1997 ; D.
ipf and Nagarajan, 2009 ; D. P. Wipf, Ram ı rez, Palmer, Makeig, and
ao, 2006 ). 

nverse model 

We illustrate the relation between lead field and inverse solutions by
escribing the Maximum Posterior Bayes (MAPB) estimators based on
aussian probability distributions, though the arguments apply to any
ther family of inverse solutions. 

Gaussian MAPB yield linear inverse operator (pseudo-inverse) 𝐊 

+ ,
sed to provide the estimate ̂𝛊( 𝑡 ) of the theoretical 𝛊( 𝑡 ) ( Grave de Peralta
enendez, Hauk, Gonzalez Andino, Vogt, and Michel, 1997 ; Grave De

eralta Menendez et al., 2004 ; Grech et al., 2008 ), detailed as follows: 

( 𝑡 ) = 𝐊 

+ (𝐊 , 𝚺𝜉𝜉 , 𝚺𝑢 

)
𝑣 ( 𝑡 ) (15)

ith 𝐊 

+ ( 𝐊 , 𝚺𝜉𝜉 , 𝚺𝑢 ) = ( 𝐊 

T 𝚺−1 
𝜉𝜉
𝐊 + 𝚺−1 

𝑢 ) 
−1 𝐊 

T 𝚺−1 
𝜉𝜉

where 𝐊 

+ represents a
amily of linear inverse solutions, requiring specification of the elec-
ric or magnetic Lead-Fields in 𝐊 , and also the specifications of 𝚺𝜉𝜉the
ovariance of the noise, and 𝚺𝑢 the covariance of the source activity
 Baillet and Garnero, 1997 ; D. Wipf and Nagarajan, 2009 ). This for-
ation explicitly shows the possible propagation of errors due to the
isspecification of the LF Matrix. It is obvious that errors resulting from

alculations of the Lead-Field 𝐊 in Eq. (14) would propagate in a mul-
ivariate and nonlinear fashion to an inverse solution ̂𝛊( 𝑡 ) in Eq. (15) . 

Precise modeling (inverse or forward) should depend even more crit-
cally on the Lead-Field 𝐊 obtained for highly detailed anisotropic 3D
odels of the geometry and electromagnetic properties of biological tis-

ue (head) and each human individual (valid also for other animals)
 Dannhauer et al., 2012 ; M. 2011 ; Hallez et al., 2007 ; Nolte and Das-
ios, 2005 ; Piastra et al., 2020 ; Vorwerk et al., n.d. , 2014 ; Vorwerk, Oost-
nveld, Piastra, Magyari, and Wolters, 2018b ; Windhoff et al., 2013 ;
amaguchi, 2014 ). Such a level of detail is also accompanied by an in-
reased computational cost and employing the Finite Element Method

https://github.com/CCC-members/HCP_compliant_processor
https://github.com/CCC-members/HCP_BST_source_head_modeler
https://github.com/CCC-members/LF-AQI
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FEM) computations ( Strang, Fix, and Griffin, 1974 ). Nevertheless, it is
ommon in neuroimaging to assume isotropic and piecewise homoge-
eous electromagnetic properties of biological tissue to lighten compu-
ations and yet preserve a moderate level of detail in Lead-Field compu-
ations. 

Even moderately detailed forward modeling must deal with the elec-
ric field potentials with conductivity heterogeneities at tissue bound-
ries (M. Hämäläinen et al., 1993 ; Riera and Fuentes, 1998 ) which
eads to complex numerical computations via the Finite Element Method
FEM) ( Dannhauer et al., 2012 ; M. 2011 ; Hallez et al., 2007 ; Nolte and
assios, 2005 ; Piastra et al., 2020 ; Vorwerk et al., 2014 , 2018a ;
indhoff et al., 2013 ; Yamaguchi, 2014 ). or alternatively Boundary El-

ments Method (BEM) ( Cheng and Cheng, 2005 ). 

iece-wise conductor forward model 

Some forward modeling assumes a piecewise volume conductor
EM-based model ( Fig. 20 ). Such models have divided the volume con-
uctor into pieces with isotropic and homogeneous conductivities. These
ave passive nonmagnetic properties of the biological tissue and broad-
and stationarity of the electric potentials ( Azizollahi, Aarabi, and Wal-
ois, 2016 ; M. Dannhauer et al., 2011 ; Jochmann, Güllmar, Haueisen,
nd Reichenbach, 2011 ; Lanfer et al., 2012 ; Turovets, Poolman, Salman,
alony, and Tucker, 2008 ; Vorwerk et al., 2019 , n.d. ). Under such as-

umptions, this stationary potential 𝑣 ( 𝐱) at any location 𝐱and without re-
ard for the time 𝑡 is described by a linear integral Eq. (16) as a conse-
uence of Maxwell equations ( Geselowitz, 1967 ; Vladimirov, 1976 ). 

𝜎𝑠𝑘𝑢𝑙𝑙 + 𝜎𝑠𝑐𝑎𝑙𝑝 

2 𝜎𝑜 

𝑣 ( 𝐱 ) = 𝑣 hom ( 𝐱 ) 
⏟⏟⏟

singularit ypot ent ial 

+ 

1 
4 𝜋𝜎𝑏𝑟𝑎𝑖𝑛 

∑
𝑠𝑘𝑢𝑙𝑙,𝑠𝑐𝑎𝑙𝑝 

(
𝜎𝑠𝑘𝑢𝑙𝑙 − 𝜎𝑠𝑐𝑎𝑙𝑝 

)
∫∫○𝕎 𝑠𝑘𝑢𝑙𝑙,𝑠𝑐𝑎𝑙𝑝 

𝑣 
(
𝐱 ′
) (𝐱 − 𝐱 ′

)
· 𝐝𝐰 

′
𝑠𝑘𝑢𝑙𝑙,𝑠𝑐𝑎𝑙𝑝 |𝐱 − 𝐱 ′|3 

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Correct ionPot ent ial 

(16) 

ith 𝑣 hom ( 𝐱 ) = 

1 
4 𝜋𝜎𝑏𝑟𝑎𝑖𝑛 

∫∫∫⨀
ℂ 𝜾( 𝐱 

′′) · ( 𝐱 − 𝐱 ′′) |𝐱 − 𝐱 ′|3 𝑑𝑐 ′′
Here, the subscripts brain, skull, and scalp represent the conductiv-

ty of the tissues of isotropic and homogeneous compartments. 𝜎𝑠𝑘𝑢𝑙𝑙 and

𝑠𝑐𝑎𝑙𝑝 are conductivities of contiguous compartments in the piecewise
onductor medium ( Fig. 3 ), 𝜎𝑏𝑟𝑎𝑖𝑛 is the air brain permittivity (≈ 1) ,
 

hom ( 𝐱) is the electric potential produced by a volumetric primary cur-
ent density 𝛊( 𝐱 ′′) at source locations 𝐱 ′′and assuming no boundaries
omogeneous electric permittivity 𝜎𝑏𝑟𝑎𝑖𝑛 , the second term in equation
xplains virtual surface current densities due to conductivity hetero-
eneities ( 𝜎𝑠𝑘𝑢𝑙𝑙 − 𝜎𝑠𝑐𝑎𝑙𝑝 ) at boundary locations 𝐱 ′. 

An electric (EEG) Lead-Field 𝐤 ( 𝑥 𝑐 , 𝑥 𝑠 ) depends on the solution for
q. (16) , assuming an elementary current or Dirac delta function 𝛊( 𝑥 ′′) =
 𝛿( 𝑥 ′′ − 𝑥 𝑠 ) at each source location 𝑥 ′′ = 𝑥 𝑠 , each EEG electrode loca-
ion 𝑥 = 𝑥 𝑐 , and each cartesian direction 𝐝 = 𝐝 1 , 𝐝 2 , 𝐝 3 . So, if we write
q. (16) as an equation computing element of an LF matrix for the type
f head model shown in Fig. 20 , it can be written as: 

 𝑐,𝑠 = 

1 
4 𝜋𝜎𝑏𝑟𝑎𝑖𝑛 

( 𝐱 − 𝐱 𝑐,𝑠 · 𝝁𝑠 |𝐱 − 𝐱 ′|3 
) 

+ 

1 
4 𝜋𝜎𝑏𝑟𝑎𝑖𝑛 

∑
𝑠𝑘𝑢𝑙 𝑙 ,𝑠𝑐𝑎𝑙 𝑝 

(
𝜎𝑠𝑘𝑢𝑙𝑙 − 𝜎𝑠𝑐𝑎𝑙𝑝 

)
∫∫○𝕎 𝑠𝑘𝑢𝑙𝑙,𝑠𝑐𝑎𝑙𝑝 

𝑣 
(
𝐱 ′
) (𝐱 − 𝐱 ′

)
· 𝐝𝐰 

′
𝑠𝑘𝑢𝑙 𝑙 ,𝑠𝑐𝑎𝑙 𝑝 |𝐱 − 𝐱 ′|3 (17) 

Here, the subscripts brain, skull, and scalp represent the conductivity
f the tissues of isotropic and homogeneous compartments shown in
ig. 20 . 

An estimated solution to the core problem of determining the elec-
ric Lead-Fields 𝐤 ( 𝑥 𝑐 , 𝑥 𝑠 ) , or electric potential in Eq. (16) , is then via
EM computations ( Akalin Acar and Makeig, 2013 ; Ermer et al., 2001 ;
19 
uchs et al., 2002 ; Huang et al., 1999 ; Mosher et al., 1993 , 1999 ;
pitz et al., 2018 ; Rahmouni et al., 2019 ; Vatta et al., 2010 ). 

The EEG Lead-Fields 𝐊 instead reflect directly such conductivity het-
rogeneities ( Eq. (16) ), which are also evidenced directly in EEG mea-
urements 𝑣 ( 𝑡 ) ( M. Dannhauer et al., 2011 ; De Munck, Wolters, and
lerc, 2012 ; Ermer et al., 2001 ; Lanfer et al., 2012 ; Mosher et al., 1993 ,
999 ; Vorwerk et al., n.d. ). 

 differential Piece-wise conductor forward model 

In this section, we explain the reason for the distance correction
ade in Section 2.1.1 for HHM-LF when the sources are too close to
 specific EEG sensor. To explain the reason for this correction, we pro-
ose an approximation of the Boundary Element Method (BEM) head
odel, as shown in Fig. 21 . In this figure, we assume we are observing

nd recording the surface voltage on a planar head model only through
 cylindrical pipe across all tissue layers of the piecewise volume con-
uctor model. This model is designed so that the voltage recorded at
he scalp (mentioned using a circle) is only affected by the conductivity
ffect of intermediate layers (also shown in circles). 

These cylindrical tissues represent 3 compartments brain, skull, and
calp. The conductivities of each compartment are, 𝜎1 = 0 . 3300 , 𝜎2 =
 . 0042 and 𝜎3 = 0 . 3300 respectively, and the air conductivity is set at

4 = 0 . The skull and scalp tissues are between the brain and air con-
uctivities. However, the brain extends to −∞, and the air extends to
∞, making both semi-bounded. While performing this BEM computa-

ions, we assumed a scenario in which an insulating medium covers the
alls of the cylindrical pipe from which we are observing. This assump-

ion rules out the effect of surroundings inside the cylindrical volume
e defined earlier. We also assumed the thickness of the skull and tissue

ayers was equal to 0.005 m. 
We consider current dipoles across the section, distributed in a disk-

ike geometry with differential volume elements Δ𝑔 oriented in the 𝑧 -axis
irection ( 𝐞 𝑧 ). Within the cortical section and for each differential ele-
ent of volume ( Δ𝑔) a projected to normal oriented field defines the
rimary current density ( 𝛊 = 𝜇𝐞 𝑧 ) and the dipolar moment 𝛍 = 𝜇Δ𝑔 𝐞 𝑧 . 

The general BEM equation ( Eq. (16) ) then reduces to a finite differ-
nce Eq. (18) for the electric potential at a given tissue boundary 𝑣 𝑖 .
irst, the current dipole, as shown in Eq. (19) , contributes to this po-
ential, which causes the homogeneous potential 𝑣 hom 𝑖 to be inversely
roportional to the square distance 𝑑 2 𝑖 . Second, virtual currents at the
emaining boundaries are caused by the potentials 𝑣 𝑗 and are inversely
roportional to the square distances 𝑑 2 𝑖𝑗 . The contributions of the virtual
urrents are weighted positively or negatively depending on whether
he 𝑗 𝑡ℎ boundary lies below or above the 𝑖 𝑡ℎ boundary. This phenomenon
auses the scalar product in ( Eq. (15) ) to be positive or negative depends
n the 𝑠𝑖𝑔𝑛 ( 𝑖 − 𝑗) . (
𝜎𝑖 + 𝜎𝑖 +1 

)
2 𝜎𝑜 

𝑣 𝑖 = 𝑣 hom 𝑖 − 

1 
4 𝜋𝜎𝑜 

Σ
𝑗≠𝑖 

(
𝜎𝑗 − 𝜎𝑗+1 

)
𝑣 𝑗 Δ𝑆 

𝑠𝑖𝑔𝑛 ( 𝑖 − 𝑗) 
𝑑 2 𝑖𝑗 

(18)

 

hom 
𝑖 = 

1 
4 𝜋𝜎𝑜 

𝜇Δ𝑔 

𝑑 2 𝑖 
(19)

The finite difference Eq. (18) could be redefined in matrix form into
q. (20) . 

𝑣 = 𝑣 hom 𝑜𝑟𝑣 = Σ−1 𝑣 hom (20)

Here 𝑣 and 𝑣 hom are the vectors whose entries comprise the realistic
nd homogeneous electric potential at the boundaries, respectively, as
hown in Eqs. (21) and 22 . The Σ in Eq. (20) is the head model matrix
hown in Eq. (23) , whose entries comprise the distances and conductiv-
ties. 

 = 

(
𝑣 1 ... 𝑣 𝑖 ... 𝑣 𝑛 

)𝑇 
(21)

 = 

(
𝑣 hom 1 ...𝑣 hom 𝑖 ...𝑣 hom 𝑛 

)𝑇 
(22)
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Σ11 
⋱ 

Σ𝑖𝑖 ⋯ Σ𝑖𝑗 Σ𝑖𝑛 

⋱ 

Σ𝑗𝑖 ⋯ Σ𝑗𝑗 ⋯ Σ𝑗𝑛 

⋮ ⋮ ⋱ ⋮ 
Σ𝑛𝑖 ⋯ Σ𝑛𝑗 ⋯ Σ𝑛𝑛 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
(23)

Here Σ𝑖𝑖 = 

𝜎𝑖 + 𝜎𝑖 +1 
2 𝜎𝑜 

and Σ𝑖𝑗 = 

1 
4 𝜋𝜎𝑜 

( 𝜎𝑗 − 𝜎𝑗+1 )Δ𝑆 

𝑠𝑖𝑔𝑛 ( 𝑖 − 𝑗) 
𝑑 2 𝑖𝑗 

. 

The results of BEM calculations due to this matrix are shown in
 Fig. 22 ). This figure shows the outcome of the HHM-LF with a criti-
al point showing where correction is needed. The figure also shows the
orresponding realistic LF values for which the HHM-LF is obtained. This
ealistic LF is derived from the electric potentials measured by the sen-
or placed at the air/scalp boundary, as shown in the figure ( Fig. 22 ). LF
alues are plotted as the dependent variable, and a log-scaled distance
s an independent variable. The result shows that HHM-LF and their cor-
esponding realistic LF start diverging at the same point as the distance
etween the sources and the EEG sensor decreases. Eventually, at a crit-
cal point, the realistic LF faces a dip in the LF values in contrast to the
HM-LF, whose values blow up below this critical point. The sources
hose distance is below this critical point (intersection of two dotted

ed lines) are where we apply the distance correction. The value of the
ritical point in terms of regular scale is around a distance of 0.007 m.
he reason for the divergence between the curves of LFs comes from
he explanation in discussion. The curve in green color is derived from
he Eqs. (17) , 18 , and 19 . In this study, we apply corrections at a critical
oint which we call earlier distance correction. 
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