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A B S T R A C T

Smart charging strategies for electric vehicles (EVs) require as input information such as energy requirement
and dwell time. In practice, that information is often not available. However, estimations may be obtained from
historical charging behavior. This paper investigates the added value of historical information for EV charging
strategies based on real-world EV charging data collected in an office building parking lot with 125 chargers.
Furthermore, it provides valuable insights into EV charging behavior at office building parking lots, based on
a statistical analysis of the data. The added value of data availability in EV charging strategies for day-ahead
planning and real-time operation of office building parking lots is assessed via a set of quality metrics that
measure user satisfaction and impact on the local grid. Offline charging strategies under various degrees of
available information are validated by comparing their performance with the real-time operation of the parking
lot. Results show a power peak reduction of more than 50% using historical data and simple estimations of
arrival times, dwell times, and energy requirement. A trade-off between power peaks and service quality (on
average 4.4 kWh energy not served) is observed. It was found that knowledge of individual average energy
provides higher added value compared to knowing individual average dwell time in both offline planning and
real-time operation of the parking lot.
1. Introduction

Integration of electric vehicles (EVs) into the electrical grid comes
with challenges due to their high power and energy consumption. On
top of that, the grid infrastructure is designed based on long term
estimates for demand growth, which some years ago, did not consider
the deployment of newly emerging consumption and generation tech-
nologies, such as EVs, heat pumps or solar panels (PVs). In that sense,
the grid is not prepared to facilitate the rapidly growing power demand
posed by EVs [1]. Particularly in residential neighborhoods, technical
constraints such as voltage, current, or transformer capacity are ex-
pected to be infringed regularly in the future due to the integration
of these new technologies [2]. Furthermore, capacity limitations are
paired with synchronization effects [3] and mismatches between local
solar PV generation and peaking EV charging demands [4].

One approach to tackle the mentioned issues is smart charging.
Smart charging is a control strategy that based on data inputs, supports
the decision-making of individual chargers to guarantee the proper
operation of the whole system. This indicates that smart charging
relies heavily on information availability. While information related
to global grid constraints like power capacity is available, information
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on the individual EV constraints is usually missing [5]. However, that
information is difficult to predict due to highly uncertain user behavior.
Furthermore, it is also not always accurate when communicated via
EV apps or internet of things (IoT) systems. This makes EV charging
plannings less reliable when deployed in real-time.

Parking lots at office locations have been identified to hold great
potential for smart charging due to the homogeneous population and
the relatively long parking times during the day [6]. This paper focuses
on using historical information collected at an office parking lot to
investigate the value of information on arrival times, dwell times and
energy requirements, and how past information reflects operational
realities.

1.1. Related work

Smart charging schemes in literature often assume perfect infor-
mation on, among others, the initial state of charge (SOC) or when
EVs are available to charge (dwell time), see for example [7–10].
Saldaña et al. [11] provide a comprehensive overview of studies on
EV smart charging and their respective assumptions. It has been shown
vailable online 14 August 2023
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Nomenclature

Abbreviations

AIC Aikaki information criterion
BIC Bayesian information criterion
CDF Cumulative distribution function
EV Electric vehicle
GMM Gaussian mixture model
IGDT Information gap decision theory
IoT Internet of things
PDF Probability distribution function
PV Photo voltaic
SOC State of charge

List of Symbols

𝛥𝑡 Size of time step 𝑡 ∈ 
 Discrete time horizon {0,… , 𝑇 }
𝜇𝑥 Mean of 𝑥, 𝑥 ∈ {𝑎𝑡, 𝑑𝑡, 𝑑𝑤𝑡}
𝜎𝑥 Variance of 𝑥, 𝑥 ∈ {𝑎𝑡, 𝑑𝑡, 𝑑𝑤𝑡, 𝑒}
𝐸𝑥
𝑖 Energy supplied to EV 𝑖 in profile 𝑥 ∈

{0, 𝑝𝑙𝑎𝑛, 𝑟𝑒𝑎𝑙}
𝐸𝑁𝑆𝑥 Average energy not served in profile 𝑥 ∈

{𝑝𝑙𝑎𝑛, 𝑟𝑒𝑎𝑙, 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ} [kWh]
𝑒𝑛𝑠𝑥 Average relative energy not served in

profile 𝑥 ∈ {𝑝𝑙𝑎𝑛, 𝑟𝑒𝑎𝑙, 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ} [%]
𝐸𝑁𝑆𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ

𝑖 Energy not served to EV 𝑖 in real-time
operation compared to offline planning
[kWh]

𝐸𝑁𝑆𝑥
𝑖 Energy not served to EV 𝑖 in profile 𝑥 ∈

{𝑝𝑙𝑎𝑛, 𝑟𝑒𝑎𝑙} [kWh]
𝑒𝑛𝑠𝑥𝑖 Relative energy not served to EV 𝑖 in profile

𝑥 ∈ {𝑝𝑙𝑎𝑛, 𝑟𝑒𝑎𝑙, 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ} [%]
𝐸𝑁𝑆𝑥

𝑚𝑎𝑥 Maximum energy not served in profile 𝑥 ∈
{𝑝𝑙𝑎𝑛, 𝑟𝑒𝑎𝑙, 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ} [kWh]

𝑒𝑛𝑠𝑥𝑚𝑎𝑥 Maximum relative energy not served in
profile 𝑥 ∈ {𝑝𝑙𝑎𝑛, 𝑟𝑒𝑎𝑙, 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ} [%]

𝐸𝑉 Set of simulated EV population {1,… , 𝑛}
𝑛 Total number of simulated EVs
𝑃 𝑥(𝑡) Aggregated power profile at time 𝑡 ∈  in

profile 𝑥 ∈ {0, 𝑝𝑙𝑎𝑛, 𝑟𝑒𝑎𝑙}
𝑃 𝑥
𝑖 (𝑡) Power profile of EV 𝑖 at time 𝑡 ∈  in

profile 𝑥 ∈ {0, 𝑝𝑙𝑎𝑛, 𝑟𝑒𝑎𝑙}
𝑃 𝑥
𝑚𝑎𝑥(𝑡) Maximum aggregated power peak in profile

𝑥 ∈ {0, 𝑝𝑙𝑎𝑛, 𝑟𝑒𝑎𝑙}

Superscripts

0 Baseline scenario
𝑎𝑡 Arrival time
𝑑𝑡 Departure time
𝑑𝑤𝑡 Dwell time
𝑒 Energy demand
𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ Concerning comparison between planning

and real-time operation
𝑝𝑙𝑎𝑛 Concerning offline planning
𝑟𝑒𝑎𝑙 Concerning real-time operation

that information on the SOC of an EV battery is crucial information
for charging strategies [12], however that information is usually not
available in practice.
2

The authors in [13,14] claim that smart charging strategies depend
on EV user preferences (e.g., planned departure time and desired SOC),
which need to be estimated or directly communicated to the charg-
ing operator to control and optimize (public) EV charging. Hereby,
these studies focus on the impact of different charging interfaces in
the adoption of smart charging strategies or the effect of communi-
cating minimum load versus minimum energy requirements, which
contributes to understanding user behavior. However, the value of
information in the planning and real-time operation of an office build-
ing parking lot is not assessed. Other works focus on the effect of
information sharing on pricing mechanisms for coordinated control, see
for example [9,15,16]. Those models are proven to help alleviate oper-
ational issues in electrical grids, however, parking lots or aggregators
might have interests other than grid balancing.

Some research has been done into filling information gaps with
direct EV driver input using mobile apps [9,17,18]. The advantage
of this lies in its ability to acquire information in advance, without
the need for EV-to-charger communication, which currently is not
implemented by default. However, such approaches require active user
participation, and it was found that users tend to overestimate energy
requirements. None of the listed studies targets users in office locations.
Liu et al. [19] simulate an office location with local solar genera-
tion where drivers communicate charging preferences in a financial
incentive-based transaction model. However, in [20], it was found that
when adopting smart charging, filling the battery with enough energy
to serve mobility needs is more important than monetary incentives.

One approach to address uncertainties in an energy system is to take
an aggregated perspective, as in the valley-filling approach [21], where
authors demonstrated that using fill-level-based real-time control is a
robust approach for load balancing. Using aggregated profiles offers
advantages such as preserving data privacy and reducing the compu-
tational burden, at the expense of losing accuracy and not meeting
individual preferences.

Other approaches use Information Gap Decision Theory (IGDT) to
handle uncertainties of energy prices in EV charging [22,23]. Although
IGDT provides robust framework to handle uncertainties focusing on
worst-case scenarios without the need for precise data, uncertainties
related to EV user behavior were disregarded in this work. In con-
trast, [24] proposes a hybrid stochastic/IGDT optimization technique
for EV charging/discharging in an office building which uses a scenario-
based model to handle uncertainties in arrival time, departure time,
and initial SOC. However, the authors do not assess the robustness of
their model in a real-time EV charging scenario. Moreover, they assume
direct communication between EV users and charging infrastructure,
which is not realistic given current implementations. Simolin et al. [25]
studied communication requirements with regard to the value of in-
formation that can be obtained during real-time EV charging control.
Their study focuses on estimating the maximum charging power under
non-ideal EV response and the approach is validated using real data
and measurements collected at a shopping center. The advantage of a
measurement-based charging control is that no information from the
EV is required. However, while historical data is used to estimate the
maximum power, the use case in the shopping center does not allow
for individual EV analysis, but instead takes an observed average of
similarly behaving EVs in the past.

Some studies have shown the great potential of near office parking
locations to fill afternoon-valleys in local energy profiles due to the
relatively long dwell time of EVs [6] and to provide ancillary services
when combined with local solar generation [26]. A comprehensive
review on the integration of solar rooftop parking lots with EV charging
is presented in Osório et al. [27].

Although many papers on potential smart charging approaches
exist, using historical data of EV charging sessions to validate and test
these approaches is scarce [28]. While there are studies simulating

smart charging of parking lots using real-world data [29–31], their
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scale is limited to parking lots hosting less than 30 chargers and are
in public spaces or a university campus, rather than office buildings.

On the other hand, various studies to statistically analyze EV charg-
ing data exist [32–35], among others investigating sample distributions
and characterizing session and user types of EVs. However, none of
those studies focuses on office parking lots, but rather study public
charging stations. Moreover, Andersen et al. [36] found that each
EV driver has particular driving needs and preferences and therefore
statistical representations of individual behavior may be more appro-
priate for flexibility provision while fulfilling driving requirements for
EV users. To compensate for the limited amount of available real-
world data, there is on-going research into synthetic data generation
tools [37]. Using this data, simulations at large scale can be run
(e.g., [38,39]). However, the achieved results have to be treated with
care as a ground truth validation with realistic data is missing. To the
authors’ best knowledge, there is no data available yet that describes
charging sessions at a large-scale office parking lot, considering both
employees and visitors. In addition, COVID-19 had a substantial impact
on observed charging data [40], which is not yet reflected in the data
sets cited here.

1.2. Main contributions

This paper investigates the added value of data availability in
EV charging strategies for day-ahead (offline) planning and real-time
operation of office building parking lots. Historical EV charging sessions
collected in an office building parking lot in the Netherlands are
used to characterize the EV charging behavior. The main scientific
contributions of this paper are:

• Statistical insights into a unique real-world data set concerning
the EV population and its charging at an office building in the
Netherlands. This is useful for researchers involved in design
processes such as sizing of parking lots (e.g., EV charging and
local electricity grid components), development of EV charg-
ing strategies, and EV flexibility quantification in future office
parking lots.

• A set of quality metrics to measure satisfaction from the user
perspective (based on energy not served) and from the grid
operator perspective (power peaks in the local grid) and an
assessment of the added value of historical information in EV
charging strategies.

• Validation of the performance of offline EV charging strategies
under different degrees of available information at an office build-
ing parking lot using DEMKit, a toolkit to control and optimize
cyber–physical energy systems.

The remainder of the paper is organized as follows. First, Section 2
resents the data set used in this research. Afterward, the methods
sed to simulate EV charging at office buildings and to validate the
erformance of charging strategies under different degrees of available
nformation are presented in Section 3, followed by the obtained results
n Section 4. The paper ends with a discussion of the main findings and
onclusions (Sections 5 and 6).

. Analysis of office building EV charging sessions

This section provides a statistical analysis of the available data
et collected at an office building in the Netherlands. First, this data
et is described in Section 2.1, followed by a global and individual
ata analysis. Based on this, a characterization of EV charging sessions
n office buildings is given using a clustering algorithm based on a
aussian mixture model (GMM). Hereby the proposed approach to
nalyze the data set is independent of the data input and can be used
3

lso with other data sets containing similar information. i
2.1. Description of the data set

This paper uses real-world data collected from January 1st, 2020
to August 31st, 2022 at a physical pilot site at an office building
in Utrecht, the Netherlands. The office has a parking lot that will
eventually host 383 AC EV chargers (22 kW), 66 DC EV chargers (10–
50 kW), a PV rooftop installation with a total capacity of 951 kWp, and
a 172.8 kWh battery storage. Currently, approximately 125 chargers are
in operation. The parking lot has a local energy management system
that registers all EV charging sessions. However, at this moment no
smart charging strategies are applied. The data set contains the session
ID, user ID, arrival time, departure time, and total energy supplied per
session, making it possible to look into patterns of individual users. The
parking lot is open to both employees and visitors of the office building
with designated areas for each group.

Various functional tests were conducted at the pilot site over the
data collection period, resulting in atypical data points that were
filtered out.1 Charging sessions that lasted less than 10 min, more
han 24 h, or charged less than 1 kWh over the session were filtered
ut. Furthermore, during an initial period, a plug-and-charge charging
ode was available, during which some sessions were registered using
generic user ID. Those data points were also removed from the data

et.
The resulting data set consists of 7565 charging sessions associated

ith 625 individual charging IDs. A maximum of 102 charging sessions
as registered in a single day.

.2. Global data analysis

A statistical analysis of aggregated charging sessions at the parking
ot is performed in order to gain general insights into the usage of the
arking lot. The daily utilization of the parking lot and the aggregated
harging behavior are characterized using probability distribution func-
ions (PDFs) and cumulative distribution functions (CDFs), using four
ain parameters observed in the data set: arrival time, departure time,
well time, and energy demand.

Fig. 1 shows the monthly energy delivered in the parking lot during
he analyzed period. Note that low energy was delivered during the
irst year (July 2020 to July 2021), when most employees worked from
ome due to the COVID-19 lockdown. In June 2021, the lockdown
as lifted, resulting in increased energy delivered, reaching a peak of
round 3 MWh in September 2021. After that period and until January
022, the parking lot’s usage was again affected due to a lockdown.
ince then, the parking lot has been continuously operational, as can
e seen by the continuous increase in the monthly energy delivered.

Fig. 2 shows the week-day utilization of the parking lot during
he analyzed period. Figs. 2(a) and 2(b) show the daily amount of
harging sessions and energy demand per session, respectively. It can
e seen that the parking lot is busiest on Tuesdays with approximately
5 charging sessions per day. The highest average energy requirement
>30 kWh) is observed during the weekend although those days register

only a few charging sessions per day. This happens because during the
weekend the parking lot is available to non-employees.

Fig. 3 shows statistical information on the four main parameters
chosen to characterize EV charging behavior at the parking lot. Hereby,
the mean (𝜇𝑥) and standard deviation (𝜎𝑥) for each parameter 𝑥 are
given.

For the arrival time (𝑎𝑡), Fig. 3(a) suggests that overall EV users
arrive around the same time interval. The PDF is statistically charac-
terized by 𝜇𝑎𝑡 = 9.4 h and 𝜎𝑎𝑡 = 2.23 h, but does not specifically follow
a homogeneous shape. Considering the plot in Fig. 3(b), the PDF seems
to be a combination of two different normal distribution functions,

1 The source code used to process, filter, and statistically analyze the data
s available in https://github.com/lwinschermann/OfficeEVparkingLot.

https://github.com/lwinschermann/OfficeEVparkingLot
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Fig. 1. Monthly energy delivered during the period under analysis.

potentially representing EV users that arrive early in the morning and
users that arrive after noon. Furthermore, the CDF (Fig. 3(c)) indicates
that 80% of the users arrive before 11:00.

The box-plot of the departure time (𝑑𝑡) (Fig. 3(d)) shows a similar
behavior as the arrival time. The PDF shown in Fig. 3(e) is character-
ized by 𝜇𝑑𝑡 = 15.8 h and 𝜎𝑑𝑡 = 2.3 h. Furthermore, in this case one
may assume that there are more than two different normal distribution
functions, potentially representing EV users that leave in the morning
or in the afternoon. Fig. 3(f) indicates that 80% of the users leave before
18:00.

The dwell time (𝑑𝑤𝑡) (Fig. 3(g)) suggests a wider spread for the
time the EV users stay at the parking lot. The PDF is represented by
𝜇𝑑𝑤𝑡 = 6.7 h and 𝜎𝑑𝑤𝑡 = 2.9 h. However, again the figure indicates
two different normal distribution functions may be present (Fig. 3(h)),
possibly representing EV users with short and long stays. Fig. 3(i)
indicates that 80% of the EVs stay up to 10 h in the parking lot.

The box plot of the energy demand follows a similar behavior as the
dwell time, with a wide range of preferences in the energy demand. The
PDF follows a different shape given by 𝜇𝑒 ≈ 22 kWh and 𝜎𝑒 ≈ 15.6 kWh,
which indicates that the data is widely spread. Fig. 3(l) indicates that
80% of the users require less than 40 kWh.

The correlation among the four parameters was further investigated.
As can be seen in Fig. 4, from a global perspective, there is not a strong
correlation among the parameters. Note that the departure time and the
dwell time are the parameters with the highest correlation, followed
by the dwell time and the energy demand. However, these correlation
values are not high enough to establish a strong dependency among the
parameters. One way to approach this is by grouping the data according
to certain characteristics (e.g., clusters) to investigate ground-truth
correlation among such parameters and develop sophisticated models
for the prediction of EV user behavior at office buildings.

2.3. Individual data analysis

Given the fact that several EV users visit the parking lot, it is
interesting to see how different the behavior among EV users is. To
this end, an individual analysis for the 10 EVs with the most charging
sessions (>60 charging sessions each) is presented.

Fig. 5 shows the mean, minimum, maximum, and 25%, 50%, and
75% percentiles for the arrival time, departure time, dwell time, and
energy demand of these users. Most of these EVs have a similar average
arrival time around 09:00 (only EV2 arrives around noon). However,
4

note that the area covered by the percentiles around the mean (red line)
is different in size for all EVs, meaning that the data variance differs
per individual user. Similar behavior is observed for the departure
and dwell time. Concerning the individual energy demand of the EVs
(Fig. 5(d)), two main behaviors can be observed with one group of EVs
demanding around 30 kWh, and the other demanding less than 10 kWh.
This may reflect the two different categories of fully electric vehicles
and plug-in hybrids or different work-home-commutes of the respective
employees. The size of the intervals around the mean also presents huge
variations among the users, especially for EV1, EV5, and EV8. These
results show that individual user behavior is highly intermittent.

2.4. Clusters analysis

In this section, the charging behavior of users at the office building
is investigated using a tri-dimensional clustering approach that consid-
ers the arrival time, dwell time, and energy demand of the resulting
charging sessions after the filter process described in Section 2.1. The
potential charging clusters are identified using a Gaussian mixture
model (GMM) clustering approach, a probabilistic model to represent
a mixture of multiple Gaussian distributions on population data. This
approach decomposes a single data distribution into a number of Gaus-
sian distributions called components. Each component then represents
a cluster with the following information: mean, covariance, and weight
(probability of occurrence) [41]. The number of clusters to properly
represent the user behavior is selected using the Aikaki information
criterion (AIC) and the Bayesian information criterion (BIC) [42]. Those
models measure how well the GMM fits the data and avoid overlaps
between the components.

Initially, the distribution of the data is analyzed considering the
energy demand and the start time. As shown in Fig. 6(a), the majority
of the charging sessions start around 09:00 in the morning with energy
demands varying mostly between 10 and 50 kWh. For this clustering
approach the BIC and AIC plots in Fig. 6(b) suggest at least 30 clusters
(point in the 𝑥-axis where the curve becomes stable) to characterize
the EV charging behavior at the office building. This high number of
clusters is due to the highly variable energy demands in the data set.

A second analysis is performed considering the arrival time and the
dwell time instead. As shown in Fig. 7(a), the majority of the charging
sessions start around 09:00 and the EVs stay in the parking lot for
around 9 h. The BIC and AIC in Fig. 7(b) suggest around 8 clusters to
characterize the EV charging behavior at the office building. However,
this cluster approach disregards the energy demand feature, which is
an important parameter to characterize user behavior in parking lots.

Therefore, a 3D-clustering approach is presented considering arrival
time, dwell time, and energy demand. Based on the BIC and AIC
(Fig. 8(a)), 13 clusters (Fig. 8(b)) are required to characterize the
EV charging behavior in our data set. The characteristics and initial
description of the clusters are provided in Table 1.

The high number of clusters illustrates the complexity of categoriz-
ing the data. This complexity is mainly due to the energy demand being
highly variable as previously shown in Fig. 3(j). However, even with
this high number of clusters, one can identify some similarities among
the clusters. For instance, when looking at the mean arrival time,
Clusters 0–7 group charging sessions with arrival times in the morning.
Considering that this is an office building, these clusters likely represent
employees at the office. Users that arrive after 12:00 (i.e., Clusters 8–
12) could be part-time employees or visitors. Concerning the dwell
times, charging sessions with six or more hours are categorized as ‘‘long
stays’’. This category likely represents full-time employees. Charging
sessions with a duration between three and five hours are ‘‘short stays’’.
Finally, users that stay less than 3 h are included in the ‘‘very short
stay’’ category. It is assumed that they are visitors. Lastly, users that
arrive in the afternoon and stay for a long period are categorized as
overnight users. They represent a very small number of samples.

Given the variability in the energy demand, a scale for the energy

demand is defined, consisting of ‘‘low energy’’ (≤10 kWh), ‘‘medium
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Fig. 2. Daily utilization of the parking lot from July 2020 to July 2021.
Table 1
Temporal-energy clusters at the office building.

Cluster Mean arrival time Mean dwell time Mean energy Mean departure time Weight Number of samples Description Energy level

0 8 7 45,34 15 0,04 231 Long stays - Employees High
1 8 7 29,78 15 0,11 807 Long stays - Employees Medium
2 8 8 8,01 17 0,17 1485 Long stays - Employees Low
3 8 9 47,08 17 0,09 747 Long stays - Employees High
4 9 9 21,74 17 0,16 1343 Long stays - Employees Medium
5 9 6 13,88 14 0,13 722 Long stays - Employees Medium
6 11 6 49,07 17 0,03 185 Long stays - Employees High
7 10 4 8,38 14 0,10 795 Short stays - Employees/visitors Low
8 12 4 22,16 16 0,08 495 Short stays - Employees/visitors High
9 12 1 4,55 13 0,02 182 Very short stays - Visitors Low
10 12 2 24,42 14 0,06 474 Very short stays - Visitors Medium
11 12 12 57,89 13 0,00 16 Very long stays - Overnight users High
12 19 16 31,22 10 0,01 83 Very long stays - Overnight users High
energy’’ (11–30 kWh), and ‘‘high energy’’ (≥31 kWh). The low and
medium energy categories may represent users with hybrid EVs or users
that partly charge their EVs at home while the high energy category
represents users with fully electric cars that might not charge their EVs
at home or live farther away.

Using the introduced scales on the available data, the charging
behavior at the office building is categorized into four clusters, each
with sub-clusters for the energy level, as shown in Table 2. Note
that Cluster 1 has the highest probability of occurrence (72%), which
could have been expected because the parking lot is mostly occupied
by full-time employees. This information is relevant to companies
or office buildings that intend to electrify their employees’ fleet. It
can be used during the planning stage of the parking lot to estimate
investment costs, charging infrastructure needed on site, electrical grid
components, and power and energy contracts.

Given the fact that Cluster 1 is the most likely to occur, its charac-
teristics on a daily basis are further investigated. Fig. 9 shows statistics
of the daily utilization of the parking lot, i.e., the expected number of
charging sessions and the energy demand per session for Sub-clusters 1–
3. Note that the parking lot is particularly busy on Tuesdays and
Thursdays with around 8, 15, and 10 charging sessions on average for
Sub-clusters 1–3, respectively. On Fridays, the parking lot is barely busy
(Fig. 9(a)). Furthermore, the energy demand of each sub-cluster follows
a similar behavior throughout the week. Note that in Fig. 9(b) the
median is around the middle of the boxes, and the whiskers are almost
equal on both sides of the boxes, indicating a symmetric distribution or
potentially normal distribution for the daily energy demand.

The daily utilization of the sub-clusters with a higher probability
of occurrence can be used for operational purposes at the parking lot,
such as predicting the day-ahead energy requirements, quantifying the
EV flexibility, and designing EV charging strategies at office buildings.
5

3. EV charging at office buildings

This section describes the methods used to simulate EV charging at
office buildings and to validate the performance of offline plannings
dependent on the degrees of available information. First, a description
of the simulation environment and model implementation is provided
(Section 3.1), followed by the description of the performance metrics
proposed to validate the added value of historical information on EV
charging (Section 3.2).

3.1. Simulation environment and model implementation

EVs can be charged under different strategies according to the
interests of the entity responsible for the charging process (e.g., an
EV aggregator or a grid operator). The deployment of such strategies
depends on several factors, e.g., EV technology, charging infrastructure,
and controllability of systems on site. For instance, in the absence of an
energy management system, EVs are usually charged as soon as they
are plugged into the charger at a maximum power resulting from the
nominal power of the charger and EV. This is commonly known in
the literature as uncontrolled or dumb charging [43] and in this paper
referred to as greedy charging. However, if an energy management
system is present, smart charging strategies for EVs can be deployed
for various objectives.

The smart charging strategy implemented in this paper is based
on the profile-steering algorithm [44]. Profile steering is a generalized
optimization technique that, based on a target profile, aims to minimize
the difference between this target profile and a planning profile, using
as a measure the 𝓁2-norm of the difference profile. In this work, a con-
stant aggregated power profile is used as the target profile. However,
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Fig. 3. Summary statistics of the data set.
Table 2
Clusters for charging behavior at the office building.

Cluster Description Sub-cluster Mean arrival time
[h]

Mean dwell time
[h]

Mean energy
[kWh]

Mean departure time
[h]

Probability

1 - High energy 9 7 47,16 16 16%
2 - Medium energy 9 7 21,80 16 40%1 Employees - Long stays (72%)
3 - Low energy 8 8 8,01 17 17%
4 - Low energy 10 4 8,38 14 10%2 Employees/visitors - Short stays (18%) 5 - High energy 12 4 22,16 16 8%
6 -Low energy 12 1 4,55 13 2%3 Visitors - Very short stays (8%) 7 - Medium energy 12 2 24,42 14 6%
8 - High energy 12 12 57,89 13 0%4 Overnight users (1%) 9 - High energy 19 16 31,22 10 1%
6
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Fig. 4. Global correlation among the parameters.

note that it is straightforward to incorporate e.g., the base loads or grid
capacities into the target profile. For smart charging in office buildings,
the profile steering algorithm creates a power charging profile for EVs
parked in the parking lot, given a set of input parameters related to
the characteristics and preferences of each EV user (e.g., arrival time,
energy required, etc.).

The profile steering algorithm is embedded within DEMKit, a De-
centralized Energy Management toolKit that provides a cyber–physical
systems-oriented framework to do research on smart and sustainable
energy solutions. DEMKit is an open-source software [45] built with
abstract device models and optimization algorithms that can be used as
a platform to test innovative solutions through computational or even
hardware-in-the-loop simulations [46]. All simulation results presented
in this paper are obtained using DEMKit.

The EV charging model used in DEMKit includes the constraints
related to EV charging such as fulfillment of energy required and the
nominal charging power of the chargers [47]. Furthermore, DEMKit
allows for making an offline charging planning (day-ahead) based on
historical charging data of the parking lot and simulating the real-time
operation of the parking lot with real information on EV availability
and energy demand. Here, EV availability refers to the interval between
arrival and departure time. Historical information is used to determine
(individual) averages and percentiles of the various data features of the
EVs (e.g., dwell time and energy requirement), which are later used
as simulation input. Moreover, real-time operation profiles follow the
offline planning as closely as possible, given real EV availability and
energy charging requirements.

In the following, an illustrative example of the implemented simula-
tions is given (Fig. 10). Assume there is prior knowledge of which EVs
are going to charge on a particular day along with their (individual) es-
timated availability and average energy requirement. Then, the offline
planning defines a charging profile per EV (blue lines Fig. 10) such
that the aggregated power profile is as flat as possible. During the real-
time operation of the parking lot, EVs may arrive or depart at different
times than estimated. For instance, in Fig. 10(a) an offline planning
(blue line) is made based on the estimated availability of the EV (blue
area). However, during real-time operation, the EV arrives and departs
at times different from the estimated ones (orange area). Therefore, the
realization (orange dashed line) follows the offline planning only where
possible. Even if the EV arrives before or departs after the original
planning horizon, the planning does not update. If the realization is
disjoint from the estimated availability of the EV, no charging takes
place (Fig. 10(b)). Note that the charging process takes place during
7

the real availability of the EV, but always follows the schedule from
the offline planning (Fig. 10(c)). On the other hand, the charging
process stops prematurely once the EV meets its energy requirement
(Fig. 10(d)). In that case, the amount of energy scheduled in the offline
planning for that particular EV was overestimated. This work does not
take re-planning into account to instead study the value of historical
information for the offline planning.

3.2. Performance metrics

The performance of the offline EV charging plannings for the opera-
tion of the parking lot under different degrees of available information
is validated through a set of quality metrics measuring satisfaction from
the user perspective based on energy not served and from the grid
perspective based on peak power. In the following, the corresponding
notation and definitions are introduced.

3.2.1. Energy not served
The simulated EV population is given as 𝐸𝑉 = {1… 𝑛}, where 𝑛

is the total number of EVs, and 𝐸𝑖 denotes the energy supplied to EV
𝑖 ∈ 𝐸𝑉 . For the validation of the performance of the offline EV charging
planning under different degrees of available information, the set of su-
perindices {0, 𝑝𝑙𝑎𝑛, 𝑟𝑒𝑎𝑙} is introduced, referring to the outputs from a
baseline case (0), offline planning (plan), and real-time operation (real).
Following that logic, 𝐸0

𝑖 , 𝐸𝑝𝑙𝑎𝑛
𝑖 , and 𝐸𝑟𝑒𝑎𝑙

𝑖 are the energy supplied to EV 𝑖
with respect to the baseline case, offline planning, and realization. It is
important to mention that the performance metrics use a baseline case
considered in this paper to be greedy charging, i.e., the energy supplied
𝐸0
𝑖 is achieved by greedily charging the EVs upon arrival.

Three performance metrics for the individual absolute energy not
served are defined. One is the energy not served of the offline planning
relative to the greedy baseline given by (1). Eq. (2) calculates the
energy not served of the realization relative to the greedy baseline, and
(3) is the energy not served in the real-time operation relative to the
offline planning.

𝐸𝑁𝑆𝑝𝑙𝑎𝑛
𝑖 ∶= max(0, 𝐸0

𝑖 − 𝐸𝑝𝑙𝑎𝑛
𝑖 ) (1)

𝐸𝑁𝑆𝑟𝑒𝑎𝑙
𝑖 ∶= max(0, 𝐸0

𝑖 − 𝐸𝑟𝑒𝑎𝑙
𝑖 ) (2)

𝐸𝑁𝑆𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ
𝑖 ∶= max(0, 𝐸𝑝𝑙𝑎𝑛

𝑖 − 𝐸𝑟𝑒𝑎𝑙
𝑖 ). (3)

Based on these individual performance metrics, average energy not
served over the total EV population is given by:

𝐸𝑁𝑆𝑥 ∶=
∑𝑛

𝑖=1 𝐸𝑁𝑆𝑥
𝑖

𝑛
∀𝑥 ∈ {𝑝𝑙𝑎𝑛, 𝑟𝑒𝑎𝑙, 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ}. (4)

The above measures are absolute values. As within an EV population,
significant variations exist in the energy demand of individual EVs,
a relative counterpart for energy not served (denoted with lowercase
letters) is defined:

𝑒𝑛𝑠𝑥𝑖 ∶=
max(0, 𝐸0

𝑖 − 𝐸𝑥
𝑖 )

𝐸0
𝑖

∀𝑥 ∈ {𝑝𝑙𝑎𝑛, 𝑟𝑒𝑎𝑙}

𝑒𝑛𝑠𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑖 ∶=
max(0, 𝐸𝑝𝑙𝑎𝑛

𝑖 − 𝐸𝑟𝑒𝑎𝑙
𝑖 )

𝐸𝑝𝑙𝑎𝑛
𝑖

.

The averages are defined following the logic of their absolute coun-
terparts (4), with instead of absolute energy not served, the relative
values. Next to averages, one may also consider metrics to express the
maximum energy not served:

𝐸𝑁𝑆𝑥
max ∶= max{𝐸𝑁𝑆𝑥

𝑖 |𝑖 = 1,… , 𝑛} ∀𝑥 ∈ {𝑝𝑙𝑎𝑛, 𝑟𝑒𝑎𝑙, 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ}

𝑒𝑛𝑠𝑥max ∶= max{𝑒𝑛𝑠𝑥𝑖 |𝑖 = 1,… , 𝑛} ∀𝑥 ∈ {𝑝𝑙𝑎𝑛, 𝑟𝑒𝑎𝑙, 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ}.

Note that the above metrics focus on the supply and service quality
from the user perspective.
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Fig. 5. Summary statistics for 10 particular EVs.

Fig. 6. Clusters by arrival time and energy demand.

Fig. 7. Clusters by arrival time and dwell time.
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Fig. 8. 3D clusters by arrival time, dwell time and energy charged.
Fig. 9. Daily utilization of the parking lot for Cluster 1, Sub-clusters 1, 2, and 3.
3.2.2. Maximum energy and power peaks
Given the in-practice limited capacity of Dutch grid connections,

two types of metrics are defined that focus on the aggregated impact on
the local electricity grid: The first regards peak power, and the second
considers total energy served. For this, baseline, offline planning, and
real-time operation are expressed by power profiles of individual EVs
𝑖 over a discrete time horizon  ∶= {0,… , 𝑇 } as 𝑃 0

𝑖 (𝑡), 𝑃 𝑝𝑙𝑎𝑛
𝑖 (𝑡) and

𝑃 𝑟𝑒𝑎𝑙
𝑖 (𝑡), 𝑡 ∈  . The aggregated power profiles for each 𝑡 ∈  are:

𝑃 𝑥(𝑡) ∶=
𝑛
∑

𝑖=1
𝑃 𝑥
𝑖 (𝑡) ∀𝑥 ∈ {0, 𝑝𝑙𝑎𝑛, 𝑟𝑒𝑎𝑙}.

Finally, the peak power of a power profile 𝑃 𝑥(𝑡) is denoted as

𝑃 𝑥
𝑚𝑎𝑥 ∶= max{𝑃 𝑥(𝑡)|𝑡 ∈  } ∀𝑥 ∈ {0, 𝑝𝑙𝑎𝑛, 𝑟𝑒𝑎𝑙}

and the total energy served per EV 𝑖 can then be expressed as :

𝐸𝑥
𝑖 ∶=

∑

𝑡∈
𝑃 𝑥
𝑖 (𝑡) ⋅ 𝛥𝑡 ∀𝑥 ∈ {0, 𝑝𝑙𝑎𝑛, 𝑟𝑒𝑎𝑙}

where 𝛥𝑡 is the size of time step 𝑡 ∈  . When summed over all EVs,
these performance metrics provide information on the global energy
consumption of the parking lot.
9

Depending on the specific needs and goals of the EV parking lot,
additional metrics such as self-sufficiency or user fairness can be in-
corporated to provide a more comprehensive analysis of sustainability
goals or equitable distribution of charging resources among users.
However, such analysis is beyond the scope of this work.

4. Simulations and results

4.1. Simulation setup

The performance of offline EV charging plannings under different
degrees of available information is evaluated based on data collected
between January 1st, 2020, and August 30th, 2022 (training data). All
the individual average arrival times, dwell times, and energy charged
for each EV of the training period are stored as input files to the
simulation environment in DEMKit. Based on this data, an offline day-
ahead planning for one day, namely August 31st, 2022 is generated.
This implies that the planning horizon is one complete day, discretized
in time steps of 15 min. On August 31st 2022, 65 EVs were registered
for charging.
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Fig. 10. Illustrative example of the simulations implemented using DEMKit.
4.2. Case definition

One of the main goals is to assess the added value of historical
information on planning the EV charging of recurring users. To achieve
this goal, several cases with varying degrees of information availability
are defined. Table 3 provides a comprehensive overview of the infor-
mation available per case. In the ‘Real information’ column, the entries
for arrival, dwell and energy correspond to the information collected at
the parking lot. On the other hand, the ‘Historical information’ displays
availability of the average arrival, average dwell, and average energy,
which are the estimated values per user based on historical data, and
used in the offline planning.

The main goal of the charging system is to provide EVs with
energy to its best ability based on the available information. Note that
to achieve this goal, in current practice mainly greedy charging (or
uncontrolled) is used. However, also other charging strategies may be
used which utilize information on energy demand and power, as well
as the availability of each EV (dwell time) if such data is available. In
cases where insufficient data is available, greedy charging is left to be
the only viable option.

In total, six cases are defined and detailed below. All cases assume
knowledge of which EVs will arrive on the simulated day. For some
cases only global knowledge of the historical average energy require-
ment (21.779 kWh) is available and no individual historical data on the
energy requirement is given.

• Case 0 is the base case, corresponding to business-as-usual opera-
tion. It assumes the total absence of historical data, which makes
10
it impossible to make an offline planning. This case is referred
to as the greedy case since uncontrolled charging upon arrival is
simulated.

• Case 1 assumes historical information on individual arrival times.
The simulation uses the individual average arrival time as starting
time of the charging, generating an offline planning where EVs
charge at their maximum power upon arrival. Here, dwell times
and energy requirements are unavailable for planning. Therefore,
a static departure time of 17:00 is assumed for all EVs. Simi-
larly, the energy requirement is set to the global average energy
charged per session (21.779 kWh).

• Case 2 assumes historical information on individual arrival times
and energy requirements. The offline planning for this case uses
greedy charging starting at the average individual arrival time
until either the average energy requirement is supplied (i.e., the
EV stops the charging process prematurely), or until the default
departure time (17:00).

• Case 3 assumes historical information on individual arrival and
dwell times. In the offline planning, EVs greedily charge at most
the global average energy requirement of 21.779 kWh within
their estimated availability.

• Case 4 assumes historical information on arrival times, dwell
times, and energy requirements. Since all the information is avail-
able, an offline planning is made using the profile steering ap-
proach.

• Case 5 assumes perfect (day-ahead) information on the realized
session data and serves as a benchmark. The offline planning aims
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Table 3
Overview of day-ahead information availability of individual EVs per case.

Real information Historical information

Arrival Dwell Energy Average arrival Average dwell Average energy

Case 0 (C0) ✓ x x x x x
Case 1 (C1) x x x ✓ x x
Case 2 (C2) x x x ✓ x ✓

Case 3 (C3) x x x ✓ ✓ x
Case 4 (C4) x x x ✓ ✓ ✓

Case 5 (C5) ✓ ✓ ✓ x x x
a
e
𝐸

d
i

to minimize the peak power consumption. This case leads to the
flattest possible aggregated power profile that provides EVs with
their full energy requirement. Additionally, since perfect informa-
tion is considered, offline planning and real-time operation yield
the same result.

ll cases assume a homogeneous EV population with a maximum
harging power of 7.4 kW. Next to Case 0, the assumptions made for
ase 4 are the most likely to reflect a real-world parking lot. Therefore,

or this case Section 4.4 further investigates the effect of different data
nputs on offline planning and real-time operation of a parking lot via
parameter sweep.

.3. Results

In this section, the main simulation results in terms of service
uality to the user (energy not served) and power peaks in the local grid
re presented and discussed per case. This combines both the customer-
nd the grid-centered points of view and allows for a proper assessment
f the trade-off between the two objectives.

.3.1. Analysis on service quality from the user perspective
First, the analysis focuses on the user perspective. Fig. 11 illus-

rates the energy not served metrics per case, showing the relative
nd absolute energy not served over all simulated EVs in the offline
lanning (𝑒𝑛𝑠𝑝𝑙𝑎𝑛, 𝐸𝑁𝑆𝑝𝑙𝑎𝑛), real-time operation (𝑒𝑛𝑠𝑟𝑒𝑎𝑙 , 𝐸𝑁𝑆𝑟𝑒𝑎𝑙) and
he mismatch between them (𝑒𝑛𝑠𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ, 𝐸𝑁𝑆𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ). The results are

numerically summarized in Table 4.
As Case 0 acts as a baseline throughout this analysis, it by definition

does not have energy not served. Table 4 shows that in Cases 1–4, on
the other hand, there are EVs leaving without being charged at all, as
indicated by the maximum relative energy not served of the realization
(𝑒𝑛𝑠𝑟𝑒𝑎𝑙𝑚𝑎𝑥) being 100%. Even if the offline planning is perfectly followed,
there are EVs leaving with 61.9% or 44.4% energy not served, relative
to the baseline (𝑒𝑛𝑠𝑝𝑙𝑎𝑛𝑚𝑎𝑥 , Table 4). For Case 2, the control policy is
greedy charging upon arrival until the generic 17:00 departure time,
or until the estimated energy has been charged. The latter parameter
is what makes Case 1 and 2 different, resulting in a lower value for
𝑒𝑛𝑠𝑝𝑙𝑎𝑛𝑚𝑎𝑥 in Case 2. This demonstrates the added value of having historical
information on the individual average energy requirement in the offline
planning.

The difference between Cases 1 and 3 lies in the available infor-
mation on average dwell time. Instead of a static dwell time, Case 3
considers historical averages. This results in slight differences in the
service performance metric for the offline planning (𝑒𝑛𝑠𝑝𝑙𝑎𝑛, Table 4),

ithout a significant improvement in the real-time operation’s energy
ot served (𝐸𝑁𝑆𝑟𝑒𝑎𝑙). Therefore, having information about average in-
ividual dwell times does not add significant value to the performance
f the offline planning and real-time operation in terms of energy not
erved. In both cases, EVs are planned to charge the global average
nergy which explains the similar results. Fig. 11(f) depicts the absolute
nergy not served in the real-time operation relative to the offline
lanning (𝐸𝑁𝑆𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ), i.e., how much of the energy scheduled for
n EV in the offline planning was not served during the realization,
ue to mismatches between the estimated availability and the realized
11

o

vailability. The assumption of EVs charging at most the global average
nergy in Cases 1 and 3 is reflected in this figure by the maximum
𝑁𝑆𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ values (blue line and orange dashed line), which become

stable at the predefined global average 21 kWh. Case 4 assumes histor-
ical information on individual arrival times, dwell times, and energy
requirements. Table 4 shows that the average absolute energy not
supplied (𝐸𝑁𝑆𝑟𝑒𝑎𝑙), in this case, is limited to less than 4.5 kWh, and
𝐸𝑁𝑆𝑟𝑒𝑎𝑙

𝑚𝑎𝑥 is up to 19.7 kWh. In relative terms, on average Case 4 has
24.8% energy not served in the real-time operation (𝑒𝑛𝑠𝑟𝑒𝑎𝑙, Table 4), or
equivalently EVs are charged with 75.2% of their charging requirement.
There are still EVs that are not charged at all (100% 𝑒𝑛𝑠𝑟𝑒𝑎𝑙𝑚𝑎𝑥, Table 4)
and that according to the offline planning should have received at least
half their charge (44.4% 𝑒𝑛𝑠𝑝𝑙𝑎𝑛𝑚𝑎𝑥 , Table 4).

4.3.2. Analysis on power peaks from the local grid perspective
Next, the results are discussed from a local grid-perspective. It

is important to note that at the time of data collection, given the
robust physical infrastructure in Utrecht, the local electricity grid had
sufficient power capacity to meet all energy requirements, even under
greedy charging. However, when scaling-up, the compliance with the
(contracted) capacity inevitably becomes of interest.

An overview of the results is given in Fig. 12 which depicts ag-
gregated power profiles from offline planning and real-time operation
per case. Table 5 numerically specifies maximum power peaks per
case for the offline planning and real-time operation. There, the power
peaks relative to the power peak observed in Case 0 are specified as
(𝑃 𝑥

𝑚𝑎𝑥∕𝑃
0
𝑚𝑎𝑥, 𝑥 ∈ {𝑝𝑙𝑎𝑛, 𝑟𝑒𝑎𝑙}).

Results for our baseline (Case 0) show a power peak of 297.6 kW
(𝑃 𝑟𝑒𝑎𝑙

𝑚𝑎𝑥 , Table 5). For Case 1, where EVs are planned to charge the
global average energy at maximum power and are expected to depart
at 17:00, a big mismatch between the power peaks of the planning and
realization can be observed (Table 5). The offline planning reserves
almost twice as much energy as is ultimately used for EV charging
(Fig. 12(b), area between blue and orange curves). In a market context,
this would have economic implications for the parking lot operator
overestimating the energy to purchase in the day-ahead market.

When comparing Case 1 and 2 one can observe that having knowl-
edge of the average energy requirement (Case 2) also results in an
improvement in the power peak (Table 5). The offline peak in Case 2
is approximately 22% less than in Case 1 (307.9 kWh and 397.9 kWh
respectively), demonstrating the added value of historical information
of the individual average energy requirement for the offline planning.

For Case 3, it is remarkable how the power peaks of both offline
planning and real-time operation match those of Case 1 (𝑃 𝑟𝑒𝑎𝑙

𝑚𝑎𝑥 and 𝑃 𝑝𝑙𝑎𝑛
𝑚𝑎𝑥 ,

Table 5). That is because in both cases, EVs are planned to charge
the global average energy. This result shows that having historical
information on the individual average dwell time in the offline planning
has little impact on local power peaks.

Case 4, the most realistic in terms of available historical data, shows
power peaks almost halved compared to the power peak observed in the
greedy baseline case for the offline planning and real-time operation
(𝑃 𝑟𝑒𝑎𝑙

𝑚𝑎𝑥 ∕𝑃
0
𝑚𝑎𝑥 = 52% and 𝑃 𝑝𝑙𝑎𝑛

𝑚𝑎𝑥 ∕𝑃 0
𝑚𝑎𝑥 = 48.6%, Table 5). These results

emonstrate the added value of data availability, since significant
mprovements in terms of power peaks can be achieved (at the expense

f energy not served, see Section 4.3.1).
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Fig. 11. Energy not served performance metrics per case in load duration curve formats.
Table 4
Energy not served metrics.

Real-time operation Offline planning
a𝐸𝑁𝑆𝑟𝑒𝑎𝑙 𝐸𝑁𝑆𝑟𝑒𝑎𝑙

𝑚𝑎𝑥
a𝑒𝑛𝑠𝑟𝑒𝑎𝑙 𝑒𝑛𝑠𝑟𝑒𝑎𝑙𝑚𝑎𝑥

a𝐸𝑁𝑆𝑝𝑙𝑎𝑛 𝐸𝑁𝑆𝑝𝑙𝑎𝑛
𝑚𝑎𝑥

a𝑒𝑛𝑠𝑝𝑙𝑎𝑛 𝑒𝑛𝑠𝑝𝑙𝑎𝑛𝑚𝑎𝑥
[kWh] [kWh] [%] [%] [kWh] [kWh] [%] [%]

Case 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Case 1 8.4 44.5 38.4 100.0 4.0 35.3 10.1 61.9
Case 2 6.8 44.5 35.2 100.0 1.6 19.7 4.9 44.4
Case 3 8.4 44.5 38.4 100.0 4.0 35.3 10.3 61.9
Case 4 4.4 19.7 24.8 100.0 1.7 19.7 5.3 44.4
Case 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

aAverage values over the EV population.
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Table 5
Grid-perspective metrics.

Real-time operation Offline planning

𝑃 𝑟𝑒𝑎𝑙
𝑚𝑎𝑥

𝑃 𝑟𝑒𝑎𝑙
𝑚𝑎𝑥

𝑃 0
𝑚𝑎𝑥

𝑃 𝑝𝑙𝑎𝑛
𝑚𝑎𝑥

𝑃 𝑝𝑙𝑎𝑛
𝑚𝑎𝑥

𝑃 0
𝑚𝑎𝑥

[kW] [%] [kW] [%]

Case 0 297.6 100.0 297.6 100.0
Case 1 236.8 79.6 397.9 133.7
Case 2 236.1 79.3 307.9 103.5
Case 3 236.8 79.6 397.9 133.7
Case 4 144.5 48.6 154.7 52.0
Case 5 122.8 41.3 122.8 41.3

Lastly, results for Case 5 show a power peak reduction of 58.7%
𝑃 𝑟𝑒𝑎𝑙
𝑚𝑎𝑥 ∕𝑃

0
𝑚𝑎𝑥 = 41.3%, Table 5).

Overall, planning EV charging with only partial information avail-
ble resulted in a gross overestimation of the aggregated energy re-
uired in the parking lot. Furthermore, a trade-off between energy not
erved and peak power was observed, with an increased impact under
ess information availability. Furthermore, comparing results between
ases 0 and 4 demonstrates the added value of data availability.
lthough energy not served is observed in offline planning and in real-

ime operation, significant improvements in terms of power peaks are
12

chieved. s
4.4. Parameter sweep analysis

This section explores the effect of considering different degrees of
robustness (percentiles) for the arrival time, dwell time, and energy
required for Case 4. Per individual user, instead of using mean energy
demand as an estimation of the energy requirement, a parameter sweep
over the percentiles is done. Next to the energy parameter, the sweep is
also done over the time domain parameters. For this, the 𝑥th-percentile
s defined to be the 𝑥th-percentile of the arrival time and the (100−𝑥)th-
ercentile of the dwell time. Note that arrival and dwell time are not
ndependent variables. However, the lower the percentile, the more
onservative is the resulting interval and the higher the chance of an
V being available within that interval.

The results of the parameter sweep are shown in Fig. 13. From the
weep results one can see that in the current setup, there is always at
east one EV that does not charge any energy in the realization. Given
hat the red dot in the graph represents the result of the mean-value for
ase 4, the results clearly show that improvements in terms of power
eaks and energy not served can be achieved by carefully calibrating
he input parameters.

. Discussion

The results show a significant power peak reduction potential when
tilizing historical data and strictly enforcing an offline planning for EV
harging at an office building parking lot at the expense of energy not
erved. That is expected because in these simulations a ‘‘replanning’’
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Fig. 12. Aggregated power profiles for planning and realization.
Fig. 13. Realized sweep results for Case 4: plot 𝑃 𝑟𝑒𝑎𝑙
𝑚𝑎𝑥 against 𝑒𝑛𝑠𝑟𝑒𝑎𝑙 .
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tage is not considered. This was intentionally done to demonstrate
ow accurate offline plannings are under different degrees of available
nformation when compared to the real-time operation of the parking
ot.

Nevertheless, it seems interesting to investigate the impact of real-
ime ‘‘replanning’’ algorithms on energy not served and power peaks
nder different degrees of available information. Furthermore, instead
f assuming perfect knowledge of the number of EVs that will arrive,
t would be interesting to use information from the cluster analysis to
stimate the number of EVs (per cluster) that will charge that day.

The achieved results indicate that the utilization of historical in-
ormation for EV charging has great potential. The remainder of the
ection will discuss the approaches strong and week points.

Among the strong points of the utilization of historical information,
he most prominent is information availability. As discussed in Sec-
ion 1.1, effective smart charging methods require input. Hereby, his-
orical information is relatively easy to register and acquire compared
o direct user input. Furthermore, for the presented office building use
13
ase, the population is relatively stable and homogeneous. Therefore, it
hould be feasible to analyze charging behavior on the individual level.

On the other hand, there are some weaknesses to consider. Firstly,
he approach does not necessarily translate well to use cases with
ess stable and more heterogeneous populations, e.g., public charging
tations. Furthermore, long dwell times in near-work parking lots are
dvantageous for smart charging methods operating under uncertainty,
hich likely has a positive impact on the simulation results.

Secondly, irregular behavior (e.g., leaving work early), or systemic
hanges in the charging behavior of individuals (e.g., reducing work
ours) have to be taken into account. Especially when collecting in-
ividual charging data for a long period of time, changes in charging
atterns are likely to occur.

Similarly, before introducing a smart charging method based on
istorical data, a period to collect an initial data set is needed. For first-
ime visitors, this prevails even for long-running systems. This can be
vercome by analyzing the typical aggregated profile of all visitors on
ny day of the week and subsequently use this as planning input.
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Next to that, from the moment smart charging is introduced, the
smart charging method itself interferes with the data set. That is the
case since e.g., the amount of energy charged to an EV will be influ-
enced by the method. The system, however, is not aware of whether or
not the full energy requirement was met. The historical information is
then not sufficient to evaluate the charging performance in practice.
If not properly addressed, this can cause a feedback loop in future
analyses and operation, iteratively reducing energy requirements.

6. Conclusion

Using greedy charging in office buildings leads to considerable
power peaks due to synchronized arrival times. The presented results
demonstrate that a reduction of more than 50% can be achieved using
historical data and simple estimations per individual EV. Although en-
ergy not served is observed in offline planning and real-time operation,
significant improvements in terms of power peaks can be achieved
which demonstrates the added value of data availability. Results also
demonstrated that having only partial historical data available is insuf-
ficient for effective offline planning and real-time operation. However,
the performance of such plannings can be substantially improved if
information on arrival times, departure times, and energy requirement
is fully available.

Additionally, it was found that information on individual average
energy charged has a higher added value than information on average
dwell time in terms of energy not served and power peaks in both
offline planning and real-time operation of office building parking lots.

7. Future work

The work presented here indicates a huge potential for office build-
ing parking lots as EV charging hot spots. However, further research is
necessary. In the presented simulations, knowledge of which EVs will
be present the next day is assumed. Instead, the clusters defined in
Section 2.4 may be used to predict the EV population of the next day
and use it as input for the offline planning. An online charging strategy
can then use the resulting profile as a base for real-time operation. On
the other hand, the clusters can be used to build stochastic models for
smart charging of EVs using a scenario-based approach.

Furthermore, the method used to estimate the offline planning has
to be more robust to behavior change. Data collection is ongoing
and will include changes in charging prices, as well as individual
behavior changes. Moreover, surveys among the EV-driving employees
frequenting the parking lot will provide additional data on e.g., EV
models, battery capacity and individual user preferences.
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