
AUTOMATED 
JOINING ELEMENT 
DESIGN 
FOR HIGH 
PRODUCT VARIETY 
IN THE 
MANUFACTURING 
INDUSTRY
DERK HENDRIK DOMINICK 
EGGINK

A
U

TO
M

ATED
 JO

IN
IN

G
 ELEM

EN
T D

ESIG
N

EG
G

IN
K



AUTOMATED JOINING ELEMENT DESIGN FOR
HIGH PRODUCT VARIETY IN THE

MANUFACTURING INDUSTRY

Derk Hendrik Dominick Eggink





AUTOMATED JOINING ELEMENT DESIGN FOR
HIGH PRODUCT VARIETY IN THE

MANUFACTURING INDUSTRY

DISSERTATION

to obtain
the degree of doctor at the University of Twente,

on the authority of the rector magnificus,
prof. dr. ir. A. Veldkamp,

on account of the decision of the Doctorate Board
to be publicly defended

on Thursday 7 September 2023 at 14.45 hours

by

Derk Hendrik Dominick Eggink
born on the 12th of March, 1992

in Lochem, the Netherlands



This dissertation has been approved by:

Promotors:
Prof. dr. ir. M.W. Groll
Prof. dr. ir. I. Gibson

Cover design: Derk Hendrik Dominick Eggink
Printed by: Ipskamp Printing
ISBN (print): 978-90-365-5767-2
ISBN (digital): 978-90-365-5768-9
DOI: 10.3990/1.9789036557689

©2023 Derk Hendrik Dominick Eggink. The Netherlands. All rights reserved. No parts of
this thesis may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means without permission of the author. Alle rechten voorbehouden. Niets uit deze uitgave mag
worden vermenigvuldigd, in enige vorm of op enige wijze, zonder voorafgaande schriftelijke
toestemming van de auteur.



Graduation Committee:

Chair / secretary:
Prof. dr. ir. H.F.J.M. Koopman

Promotors:
Prof. dr. ir. M.W. Groll
Universiteit Twente, Advanced Manufacturing,
Sustainable Products & Energy Systems

Prof. dr. ir. I. Gibson
Universiteit Twente, Advanced Manufacturing,
Sustainable Products & Energy Systems

Members:
Prof. dr. ir. G.M. Bonnema
Universiteit Twente, Systems Engineering &
Multidisciplinary Design

Dr. J. Griffin
Coventry University, Centre for Manufacturing and
Materials

Prof. R. Harrison
University of Warwick, Warwick Manufacturing Group

Prof. dr. ir. J. Henseler
Universiteit Twente, Product–Market Relations

Prof. dr. ing. M. Vielhaber
Universitat des Saarlandes, Systems Engineering





Abstract

Product variety and the manufacturing complexity that it induces are continuously increasing.
This poses a challenge in the product development process and, consequently, the design of
joints. Joining elements define the manner in which a permanent joint is created between parts.
Joining element design is an ambiguous manual task with limited automation solutions. Thus, it
can lead to long, iterative, error-prone development trajectories that may result in costly rework.
Hence, automation solutions for joining element design must be intelligent. However, simply
ensuring the intelligent automation of joining element design is insufficient. Modular design,
through the approaches of modularization and commonalization, enables manufacturers to cope
with the complexity induced by product variety. Unfortunately, modular design approaches
have not yet considered joining elements. Hence, this dissertation study sought to answer the
following research question: “How can joining element design be automated for high-variety
products?”

This dissertation presents a framework for automating joining element design. The
framework is structured into smaller design problems, which will guide designers through the
process of designing joining elements. This structuring will also enable designers to evaluate
and assess artificial intelligence (AI) for each design problem. Moreover, the design problems
will enable designers to identify unused AI techniques, such as machine learning.

These techniques were conceptualized and several were implemented for validation in this
study. A market-validated database with automotive Body-in-White structures was used. The
validation included the use of decision trees to predict joining technologies and the number of
joining elements. Both prediction tasks seem promising to implement in early design phases
due to their simplicity.

Next, this study validated two approaches for predicting joining locations. The first was a
straight-forward evolutionary algorithm for distributing spot welds over contact regions.
However, this algorithm’s performance fell off quickly for nontrivial design problems with
high solution spaces.

The second approach was to use convolutional neural networks to predict spot weld
locations, which provided robust and promising results. This study first explored a
voxel-based regression and classification task by drawing locations in a grid-like structure.
Classification with a segmentation approach produced more robust results due to the spatial
dependencies of classes. Supervised machine learning enabled the consideration of knowledge
of successful designs in new design problems. This concept was subsequently enriched with
nongeometric data using a branding approach. However, these multimodal machine learning
models did not improve the joining locations. Furthermore, the models could not extract the
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ii Abstract

additional information from the data samples.
The difficult task of predicting joining locations requires designers to remain in the loop.

The computational cost and a lack of quality data prevent the models from fully carrying
responsibility for this task. However, these models seem capable of being used in early design
stages to speed up the design process.

In addition to the prediction of joining elements, the framework developed in this study
conceptualizes their modular design. It defines joining elements as individual components,
which enables the generation of interchangeable joining modules, similar to regular modules
in products. This study validated two modular design concepts: (1) the reduction of joining
locations through their clustering over multiple product variants, and (2) the addition of
joining elements to other joints for commonalization. The results of both concepts indicated
that they highly depend on the module interfaces. The geometric boundary conditions of these
interfaces had major effects on the results. Consequently, these modular design approaches
must be performed on a few strategic moments.

In short, automated joining element design for high-variety products requires the
integration of multiple solutions. Companies and product development processes are dynamic
and uncertain, which requires the appropriate methodology to be carefully selected. The
framework proposed in this dissertation organizes and can guide designers through this
selection. Furthermore, the framework identified new AI applications for various tasks in
designing joining elements. Based on this, the study proposes and validates several novel
methodologies. The validation experiments produced promising findings, which can be used
in the automation of joining element design in manufacturing industries with high product
variety.



Titel en samenvatting

GEAUTOMATISEERD ONTWERP VAN VERBINDINGSELEMENTEN BIJ GROTE
PRODUCTVARIATIE IN DE MAAKINDUSTRIE

De variatie in producten en de daarmee gepaard gaande complexiteit in productie nemen
voortdurend toe. Dit vormt een uitdaging in het proces van productontwikkeling en eveneens
voor het ontwerpen van verbindingselementen. Verbindingselementen beschrijven de manier
waarop blijvende verbindingen worden gemaakt tussen onderdelen. Het ontwerpen hiervan is
een complex, handmatig proces met beperkte geautomatiseerde oplossingen. Dit leidt vaak tot
langdurige, iteratieve en foutgevoelige ontwikkelingsfasen, wat kan resulteren in kostbaar
herstelwerk. Hierdoor moeten geautomatiseerde oplossingen voor het ontwerp van
verbindingselementen intelligent zijn. Niettemin is het eenvoudigweg zorgen voor intelligente
automatisering van het ontwerp van verbindingselementen onvoldoende. Technieken als
modularisatie en standaardisatie bieden fabrikanten de mogelijkheid om de complexiteit die
wordt veroorzaakt door productvariatie aan te pakken. Helaas hebben modulaire
ontwerpmethoden tot nu toe geen rekening gehouden met verbindingselementen. Hieruit volgt
de onderzoeksvraag van dit proefschrift: "Hoe kan het ontwerp van verbindingselementen in
de maakindustrie worden geautomatiseerd voor producten met een grote variëteit?"

Dit proefschrift presenteert een raamwerk voor het automatiseren van het ontwerp van
verbindingselementen. Het raamwerk is gestructureerd rond kleinere ontwerpproblemen, die
ontwerpers begeleiden gedurende het ontwerpproces. Deze structurering biedt tevens de
mogelijkheid om de huidige methoden te evalueren in relatie tot de ontwerpproblemen.
Bovendien helpen deze ontwerpproblemen bij het identificeren van ongebruikte maar
toepasbare AI-technieken, zoals machine learning.

In dit onderzoek zijn deze technieken geconceptualiseerd en zijn er verschillende
geïmplementeerd. Tijdens de validatie is gebruik gemaakt van een marktgevalideerde database
met carrosseriestructuren van voertuigen. De validatie begint met het valideren van
beslissingsbomen om verbindingstechnologieën en het aantal verbindingselementen te
voorspellen. Beide benaderingen zijn vanwege hun eenvoud veelbelovend voor implementatie
in de vroege ontwerpfases.

Vervolgens valideert dit onderzoek twee methoden voor het voorspellen van de locaties
van verbindingselementen. De eerste methode is een eenvoudig evolutionair algoritme om
puntlaslocaties over contactgebieden te verdelen. Echter, de prestaties van dit algoritme
nemen snel af bij niet-triviale ontwerpproblemen met grote aantallen mogelijke oplossingen.
De tweede methode voorspelt puntlaslocaties door gebruik te maken van convolutionele
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neurale netwerken. Dit levert robuuste en veelbelovende resultaten op. Hierbij is een op
voxel-gebaseerde regressie- en classificatietaak onderzocht, waarbij locaties worden
ingetekend op een rasterachtige structuur. Het classificatiemodel presteert beter vanwege het
expliciet meenemen van ruimtelijke afhankelijkheden in de data. Supervised machine learning
integreert kennis van succesvolle ontwerpen in nieuwe voorspellingen. Dit concept is
vervolgens verrijkt met niet-geometrische gegevens. Ondanks de toegevoegde informatie,
bleken de modellen niet in staat om deze uit de data te extraheren, waarmee de prestaties niet
verbeterden ten opzichte van de modellen zonder deze informatie.

Het voorspellen van de locaties van verbindingselementen blijkt zeer complex te zijn en
vereist betrokkenheid van ontwerpers. Vanwege de rekenkracht en het gebrek aan data kunnen
de modellen niet volledig verantwoordelijk zijn voor deze taak. Toch lijken deze modellen
geschikt om te worden gebruikt in de vroege ontwerpfases om het ontwerpproces te versnellen.

Naast het voorspellen van verbindingselementen, conceptualiseert het raamwerk ook hun
modulaire ontwerp. Het onderzoek definieert verbindingselementen als individuele
componenten, wat het genereren van uitwisselbare verbindingsmodules mogelijk maakt,
vergelijkbaar met reguliere modules in producten. Dit onderzoek heeft twee concepten voor
modulair ontwerp gevalideerd: (1) het verminderen van het aantal verbindingslocaties door
deze te clusteren over meerdere productvarianten, en (2) het toevoegen van
verbindingselementen aan andere verbindingen voor een grotere gemeenschappelijkheid. De
resultaten van beide concepten tonen aan dat ze sterk afhankelijk zijn van de interfaces tussen
modules. Met name de geometrische randvoorwaarden van deze interfaces hadden een grote
invloed op de resultaten. Hierdoor moeten dergelijke modulaire ontwerpmethoden alleen op
strategische momenten worden toegepast.

Kortom, geautomatiseerd ontwerp van verbindingselementen voor producten met grote
variatie vereist de integratie van meerdere oplossingen. Bedrijven en
productontwikkelingsprocessen zijn dynamisch en onzeker, wat vraagt om zorgvuldige
selectie van geschikte methoden. Het voorgestelde raamwerk organiseert methoden en kan
ontwerpers begeleiden bij deze selectie. Bovendien presenteert het raamwerk nieuwe
toepassingen van kunstmatige intelligentie en heeft deze gevalideerd. De experimenten
hebben veelbelovende resultaten opgeleverd die kunnen worden ingezet voor verdere
automatisering in het ontwerpen van verbindingselementen in de maakindustrie met grote
productvariatie.
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n Number (of).

Subscripts
c Class. p Joining location.
cc Connection case. s Joining scenario.
cr Contact region. t Technology.
e Edge. v Valid.

i, j, k Indexes. y Target.
je Joining element. ŷ Prediction.
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Chapter 1

Introduction

Joining is a vital process in the manufacturing of products that accounts for up to 50% of the
production time. Joining elements are the created, virtual objects that define the manner in
which parts are joined. In other words, they describe the implementation of the joining
process. In early product development, a focus on joining elements is essential for creating
manufacturable, cost-effective products. However, joining element design is a
multidisciplinary process that is complex, ambiguous, and sometimes repetitive. Multiple
drivers in product development, such as greater customer demands and product variety,
increase the difficulty of the process. Moreover, joining element design relies largely on
manual trial-and-error approaches that prevent creating optimal designs. This situation causes
unnecessary design iterations, reduced product quality, and increased lead time. Therefore,
this dissertation study aimed to automate the production of joining elements for industries
with high product variety.

This chapter introduces the study by first discussing the topic and context of joining
element design, product variety, and artificial intelligence (AI); see Section 1.1. Next, Section
1.2 presents the content and objectives, including the research problem, the research aims and
objectives, the research questions, and the significance of the research. Lastly, Section 1.3
concludes with addressing the structure of the dissertation.

1.1 Topic and context

This section starts with a generic explanation of product development and related processes.
Then, the subsections 1.1.1, 1.1.2, and 1.1.3 introduce joining elements, product variety, and
artificial intelligence (AI), respectively. Lastly, subsection 1.1.4 summarizes the topic and
context of this study.

The demand for industries to better align their products with customer needs is
continuously increasing [6]. Companies consistently need to deliver high-quality products on
time to remain competitive in the market [6]. Multiple drivers affect product development
when creating successful products, including the following:

• Shortening product life cycles combined with more frequently changing demands [6, 7];

1
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• Globalization, which enables worldwide competitors and suppliers with different
operating conditions to enter and change markets rapidly [6];

• Outsourcing, which involves specialized business partners taking over interests and
functions to increase company effectiveness [8];

• Market saturation, which forces companies to explore new niches with state-of-the-art
innovations and technology [6, 9, 10];

• Technological progress combined with innovations and performance increases, which
enable state-of-the-art functionality to be retained in products;

• Customization of products to fulfill customer specific demands [6];

• Sustainability and legal effects pushed by societal interests [9].

The aforementioned drivers ensure an ever-continuing need for product development. Fig.
1.1 presents an overview of the product life cycle, which reveals the different phases of product
development, from creating the initial product ideas up until actual production of the product.

Fig. 1.1: An overview of the product life cycle with relevant phases for this study, taken from Eigner and Stelzer
[11]. The image is extended with the joining element design phase.

The product development process addresses the question of what the product to be built
actually is, whereas production development addresses how to build it. These processes
partially overlap and have a significant influence on one another [11]. For example, choices
regarding how to build a product influences its design. Fig. 1.1 also illustrates the product
manufacturing process, which represents the actual manufacturing of the physical product.
Here, an overlap with product development also exists, as product development requires not
only digital but also physical prototypes to test designs and ideas [11]. Consequently, designs
already affect production decisions early in the product life cycle.

Product development entails a decomposed sequence of the design, process, and
production planning phases [12]. However, approaching product development as a sequential
process hinders the exploitation of synergies between common systems without proper
feedback [13]. Hence, collaboration is vital for developing common systems and their
dependencies. In other words, product development cannot merely be a sequential process and
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requires parallel processes. Said processes enable the synchronization and exploitation of the
synergies of various stakeholders along the product life cycle. However, parallel life cycle
processes lead to iterative collaboration due to requirements changing as new information is
revealed.

Sequential and parallel development processes also affect joining elements. Fig. 1.1 also
includes the joining element design process, which illustrates how the design of joining
elements occupies a transitional phase between product development and production
development as well as manufacturing. The joining element design process starts early in
development, based on considerations such as the availability of resources, performance
requirements, and cost. As the product matures, the design of joining elements becomes more
detailed. Moreover, production ramp-up entails the analysis and evaluation of joining element
designs. Production planners and engineers collaborate with designers to ensure
manufacturability. In short, all of these overlapping processes in the product life cycle indicate
the fact that numerous stakeholders are involved. Each stakeholder has their own preferences
and requirements that products need to fulfill. To consider all their requirements, development
needs to be multidisciplinary [14]. Moreover, the overlaps between the multidisciplinary
processes necessitate impactful decisions early in the product life cycle, and these decisions
significantly affect the fixed and change costs. Fig. 1.2 depicts the increasing fixed and change
costs as well as the decreasing possibility of cost reduction during the product life cycle.

Fig. 1.2: A generic overview of the properties of costs along product life cycle phases, taken from Eigner and
Stelzer [11].

As Fig. 1.2 presents, early phases of the product life cycle determine the fixed costs of the
product, with decisions required on production facilities, product variants, and the product’s
positioning in the market [11]. The change costs rise rapidly once decisions have significant
consequences for subsequent life cycle phases [11]. Every decision interlinks with multiple
subsequent decisions, which over time rapidly increase the cost of revising early decisions.
Furthermore, the possibility of reducing costs rapidly reduces. Hence, during development it is
crucial to explore numerous potential solutions quickly as the change costs are still low during
this phase.

The following subsection introduces joining elements, their importance in manufacturing,
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and the major considerations in their design.

1.1.1 Joining elements

Joining is a critical process in manufacturing and includes welding, clinching, adhesive
bonding, and riveting among others. Joining provides the function to a product as a whole and
increases its manufacturability [15]. Joining processes smaller, cheaper parts to be assembled
into more complex components and products [15]. The DIN 8593 standard [16] defines
joining as follows: “durably connecting or otherwise bringing together two or more
geometrically defined work-pieces or the same kind of work-pieces with a shapeless
substance. The cohesion is applied locally and increased in the whole respectively.”
Practically, joining defines a permanent connection without predefined objects, such as screws
or nuts and bolts. Thus, the present study regarded a joining element as an individual entity
that represents a joining process implementation. For example, when two components are spot
welded, each spot weld is a joining element. Similarly, each line of glue is regarded as a
joining element. In this context, joining element design refers to the task of defining and
engineering the individual entities that represent joining processes. Joining has eight types of
processes as per DIN 8593 [16], which are presented in Fig. 1.3. The DIN-standard subdivides
joining in mechanical, thermal, and chemical processes.

Fig. 1.3: Overview of joining processes according to DIN 8593 [16]

The figure shows an example for each process. This study focused on the forming,
welding, soldering, and gluing processes. These processes create joining elements located on
the contact regions (CRs) of components, and they do not merely depend on the interlocking
of components’ geometries. Furthermore, they describe nonphysical joining elements for
connecting parts, such as through spot welds, adhesive bonds, or laser beam welds. Each
process defined in DIN 8593 [16] has many variations and subprocesses, all of which have
their own advantages and disadvantages. The standard DIN EN ISO 4063 [17] defines their
nomenclature as well as the detailed process variants of joining technologies.

Each process variant and combinations thereof may occur numerous times in a product.
Products can easily contain thousands of joining elements [18]. For example, in the automotive
industry, a vehicle may contain over 10,000 spot welds [19]. As a result, joining has significant
effects on the final quality and cost of products [20].
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One reason is that it introduces additional complexity to products, development, and
production, as well as other potential failure modes, quality problems, and costs. Choi et al.
[21] estimated that joining activities account for more than 50% of the total production time
and 20%–40% of the total production cost. The large influence on production time and costs
may be due to the fact that almost a third of people working in manufacturing enterprises
perform assembly or related activities [22]. These activities are labor intensive and thus
necessitate the consideration of people’s skills and capacities. Consequently, difficult designs
of joining elements might cause quality issues in manufacturing, which would require rework
on the product and possibly the design. Hence, improvements in joint design have a direct and
large impact on the income of businesses [21]. As Fig. 1.2 indicated, early development
decisions largely determine the total costs. This phase also includes the design of joining
elements, implying that it also largely determines these costs. The economic importance of
joining element design has led to much effort being invested into improving its efficiency and
cost effectiveness [23].

Optimizing joint design entails various material and process improvements, such as
additive manufacturing. Additive manufacturing may reduce the necessity for as well as
number of joints in a product [24]. It enables the creation of complex and integrated parts, for
which the functionality had previously only been achievable through combining multiple
parts. However, joint-free products are unrealistic in most cases [15]. Therefore, joints remain
key in manufacturing. Furthermore, joining is an enabler for heightened performance
requirements and increased number of product features, which require multi-material and
-component solutions [15].

Now that the necessity for joining has been clarified, it is critical to address the process of
designing joining elements. Their design is not trivial [25] and requires the consideration of
the entire product life cycle [14]. Moreover, the design of joining elements involves numerous
stakeholders due to the broad diversity of requirements. However, as discussed under Fig. 1.1,
the design process for joining elements is a multidisciplinary endeavor with constantly
changing requirements.

Additionally, to create joining elements, the work of designers is increasingly moving
toward increased administration, communication, and informing [11]. Decisions from
downstream phases of the product life cycle have moved into the design and engineering
processes. This trend also includes the designers in the planning, procurement, and production
processes. Hence, designers have less time to focus on their core activities. Moreover, their
workflows, tools, and processes have not been optimized to support this transition of their
work activities.

Furthermore, the joining element design process has undergone a historical transition
from 2D paper-based design to 3D computer-aided design (CAD) approaches. Legacy design
methods relied on experience, thus limiting the quality of designs for complex use cases [26].
Therefore, joining elements are mainly the result of past designs, experience, and knowledge
[7, 18]. Designers only have access to limited support from automation. This lack of tools
forces them to manually search for the information that they require to create the designs.
However, searching for and analyzing previous designs can consume up to 20% of a
designer’s time [27, 28]. Moreover, in industrial design offices, typically 70%–90% of
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designers’ time is spent on modifying, adapting, or in some other way redesigning already
existing and proven designs [29]. Consequently, joining element design is a trial-and-error
approach [18] and accessible methodologies are lacking, which makes designs highly
practical [30]. Moreover, the designers are unable to find global optima, potentially due to the
complexity of tasks and deadlines [18]. After creating joining element designs, they send
them downstream to engineers for validation. Here, the term “downstream” refers to the
product life cycle phases that can sequentially occur only after the design phase is finished.

Notably, joints that adhere to all structural and manufacturing requirements are vital for
producing safe and quality products [18]. Any design that does not fulfill the requirements
must undergo a new iteration. The reasons for new iterations include, but are not limited to, the
following:

• Crash-worthiness – for example, a detailed finite element analysis may reveal a lack of
structural performance;

• Tooling access – for example, partially built product may have components that interfere
with the accessibility of tools for setting joints;

• Resource availability – for example, certain factories might not have a spot welding
robot;

• Tact times – for example, certain joining processes might be too slow for the production
rate.

Consequently, a lack of holistic process knowledge or experience may lead to design
changes, longer product development cycles, and extra costs [28]. Furthermore, holistic
designs that consider multiple phases in the product life cycle will become even more difficult
due to increased product variety. Moreover, designing for multiple product variants in parallel
requires increased collaboration between designers. As a result, high product variety also
increases the complexity of joining element design and documentation [31]. For example,
each joining element requires design manufacturability validations for each affected product
variant. Each product variant is different and brings an additional set of conditions and
requirements. Together with the sheer number of joining elements in each product, this makes
their design a cumbersome and sometimes redundant endeavor.

Additionally, joining element design is not a stand-alone process as it goes hand in hand
with component design. That is, joining element designs depend on components and vice versa.
Therefore, it is an integrative task [32]. Moreover, the impact of joining elements surpasses that
of the components they join. Their designs depend on neighboring joining elements as well as
on similar implementations in other product variants. Thus, all of these parts mutually influence
each other [33]. For example, sharing the same technology in an area of a product would
enable the worker in production to use the same tools and equipment. Reducing the number
of technologies in a product reduces the challenges induced by variety and uncertainty [34]. In
short, the multidisciplinarity, lack of tools, product variety, and sub-system-level considerations
make joining element design an opaque and complex process.

Consequently, the design of an ideal joint is relative to moments in time. Product
development is a co-iterative process with continuously updating requirements [11], thus
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creating new boundary conditions on joining element designs. Hence, there may be an
expiration date on designs due to new insights or product decisions. Nevertheless, ideal joints
exist, although they are relative to the available data at a given moment. Once product
development matures and new data become available, designs might not fit the requirements
anymore. However, an optimal joining element design can stand the test of time. Such designs
are sustainable as they were designed in anticipation of an uncertain environment. This may,
for example, promote the use of only a few basic joining technologies, which may suit many
different materials, costs, or resource considerations. An ideal joint might not imply, for
example, the best structural performance, but it might imply robustness to change. Design
iterations are not preventable and contribute to successful product development [12]; however,
bad joining element designs induce unnecessary design iterations.

The relevant literature has presented many methodologies, tools, and processes aimed at
coping with the complexity in the joining element design process. The following paragraphs
briefly introduce the strategies that researchers and companies have proposed.

Holistic product development aims to consider the requirements of the entire product life
cycle [35] in terms of products’ design, production, use, maintenance, and disposal phases.
However, most joining and assembly-related design aspects focus on manufacturing through
the approaches of Design for Manufacturing (DFM), Design for Assembly (DFA), or both.
The DFA approaches systematically concentrate on reducing assembly costs or increasing the
ease of assembly in the design phase [36]. Examples of these approaches have been provided
in works such as [30, 37, 38]. These approaches define heuristic guidelines that are often not
concrete [34]. Madrid et al. [34] listed the following examples: “design parts to give access to
the joint,” “distortion can be reduced by designing symmetry in parts,” “design simple or
straight contours,” “avoid intersecting weld seams,” and “avoid joints.” Moreover, holistic
approaches require formalization to enable optimization [30]. Formalization requires the
modeling of all requirements, geometry, and use cases, which is highly complex.

Besides holistic overarching approaches, the literature has also presented more concrete
methodologies that solve aspects of joining element design. For example, studies have
described many methodologies for selecting materials, processes, and technologies. These
include multidisciplinary decision-making algorithms (e.g., [39]), knowledge base query tools
(e.g., [40]), or simple tabular overviews (e.g., [41]). Usually, most methodologies first screen
infeasible technologies and then rank the remaining ones according to a given set of criteria
(e.g., [42, 43]). However, a major drawback is that they pay little attention to product variety
and available product data. Additionally, these methodologies do not output the locations of
where to join and often do not consider geometries.

In addition to the technology, a joining element design also regards the locations of where
to join components. Research has presented several approaches for automating these joining
locations. Various methodologies have considerably different principles. However, they
usually implement some finite element analysis to evaluate results [25]. Recently,
methodologies have integrated component geometry design with joining locations (e.g., [44,
45]). They apply topology optimization to structures without predefining the joining locations.
Furthermore, these methodologies can include the selection of joining technologies during
optimization (e.g., [46]). However, these methodologies focus on single performance metrics,
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such as noise, vibration, and harshness (e.g., [47]) or stiffness (e.g., [18, 48]). The main
drawback of solutions optimized for one metric, such as strength, may not be successful for
others, such as light-weight design. The results produced using optimization methodologies
require balancing and validation before application to products. As previously mentioned,
joining element design is multidisciplinary with diverse requirements. Not only a structural
but also a business-optimal design must be found, such as one that considers ecological,
economic, and manufacturability requirements [39]. Other drawbacks of such approaches are
discrepancies between simulations and the real world. Such discrepancies require conservative
interpretations concerning optimal designs. Lastly, optimization methodologies require
completely defined products to determine the structural behavior of the product as a whole.
This data-availability requirement prevents quick design studies in early product development.

A simpler way to create joining locations is to use predefined sets of rules. CAD systems
(e.g., Siemens NX [49]) feature various tools for designing joining processes. Although these
tools mainly assist designers, they also apply rule-based methods (e.g., [50]) to create joining
locations. These methodologies operate within engineer-specified boundary conditions and
parameters. Hence, they neglect any information from the product or production. The
designer’s experience remains the basis for designs.

In short, a limited number of solutions exist for automating joining element design.
However, these are not satisfactory because, for example, they do not include available
product data. This challenge intensifies for industries with high product variety. Here,
companies may have thousands of product variants, and each of which may have thousands of
joining elements. The increased product variety-induced complexity requires increased effort
in joining element design, which makes the work even more complex and cumbersome. The
following subsection will address product variety into more detail.

1.1.2 Product variety

The drive to satisfy customers forces companies to diversify their product portfolio [6].
Product variety refers to the growing trend of companies offering highly configurable
products [6]. Schaffer and Schleich [51] defined product variety as “versions of a technical
product that differ from other versions of a technical product of the same type in at least one
area of their technical specifications and are created by the combinations of different driver
characteristics during the production process.” Even the simplest of products has variety [6],
such as light bulbs. Although product variety occurs in all types of products, the number of
variants in the automotive industry is immense. For example, in 2008, the estimated number
of vehicle variants of the Mercedes-Benz E-Class was over 1024 [8], whereas BMW has
claimed that nearly all of their vehicles are unique [52]. Fig. 1.4 presents the effects of product
variety at each phase in the product life cycle.

Although product variety aims to fulfill customer needs, its effects in industry cause
increases in costs and lead time. Costs increase as companies require increasingly more effort
and overhead to manage the variety [54]. whereas lead time increases due to more overhead of
parallel and sequential processes for coping with variety [55]. Some effects can be optimized
under the same amount of product variety [53]. In product development, this includes the
amount of effort required for engineering, testing, maintenance, and documentation [53].
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Fig. 1.4: Product variety’s effects in industry, taken from Ripperda and Krause [53].

Processes in product development must consider product variety from early on, preferably
through a concurrent strategy [38]. For example, DFA strategies may reduce the time required,
difficulty, and resulting defect rates [56].

Variety decisions in product development affect downstream phases [11], such as
production. For example, product variety causes a significant increase in the number of
process variations, including changes to machines, tools, fixtures, set-ups, cycle times, and
labor [57]. These variations induce planning, control, and logistic difficulties in production
[58]. Poor development decisions affect the tasks of operators who, consequently, may reach
their cognitive and physical limits [59]. As an illustration, every manufacturing system must
be aware that any product variant can come at any time [60]. The effects cause the unit cost to
increase by more than 20% when the variety of manufactured items is doubled [61]. Reported
costs caused by product variety-induced complexity range from 20% to 40% of the total costs
of a product [62]. Variety decisions must consider the added value compared with the costs
that new product variants create. Hence, a trade-off occurs between the revenue from
differentiation to meet customer demands and the resulting costs. Fig. 1.5 depicts the cost-,
revenue-, and profit effects of product variety.

A wider variety corresponds to higher costs, lower margins, and lower quantities. The
point of maximum profitability is often overestimated due to the difficulty of quantifying the
complexity costs using traditional accounting methods [64]. Increasing product variety also
increases the prices of standard products and prevents their competitive placement in the
market [6].

Optimal product variety refers to the right set of product variants with the right feature
combinations for precisely targeting customer needs and demands [6]. Limiting variety might
interfere with a company’s ability to serve customer needs [65]. Nevertheless, companies
should not offer product variants that are not possible or desirable [66]. Furthermore, adding
many arbitrary variants will create little additional value [6]. Product development includes
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Fig. 1.5: The effects of product variety on the costs, revenues, and profits of companies; taken from Schuh et al.
[63].

product variety considerations during the design phase to strategically address customer
requirements [67]. Schmidt et al. [68] argued that three main variant management strategies
exist, which are detailed as follows:

• Reduction – this is a short-term approach that strategically removes external variants or
contains associated work. It includes methods such as portfolio downsizing and minor
re-engineering of parts [69].

• Handling – this approach works mid-term and attempts to manage variety efficiently
while still offering as many variants as possible, for example, through standardization
and modular approaches [69].

• Prevention – this is the most potent and long-term strategy for reducing product
variety. It considers the added value of each offered variant, only to offer possible
product variants [8]. Prevention includes mainstream variety management approaches,
such as modularization, scalable product platforms, and variety control [69].

Product variety can be divided into two types [8], namely external and internal variety.
These are described as follows:

• External product variety refers to the number of product variants made available to
the market. External factors that influence the creation of product variants can include
customer demands, legislation, geographical regions, and market segmentation [6].

• Internal product variety refers to the resources and means available to companies to
offer external variety. It involves making the external product variants available.

Industries seek to offer as many external product variants as possible while minimizing the
induced internal variety [8]. However, companies can only affect the internal product variety
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while preserving the external variety [70]. These factors influence the effects presented in Fig.
1.4. The architecture and technology of the product family determine the internal–external
product variety ratio [71].

The organization of internal product variety is vital for companies. For example, the
effective management of Volkswagen’s product architecture allegedly saves the company 1.7
billion dollars in development and production costs annually [72]. This is mainly the result of
component commonality [73], which refers to the reuse of the same components in various
product variants. It is a handling strategy that enables companies to offer variants while
containing costs [69]. Another effective strategy for product architecture management is
modularization [74]. Modularization decomposes products into chunks (i.e., modules), which
can be combined to create new product variants [75]. This can generate a competitive
advantage and has significant importance in product development [76]. Together with
commonality, modularity can affect the ratio of internal and external product variants
positively. These approaches also enable companies to offer a wide variety of external
products without requiring a large number of components [77].

Modularity and commonality were first implemented in 1914 [78], when an automotive
engineer sought to reduce costs by mixing and matching components [78]. The engineer
demanded standardized automobile subassemblies, such as axles, wheels, and fuel feeding
mechanisms [78]. Modular product design includes the benchmark commonality and
modularity [79], as well as other approaches such as standardization [69]. Modular product
design increases manufacturing efficiency and effectiveness [75] and reduces inventory costs
and lead time. These benefits align with the “affectable” effects in Fig. 1.4.

However, as previously mentioned, product development is a dynamic environment.
Changes in design also affect modular design [80]. Hence, modules may change, which in
turn may affect others [81]. The interfaces between modules also require commonalization to
sustainably enable changes to modules [82]. Joining elements can reside on these interfaces.
Without commonalization of interfaces, changes to modules – or to any components – may
induce changes to joining elements. However, no relevant approaches can be found in the
literature.

Nevertheless, the literature on modular product design has described many modularization
methodologies (e.g., [71, 83, 84]) as well as commonality methodologies (e.g., [85–87]). These
methodologies have various focal points, such as assembly complexity (e.g., [83]), product
architectures (e.g., [88, 89]), standardization (e.g., [84]), and assembly stations (e.g., [90]). This
variation led Gauss et al. [91] to synthesize a meta-process for developing modular products.
Regardless, modular product design largely neglects optimization for module interfaces, which
contain the joining elements that connect modules.

Noteworthily, AI includes optimization techniques that can create modular designs. The
following subsection introduces AI and addresses current trends.

1.1.3 Artificial intelligence

Automating designs increases speed and quality while reducing costs [29]. Furthermore, it
offers opportunities to utilize the characteristics of product variant design [29]. Software can
efficiently take over cumbersome, repetitive tasks [29]. In this regard, AI aims to solve
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problems that were traditionally solved by humans. According to Lu et al. [92], AI is defined
as “[a]ny theory, method, or technique to analyze, simulate, exploit, and explore human
thinking process and behavior.” AI concerns computation in an intelligent manner. Lu et al.
[92] provided the following four main properties of AI:

• It involves studying the features of human activities;

• It involves constructing a certain intelligent system;

• It involves computers performing tasks that only humans could do in the past;

• It involves simulating the underlying theories, approaches, and techniques of human
behavior.

AI encompasses the takeover of any cognitive function. This study views AI as the
capability to solve problems regardless of their type, origin, or difficulty. Theoretically, it is
possible to view a calculator as a form of AI. Although most humans understand the processes
of addition, subtraction, multiplication, and division, they are often unable to reconstruct a
calculator or to specify how the internal processes work. In some sense, there is a kind of
magic in this device. As such, computer systems that support decision-making or automation
may be regarded as intelligent [29]. This broad interpretation of AI includes any possible
technique for automating human tasks, and thus, it includes joining element design.

AI is on course to disrupt the economic and labor landscape [93]. It is considered one of
the most predominant innovation drivers and technology trends in industrial product
development and is continuously increasing in complexity. Recent breakthroughs have
propelled the popularity of AI for all types of applications [94]. This technology enables the
automation of complex tasks and can enhance process efficiency [95]. It aims to mimic
humans’ cognitive functions and understanding of the world [95]. The goals of most AI
applications are to decrease error rates, assist in decision-making, and increase computational
efficiency [95].

Most applications are considered in mainstream research fields, such as natural language
processing, computer vision, and robotics [96]. Exploring the applicability of AI in other
complex areas, such as product development and the manufacturing industry, is difficult.
These areas require extensive amounts of expert knowledge and research to find feasible
solutions [97]. Moreover, these areas have complex environmental conditions with
ever-changing specifications, such as shortening product development cycles and increasing
market competition [7]. Furthermore, most applications require enormous datasets, expertise,
and resources for process optimization, monitoring, and control of applications at an
unparalleled level of accuracy [98]. Therefore, manufacturing projects involving AI
applications are limited to sub-processes instead of the whole process in this industry [99].

Today, the manufacturing industry has seen multiple successful applications of AI [100].
Four AI fields are popular in the manufacturing industry [101]: rule-based reasoning,
case-based reasoning, search and optimization, and machine learning (ML). All four fields
entails different levels of cognitive capability and model complexity. For example,
programmers explicitly define processes and decisions in rule-based reasoning, applying all of
their knowledge to the algorithms prior to usage. By contrast, ML finds patterns in data by
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itself and only requires programmers to define boundary conditions. AI methods vary widely;
thus, use cases determine which method should be used for which application.

Recently, ML has received much attention, which has led to the acceleration of AI and
resulted in research breakthroughs for many applications [94]. In particular, since
computational speeds have increased significantly, the popularity of deep learning has
increased [95]. This refers to large neural networks (NNs) that can learn complicated concepts
and identify features at higher levels of abstraction. These networks can find complex patterns
that are not recognizable to humans. Most ML applications focus on image recognition,
natural language processing, and the analysis of customer data for business-intelligence
purposes [102].

Virtually no AI applications have been implemented for joining element design, although
applications in adjacent fields have indicated promising results. Applications of AI in the
manufacturing industry include finding the best geometry under static loads (e.g., [103]),
selecting manufacturing processes (e.g., [104]), and predicting the number of spot welds (e.g.,
[105]). AI is implemented in various engineering applications such as automotive
Body-in-White (BIW) structures (e.g., [47]), buildings and civil engineering (e.g., [95]), and
rim design (e.g., [106]). AI models can predict structural topologies and display an
understanding of geometric spatial structures [103]. Joining element design is a field with
similar boundary conditions. The overlap between the fields invites the exploration of the
application of AI methods, especially as appropriate solutions for the automated design of
joining elements are lacking.

The following subsection summarizes the topic and context section.

1.1.4 Summary

Much research has examined joining element design, including holistic and knowledge-based
development approaches, joining process selection, and joining location generation. However,
these approaches often depend on input, preferences, and the experience of engineers. Suitable
automation approaches are lacking, which results in time-consuming practical solutions that
may require costly rework and unnecessary design iterations.

Moreover, in modular product design, many methodologies exist for optimizing product
architectures. Their aim is to offer as many product variants to customers while containing
the internal product variety-induced overhead and complexity. However, popular approaches,
including commonalization and modularization, do not regard joining elements as objects of
interest. This lack of consideration results in additional complexity and effort in the design and
handling of joining elements throughout the entire product life cycle.

Moreover, AI is evolving rapidly with consistent breakthroughs in both research and
business. In particular, the field of ML is growing and enables automation in virtually any
field of product development. ML can do this due to its ability to capture patterns, extract
knowledge, and apply them to new problems. Recently, multiple works have identified both
the necessity and potential of AI in the manufacturing industry. Moreover, fields similar to
joining element design have seen successful applications of AI. This raises the question of
whether and how AI can be used to automate joining element design, thus reducing the
time-consuming practical solutions for designers as well as the effects of product variety.
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These considerations are taken into account in the following section, which presents the
content and objectives of this study.

1.2 Content and objectives

This section discusses the purpose of this dissertation study as well as the environment in
which it was conducted. Subsection 1.2.1 addresses the research problem. Then, subsection
1.2.2 presents the research aims, objectives, and questions. Next, subsection 1.2.3 discusses the
scope, subsection 1.2.4 the significance, and subsection 1.2.5 the formatting of this dissertation
study.

1.2.1 Research problem

Joining element design is a central part of the product design and detailing phases [43]. Here,
holistic approaches advocate for the integrative design of components and joints to ensure
effectively manufacturable products (e.g., [30, 107]). More concretely, the literature has
presented various methodologies for partial aspects of joining elements, including joining
technology selection (e.g., [40, 108, 109]) and the generation of joining locations (e.g., [18,
46, 50]). Moreover, modular product design can optimize product architectures, considering
indices such as assembly complexity (e.g., [83]). Modularization makes it possible to manage
variety-induced complexity and ensures profitable production.

However, these methodologies have not considered the availability of successfully
marketed products. These products represent designs that have proven quality, regardless of
the process for their design. Many state-of-the-art methodologies do not integrate the designs
of successfully marketed products for new designs. Although, designers create joining
elements using their experience as well as by analyzing past designs, but this information does
not flow back into the methodologies. Moreover, literature lacks modularization and
commonalization methodologies that consider product variety in joining element design.

As a result, the existing research is inadequate for industries with high product variety.
Product variety and its induced manufacturing complexity will continue to increase. However,
no proper methodologies exist for adequately handling the consequences for joining elements.
Furthermore, new and ever-changing requirements in product development are making joining
element design increasingly difficult and complex. This makes the joining element design
process increasingly more time-consuming by creating only practical solutions. Hence,
product development risks unnecessary design iterations and costly rework.

1.2.2 Research aims, objectives and questions

Based on the identified research problem, the main research aim is described as follows:

Given the lack of research on joining element design that considers successfully
marketed product data and product variety, this study aimed to create a process
with supplementary tools for automating joining element design in industries with
high product variety.
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The following research objectives were developed to assist in achieving the research aim:

• To identify and evaluate methodologies for designing joining elements;

• To propose a methodology that implements machine learning for automating joining
element design;

• To propose a methodology for considering product variety in joining element design;

• To define a generic framework for automating joining element design for high-variety
products.

Based on these research objectives, the following central research question was developed:

How can joining element design be automated for high-variety products?

To assist in answering the central research question, the following research subquestions
were developed:

• How are products developed and how does this impact joining element design?
Through this question, this study attempted to determine the nature and processes of
joining element design. It reviewed practice and the literature to evaluate available
solutions and their advantages, drawbacks, and requirements.

• How can joining element design be automated?
This question was specifically aimed at the application of AI in design engineering. AI
technology mimics human thought process and behavior; thus, AI represents a
collection of methods and tools that could possibly support the automation of joining
element design. Designs have implicit knowledge and experience, which must, together
with partial solutions in the literature and practice, be analyzed and integrated. Through
this question, this study aimed to determine the applicability of various AI fields to the
design of joining elements.

• How should product variety be considered in joining element design?
Answering this question required the analysis of issues, challenges, and methodologies
for designing for product variety. Product variety techniques have been used extensively,
although mainly on functional levels in product architectures. Through this question, this
study searched for the possibility of transferring modular design approaches to joining
element design.

1.2.3 Scope

The research questions indicate a broad field of research for a dissertation. The research scope
sets boundaries in order to investigate the topic profoundly and thoroughly.

The methodology for automating joining element design was validated using multiple
concepts. These concepts worked within a confined use case in the automobile industry,
specifically resistance spot weld designs of many BIW structures. A BIW structure refers to a
car’s frame once it has been joined together but before it has been painted and the motor or
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any subassemblies have been integrated. As a result, this use case contains high product
variety, and the designs are market validated.

This study focused on joining processes in the categories of forming, welding, soldering,
and gluing according to DIN 8593 [16] (see Fig. 1.3). These processes do not rely mainly on
the geometry of components to create joints. Hence, this study limited itself to locally applied
shapeless substances; see DIN 8593[16].

The concepts validated the applicability of automation for joining element design. The aim
was to determine whether automation can create feasible designs to support designers. The
research objectives were not aimed at optimizing nor finding the optimal implementation of
each concept. Thus, joining designs were not validated from a mechanical perspective that, for
example, would evaluate the crash-worthiness of the design. However, the results did need to be
plausible and useful. In short, this study was experimental and the concepts are not developed
for a productive implementation.

The automation of joining element design is focused on early design phases in product
development. These phases contain barely any tools for designers, as joining element design
comes mainly from their experience and past designs. Automation can support designers
through quick initial joining element designs and liberate them to focus on their core holistic
and creative problem-solving skills.

1.2.4 Significance

This research contributes to design engineering by proposing a framework for automating
joining element design in high-variety products. The framework supports designers as their
jobs are becoming increasingly difficult and complex. In addition, it supports academia with a
new perspective on design automation and modular design for joining elements. Moreover,
this study evaluates and identifies the applicability of AI for automated joining element
design. Consequently, this research proposes and validates several novel methodologies for
automating joining element design and their modular design. Furthermore, this study
addresses the current shortage of research in this area and provides real-world value to
industries with high product variety.

1.2.5 Formatting

In this dissertation, different formatting is used to denote special text as follows:

• Definitions of terms are in boldface and their explanation are in italics;

• Quotes have “double quotation marks” and are formatted in italics with the
corresponding source.

• Literature references are embedded in [square brackets];

• Sections are in boldface and the following sentence starts on the next line.
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1.3 Structure of the dissertation

The remainder of this dissertation is organized as follows. Chapter 2 (State of the art)
addresses benchmarks in and surveys the literature on joining element design, modular
product development, and AI. The chapter concludes with an overview of the literature and
motivation for using ML in joining element design.

Chapter 3 (Methodology) first introduces an overarching framework for automating
joining element design for high-variety manufacturing industries – also called VICTOR.
Then, it evaluates the applicability of AI for each process step. It continues by presenting
several concepts that use different AI techniques to predict the locations of joining elements.
Lastly, it presents two processes to apply modular product design, namely modularization and
commonalization, in joining element design.

Chapter 4 (Validation) presents implementations of selected concepts presented in the
methodology chapter along with their results, and then discusses those results. Finally,
Chapter 5 (Conclusion) answers the research questions. It presents the results of the study as a
whole and proposes recommendations for further research and implementation. Fig. 1.6
visualizes the structure of this dissertation:

The following chapter describes the state of the art of methodologies, practices, and
processes. This enables defining the boundary conditions and requirements for developing a
framework.
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Fig. 1.6: Structure of the dissertation.



Chapter 2

State of the art

The aim of this chapter is to discuss benchmark approaches in the design of joining elements,
modular product design, and artificial intelligence. The evaluation of these methodologies
addresses a gap in the literature and presents the need for sophisticated automation of joining
element design.

This chapter first addresses the state-of-the-art in joining element design in Section 2.1
by discussing the design process in the industry, DFA methods, joining technology selection,
and the design of joining locations. It continues with modular product design in Section 2.2,
explaining the complexity and its influence on assembly, and later product families, product
platforms, and sustainable modularization. Next, Section 2.3 presents the state of the art of AI
before going into depth about ML approaches, their considerations, and their applications in the
manufacturing industry. Furthermore, Section 2.4 presents a literature overview, a discussion
of the research gap, and the case for using ML in joining element design. Lastly, Section 2.5
summarizes and concludes this chapter.

2.1 Joining element design

This section addresses the practical and theoretical processes and methodologies used in
joining element design. The following subsections address various vantage points on the
design of joining elements. Firstly, subsection 2.1.1 addresses the practical process for
designing joining elements. Then, subsection 2.1.2 discusses holistic Design for Assembly
and Manufacturing approaches related to joining element design. Next, subsection 2.1.3
presents benchmark approaches of joining technology selection methodologies. Furthermore,
subsection 2.1.4 discusses the design of the locations for joining using rule-based approaches.
To that extent, subsection 2.1.5 presents optimization approaches to determine the locations
for joining elements. Lastly, subsection 2.1.6 summarizes the findings in the state of the art in
the design of joining elements.

Many definitions of joining concern the bringing together of individual parts to form a
whole, such as the following: “Joining is to put or bring together so as to form a unit” [110];
“[t]he process used to bring separate parts of components together to produce a unified whole
assembly or structural entity” [111]; or “[a] large number of processes used to assemble
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individual parts into a larger, more complex component or assembly” [112]. The European
Union Manufacture Technology platform defines joining as “[c]reating a bond of some
description between materials or components to achieve a specific physical performance.”
These bonds can be mechanical, chemical, or thermal processes [15].

Other terms related to joining include assembly, fastening, or montage, and they partially
overlap in meaning with joining. Fastening uses physical parts – fasteners such as screws, bolts,
and rivets – to create joints specifically to attach, especially by pinning, tying, or nailing [110].
Joining is broader and includes processes such as welding and adhesive bonding. Assembly is
“[t]he fitting together of manufactured parts into a complete machine, structure, or unit of a
machine” [110]. Joining focuses on durable connections [16], whereas assembly more broadly
concerns connections as in putting things together [110]], thus including temporal, reversible
processes, such as screwing. Still, the terms joining and assembly in the manufacturing context
largely overlap and can be used synonymously.

Joining is a critical process in manufacturing that provides the function to a product as a
whole and increases its manufacturability [15]. Joining elementsare individual entities created
for joining processes. This study acknowledges the representative digital counterparts of
joining elements with the same terminology. Joining elements are an interface between
products and processes. They are part of product design yet specify manufacturing tasks and
operations.

To structure this information for early design phases, Eggink et al. [113] distinguished
three aspects: technology, locations, and parameters (see Fig. 2.1). For example, these aspects
enable simulation programs to analyze designs as well as production planners to create
assembly sequences.

1. Joining technology as, for example, listed in DIN [17], refers to the processes of joining,
such as resistance spot welding or adhesive bonding. Each technology brings its own
set of requirements to manufacturing (e.g., tooling and material supply) and parts (e.g.,
materials and CRs). ISO categorizes it into various layers of detail [114].

2. Joining locations refer to the shape and position of joining and differ depending on the
technology. For example, joining locations for riveting are point-shaped, 0-dimensional,
and can be described by Cartesian coordinates. Another example is laser beam welding,
where joining locations are curve-shaped and 1D, representing the line a tool traverses
along workpieces to create a joint. Usually, the normal vectors – depending on the joining
parts – describe the angle of tools for processing joints.

3. Joining parameters refer to information such as the diameter, material, or object type
of the joining element. They describe the information required to pinpoint the type of
elements, such as the type of rivet, the diameter of the clinching point, and the specific
glue to use for adhesive bonding.

Fig. 2.1 illustrates the joining aspects using the examples of riveting, adhesive bonding,
and laser beam welding.

Fig. 2.1 illustrates two U-shaped profiles that each have two flanges. The coinciding flanges
create two CRs (green). A normal view of this CR provides much insight into the geometry
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Fig. 2.1: Visualization of exemplary joining aspects: joining technology, locations, and parameters.
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of joints. The right-hand side presents information on all three joining aspects. The structure
and formatting of this information is exemplary and may differ between software packages,
companies, and other applications.

Components in joints have CRs, which are geometrically coinciding areas due to individual
part surfaces touching each other. The geometry of CRs may differ drastically, ranging from
large overlapping surface areas to small coinciding edges. CRs influence applicable joining
technologies to create a geometry-dependent design process [32].

Furthermore, joining locations describe where to set the tool for joining. Hence, they do not
necessarily describe the geometry of the joining elements. The joining geometry also depends
on the joining parameters, such as the diameter, to enable the joining element to be represented
in 3D space.

Studies have argued that component geometry, materials, and joining technologies depend
on each other and require iterative design processes [15, 32]. For example, CRs limit the
available areas for setting joining elements by considering minimal edge distance
requirements. Moreover, component design should consider potential joining technologies
beforehand. International standards describe the organization of manufacturability
requirements for many joining technologies (e.g., resistance spot welding for steel sheet
metals [115]). They set boundary conditions on designs for both component and joining
elements. Kaspar et al. [116] presented a selection of interrelations between component and
joint section design. This selection visualized the many interdependent relations and
considerations within joining element design, including weight, strength, materials, and
economic and ecological requirements. For further references to state-of-the-art joining
methods and their newest developments, this study referred to the work of Kim et al. [117]
and Martinsen et al. [15].

Regardless of the many stakeholders, dependencies, and properties of joining elements,
their main function is often to provide structural performance. They assist in holding a product
together. Furthermore, joining elements create structural performance between components,
which implies the ability to cope with the loads and forces that the product will undergo during
use. The mechanics of materials is a field with many methods for determining the stresses and
strains in structures [118], including beams and columns. Various types of stresses act on joints,
such as tension, compression, bending, torsion, and buckling [118] (see Fig. 2.2).

Besides the raw geometrical considerations presented in Fig. 2.2,there are many other
performance related parameters in joints, such as joining technologies, materials, and surface
preparation [116, 119]. However, the design of joining locations is one of the most complex
tasks for designers due, for example, to their high solution space. This design problem is
further explained in Sections 2.1.5 and 3.1.3. The following list briefly addresses some
rudimentary geometric issues for joining elements in relation to structural performance (see
Fig. 2.2):

• Static tension and compression stresses are mainly correlated with the number of
joining elements and the size of the CR [119]. Together, these parameters determine the
load-bearing capacity of a joint. By increasing the number of joining elements, or the
length, for example, of an adhesive bond, the ability to cope with tension and
compression increases.
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Fig. 2.2: Simple examples of stresses on typical joined components, taken from Soetens [119].

• Bending and torsion stresses (illustrated in Fig. 2.2) are mainly related to the section
modulus [120]. The section modulus refers to the geometrical cross-section of the
load-carrying components. The performance of the joint then depends on the moments
of inertia of the load-carrying cross-section [118]. Bending has a neutral surface or axis
where deformation is negligible. The strains and stresses are proportional to the
distance from the neutral surface. Similarly, torsion has a neutral axis where
deformation is lowest, which proportionally increases with the radius. Hence, placing
joining elements furthest from the neutral surface optimizes them to endure stresses
from bending and torsion (see Fig. 2.3). Here, it is the combination of the number and
location of joining elements that determines the load-bearing capacity of the joint.
Moreover, the shape of the CR must enable the design of the required joining locations.

• Buckling and denting (illustrated in Fig. 2.2) are, as previously mentioned, highly
challenging failure modes to control [120]. These failure modes may occur when a thin
component is compressed and deforms sideways. The geometrical cross-section and
length of the components have a large influence [118]. Similar to bending and torsion,
joining elements need to be located as far as possible from the neutral surface to more
effectively handle stresses.

Buckling is often a dominant failure mode over the other stresses [118]. As such, the study
elaborates on the cause and variables that affect buckling behavior. Consequently, and to the
extent of buckling, the study discusses the relationship between joining locations and their
capacity to cope with moments of inertia. Euler defined four meaningful cases of buckling to
model beams in skeleton constructions [120] (see the right-hand side of Fig. 2.2). For example,
the automotive industry implements these as longitudinal beams in the chassis of vehicles, and
therefore, they are vital in crashes. Each case has a maximum vertical downward force that
makes the beam buckle. Equation 2.1 describes the required force Fk for the second Euler
case:

Fk =
π2 · EI

L2
(2.1)
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where E is Young’s modulus (modulus of elasticity, a material property); I is the area moment
of inertia (also known as the second moment of area [118]); and L is the length of the beam.
Both the length and second moment of area describe the geometry, although the latter represents
the cross-sectional design of the beam. As this might include the joining of beams, the second
moment of area describes the performance requirements of joining elements. To illustrate the
calculation of the second moment of inertia, Fig. 2.3 presents a rectangular beam, which has a
width b and height h.

Fig. 2.3: Simple example of the relationship between spot weld locations on the second moment of area.

The centroid of the beam is located at the origin. The second moment of area with respect
to the x-axis is Ix, while Iy represents this with respect to the y-axis. They measure the ability
of cross-sectional shapes to resist bending or buckling caused by loading; see Eq. 2.2.

Ix =
bh3

12
; Iy =

hb3

12
(2.2)

This equation indicates that the section moment of area concerns the base and height up to the
third power. Considering Eq. 2.1, this implies that beams with larger cross-sections require a
higher force to make them buckle. Hence, a joined cross-section across the length of such a
beam must transfer the same loads.

Let us assume a cross-section with spot welds that join two rectangular components.
Moreover, as Fig. 2.3 illustrates for spot welds, the second moment of area increases when
placing these components apart. Placing them away from the neutral center increases the
substitute rectangle I . Hence, joining locations must be positioned on the outer edges of CRs
to cope with buckling. Moreover, calculating bending, torsion, or denting stresses also relies
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on cross-sections, and thus, on the second moment of area I [120]. For example, see the
following stiffness equations for bending and torsion:

M = EIκ (2.3)

T =
JT
r
τT =

Iz
r
τT (2.4)

I rod
z =

π

2
r4 (2.5)

In Eq. 2.3, M is the applied bending moment and κ is the resulting curvature of the beam.
Again, E and I appear. Their combination EI represents the bending stiffness of the beam,
also known as the flexural stiffness [120]. In Eq. 2.4, T is the applied moment of torsion and
JT is the torsion constant for the cross-section. For example, this constant is equal to the polar
moment of inertia of the section for a rod Iz (see Eq. 2.5). Next, r is the largest perpendicular
distance from the rotational axis. Lastly, τT is the maximum shear stress at the outer surface.

Moreover, an infinite number of ways exist to apply stress to components, each of which
affects the structural performance differently. For most purposes, it is sufficient to distinguish
loading types into short-time static, long-time static, repeated, dynamic, or sudden loads [118].
Naturally, joining elements need to hold under normal conditions, but their performance is most
critical in extreme cases. For example, in the aviation industry, turbulence causes unexpected
and uncertain forces on the wings that fatigue the material [121], while in the automotive
industry, joining elements must hold during crashes [18].

During crashes, buckling is a dominant failure mode and tends to overpower the other
stresses [118]. Because of buckling’s nonlinearity and difficulty to control, designing while
considering buckling is a complex task. Moreover, there are certain areas in automotive
structures (crumple zones) that even promote buckling to make vehicles more safe, thus
further increasing the design complexity. Together, these sudden, unpredictable instability
problems are highly complex [118]. To cope with these failure modes, designers often apply
large safety factors [122].

The list above contains some rudimentary design consideration for the locations of joining
elements. However, books such as Issler et al. [120] and Young et al. [118] have discussed
many more loads and stresses in great depth. However, this study was unable to find reference
material on the transfer of loads through cross-sections or equivalent representations of joining
elements.

Still, the list provides some basic design rules for joining elements. For example,
positioning joining elements at the outer regions of the CR optimizes the structural
performance of joints. Additionally, increasing the number (or length) of joining elements
enables the structure to cope with stresses, such as tension and compression. Moreover,
over-dimensioning creates necessary safety factors for uncertain instability problems [122].
The inclusion of considerations for joining elements as well as the numerous other design
parameters required by various stakeholders necessitates a systematic joining element design
process.

The following subsection describes the design process of joining elements.
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2.1.1 Design process

The joining element design process can be theorized from classical development models. For
example, Fig. 2.4 depicts the W-shaped design model of Kaspar et al. [32] based on the product
development process of Pahl and Beitz [123].

Fig. 2.4: Schematic and reduced view of the W-model, adapted from Kaspar et al. [116].

The W-model extends the classical V-model [124], which hierarchically decomposes from
a top-down system design toward a detailed component design. Then, it integrates detailed
component design from the bottom up by testing and integrating components, subsystems, and
systems. The joint-section design is an additional phase of the V-model that details component
designs while considering their neighboring parts. It regards joints as integrating subsystems.
The W-model is a holistic approach for reducing the focus on optimal individual component
design and increasing the focus on optimal subsystem design. Moreover, it emphasizes crucial
cross-component aspects in engineering [32].

Fig. 2.5 presents a generic joining element design process as observed in the industry,
which visualizes the steps and roles involved. The process requires the analysis of current
joining element designs as well as the validation of multidiscipline requirements. Four
prominent roles (coordinator, designer, engineer, and planner) contribute to the success of
joining element design in the manufacturing industry. The same person or group may occupy
multiple roles, and furthermore, multiple processes may run asynchronously. Every time the
process runs through a feedback loop after requirements are not met at a quality gate, a new
design iteration starts. Moreover, the process is a model, and as joining element design is
multidisciplinary, roles and process steps might not follow the depicted flow strictly. The
following list elaborates on the colored steps in the joining element design process in Fig. 2.5:

1. The coordinator creates a design request that constitutes the requirements,
expectations, and objectives of the design. For example, some joining elements may
require minor changes, or a new scenario may require a new joining element design that
preferably uses adhesive bonds instead of spot welds. The request defines the boundary
limits, general strategy, and possible solution directions. The coordinator also
communicates with stakeholders, validates designs, and documents them accordingly.
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Fig. 2.5: Design process of joining element design in the manufacturing industry [1]. The starting point is the design
request of the coordinator.

2. The designer, who are often outsourced [8], create joining elements in CAD software.
They load data from product data management (PDM) systems that contain repositories
for design files to enable the systematic, modular, and practical design of products as
well as to archive data [14]. Depending on the availability of information from previous
successful products and variants, designers must filter and select the appropriate data.

3. 3. After loading all resources, the designers can author joining elements. First, they
select a joining technology using feasibility checks and preferences (see Section 2.1.3).
Then, CAD systems are used to generate joining locations as curves or points by hand
or using rule-based algorithms (see Section 2.1.4). Lastly, product manufacturing
information (PMI) links nongeometric data to geometry (joining locations), which
describes joining technologies and parameters. For example, PMI may describe the
material of components, the type of glue for an adhesive bond, or the joining
technology for a point-shaped joining location.

Designers initially tend to implement one of the following three approaches when
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designing a new joining aspect [29, 113]:

(a) Use case consultancy [27]: This involves interpreting previous designs and
applying them to a new problem. It also includes consulting handbooks, making
this a traditional approach [29]. Even for experienced designers, applying
successful designs to new use cases is difficult. Knowledge management and the
documentation of design choices often fail, requiring backtracking or even
re-experimentation with a similar design [14].

(b) Experience-based design [7, 18]: The designer acts freely based on their
experience without explicitly consulting previous designs or knowledge. For
example, Andersson et al. [125] observed welding in production and found that
the same repeated weld designs would often fail. They concluded that the
designers did not reuse previous knowledge.

(c) Minimal viable design [25]: Regardless of the designers’ experience or successful
solutions, this approach uses the cheapest technology with as few joining elements
as possible. Designers follow a set of rules to create an elementary design [29].
However, this bears a risk, namely that it may require the arbitrary addition of extra
joining elements to regions with insufficient structural performance. Such actions
can result in increased manufacturing and material costs [18].

4. Once the joining elements are authored, the designer validates their compliance to
standards and company requirements to ensure their manufacturability. These norms
and guidelines may originate from associations (e.g., ISO 18595 [114]), but also from
company experiences and goals. Every theoretically possible product variant requires
validation for the potential use of these joining elements.

5. Lastly, the designers save the joining elements in CAD files and store them in the PDM
system. From here, downstream processes use the files for the simulation, planning, and
validation of designs.

6. The first quality gate occurs here. The coordinator validates the designs based on the
requirements specified in the design request. If the designs are adequate, the coordinator
forwards them to simulation and planning engineers.

7. The engineer performs numerical analyses and validates designs, often by using finite
element analysis (FEA), based on properties such as crash-worthiness [126, 127], noise-
vibration-harshness [47, 128], and stiffness [18, 129, 130]. Simulation engineers consider
joining elements in the product as a whole, evaluating joining designs for at least one
complete product variant.

The production planner is responsible for the manufacturability and work planning of,
for example, assembly robots, which include topics such as assembly sequencing, tool
accessibility, and resource capacities. Production planners, suppliers, or third-party
stakeholders also analyze the manufacturability of the joining elements and may make
suggestions for design changes.
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8. The coordinator then receives the evaluations from the downstream stakeholders. The
design requires a positive evaluation to pass the second quality gate. Unsuccessful
designs may invoke a design iteration (i.e., a new design request is initiated). Although
redesigning is not trivial, it is not a creative task [29]. Moreover, it requires new and
existing product knowledge to be applied [29].

The coordinator documents successful designs, which implies creating unique
identifiers, storing data in the PDM system, and storing information regarding which
product variants the joining elements belong to. Documentation is vital for preventing
development delays [29]. For example, designers in the aircraft industry reported that
the lack of documented design knowledge causes over 50% of delays in development
[131].

Original equipment manufacturers (OEMs) compartmentalize work packages and tend to
increase the outsourcing of processes and disciplines, such as design [8], engineering, and
manufacturing [132]. This enables OEMs to reduce investment and complexity costs while
potentially increasing the quality. However, a drawback of outsourcing is that companies may
lose knowledge and weaken their control over activities [8] and variety [133]. Moreover,
designers cannot be expected to have complete and high-level knowledge of the entire product
life cycle [14]. Hence, stakeholders in disciplines such as simulation, planning, and supply
must validate joining element designs independently and in parallel.

In addition, the design process has continuously changing requirements. Later in product
development, designs become fixed, which increases the costs of rework and iterations (see
Fig. 1.1). In addition, advanced product maturity limits design freedom and optimization
potential, and it also imposes increasingly complex requirements. Joints interact with parts
and may locally change their properties or performance. Safety margins help to overcome
these problems and uncertainties and ensure assembly performance. However, increasing
margins also increase processing times and costs. Moreover, economic and ecological trends
enlarge the scope to include recyclability, disassembly, and environmental impact. Therefore,
optimal designs are relative. That is, they change over time, although consider for a given
moment all relevant stakeholders and fulfill all of their requirements.

Increasing product maturity raises product variety through the subsequent design of
variants [134]. Newly designed product variants often contain many overlapping parts and
components, enabling the reuse of joining elements in multiple variants [133]. The sequential
design also causes unnecessary variety in product variants by potentially missing shareable
parts. In practice, this results in lower commonality between product variants compared with
simultaneous development [135]. However, simultaneous development might produce
partially redundant designs. Development strategies, such as outsourcing, can hinder
collaboration, creating new variants of otherwise shareable parts. Hence, joining element
design becomes highly iterative due to the sequential design of new product variants [136] and
concurrent design methods [30]. In a worst-case scenario, the complexity of documentation
doubles for every new option or component added [137].

Moreover, product variety can be huge. Hence, it is often not viable to test and measure all
product variants individually [138]. Instead, companies select a limited number of product
variants to validate designs. These variants are considered representative of the performance
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of most parts and variations of the product family [138]. Kreis et al. [19] argued that manually
validating all joining elements for one product can be highly time-intensive. Additionally, it is
often a manual task and thus prone to errors [19]. Automation software has also seen limited
usage for such tasks [19]. Furthermore, the interaction between designers and engineers,
typically between CAD and simulation environments, does not have general and uniform
standards [19]. This lack of standardization results in company and supplier-specific software,
making the design process prone to irregularities, errors, and delays.

Moreover, high product variety and mature products increase the potential for design
automation [29]. Most development processes suffer from increased data and tasks. However,
aligning the documentation and inner-workings of companies provides an opportunity for
design automation. The identified issues in joining element design in the manufacturing
industry are summarized as follows:

• Time consumption: Much time is spent on analyzing and verifying past and new
joining element designs, especially when considering high variety. The actual authoring
is a somewhat repetitive task. Unaccounted for product life cycle requirements, human
errors, and adaptation due to new variants lead to unnecessary design iterations. These
additional iterations leave little time for challenging tasks that require holistic and
creative thinking.

• Practical solutions: Designers cannot find global (business) optima. They design in local
space increasingly on an outsourced basis, making it difficult for them to consider holistic
requirements and design consequences. Design tools solve only some aspects of joining
element design, and thus, do not support proper modularization.

The current issues in joining element design had attention in the literature. The following
subsection describes traditional DFA approaches for the design of joining elements.

2.1.2 Design for Assembly and Manufacturing

The concept of DFA refers to designing products for ease of assembly [36], often by
systematically concentrating on reducing assembly costs in the design phase. DFA includes
qualitative guidelines (e.g., [36]) and quantitative methodologies (e.g., [30]) to evaluate cost
and manufacturability, enabling cost efficiencies to be increased from 20% to 70% [139].
Hence, Boothroyd argued that DFA is the prime consideration when simplifying products
[140]. Similarly, DFM refers to designing products for the ease of manufacturing the parts
[36], and Design for Manufacturing and Assembly (DFMA) or similar approaches integrate
both design philosophies.

The DFA and DFM principles of Andreasen et al. [141] and Boothroyd and Dewhurst [142]
originated in the 1980s. The methodologies aimed to simplify product designs to consist of
fewer components, thus reducing their assembly time. For example, the DFA approach includes
the following traditional methodologies [34]:

• The assembly-oriented design process of Warnecke and Babler [143], which considers
four product development aspects [140]: product architecture, subassemblies,
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components, and joining techniques. Design rules and assembly appropriateness reduce
iterations and increase design effectiveness.

• The assembly evaluation method of Hitatchi et al. [144], who argued that each part
may have only one assigned motion, which is evaluated by measuring the assembly
difficulty and product architecture assembly cost. Today, studies are implementing
assembly evaluation methods to assess assembly time, such as in [145, 146].

• The Lucas method of Chan et al. [147], which evaluates designs using complexity
indices that consider the fitting and handling of components in production [147].

Moreover, Pahl and Beitz [123] defined graphical guidelines for practices and stressed
simplification, standardization, automation, and quality. They provided a classification of
assembly steps and requirements together with design steps for applying DFA systematically.
Favi and Germani [148] optimized the ease of assembly in early product design by
considering the product architecture and assembly sequence.

As previously mentioned, the DFMA approach integrates DFA and DFM. Both individual
approaches advocate for reducing material, overhead, and labor costs by utilizing standards to
reduce product development time and costs [36]. Originally, the methodologies that have
applied DFMA to products with complex geometries and large quantities of components [34]
with the aim of reducing costs and lead time and increasing reliability [14, 139]. Design
influences approximately 70%–80% of the price. Usually, DFA and DFM are applied
alternately, starting with DFA with the aim of reducing component quantity and variety, and
continuing with DFM to simplify components [34].

Still, by definition, DFMA imposes design iterations, as product-specific production
knowledge is necessary to design holistically [14, 30]. Design iterations are not necessarily
bad as they enable one to optimize solutions. Only unnecessary iterations induced by limited
information, bad decisions, and mistakes need to be prevented. Tasalloti et al. [14] argued that
DFMA practices might induce tremendous front-loading into the design phase. For example,
welding processes and their parameters can reduce the need for rework in the design phase.
However, metallurgical effects require designers to be experts in material science and welding
technologies, which are not always possible due to high complexity in manufacturing. Kwon
et al. [28] listed significant welding decisions for engineers, indicating the complexity of
design, which included accessibility and fixture interference, penetration depth and the
number of passes, and levels of distortion within accepted ranges.

Besides the holistic approaches within DFMA for describing and aiding the design
process, much simpler solutions such as handbooks and guidelines have long been used to
support designers. Handbooks for construction (e.g., [107, 149, 150]) describe guidelines that
address general construction methods and processes. Design requirements generally contain
boundary limitations on the locations of joining elements in relation to the associated
components. These requirements ensure that production can manufacture the joint, regardless
of performance or business requirements. They also represent the bare minimum requirements
that joints must comply with. Through standardizing component design requirements, such as
minimum overlapping dimensions, joints can be freely designed. Companies can extend
standards and guidelines that conform to their needs.



32 State of the art

Discussion
The available methodologies in DFA are numerous and range from vague guidelines to
data-driven assessment models. Although some recent work has integrated data-driven
knowledge-based engineering and expert systems [151], many recent studies have still
incorporated the original DFA and DFM philosophies (e.g., [75, 83]). Furthermore, most
evaluations of manufacturability by specific technologies only consider limitations and
requirements [30]. For example, standards impose design, production, and quality
requirements that only limit the solution space, such as ISO 14373 [115]. The design of
joining elements requires as much information as possible about both product and production.
However, this information is often not available in early design phases [14, 34]. Design
strategies also barely address component reuse, product evolution, and company knowledge.

Guidelines and practices are a necessary basis for designing joining elements, but they often
ignore varying product geometry [34]. DFA aims to minimize variety and assembly complexity
[14], but tends to ignore assembly performance [34] and product variety [6]. DFMA approaches
can manage complexity [14, 34], although they tend not to be concrete enough for making
appropriate decisions during product design [34]. Design problems are often not explicit and
require formalization to enable optimization [30]. Furthermore, the industry struggles to have
quality and consistent data for enabling this [101]. Moreover, guidelines and best practices are
difficult to automate due to the high fluidity in designers’ problem-solving process.

Concrete approaches for the design of joining elements includes the selection of processes.
The following subsection describes the state of the art in joining technology selection.

2.1.3 Technology and parameter selection

In the early phases of product development, designers make decisions that have significant
consequences for the resulting product. Designs need to consider the entire product life cycle.
Hence, joints are subject to requirements that originate from production, usage, reparation,
and disposal [8]. Traditionally, joining technology selection (JTS) was a manual process with
incomplete supplementary information and relied heavily on experience and company practices
[42]. Selection procedures were prone to inefficient solutions, misjudged parameters [152], and
considerable time investments. Today, DFA has evolved and includes systematic JTS, where
the methodologies aim to find the optimal technology given a set of design requirements [30].
However, standardized selection procedures are still vastly underused [108].

JTS is similar to manufacturing process and material selection methodologies. These
problems correlate and require concurrent selection [153]. Although differences exist in the
search space and input parameters, the methodologies are generic and, thus, are applicable to
various industries. Martinsen et al. [15] described seven criteria for selection: (1) the design of
the joint; (2) material selection and galvanic corrosion consideration; (3) joining process
conditions; (4) health, environment, and safety; (5) flexible automation and design for X; (6)
sustainability and life cycle engineering; and (7) profitability. Moreover, the products consist
of more varied and complicated joining technologies [10], which increases the variability in
joining, costs, and complexity. JTS requires the consideration of the entire product and moves
away from decision-making for individual joining element designs.

Eglise et al. [152] argued that the literature has described roughly four types of systematic
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approach since the 1960s:

• Case-based selection: This refers to the documentation of use cases, books, and habits.
Designers pick solutions closest to the problem at hand. Recent work includes
descriptions in handbooks such as that of Haberhauer [107].

• Question-based selection: This guides designers through a questionnaire to converge to
a solution proposal.

• Table-based approaches: These arrange technologies using several properties and their
quantities, although they leave the decision to the user. Recent work includes studies by
Bond et al. [41] and Pruß et al. [154].

• Task-based selection: This uses a knowledge base to store relevant selection attributes
and implements a procedure for determining the feasibility and ranking of solutions.
Recent work includes studies by Chien et al. [155], Mesa et al. [156], Choudry et al.
[39], Ghazilla et al. [42], Geda et al. [157], and Kaspar et al. [158].

This quantitative approach enables the objective optimization of possible solutions and
is regarded as the most effective methodology for selecting joining technologies [159].
The method is also generic as Kadkhoda et al. [160] demonstrated its applicability in the
field of additive manufacturing.

Quantitative optimization algorithms can evaluate criteria and give designers objective
recommendations for technology selection. A database contains all available joining
technologies and their attributes. An attribute describes a value or range for which the
technology is applicable. For example, resistance spot welding has an eight-millimeter
maximum stack thickness of joined components [114]. Component combinations that create
thicker stacks violate the requirement and cannot be selected. Attributes of joining element
designs have specific types (Boolean, categorical, numerical, or unstructured), enabling
filtering and ranking. The algorithms match design requirements to attributes of materials,
processes, and components. Multicriteria decision making (MCDM) methodologies roughly
comprise three steps, which are derived from the material selection approach of Ashby [161]:
(1) screening, (2) ranking, and (3) selection. Fig. 2.6 depicts these three steps, which are
detailed as follows:

1. The screening step filters joining technologies that are not applicable for a given design.
For example, a requirement for a Boolean property, such as waterproofness, can directly
filter technologies such as resistance spot welding or riveting, which are not waterproof.
Numerical attributes might indicate a burning temperature for adhesives, making them
inapplicable in high-temperature environments.

2. The ranking step ranks technologies according to their criteria fulfillment. For
example, the methodology might consider the applicability of resistance spot welding
on aluminum and the ability of adhesive bonds in high-temperature environments.
Numerical properties optimize mathematically; for example, technologies with higher
stiffness receive higher scores depending on the optimization objective.
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Fig. 2.6: The generic steps for joining technology selection in multi-criteria decision making methodologies.
Adapted from Ashby et al. [161].

3. The selection step outputs the most appropriate joining technology from the rankings.
The weighing of technologies and criteria enables designers to quantify preferences,
enabling MCDM models to balance various aspects, such as design, cost, and function
[42]. This step may also include supplementary information for designs that are difficult
to represent in MCDM models, such as company strategies, resource availability, or
results from detailed failure analyses.

Recent JTS methodologies have modeled the properties and characteristics of joining
element designs in detail. Kaspar et al. [32] presented a holistic approach to support the
selection of both part and joint designs. This concurrent approach implements three
incrementally detailing design cycles, namely functional, fundamental, and specific. The
cycles contain three substeps for detailing, namely screening, joinability, and detailing. These
cycles integrate product and process design. Regarding joining technology assessment,
Choudry et al. [108] incorporated a product life cycle assessment, calculating life cycle costs,
and other technological values. Marini and Corney [162] identified seven general approaches
for selection methodologies, and Renzi et al. [163] discussed the optimization methodologies
of MCDM methodologies and mapped them to automotive problems. Instead of the popular
MCDM methodologies, Geda and Kwong [109] implemented a genetic algorithm to find
optimal fasteners while considering assembly and disassembly costs. Jeandin and Mascle
[164] implemented a pairwise decision-making method using the importance of parameters on
(dis-)assembly complexity. Das and Swain [40] proposed a knowledge-based framework to
find similar joining element designs using ontologies, similar to the work of Kim et al. [117].
However, they still needed an MCDM module to analyze the feasibility and fitness of
solutions. Chaimae et al. [165] also presented an ontology-based approach that uses case- and
rule-based reasoning (see Section 2.3). On a more abstract methodology selection level,
Hoefer and Frank [166] used ML to select manufacturing processes.

Joining parameters
Joining parameters are specific to each joining technology. They include the additive filler
materials required for technologies such as MIG welding or adhesive bonding, as well as object
types for technologies such as riveting and stud welding [28]. However, joining parameter
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selection is the same type of problem as technology selection, but with more company and
resource-specific solutions. The solution space depends on the product’s maturity and is often
relevant once detailed production information is available. Parameters tend to be considered
at the manufacturing stage after finishing a product’s detailed design [14]. Designers consider
JTS earlier as it more frequently impacts part design [15].

The industry standardizes joining parameters, reducing product complexity [71] through
using the same rivets, adhesives, and machine settings. CAD systems often incorporate catalogs
to retrieve company standardized components [149]. For example, rivets are defined according
to ISO 14588 [167]. Studies have presented the following methodologies that address parts of
joining parameter selection: weld feasibility screening by Kwon et al. [28], screw parameter
optimization by Friedrich et al. [168], and product recovery fastener selection by Ghazilla
et al. [42]. Similarly, NNs can predict production parameters, as has been seen in studies on
nugget diameter prediction by Sim and Kim [169] and Kim and Ahmed [170], on laser welding
parameter selection by Yuguang et al. [171], and on spot weld distance prediction by Pillai et
al. [105].

Discussion
Most JTS methodologies are data-driven and obtain an optimal result concerning one
optimized metric; however, they require a mature stage in product development. Much
remains unknown in the early stages of development, while decisions on products and
processes highly depend on one another. Kaspar et al. [32] aimed to solve this problem using a
concurrent, incremental detailing methodology. However, implementing a life cycle cost
analysis and a life cycle assessment requires great modeling effort, which limits the rapid
evaluation of variant alternatives. Moreover, life cycle assessments and cost analyses weigh
heavily on, for example, adhesive bonding due to manufacturing investment and ecological
costs [108]. However, such information is rarely present during product design [34].
Furthermore, Bond et al. [41] stated that the complexity and generality of many technology
selection methods overshadow the required utility of having a simple tool that considers the
product’s functional requirements.

Benchmark JTS methodologies use MCDM techniques to screen infeasible technologies
first and then optimize them accordingly [32, 42, 108]. All techniques require engineers to
go through an interface to enter requirements and criteria. This process entails the detailed
modeling of the properties of joining element designs to fit technology-selection tools, which
is time-consuming and reduces efficiency. However, it also makes methodologies dynamic and
enables flexibility due to changes in environments and requirements. For example, companies
that implement new materials and technologies change the variables in JTS. Designers can
tweak outcomes using preferences and weighing [108, 152, 155, 172]; however, such actions
invoke unwanted bias in the system and reduce the quality of the objective optimal solution
[14, 15], which remains prone to errors [52, 173].

MCDM methods all start from a clean slate and optimize for a single isolated joining
element design. A significant drawback of these methods is their lack of consideration of
stored product data. For example, if all joining elements in the geometrical vicinity are spot
welds, then selecting adhesive bonding as the new technology would increase the
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technological variability and manufacturing complexity. Furthermore, none of the
methodologies consider product maturity. They treat joints individually without
simultaneously considering designed joints or the adaptability of early designs. Due to
product variety, components of one joint can also occur with different components in others.
For example, part A joins with part B in product variant 1, and part A joins with part C in
product variant 2. The consistency of part A in multiple variants might enable the
standardization of other processes. The knowledge-based methodologies of Das and Swain
[40] and Chaimae et al. [165] have considered similar joining requirements for new designs,
but they lack concrete product variety considerations.

In addition to the selection of joining technologies, the design of joining locations is also
an aspect of joining elements. The following subsection presents the rule-based approach for
the prediction of joining locations.

2.1.4 Rule-based location prediction

CAD systems support designers in creating digital models and technical drawings (e.g., [49,
174, 175]). These systems contain various tools that implement rule-based methods to create
joining locations (e.g., [50]). Such tools systematically guide designers in fully designing
joining elements, including the creation of geometry and the documentation of joined parts
and PMI. Rule-based location prediction is a pragmatic benchmark methodology for creating
joining elements in the manufacturing industry, yet the literature has rarely addressed it. Fig.
2.7 presents a simple flowchart of rule-based design along with its inputs and results.

Fig. 2.7: Overview of rule-based design for developing joining elements in CAD systems, adapted from Thompson
and Salerno [50].

Parts have CRs where their geometry coincides. First, the algorithm finds their
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overlapping surfaces and determines their boundary. Then, it draws a centerline (guideline)
along the longest side of the boundary. This line considers the edge distances specified by the
designer. Next, it equally distributes the joining elements according to the specified number or
mutual distance over the guideline. For curved joining locations, such as laser beam welds, the
algorithm positions a tube element on the guideline. Designers can edit the individual joining
elements and assign further PMI, such as joining parameters and component variants.
CAD-based approaches enable front-loading by the designer, allowing them to finish the
design directly after creation without other programs.

Parametrization is a flexible approach that makes components depend on a set of variables
[29]. Here, components are frozen states of models based on sets of parameters that determine
their features. Parametrization enables the automatic creation of part families, variations, and
versions. By applying parametrization to joining element design, the number or length of
joining elements may increase as the CR becomes larger due to changes in components’
length [176]. The design of joints depends on CRs, and they change accordingly. Designers
define rule sets for variables and use their expertise to automate designs. Parametrization also
enables shape optimization techniques (discussed further in Section 2.1.5) and supports reuse
by increasing the commonality between product variants [6]. CAD systems can often
parameterize any design parameters (e.g., [174, 175]). There are approximately three types
parametric geometry in parts [29], and larger parts often use a combination of these types [29].

• Dimension-driven parts only vary in dimensions [29]. Changes to the topology require
the definition of new parts.

• Generic parts handle changes in topology through the activation and deactivation of part
features [29], such as by adding or subtracting a chamfer along the edge of a part.

• Modular parts are constructed from multiple small parts [29]. Combining small parts
creates a variety of topologies.

The design of joining elements depends on the geometry type of parts. For example,
dimension-driven parts align with the parametric design method for spot welds by Pakalapati
et al. [176]. Once the parts becomes larger for a longer product variant, the joining elements
on the interfaces of the part may increase as well.

Discussion
Determining joining locations using rule-based algorithms enables the rapid creation of joining
elements. These elements are directly editable as CAD systems often integrate such tools. Rule-
based design supports designers in automating their workflow in CAD systems. It works side
by side with traditional manual approaches performed in CAD systems. As joining element
design remains a highly experience-based endeavor [18], this approach is an industry standard
due to its fast results. Rough geometry suffices for the functioning of rule-based design and
makes fast designs possible.

The experience-based workflow and tool’s simplicity represent the first drawback of this
approach and lead to suboptimal, highly practical results. The method automates the workflow
of designers, not the tasks. Furthermore, it only considers component geometry, neglecting
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utilization in products and the functional requirements of joints. Rule-based design considers
parameters entered by designers that are biased and subjective. Although designers use their
expertise for joint design, they often have little concern for or access to the product as a whole
due, for example, to outsourcing, complexity, and time limitations. Weak spots are added
arbitrarily to regions that lack performance. At the same time, strong sections of the product
do not undergo the required reduction of joining elements [18], resulting in arbitrarily defined
numbers and mutual distances of joining elements.

Rule-based methods predict from clean slates, meaning that all created joining elements
are new. In industries with high product variety, rule-based methods lack an interface to PDM
systems, reuse information, and other designs. This method leaves such considerations and
necessary work in the hands of designers. Parametric design enables the integration of product
variety. Furthermore, regular component reuse in product variety considers the entire
specification of parts, including geometry, materials, and other PMI. Similarly, on a deeper
level, parametric design embeds design rules to reuse features over multiple components
[177].

Lastly, CAD systems require significant computational resources. They can display only
small product variety portions due to file sizes and visualization limitations, making it difficult
to determine optimal solutions.

However, the literature has more sophisticated methodologies to predict joining locations.
The following subsection discusses optimization approaches for prediction of joining locations.

2.1.5 Location optimization

To achieve high joining performance in the overall product, joining locations should be
systematically derived rather than experience-based [178]. Finite element-based optimization
approaches aim to find joining locations that comply with a set of performance criteria as well
as to minimize the number of joining elements. The number and location of joining elements
greatly influence performance characteristics, such as static, dynamic, and crash behavior
[130]. Additionally, joining elements affect cost and production time, making it necessary to
minimize their number [25]. The optimal number of joining elements depends on their
contributions to the entire structure’s performance [130]. Notably, the optimal joining
distribution is coupled tightly with the optimal structure itself [179].

Generally, the literature tends to optimize completely defined product variants for singular
performance metrics, such as crash-worthiness (e.g., [47, 126, 127]),
noise-vibration-harshness (e.g., [47, 128]), and stiffness (e.g., [18, 25, 129, 130]). Such
methodologies use various types of FEA to calculate detailed loads and forces on joints during
simulation. FEA uses objective functions that quantify the performance of a joining element
according to its position by considering the peak loads and forces. A redistribution of joining
elements would yield a different simulated performance. Furthermore, it would enable the
reduction of the number of joining elements [18, 180] by removing those that do not carry
loads. Having fewer joining elements reduces costs and production time [25]. Reduction
methodologies start with a performance baseline. The difference between the baseline and the
structural performance after calculation determines the quality of the joining locations. The
difference might imply removing joining elements that contribute little to the structural
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performance. It also can indicate that joining locations need improvement or that more joining
elements are required. Certain methodologies consider both structural layout and reduction
methods simultaneously [44, 45].

The solution space in structures can be enormous. For example, it implies distributing
thousands of elements in the automobile industry [18]. The movement of one element can
make the entire structure fail under specific loading conditions due, for example, to tearing
behaviors that are similar to opening a zipper. Sensitivity research considers local failure by
modeling real-world imperfections as failing joining elements. Methodologies model
sensitivity by arbitrarily removing joining locations to model local failure before calculation.

Today, research focuses mainly on the topology optimization of spot welded structures,
such as automobile BIW structures [18, 180]. Spot welding is highly common in
manufacturing, and its modeling is relatively simple [25]. The finite element-based
methodologies can model spot welds as beam objects with component material, enabling
linear approximations during calculation, in contrast to other technologies with highly
nonlinear behavior. For riveting or adhesive bonding, for example, methodologies require
different materials to be inserted into the structure, thus requiring the modeling of varying
material behaviors and multimaterial interactions. Joining technologies requiring the
deformation of components, such as riveting, clinching, or folding, create additional tension
inside component materials that influences joining quality. For example, Evren and Ozkol
[181] optimized rivet locations for a fuselage frame that still required calculations by hand.
However, they highly simplified the geometry of rivets as plain holes with beams.

Optimal spot weld layouts should derive models that are over-populated with spot welds
and fulfill all performance requirements beforehand [25]. Furthermore, optimization should be
run on a subselection of spot welds, not including those at, for example, the ends of flanges
[176]. Ryberg et al. [25] distinguished three types of spot weld optimization techniques: (1)
binary variable optimization, (2) parameterized size optimization, and (3) topology
optimization. Due to recent advances in the field, structural optimization must be added an
additional technique. These four spot weld optimization techniques are described in detail as
follows:

• Binary variable optimization: This technique assigns a binary variable to spot weld
locations indicating their presence in a product. Initially, the method requires an
engineer to determine a rough viable spot weld distribution. The approach
overpopulates this nominal structure with spot welds by filling up space in between.
Next, it assesses each element’s importance with various load cases. Then, spot welds
are ranked by their carrying loads, which enables their systematic reduction while
considering, for example, feasibility and proximity constraints. Generally, the results
are dependent on the initial distribution of spot welds. Therefore, radically different
paths to converge are not attempted and searching remains close to the suggested design
space of the engineer. Examples of this approach can be found in the studies of Savic
and Xu [182], Hasegawa et al. [183], Ouisse and Coghan [129], Bhatti et al. [130], and
Ertas and Sonmez [184].

• Parameterized size optimization: This technique models the number of spot welds per
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CR as a design variable for optimization, in contrast to the discrete spot weld basis seen
in the binary variable approach. Practically, this approach automates parametric rule-
based design in CAD systems. A designer defines guidelines along which spot welds are
set. The approach determines the number of spot welds on a flange and distributes them
equally. This process enables meta-models and simulation approximations to be utilized
to reduce computational costs [176]. Compared with the binary variable approach, size
optimization has fewer variables. Examples of this approach can be found in the studies
of Eom et al. [185], Pakalapati et al. [176], and Geißler and Hahn [186].

• Topology optimization: This is the most widely used approach for optimizing structures
[25] and was introduced in 1997 by Chirehdast and Jiang [187]. Today, the approach
defines artificial densities of 3D material to represent spot welds, as proposed by Long
et al. [180]. They are design variables that the optimization process updates depending
on loads and forces in simulations after each iteration. Low values (empty) correspond
to spot welds to be removed, whereas high values (material) correspond to spot welds
to be retained. The objective is to minimize mass or volume fractions while adhering to
performance metrics. Topology optimization automatically finds the optimal number of
joining elements through the reduction of welding material. Examples of this approach
can be found in the studies of Long et al. [180], Guirguis and Aly [179], Yang et al.
[18], Chavare et al. [188], and Saito et al. [189]. Topology optimization also enables the
consideration of joining technologies other than spot welding, such as bolts by Oinonen
et al. [190] and Hou et al. [191].

• Structural optimization: Recently, research attention has shifted to optimizing both
structure and joints simultaneously using the topology approach. Joining regions and
quantities are derived from interim structural optimization results, not from previous
designs. Additionally, these approaches consider the joining technology simultaneously
[45]. Recent examples can be found in the studies of Florea et al. [46], Woischwill and
Kim [45], and Ambrozkiewicz and Kriegesmann [192].

Discussion
Optimization techniques for joining locations enable critical structural performance criteria to
be satisfied, thereby creating a baseline for further design [193]. Optimization is a systematic
design approach that reduces designers’ biases and, in contrast to rule-based design, considers
the entire product.

The input for optimization problems requires the definition and positioning of all
components of a product. This implies developed designs with determined materials,
thicknesses, and geometries of all components, as optimization functions require high data
quality. Preprocessing is often manual work and requires explicit engineering knowledge [18,
44].

Topology optimization creates joining location distributions for entire products, but all
start from clean slates. There is no consideration of previously or parallel developed products.
Hence, relying on their results creates significant additional complexity [194]. Topology
optimization creates unique joining element distributions for every product variant. Joints are
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unique for each product variant, even though they may have essentially the same components.
Although topology optimization methodologies can consider fixed geometry (e.g., [195]),
such as previously designed joining elements, this would imply the integration of some initial
designs, which would consequently limit the optimization results.

Optimization techniques that involve FEA have a high computational cost. Furthermore,
they require much effort in terms of data preparation, meshing, and postprocessing to obtain
quality results. The techniques must optimize entire structures and cannot predict for individual
joints.

Moreover, many optimization methodologies focus on single performance metrics,
resulting in suboptimal overall results. Moreover, final joining element distributions leave
room for interpretation. The highly nonlinear behavior of deformation and loads in
simulations requires large safety factors. Models must consider the uncertainties of real-world
products, such as buckling and crash behavior. For example, buckling sometimes requires
safety factors to add several times the required strength to a result. However, this is true for
every automated design as no model is a perfect reflection of the real world. Therefore, Ouisse
et al. [129] argued that results are not necessarily informative considering, for example, the
design robustness required due to manufacturing uncertainties as well as performance
degradation caused by fatigue.

The following subsection summarizes the section regarding the design of joining elements.

2.1.6 Summary

Many product development approaches advocate for integrated multidisciplinary design (e.g.,
[30, 35, 123]). These overarching methods rightfully state that holistic design and a systemic
view lead to better products compared with narrowly scoped counterparts. Unfortunately, they
also result in a slower design process in early product development, which naturally contains
many unknowns. Hence, the creation and evaluation of designs needs to be accelerated, thus
enabling designers and engineers to perform their core competencies, namely creative and
holistic thinking.

Current research tackles partial problems of joining element design. DFA is a general
approach for aiding designers with guidelines, standards, and assessments. However, DFA
processes are often not concrete [30] and require formalization and quality data to enable
optimization [42].

More concretely, JTS methodologies aim to find an optimal joining technology considering
design, production, and other product life cycle requirements [52, 108, 109]. However, none
of these methodologies actively reuse designs or consider product variety. Moreover, they are
data-driven and become highly complex assessments of individual joints, such that the literature
advocates for more straightforward tools, especially in early product design phases [41].

CAD systems contain various tools that support joining location design [50] and can also
assess it [30]. Rule-based and parametric design approaches automate designers’ workflows
and do not consider the product as a whole, thereby promoting trial-and-error approaches.
This approach is highly reliant on the designer’s experience, which may affect quality.
Kahneman and Klein [196] found that specialists do not increase their expertise with
experience in tasks that have unclear, incomplete information or nonrepetitive patterns. For
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tasks that are not obvious with delayed or inaccurate feedback, due to the vast solution space,
successful joining element designs require a systematic knowledge-based approach.

Recent studies have aimed to find optimal joining locations, considering performance
metrics such as crash-worthiness, noise-vibration-harshness, stiffness [18, 188], and structural
layout [197]. However, mathematical optimization functions require high data quality.
Furthermore, the methodologies require models of completely defined products. These
approaches are computationally expensive, require explicit engineering knowledge in
development, and leave room for interpretation.

The former section discussed the design of joining elements. However, the section did not
discuss any specific methodologies to cope with modular product design. Currently, these
methodologies are lacking in the design of joining elements. Consequently, the following
section presents a generic state of the art on modular product design, which is later reflected
on joining element design.

2.2 Modular product design

This section addresses modular product design as an approach for coping with product variety.
Firstly, it describes the activities in modular design, its uses, and design strategies. Subsection
2.2.1 addresses commonalization, which refers to finding parameters, components, and
technologies to share between product variants. Subsection 2.2.2 discusses modularization,
which refers to creating interchangeable parts. Then, subsection 2.2.3 addresses sustainable
considerations for modular design. Lastly, subsection 2.2.4 summarizes the findings of
modular product design.

According to Ma and Kremer [198], modular product design involves “[s]ubdividing
complicated products into components and considering them individually instead of as an
amalgamated whole.” It reduces a product’s complexity through decomposition, splitting
harder, larger systems into easier, smaller subsystems [198]. These smaller subsystems are
building blocks. Next, combining these building blocks makes more complex subassemblies.
In turn, these are eventually combined to create products [198]. The building blocks are also
called modules. Bonvoisin et al. [199] defined a module as “[a] group of functional carriers
(such as components, parts, or physical elements) in a product that contribute to a given
function or a set of functions.” Preferably each functional component aligns with one module,
with only a few interactions between them [200]. Thus, Bonvoisin et al. [199] considered
modular product design as “[a]n activity of designing a product that is made up of modules.”

Modular product design is a popular coping strategy for product variety in companies. It
enables them to offer affordable products for customers [8] and manufacturing with nearly
mass production efficiency [75, 201]. Modular product design enlarges the external customer-
experienced product variety while shrinking the internal product variety [6]. Modular product
design can reduce the in-house product and manufacturing complexity, thus positively affecting
the modularity in production [38]. Modular products tend to have fewer components, enable
pre-assembly processes, and use common interfaces [202]. Although modular product design
initially requires a large investment [203], all requirements of the resulting product variants
must be aligned for each module [203]. However, in return, the recurrent costs are significantly
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lower [203].
To achieve these benefits of modular products, approximately three types of activities are

required for designing them [204]:

• Design with modules: This activity regards designing products using existing modules
[199]. It describes combining modules to create product variants. For example, using
Lego™ bricks to build a house.

• Identification of modules: This activity determines new models from existing
products. It requires the evaluation of component groupings, their clustering, and
potentially their redesign [199]. Then, these outcomes need to be integrated into
modules and corresponding interfaces to create products [199]. An example of module
identification is to group components that have the same function, such as metal plates
in fitness studios to load a barbell for training. Module identification is an activity
performed after design processes [199], such as when evaluating designs and possibly
considering new design iterations.

• Design of modules: This activity entails the design of new modules for (new) products.
The design requires the grouping of functional carriers into modules as well as the design
of their interfaces [199]. For example, a new keyboard could be designed such that it can
be attached to computers using a USB port. The design of modules is an activity within
the design process.

Components have intrinsic properties that determine their ability to be grouped or
separated into modules [199]. However, module generation must be systematic and objective,
which is crucial for comparing alternatives [205]. Furthermore, the designed modules require
an arrangement to create products, that is, a scheme that allocates modules. Ulrich et al. [206]
defined a product architecture as “[s]chemes by which the function of a product is allocated
to physical components.” The product architecture arranges components and functions into
modules [199]. Besides arranging functional elements, it also maps them to physical
components and specifies interfaces between them [38].

Hence, product architectures enable one to organize product variants. This affects product
development and the entire product life cycle [199]. Moreover, optimizing product
architectures is a benchmark strategy for reducing product variety-induced complexity costs
[207]. The results are simplified and standardized interactions between modules [208].
Preferably, each module represents one functional element, with few interactions occurring
between modules [200].

The mixing and matching of modules enables the creation of different product variants
[91]. These are similar products that each possess specific functionalities for meeting
customer demands [209]. A product family refers to the resulting group of product variants
[210]. Simpson et al. [79] define a product family as “[a] set of products that share one or
more common ’elements’ (e.g., components, modules, subsystems, fabrication processes,
assembly operations) yet target a variety of different market segments.”

Product families can be completely modular without any common elements between any
of their variants. Each product variant consists of a unique set of components or modules.
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Hence, modularity is a core technique in designing product families [211]. However,
optimizing product families also benefits significantly from increasing commonality [58].

Synthesized from their systematic review, Gauss et al. [91] described a meta-process for
designing module-based product families. The meta-process included processes such as the
planning and positioning of company strategies [200], translation of customer needs into
functional requirements [79], and configuration of the optimal products out of a family [79].
Moreover, a part of the meta-process entails product family modeling, which generates the
modules, platforms, and configuration structures [79]. Fig. 2.8 depicts this process, where
each step in the process is detailed as follows, as defined by Gauss et al. [91]:

Fig. 2.8: Product family modeling meta-process, taken from Gauss et al. [91].

1. The process starts with defining and modeling the product family and platforming
criteria. These steps can consider the variability of functional requirements [212] and
redesign effort for multiple generations [213]. Low variety and redesign effort become
platforms, as the components and modules that fulfill these functions can be shared
between multiple product variants. Furthermore, high variety and effort enable specific
customer demands to be met. [214]. These functional requirements create the necessary
variety for differentiating product variants without negatively affecting the internal
product variety.
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2. The process continues with the formulation of design parameters, which map physical
elements to fulfill functional requirements [91]. This formulation of design parameters
involves the use of available technologies and existing products [215]. Together with the
functional requirements, the design parameters set boundary conditions for the product
architecture [91].

3. The product architecture concerns decoupled interfaces and mapping between
functional requirements and design parameters [216]. In this step, the mapping process
is performed, often using a design matrix [91].

4. Next, the product architecture is decomposed into functional modules [91]. These
modules must physically match the working structure [123].

5. The fifth step identifies interactions among physical components [215], using the
geometric layout for identification. Geometry enables the subsystems, subassemblies,
and coupling of components to be determined [217]. The interface describes
interactions between components, such as through CRs. Hence, this step sets boundary
conditions for joining element designs.

6. Then, structural dependencies between components are modeled [87] by, for example,
using a design structure matrix.

7. Next, the structural dependencies are decomposed into physical modules. The
components in the modules require a high degree of interconnection between them, but
a low degree to components outside of the modules [200].

8. Subsequently, the created functional and physical modules are evaluated according to
criteria [91], such as modularity, commonality, or cost. The results may necessitate the
definition of these modules being refined.

9. Next, the modules are classified into platforms and differentiated modules [191].
Platform modules contain less variety, enabling them to be shared in series of products
[218]. Differentiated modules enable the instantiation of product family variants [91].

10. Then, a structure for product configuration describes the construction of products from
modules [91]. Moreover, it defines the combination of modules through interconnections
for various assembly levels [219].

11. All models in the configuration structure need to add value to the product [91]. This step
evaluates the family and enables refinement.

Not all methodologies that involve modular product design use all of the steps in Fig. 2.8.
Depending on the use cases, focus points, or relevance, the meta-process permits the omission
of steps.

Furthermore, the blue boxes in Fig. 2.8 indicate the steps that involve joining element
design considerations. Specifically, the figure highlights considerations of the
assembly-related methodologies in the study (the works of Emmaty and Sarmah [220] and
Jiao and Tseng [219]). However, most methodologies consider assembly and joining as
criteria, such as the number and level of assembly steps between components in the work of
Jiao and Tseng [219]. Furthermore, Emmaty and Sarmah [220] presented a modular design
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framework that integrates DFMA (see Section 2.1.2). Their framework systematically urges
designers to improve designs using DFA considerations that affect the product architecture.
Neither of the methodologies actively create modules for joining element design (steps 4 and
7 in Fig. 2.8). Moreover, no mapping of structural dependencies occurs among components
(step 6). Hence, the physical interactions have not attracted interest. Fig. 2.8 highlights the
lack of methodologies to consider joining elements during both module creation and mapping
of structural dependencies with red boxes. The literature review of this dissertation study (see
Section 2.4) revealed that no modularization methodology has actively considered joining (or
assembly) elements.

However, there are methodologies that have considered the interfaces between modules
(i.e., [221, 222]). However, these modules are not found in the review of Gauss et al. [91] as
they do not support the design of a module-based product family. The interfaces relate to step 5
in Fig. 2.8. They create component interactions as a result of creating geometric layouts. These
interactions describe the structural dependencies between modules, after which the physical
modules are created. However, describing interfaces is much broader than merely the joining
of components. Interfaces also include topics such as energy, signals, materials, connections,
and interactions [223]. An example is information regarding the movement of a mouse to a
computer using a USB interface.

First, corresponding to step 5 in Fig. 2.8, Wang [221] presented a methodology that uses
geometries of interfaces as constraints in modeling assemblies. For example, interfaces may
have the modeling constraints of axis–axis and plane–plane interfaces. These interfaces have
one degree of freedom (i.e., in the direction of the axis). This would enable screws or rivets
to make a joint. Using these geometric constraints, any joining technology that fulfills them
is feasible. The geometrical parameters also create scalability for the components. As a result,
this would enable assembly modules to be defined that could meet those constraints. However,
the methodology only creates a theoretical option for assembly modules. It does not aim to
decompose the system into physical modules.

Tseng et al. [222] presented an algorithm for clustering joints (aligned with step 7 in Fig.
2.8). Each joint is classified by its type, disassembly, and joining direction. The values are
ordered such that a distance exists in the values between each joint. The algorithm then searches
for the most similarly defined joints, and similar joints become a module. The classical aim is to
have highly similar joints within modules that distinguish themselves significantly from other
modules. However, there are no considerations of geometry, nor of the creation of a product
family. Hence, the modules do not relate to modules with components.

Tseng et al. [222] also clustered joints based on their similarity. Hence, they created
groups of similar components. Referring to product families, they implemented common
elements to share them between product variants [91]. Simpson [79] defined “[a] set of
common elements (parts, components, processes, sequences, etc.) sharing the underlying core
technology based on which a stream of derivative products can be efficiently developed and
launched” as a product platform. Product platforms create a structure for developing product
variants [224]. Moreover, product platforms enable commonality to be maximized and
individual performance deviations to be minimized between product variants [224]. The
design of product platforms involves “[d]etermining the variables to be shared, as well as
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optimal values, for both shared and unique variables among variants” [79].
Schuh et al. [225] argued that there are three generic objectives of modular platforms:

reducing the time to market, reducing the costs, and managing the customer demand for variety.
Cerqueira et al. [226] analyzed the trends and opportunities of product platforms and identified
three main problems, which are described as follows:

• Configuration problems with product platforms risk additional costs and worsen
maintainability. Additionally, the authors argued for increasing effort in the allocation
and arrangement of assembly modules [226] and avoid usage of different modules with
the same function [82].

• Inefficient product platform development requires a streamlined information flow
between all stakeholders to harvest the benefits of mass customization [226].

• Manufacturing and assembly issues for platform-based products require production
lines to optimize the use of platforms and be more flexible and adaptable [226].

These identified problems align with the takeaways from the meta-process of Gauss et al.
[91] in Fig. 2.8. Product platforms also lack interest in joining-related topics. The approaches
seem highly concentrated on components and module creation, without considering their
interfaces and assembly or joining technologies. Optimizing designs and platforms, such as by
reducing variety through commonalization, can reduce resulting problems in production
caused by design [132].

Product platforms apply various commonalization approaches to product variants, such as
scalability through shrinkage or the extension of variables [79], but they also consider
requirements for design changes in variation for the next generations of products [57].
However, with respect to modularization, modular platforms enable the addition, removal, and
substitution of modules to create differentiated products [79]. Hence, platform-based design
can maximize the sharing of common modules without threatening functional requirements
[220]. Two approaches exist for designing product families using platforms [220]:

• Top-down approaches, which enable companies to strategically develop platforms for
groups of modules; and

• Bottom-up approaches, which develop platforms using technologies and components to
group them.

Referring back to Fig. 2.8, the meta-process depicts a top-down definition, for example,
considering design objectives, parameters, the architecture, and most crucially decomposition.
However, for large product families, the development process does not necessarily permit
such a sequential process. It may have many parallel activities that are subject to iterations
[12]. Moreover, top-down designs increase the number of constraints in detailed design phases
significantly [221]. Hence, bottom-up approaches can reduce the created variety by defining
new modules. Consequently, Fig. 2.8 also illustrates the refinement of feedback for evaluating
created modular designs.
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Fig. 2.9: Product variety hierarchy describing various terms and concepts, adapted from ElMaraghy [227]

This section has presented many terms for describing modular product design. Fig. 2.9
visualizes these terms for an enhanced understanding, using the example of Volkswagen by
ElMaraghy [227].

The following list briefly addresses eight levels of variety in the hierarchy. Furthermore,
Simpson et al. [79] explained these fundamental concepts in-depth.

• Product portfolio – the range of different products offered by a company [227]. It may
consist of multiple product platforms and families.
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• Product platforms – the sets of common elements for creating a number of product
variants, such as the shared grills between the variants of A-compact cars in Fig. 2.9.

• Product family – the related product variants that share some common elements, such
as parts, technologies, or processes. An example is all of the product variants of a Skoda
(Fig. 2.9).

• Products – these emerge through combining subassemblies and modules [227]. The
variety in the combination of these elements creates different product variants. One
product variant relates to one specific configuration, such as an Audi TT MK2 (Fig.
2.9).

• Subassembly – this term describes several connected components that behave as a
single entity [227]. They have a manufacturing perspective as they are rigid once
assembled, such as the chassis subassembly in Fig. 2.9. Moreover, product modules are
independent building blocks that consist of one or more components that can perform
one or more functions [199]. For example, the interchangeable engine with variations of
cubic capacity (Fig. 2.9).

• Parts family – this is equivalent to a product family and groups components according
to geometrical or functional similarities. For example, the parts families in Fig. 2.9 are
the various variations of shafts and gears.

• Parts and components – these cannot be decomposed without losing their ability to
perform a function. They are single entities, such as a shaft or gear.

• Part features – these include both geometric features (e.g., flat, cylindrical, and
thickness) and functional features (e.g., holes, flanges, and chamfers) [227].

Many of these terms occur in the literature, where many reviews can be found of
state-of-the-art approaches; examples are the works of Gauss et al. [91], Bonvoisin et al.
[199], Otto et al. [211], Simpson et al. [79], and Jiao et al. [57]. These examples indicate the
interest of research and corporate firms in modular design. However, these reviews have had
different focus points, such as the identification of structures, logical sequences, or
performance effects. Regardless, they have all aimed to define an overarching process. They
include all aspects of product development, from the identification of market needs to product
configuration. However, as identified in Fig. 2.8, a need exists for modularization with regard
to joining, which is a part of modular product design.

Moreover, the latter two activities in modular product design (i.e., module identification
and design) generate modules (modularization) [199]. Bonvoisin et al. [199] regarded
product modularization as “[d]efining modules into the product architecture”. The following
subsections discuss commonalization (subsection 2.2.1) and modularization (subsection
2.2.2). Commonalization aims to find parameters, components, and technologies to share and
may aid bottom-up designs of product platforms. It supports the improved identification of
modules. Modularization can be combined with commonalized results to create modules.
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2.2.1 Commonalization

Commonalization unifies similar parts and modules to reduce unnecessary variability in
similar product variants using modules [57]. AlGeddawy andElMaraghy [85] defined
commonality as the “[d]egree of similarity between products”. They emphasized that it is a
part of the solution for reducing the complexity of product variants’ design and development
in a dynamic, uncertain environment. Commonalization is also associated with the
standardization of product interfaces, modules, and components [132]. Standardization
enables reuse where variability is not required [6]. Standardization applies to both
components and interfaces [228]. Moreover, the standardization of interfaces is vital in
modular product platforms for minimizing information flows [229]. As such,
commonalization can create sets of common elements to share between product variants.
Thus, commonalization supports the creation of product platforms.

The aim of commonality is to use as few different components in as many products and
their variations as possible, and for as long as economically possible [135]. High degrees of
commonality imply more significant economies of scale and scope [230]. However, complete
commonality prevents necessary differentiation in product variants to fulfill customer needs
[135]. As a solution, product architectures capture the overarching relationships between
products through, for example, functional requirements [91].

In addition to component commonality, process commonality refers to the degree to which
processes share the same building blocks [132]. It enables manufacturing with fewer
processes [132]. Process commonality can cluster product components with similar design
features or manufacturing processes into families, thereby reducing manufacturing costs and
lead time while increasing flexibility [75]. Component and process commonality are related,
as component commonality increases commonality in processes. However, this does not hold
in the opposite direction as product components may require several different manufacturing
processes [231]. This relationship emphasizes the importance of commonality in DFA
approaches, which are (as mentioned in Section 2.1.2) often only captured in vague guidelines
[34].

Systematic commonalizationis a crucial strategy in creating product platforms. Three
effective approaches exist for creating appropriate platforms using a commonalization
approach [87]:

• Quantitative functional models help to compute product families and rate modules
according to their fulfillment of customer demands [87]. The approaches are broadly
applicable and only give designers several platform selection heuristics rather than a
physical solution [87]. An example can be found in the study of Stone et al. [67].

• Design optimization aims to maximize technical product performance and
commonality or to minimize cost. Optimal design only regards specified evaluation
metrics and often neglects modularity, complexity, adaptability, visual appeal, and
ergonomics [87]. The problem is similar to the topology optimization methodologies
for joining locations. Recent relevant works include those of Moon et al. [232] and
Eichstetter et al. [194].

• Exhaustive enumeration refers to the charting of all component-sharing possibilities
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for qualitative evaluation [233]. However, this is only suitable for product families with
a small number of components, as the number of possible partitions of a set scales
exponentially [87].

Commonality indices can measure the effectiveness of product platform design
approaches. These indices can also measure the similarity between product variants.
Moreover, they act as guides for designers to introduce new products by evaluating
alternatives [85]. Commonality indices may serve as a proxy for predicting the activity costs
of design, manufacturing, and assembly of new product variants [234]. Wong and Wynn [135]
even argued that reducing the variety between successively designed variants improves
product platforms significantly. Hence, it is vital to constantly measure and track the
commonality between sequentially designed product variants

To assess commonality, Baylis et al. [87] summarized nine indices between product
variants, all of which have a different focus point and limitations [235]. An example is the
Percent Commonality Index (%CI) of Siddique et al. [236], which can express commonality
for individual product variants. This property enables one to evaluate design alternatives early
in product design. Other commonality indices usually consider the entire product family [79],
which often relies on unavailable information in product design. The Percent Commonality
Index has three viewpoints: component, connections, and assembly, and takes the weighted
sum. Eq. 2.6 presents an example of the component–component connection viewpoint:

Commonality of connections =
100× common connections

common + unique connections
(2.6)

Methodologies for automating the creation of product platforms or for commonalization
are found mainly in a few studies, including those of Baylis et al. [87], AlGeddawy and
ElMaraghy [85], and Galizia et al. [86]. These solutions all solve the problem differently; see
the three effective approaches [87] mentioned earlier in this section. Baylis et al. [87] used
exhaustive enumeration to balance modular design. Their method decreases commonality,
which in turn enables modularity to be increased. AlGeddawy and ElMaraghy [85]
implemented design optimization by using hierarchical clustering and liaison graphs. This
methodology combines common parts into integral parts and evaluates them. Galizia et al.
[86] balanced variety in product platforms and the number of (dis)-assembly tasks. They
optimized product platforms to determine the final product variants. Jung and Simpson [213]
redesigned product families and platforms to prioritize parts and interfaces for redesign. Ukala
and Sunmola [237] employed a simple yet sophisticated approach in the form of a rule-based
methodology for redesign while considering DFA to reduce complexity. Based on IF-ELSE
conditions, designers can obtain new systematic design suggestions that consider preferred
design solutions. Therefore, they proposed an assessment method for deciding between
reusing or newly designing components. Commonalization in product design can even be as
trivial as considering the commonalization of shapes [238]. In short, many different
approaches and perspectives exist for commonalization. Together with the methodology, it is
the time and place in product development that make commonalization an enabler for
managing product variety.
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Discussion
Product platforms with a high focus on shared units might restrict potential product variability
[239]. Variable costs might increase due to the availability dependency over multiple products
[240]. As commonality increases the ratio of shared components, it may also prevent the
differentiation of products. It is challenging to allocate additional development and
coordination costs for sharing components in multiple product variants to individual designs
[241].

Product platforms tend to affect DFA approaches [85]. Both modularization and
commonalization opt for reuse and flexibility, which may conflict with the integrative and
static production-oriented design of DFA approaches [220]. This is backed up by the trends
and opportunities of platform design identified by Cerqueira et al. [226]. They argued that the
consideration of joining elements is lacking and advocated for the creation assembly modules.
These considerations could reduce the problems in manufacturing and assembly that result
from modular design.

However, the literature does not provide specific methodologies for commonalizing
joining elements. Some studies have included assembly considerations (e.g., [85]), or reduced
technological variety (e.g., [237]), but such studies are often either highly complex (e.g., [86])
or they oversimplify (e.g., [237]) joining element design. No systemic methodology has aimed
to reduce the variety in joining element design to enable the creation of adequate modules and
product platforms.

Contrary to commonalization, modularization is an approach that not only aims to find
shareable parts between product variants, but defines functional blocks as placeholders for
interchangeable parts to create product variants. The following subsection discusses
modularization into detail.

2.2.2 Modularization

Modularity deconstructs products into independent functional blocks, where interchangeable
parts fulfill these functions. Ulrich et al. [206] defined modularity as “[t]he standardization
of components and processes in an organization that can be configured into a wide range of
end products to meet specific customer demands.” Therefore, modular product design includes
the act of reducing costs through creating reusable groups of components. Jiao and Tseng
[57] defined modules as “[p]hysical or conceptual groupings of components.” Modules can be
treated as logical units in a system or product architecture [242].

Relating modularization as a design approach to management, Campagnolo and Camuffo
[243] performed a literature review. They opted for fundamental research on both
modularization economics and the relationship between modularity and performance.
Modules are simple sections of a product to outsource. However, whether companies make
modules to outsource or whether outsourcing requires the development of modules is still
debated [243]. Nevertheless, the relationship between the product architecture and the
continuously shifting boundaries of firms requires consideration in modular product design
[243].

Besides managerial considerations, Kubota et al. [132] analyzed the relationships between
modularity in design and production, which are not one-way relationships. They have
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conceptual elements that affect both product and organizational structure [132]. This is
another example of the nonsequential process of product development, as was observed in the
joining element design process in Section 2.1.1. The benefits of modularity are reduced if one
neglects to consider the implications on manufacturing processes [132]. However,
modularization may conflict with DFMA [199]. For example, it may increase the number of
parts and thus the number of assembly errors [85].

As such, Simpson et al. [79] classified modularization objectives into the following two
categories:

• The strategic approach, which aims to develop modules that can be shared by many
products [84] (e.g., [244, 245]); this aids in gaining benefits from economies of scale
and scope [216]; and

• The technical approach, which develops modules from highly connected components
(e.g., [83, 246]). This approach often implements matrices and aims to reduce the overall
lead time [216]. Some studies have combined both (e.g., [216]).

Components and modules can have a multitude of functions that follow from product
requirements [247]. Similar to the physical product, methods deconstruct requirements and
functionalities into elements. Then, mapping between elements identifies inter-component
interfaces and interactions.

Architectures and schemes handle the coordination of modules [248]. Product
architectures simplify interactions by reducing component variation as well as unifying
component, product, and process specifications [208]. Standardizing the interfaces between
modules prevents module linkage and product assembly problems [132]. When interfaces
remain constant, designers find it easier to design a quality part or module for all product
variants. Furthermore, a low interface complexity enables the outsourcing of design tasks,
reduces communication between designers, and facilitates faster design changes [199].
However, changes to interfaces might require changes to modules or even the design of
multiple modules [33]. These considerations require attention early in product design to
prevent costly redesigns [249].

Ma et al. [198] roughly divided modularization methodologies into the following two
groups:

• The first group is the matrix-based approaches, which focus on the similarities and
differences in the relationships between components [75]. However, they neglect
functional relationships [75]. Matrix-based approaches enable modularization while
considering the product architecture [75]. AlGeddawy et al. [83] incorporated assembly
complexity and DFA into modular product design. Li et al. [250] implemented
agglomerative hierarchical clustering using the modularity measure of Sinha et al.
[251]. Daie and Li used hierarchical clustering with design structure matrices (DSMs)
on product architectures, where similar matrices described overlapping relations
between shared components. Asaga and Nishigaki [252] modularized using hierarchical
clustering on a DSM only after a topology optimization and before a NN predicted
materials.
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• The second group is the function-based approaches, which focus on functional
relations while mostly ignoring component-level properties [75]. For example, Stocker
et al. [84] first determined module alternatives using multidomain matrices and then
selected modules based on available packaging spaces. Alternatively, Ma et al. [75]
used heuristic clustering to modularize while considering assembly cost using key
components. Chaimae et al. [253] implemented a function-based approach from Stone
et al. [67] that used several heuristics to find the product liaison and interfaces among
modules. Ren et al. [90] applied a fuzzy clustering heuristic on similarity matrices to
create assembly system modules. These often rule-based algorithms are less popular in
the literature, possibly due to the increased amounts of effort and knowledge required to
model them.

Salonitis [202] argued that DSMs – and their extension through multidomain matrices – are
highly suitable for dealing with the complexity of product modularity due to their systematic
step-by-step design of final modules. However, the results of DSM-based modularization can
be highly arbitrary due to different rating schemes [254]. Furthermore, DSMs rely on data of
high quality, which is not always a given, resulting in inadequate definitions of modules [254].

Modularization requires metrics to evaluate results and optimize accordingly. Metrics
evaluate design states to identify modules. Relevant studies have listed many metrics that all
take different viewpoints, including interaction strengths and density [255], product
architecture [88], and customer preferences [65], among others [256–258]. Sinha and Suh
[246] defined two types of modularity metrics: the degree of coupling and the similarity of
modules. The coupling degree measures a module’s independence, examples of which are
found in [217, 259] as well as many DSM-based approaches. Module similarity mainly
considers relationships between elements within the module. Regardless of the modularity
metrics, roughly two design principles exist [85], which are described as follows:

• Similarity maximization aims to create one-to-one mappings between the functional
and physical design in product families [200]. It enables one to standardize interfaces.
Furthermore, it prevents “change-waves” into other modules when modules have
architectural changes [33].

• The minimization of dependency between physical components reduces their
interaction and enables variety through distinct module combinations [240]. Module
independence encompasses the degree to which modules can function independently of
one another and follows from functionality and standardization decisions [260].
Increasing module independence enables more flexibility in combining modules.
Almost independent modules enable concurrent development in separate organizational
domains [85].

Consequently, modularization involves the clustering of functional elements into modules
that maximize similarity within the modules as well as the independence of modules from
others [199]. However, Bonvoisin et al. [199] argued that the measurement of modularity is
prone to low levels of standardization. As such, they argued that these metrics are hardly
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usable [199]. Consequently, the authors stated that it is not possible to measure the promised
advantages of modularity beforehand [199].

The optimization methods used for modularization are diverse. Jose and Tollenaere
distinguished the following five categories [203]: clustering methods, graph and matrix
partitioning methods, mathematical programming methods, AI methods, and genetic
algorithms and heuristics. Practically speaking, any clustering method is applicable, but the
implementation and use case will determine its effectiveness. However, achieving optimal
modularity is not always beneficial. For example, commonalization and modularization
practices intertwine. Fig. 2.10 demonstrates how a reduction in commonality may improve
modularization.

Fig. 2.10: Venn diagram of the shared groups of a family and the splitting of component B to enable modularization
in both product variants, adapted from Baylis et al. [87].

Fig. 2.10 presents a Venn diagram [261] that visualizes overlapping items between sets,
such as product variants, architectures, or joining element designs. Each section of the circles
represents a unique set of product variants that share a particular set of components. The
left-hand side of Fig. 2.10 indicates that component A only occurs in product I and
component C only occurs in product II . Products I and II both share component B. Any
shared component between multiple products may be ’copied’ by neglecting the
commonality; see the right-hand side of Fig. 2.10. Instances of the same parts in different
product variants enable the modularization of that part into separate modules. This process
works for each part until no common component is left, resulting in the modularization of
every product independently.

However, maximizing commonality may create numerous small modules for many
different unique sets of product variants [87]. It optimizes the reuse of every component,
reducing the development effort for individual components. However, every individual
component requires cumbersome management for determining which product variant it will
be built into. This induces high complexity in managing the combination of all components.
On the other hand, modularity considers the use combinations per product variant. The shared
parts are larger and not all subsets of product variants share a unique set of components [87].
The variety of components is lower, but this is at the cost of parts with redundant functions
increasing the development effort.
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Discussion
Modularization can reduce complexity costs by creating independent groups of components
that act as singular units and can be combined to create new product variants. Much research
has been conducted into modularization, commonalization, and the design of product families
and platforms [91]. Although the literature has presented many varied methodologies, Gauss
et al. [91] argued that their practical application lags behind due to the limited knowledge of
available methods. Additionally, locating these methods in product development processes is
difficult [199].

DFA conflicts with modularity as minimizing the number of components creates highly
integrated designs, thus reducing the number of configurable products [83]. Therefore,
AlGeddawy et al. [83] stated that DFA and modular design need to be balanced. However, it is
essential not to overlook other design metrics of a product family, such as cost, technical
performance, complexity, sustainability, and adaptability [87]. In sum, modularization is a
complex task that requires the balancing of many aspects of the process.

The literature often ignores geometrical boundaries in modular design [84]. Modules have
physical connections to other modules. Methodologies that only consider functional levels may
not create geometrically feasible results. Only Stocker et al. [84] were found to use a bin-
packing algorithm to select appropriate modules instead of finding clusters with the highest
interactions as in matrix-based approaches.

However, no modular design methodology was found that explicitly addresses assembly
and joining elements. Methodologies attempt to reduce the number of relationships between
modules and sometimes express assembly complexity or costs in relationships [83]. The
literature lacks the modularization of component relationships and the reuse of the assembly
information to join other modules. Interfaces between modules are the CRs for the design of
joining elements. Module interfaces encounter great variety due to interchangeable modules.
Changes to module interfaces affect other modules and their interfaces [81]. Hence,
component-based clustering alone may potentially result in frequent changes of module
interfaces and consequently of modules. This uncertainty of changes is the reason that
sustainable modular design should be considered, which is detailed in the following
subsection.

2.2.3 Sustainable modular design

Long-term maintenance is one of the foremost challenges in modularity [262]. Han et al. [80]
performed a systematic literature review on product platform design. They argued that
traditional product platforms could not adapt to dynamic market changes [80]. Additionally,
the authors stated that “[c]ommonality is limited to common modules defined by fixed physical
standards” [80]. Uncertainty categorizes modularization problems as being either inside or
outside of the system [263]. Endogenous uncertainty concerns the risks, costs, and
propagation of module changes [80], whereas exogenous uncertainty concerns the market,
requirement, technology, legal, and regulation drivers [80]. Hence, for modular product
platforms, it is vital to standardize interfaces, which can minimize information flows [229].

Sustainable modular product families manage the maintenance of modular products and
the inclusion of newly designed variants [262]. Reusing implemented modules entails variety-
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induced complexity. The arbitrary design of components and modules may not fit existing
structures, thus reducing the controlled internal complexity [81]. Module reuse is a trade-off
between profit and complexity costs [264]. Pakkanen et al. [215] reviewed the literature and
determined key product development tactics for managing reuse and variety. They argued that
design reuse also requires sustainable solutions often created by modularization methods [215].
As a result, modularization and design reuse affect each other in both ways [215].

Furthermore, product architectures need to have defined interfaces between modules [206].
These interfaces invoke design requirements for new modules. When changes to models are
made, the interfaces create a trade-off between flexibility and costs. Changing the product
architecture’s interfaces affects other modules and interfaces as well [81]. There are three routes
for new demands for products or features [264], which are described as follows:

• Creating a new modular structure: This is only done when the demand can only be
implemented with high effort as it may create new product platforms [265].

• Changing the modular structure: Refinement of the modular structure involves the
creation, editing, or deletion of modules or sections in the product architecture [70].

• Reducing the demand: This prevents unwanted development effort in the modular
design, but one must consider the consequences of a lack of product offerings.

Many product family evaluation methodologies assume that all product variants come from
the same platform [135]. This has led to the idea of maximizing the commonality between all
of the variants of a single optimal product platform. However, as Fig. 2.11 indicates, product
variants are developed sequentially and the platform constantly updates during development.
As a result, the sequential design limits commonality maximization. Moreover, the benefits of
commonalization prevent improvements to the flexibility of platform design.

Fig. 2.11: A comparison between practical and theoretical product family design processes. PPi represents a
product platform while vi represents a product variant; taken from Wong et al. [135].

Furthermore, design processes have not adapted adequately to the growing product variety,
reducing transparency in the implications of variants [133]. Therefore, companies often rely
on a few core products covering the majority of customer-specific requirements [58]. Here,
production quality is inversely proportional to variability [266]. Designers need to select the
adequate shareable components among other product variants from these core products, which
is often performed by independent design teams [87].

Additionally, the sequential design process requires both commonalization and
modularization to deliver sustainable results. These approaches bring robustness to
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uncertainties, preventing rework in design. Sequential design can imply that designs for
individual product variants may conflict with the profitability of overall product design [18].
As the overall design only gradually changes between sequentially released individual
variants, the overall product design might lose quality [135].

Integrated documentation approaches (e.g., [31, 33, 35]) have extensively handled the
combination of product and process data with product variety. They describe the boundary
conditions under which to design joining elements through variety management throughout
the entire product life cycle. Integrated documentation approaches are critical as, in a
worst-case scenario, the documentation complexity may double for every new option or
component [137].

Discussion
Continuous product development through the sequential release of product variants based on
the differentiation of product platforms may affect the quality of modular designs. In uncertain
environments, the modules and product architecture become prone to changes. Consequently,
the interfaces between modules may change, resulting in additional uncertainties in joining
element design.

Therefore, the standardization of interfaces is necessary for enabling joining element
design in industries with high product variety. However, standardization is only a framework
with which joining element design must comply. Together with modularization and
commonalization, the reuse of designs, features, and modules supports the maintenance of the
product architecture.

After discussing sustainable modular design, the following subsection summarizes the state
of the art on modular product design.

2.2.4 Summary

Modular product design aims to manage product variety while creating affordable products
for customers [8]. Various strategies can reduce variety-driven complexity at both the product
and process levels [58], such as modularization, commonality, product configurations, and
delayed differentiation. Mainly the former two strategies apply to joining element design in
early product design [79].

Commonalization techniques increase the number of shared components between product
variants [85–87]. Modular product design must be sustainable as uncontrolled module
generation will increase complexity [81]. This is crucial for module interfaces and thus for
joining element design due to the sequential design processes and component
interchangeability. Commonalization on joining elements is not available in the literature,
although Ukala and Sunmola [237] reduced the technological variety using condition-based
statements. Still, this method requires much engineering knowledge and ignores crucial
aspects of joining element design, such as geometry.

Today, researchers are highly interested in finding optimal modularity [91], such as product
architectures [88] or product family design [87], by using DSMs. However,DSMs are incapable
of representing individual connections and commonalities. They require multistep approaches
to consider geometry (e.g., [84]).
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Modularization methodologies can consider production requirements, such as assembly
system design [90] and complexity [83], but they are more appropriate for early product
design. These methodologies need to consider structural and interconnections, as in [88, 89,
267]. Current modularization methodologies only cluster components and do not recognize
the potential of modularizing joining elements.

The results of commonalization and modularization must be sustainable and usable
throughout product development. This is because product platforms update after releasing
new variants [135]. Moreover, development leads to new insights, and modules will change
[80]. Product development promotes standardized interfaces between modules, such that the
modules can remain independent. This standardization can create an environment equipped
for uncertainties in product development as well as a basis for reusing parts and modules.

Systematic commonalization and modularization require sophisticated algorithms. The
following section discusses AI as a collection of techniques to solve design problems.

2.3 Artificial intelligence

This section addresses the state of the art in various AI fields. Subsection 2.3.1 briefly
addresses evolutionary algorithms that – inspired by nature – can approximate optimal
solutions. Next, subsection 2.3.2 introduces the various subfields within ML. Then,
subsections 2.3.3 and 2.3.4 discuss state-of-the-art techniques in SML and UML, respectively.
Furthermore, subsection 2.3.5 addresses data representations and their relationship with ML
approaches. In addition, subsection 2.3.6 introduces the multimodality of data and their
influence on ML. Lastly, subsection 2.3.7 provides an overview of reviews and state-of-the-art
methodologies related to the design of joining elements.

AI refers to any method that aims to mimic human cognition [92]. These methods in the
manufacturing industry can be divided into the following four fields [101]: rule-based
reasoning, case-based reasoning, search and optimization, and ML. Sunnersjo [29] determined
that the latter three fields enable the representation and processing of implicit knowledge in
design automation. Hagemann and Stark [101] listed the following characteristics of these
fields:

• Rule-based reasoning (RBR) is a method for creating designs that follow a strict path
of predefined constraints. Data input is a step-by-step process and results in an output.
Hence, RBR primarily handles knowledge in geometrical and mathematical (e.g.,
formulas) form [29].

RBR has a low computational cost and is deterministic as it always outputs the same
results when using the same input. Predictions are correct as long as the algorithm
understands the input, which requires complete and error-free data. The development of
the algorithm requires every variant of data input and all of the stakeholders’
requirements to be considered for each use case. RBR is not generic, implying that
changes to either data, requirements, or rules demand manual updates of the algorithm
by design and programming experts.
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RBR has been implemented for predicting joining locations (e.g., [50]) and screening for
feasible joining technologies (e.g., [42]). Furthermore, RBR is typically used to optimize
product architectures and as a basis for modularization (e.g., [89]) and commonalization
(e.g., [85]).

• Case-based reasoning (CBR) finds similar previous problems and applies solutions to
new use cases. CBR is equivalent to designers analyzing similar use cases and reapplying
successful implementations. It is mainly suitable for comparative knowledge, such as in
[29]. Additionally, CBR can handle tacit (e.g., intuition and skills), experimental (e.g.,
facts and relations), and heuristic (e.g., guidelines based on experience) knowledge.

Furthermore, CBR requires an extensive database with knowledge representations of
joints, including geometry, PMI, and design requirements. Hence, a large amount of
memory is required to support the search. This method is a bottom-up approach and
inductive, where the data lead to nondeterministic results. Once developed, CBR updates
the database after each new design.

Recent works using CBR include the knowledge-based frameworks in JTS
methodologies (e.g., [40, 165]).

• Search and optimization (S&O) methods aim to find the best solution to a problem
objectively. Search algorithms include permutation approaches that evaluate all possible
solutions to find the best one. They cope best with knowledge in mathematical (e.g.,
expressions and relations between properties) or heuristic (e.g., guidelines and standards)
form [29].

Moreover, S&O methods require handcrafted boundary conditions and constraints to
ensure convergence when solution spaces are large. The boundaries limit the high
computational costs of these methods. More sophisticated algorithms, including
heuristics or evolutionary algorithms, may approximate an optimal result. S&O
algorithms require data that are complete and available to enable optimization with
mathematical functions. The algorithms tend not to be deterministic, and approximated
results are use-case-specific. Furthermore, S&O algorithms are complex and require
much development effort to address the required detail and all potential use cases. The
input data must also be complete and error-free.

S&O methodologies can predict joining technologies (e.g., [42]), locations (e.g., [18]),
and parameters (e.g., [168]).

• ML is a set of methods that aim to find patterns in datasets for predicting outcomes on
unseen data. Deep learning, a subfield of ML, is currently the benchmark technique due
to its better performance over vast numbers of applications and research studies [100].
ML best exploits tacit knowledge [29]. This information is undefined and embedded in
the minds of designers as common sense and experience [29].

ML methods require vast amounts of data to handle complex tasks with quality. The
training process is computationally expensive, especially when datasets have high
dimensionality, such as geometry. These methods attempt to generalize data and can
adapt continuously to trends from new data samples. The developmental effort required
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is considerable, and training may be sensitive to small changes in the settings of
parameters. Furthermore, ML results are not deterministic. Each trained model can be
different due to random initialization (RI). The methods are also inductive as the data
define the parameters of the model. These data-driven methods create generic results in
cases where the training data cover all use cases.

Lastly, ML has seen implementations for joining element predictions (e.g., [105, 169]).
It is more prevalent in the manufacturing industry, such as in process prediction (e.g.,
[166]), sheet metal forming (e.g., [104]), or topology optimization (e.g., [47]). It
includes predicting the nugget diameter of spot welds (e.g., [169]) and the mutual spot
weld distance (e.g., [105]).

The following subsections address several AI fields into more detail, starting with
evolutionary algorithms.

2.3.1 Evolutionary algorithms

The S&O field includes evolutionary algorithms that, inspired by nature, enable one to
approximate optimal solutions using randomized searching. Many optimization problems are
convex, implying that there exists a computable global optimum. However, many tasks may
have numerous optima, with no, a non-unique, or an unstable solution, considering noisy or
missing data [268]. Evolutionary and swarm algorithms can search for solutions in vast
solution spaces without being trapped in local optima, an issue typically experienced in ML.
Nakane et al. [268] identified three main challenges during the implementation of
evolutionary algorithms: (1) the selection of appropriate algorithms with hyperparameter
tuning, (2) a time-consuming optimization process, and (3) finding solutions on a Pareto front
due to multiobjective optimization.

Contrary to, for example, Swarm or Monte Carlo and Simulated Annealing algorithms,
evolutionary algorithms take the most successful solutions, update them, and then evaluate
whether the solutions have improved. In the next iteration, the algorithm again takes the best
solutions, makes mutations, and evaluates whether the performance has improved. Slowik et
al. [269] distinguished the following five types of evolutionary algorithms: genetic algorithms,
genetic programming, differential evolution, evolution strategies, and evolutionary
programming. These algorithms have many different varieties and enable further
customization for a wide variety of applications, such as hyperparameter tuning of NNs (e.g.,
[270]), machining (e.g., [271]), land-use allocation (e.g., [272, 273]), JTS (e.g., [157]),
noise-vibration-harshness (e.g., [47]), and topology optimization (e.g., [179]).

Slowik and Kwasnicka [269] discussed evolutionary algorithms in state-of-the-art
applications. Moreover, Nakane et al. [268] surveyed the application of evolutionary and
swarm optimization in computer vision. Recently, Atali et al. [274] reviewed meta-heuristics
through swarm intelligence algorithms and the lens of chaos theory.

Another AI field besides evolutionary algorithms is ML, which is discussed in the following
subsection.
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2.3.2 Machine Learning

This section discusses the state-of-the-art in ML. This dissertation presumes basic knowledge
of ML. Therefore, this section briefly introduces relevant nomenclature and concepts before
discussing recent methodologies and challenges. The literature has inexhaustively described
fundamentals, expressions, and in-depth explanations of terms and concepts. As a further
reference material, this study recommends the book of Goodfellow et al. [275].

Contrary to algorithms developed by software engineers, ML acquires knowledge through
its ability to extract patterns from historical data [275]. Software developers only set the
boundary conditions. The algorithm itself needs to learn how to perform a given task. One can
roughly distinguish the following four types of ML [275]: supervised, unsupervised,
semi-supervised, and reinforcement learning.

• Supervised ML (SML) approximates an unknown function between many input and
target samples. It analyzes training data, creates an approximation function, and applies
it to new unseen samples. Every training sample has an input with a correctly labeled
target.

• Unsupervised ML (UML) determines properties and structures within datasets that do
not contain output values. Similarities are identified between samples and the data are
organized accordingly.

• Semi-supervised ML combines the abovementioned approaches to create better results
than either alone. Often it uses small datasets with target values (SML) and large datasets
without (UML).

• Reinforcement learning (RL) uses feedback loops with a reward system that evaluates
the actions of an agent in an environment. It does not have a fixed dataset to learn but
instead applies an unlimited number of trial-and-error experiments to extract knowledge
and then apply it.

ML algorithms cannot extrapolate knowledge, and hence, depend on the supplied
information. Missing, incomplete, and false data create biases in the system, potentially
leading to severe problems [276]. Features are single pieces of information within each data
sample. It is crucial to create a suitable feature set for a specific task [275]. The selection,
creation, and extraction of features are the most difficult steps for particular learning tasks.
The quality of ML methods directly correlates with the dataset size and dimensionality. It
makes the training of models computationally costly. However, ML can find generic solutions
with much less expert engineering of models. This work will address SML and UML as
concepts in the implementations. The following subsections provide background information
on the workings of these methods.

2.3.3 Supervised machine learning

SML extracts a mapping between input and output states [166] using one of two tasks, namely
classification or regression:
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• Classification categorizes target variables into binary (only two classes present),
multiclass (more than two classes present), or multilabel (more than one correct label
per sample) [275]. For example, classification would predict whether an image contains
either a cat or a dog. Models create conditional probabilities for each class given the
input and model parameters. The final output prediction is the class with the highest
probability. Zhang et al. [277] reviewed the state-of-the-art of classification algorithms
and found that decision trees typically yield the highest accuracy.

• Regression considers continuous target variables and returns a conditional expectation
given the input and model parameters [275]. Hence, the task is similar to classification,
only with a different output format, such as house price prediction based on the number
of rooms and surface size. Supervised tasks have little influence on the required model
architectures. Well-known SML methods are decision trees and NNs.

Various methods within SML can perform these tasks. The following paragraphs will
discuss decision trees and neural networks as popular and relevant methods in this study.

Decision trees This SML technique refers to acyclic graphs that represent branches for
attributes at all internal nodes [278]. Each node holds a decision of which answers represents
branches to the next nodes. Every branch holds a feature value, and every leaf node describes
an output class. Fig. 2.12 presents an example of a decision tree on the left-hand side. The
right-hand side depicts the corresponding distribution of labels from the decision tree.

Fig. 2.12: Example of a decision tree and a distribution of labels in 2D space.

Decision trees can perform regression and classification tasks. The path from the root to the
leaf represents a sequence of decisions [279]. Decision trees are simple to understand, require
little preprocessing, and can handle discrete and continuous variables [279]. They automatically
select variables, are insensitive to the monotone transformation of inputs, are robust to outliers,
and scale well into large datasets [279]. However, their models lack general robustness and tend
to overfit data [279]. Small changes to the training dataset may result in completely different
optimal trees. Changes in the root node (or upper internal nodes) affect the subsequent tree
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due to their hierarchical structure. Tree ensembles aggregate predictions of multiple models
to make up for individual disadvantages [280]. Benchmark implementations are bagging and
boosting [281].

• Bagging generates multiple versions of the same prediction model to create one
aggregated model [282]. Every version trains on a different subset of the training data.
Random forest methodologies combine many decision trees using bagging and train on
subsets of features [283]. Slight changes to training data will only affect individual trees
and not the overall tree ensemble, thus reducing the robustness problem [280]. Bagging
reduces the variance for all trees by aggregating many estimators with individual higher
variances into one.

• Boosting iteratively adds and trains weak learners that all aim to learn something new
and make up for their predecessor’s mistakes [279]. Parameters and coefficients are static
during the sequential addition of models [284]. XGBoost is a popular algorithm that uses
a specific modification of gradient boosting trees to learn from weak learners’ residuals
[285].

Neural networks
NNs are models that derive their name and concept from human brains. Neurons take several
inputs, aggregate them, and fire their output to the subsequent neurons. The learning task
updates parameters (weights) to improve prediction on the same inputs. An activation function
determines the fire intensity (output values) of neurons. Historically Sigmoid functions [275]
and currently Rectified Linear Units (ReLU) [286] are highly successful. NNs organize
neurons in parallel in multiple layers. Fig. 2.13 presents an exemplary overview of a neural
network and neurons.

Fig. 2.13: Overview and nomenclature of a neural network and a neuron.

Feedforward NNs process from the input layer sequentially through each layer to the
output layer. Hidden layers are those neurons that undergo learning and have states that are
unknown until evaluation. Deep learning involves huge NN architectures that enable the
learning of complex tasks but at the cost of training and quality difficulties.
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Autoencoders are a specific type of NN. They have a purposefully implemented bottleneck
and are designed for tasks such as dimensionality reduction (DR) and feature discovery [279,
287]. Autoencoders aim to mimic the input in the output layer, but through an intermediary
lower-dimensional representation [288]. First, the encoder creates latent factors from samples,
and then, the decoder reconstructs samples from encoded data. The initial layers have a
declining number of neurons and force the model to extract essential information. Fig. 2.14
presents a small example of an autoencoder that reconstructs the image of the number two
from a lower dimensional representation in the bottleneck of the architecture.

Fig. 2.14: Overview and nomenclature of an autoencoder.

Autoencoders primarily focus on maximizing the variance of the data in the latent space.
A drawback is that this results in a suboptimal mapping of the local data structure.
Furthermore, it requires a NN to be trained, which has a high computational cost for
high-dimensional data. Interestingly, instead of only mimicking input data to create latent
factors, the architecture of autoencoders suits generative tasks, such as object detection or
segmentation. Image segmentation aims to extract meaningful information by identifying
conceptually similar sets of pixels [289]. Oliveria [290] evaluated the efficiency and
robustness of encoder-decoder (EncDec) methods for segmentation tasks. Complex deep
learning approaches are successful through EncDec architectures, as they enable the number
of parameters to be contained [291].

Moreover, convolutional NNs (CNNs), introduced by LeCun et al. [292], reduce the
number of trainable parameters by reusing weights between layers for datasets with grid-like
topologies. Fig. 2.15 depicts the structure and behavior of a CNN using the example of
classifying a traffic sign.

The structure of CNNs is invariant to translational and rotational transformations [279].
Moreover, it also prevents a rapid increase in computational cost for large networks [279].
Instead of the multiple layers of neurons in regular NNs, CNNs implement convolutional layers
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Fig. 2.15: The traffic-sign input image is convoluted by four 5 × 5 kernels into the first set of feature maps (C1).
Then, they are subsampled using max pooling (S1). Another sequence of 5× 5 kernels (C2) and max pooling (S2)
extract the features for a final fully connected layer to classify the sign; not all connections were drawn for the sake
of readability; adapted from Peemen [293].

that perform matrix multiplications and output feature maps [275]. Kernels are the matrices of
trainable parameters within the convolutions of each layer.

Gradient descent is a conventional method for training NNs [275]. The NNs optimize an
objective function. In each iteration, it updates the model’s parameters, but in the opposite
direction of the objective function’s gradient [294]. The learning rate tunes the magnitude
during parameter updates. Mini-batch gradient descent uses a small set of samples to calculate
the loss (i.e., cost or model error), balancing the computational cost and optimal direction.
This optimal direction varies as a local one-step update might not be in the direction of the
global minimum. The gradient descent optimizer Adaptive moment estimation (Adam) [295]
is a benchmark and balances the learning rate and direction automatically [275].

Typically, confusion matrices evaluate a model’s performance on classification tasks. They
count the occurrences of correctly predicted presences or absences of each class. These counts
enable calculate popular metrics, such as the accuracy and F1-score. These are intuitive and
commonly used metrics [296]. Perfect scores have a value of 1, whereas the worst scores have
a value of 0. However, these metrics do not consider the distribution of false classifications nor
the marginal distribution [297]. Cohen’s kappa indicates a model’s superiority compared with
a random classifier based on class frequencies [297]. Cohen’s kappa (κ) considers the chance
of accidentally correct predictions. However, the performance metric may exhibit undesirable
behavior and its validity has been debated in the literature [297].

Furthermore, the Matthews correlation coefficient (MCC) describes the relationship
between observed and predicted binary classifications [298]. MCC evaluates binary
classifications as more meaningful than the F1-score and accuracy as it considers their
frequencies in the confusion matrix [298]. A perfect prediction has a value of 1, whereas a
random prediction has a value of 0. A value of −1 describes a contradiction between the
prediction and target. Furthermore, the study of Chicco and Jurman [298] details the
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aforementioned performance metrics, presents their equations, and addresses their
relationship to the confusion matrix.

As previously mentioned, there are several types of ML. After discussing SML, the
following subsection addresses UML.

2.3.4 Unsupervised learning

UML methods can discover knowledge and, in contrast to SML, have no target values [279].
Roughly, they consist of three main applications: (1) clustering, which aims to distinguish
groups in a dataset; (2) DR, which aims to densify information from high-dimensional data;
and (3) generative adversarial networks (GANs), which can generate new data samples from
noise.

Clustering
Clustering aims to distinguish groups in a dataset based on similarity. This approach includes
many families of algorithms [299]. In supervised clustering, the number of clusters is known
before the execution of the algorithm, whereas it is not known in unsupervised clustering. The
dataset determines the appropriateness of clustering methods by considering noise,
incompleteness, and samples [300]. Cluster analysis has been used in optimization to identify
promising design regions [301] and eliminate near-duplicate designs [302, 303]. Popular
clustering algorithms include the following [300]:

• K-means [304]: This is a widely used partitional approach [305] with a low
computational cost aimed at tasks such as data segmentation [306] and anomaly
detection [307]. K-means algorithms iterate between assigning data points to the closest
cluster center and recalculating cluster centers based on assigned data points. The main
limitation is the definition of the number of clusters before clustering, which requires
iterative optimization. Furthermore, k-means has difficulties with nonconvex
distributions [308], highly different cluster sizes [309], and high-dimensional data
[300].

• Expectation-maximization (EM): This is a well-known model-based algorithm that
clusters by modeling multivariate normal distributions of every class. The maximum
likelihood method finds the parameters of every distribution. EM is applicable for
incomplete datasets [310, 311]; however, it relies strongly on initial clusters [312] and
might fail to recognize small clusters [313].

The literature has described many similar measurements for determining the performance
of clustering with known labels [314], including the Jaccard [315], Adjusted Rand [316], and
Fowlkes Mallows [317] indices. The Jaccard index (also known as intersection over union
[IoU]) is the ratio between the intersection A ∩ B and union A ∪ B of two sample sets (A
and B); see Eq. 2.7. In addition to clustering, the Jaccard index is often used to evaluate object
detection tasks by taking the overlapping area of the ground truth and predicted bounding box
of objects (e.g., [318, 319]). Notably, the Jaccard index is also the current standard metric for
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segmentation approaches as it considers both false alarms (FP) and missed values (FN) class-
wise [290]. A Jaccard index J of 1 expresses perfect similarity with precisely overlapping sets
and 0 expresses complete dissimilarity.

J(A,B) =
|A ∩B|
|A ∪B|

; J =
TP

FP + TP + FN
(2.7)

Clustering with unknown labels has a few popular performance metrics, including the
Silhouette method [320] and the Elbow method [321]. The Silhouette method [320] validates
consistency within clusters by measuring the similarity between its cluster and dissimilarity to
others. It aggregates the scores of all individual objects ranging from −1 and +1. High scores
indicate high-quality clustering. The popular Elbow method [322] enables one to determine
the optimal number of clusters [321]. It relates the percentage of explained variance in clusters
to the number of clusters. The Elbow method states that the optimal number of clusters is
where added information drops significantly after an extra cluster is added. Plotting the
amount of variance over the number of clusters will indicate this point as an angle in an
otherwise gradually reducing curve.

Dimensionality reduction
This method creates compact, information-dense representations of high-dimensional data.
Ideally, it transforms data to contain its internal dimensionality, namely the minimal number
of required parameters to consider the observed properties of data [323]. Latent factors (also
observed in autoencoder architectures) are the number of dimensions in the low dimensional
representations that describe the main characteristics of the data. The curse of dimensionality
refers to an unrestricted rise in space compared with the available data. It creates statistical
significance and performance problems [323]. DR enables the classification, visualization,
and compression of high-dimensional data.

Ayesha et al. [324] conducted an extensive overview and comparative study on DR
methods. Cunningham and Ghahramani [325] surveyed linear DR and Ting and Jordan [326]
discussed nonlinear DR in detail. Linear techniques have lower computational costs but more
restricted data modeling quality compared with nonlinear techniques [324]. Ayesha et al.
identified four main challenges in applying DR [324]: (1) method selection, which depends
highly on the available data; (2) identification of redundant features without affecting
performance; (3) selection of proper dimensions for visualization; and (4) interrelatedness of
most high-dimensional features. Consequently, Nguyen and Holmes [323] argued that DR
methods are often misused or misinterpreted. In response, they listed 10 guidelines for
effective data reduction to support the proper implementation of DR, interpretation of outputs,
and communication of results. Ayesha et al. [324] found that the following DR techniques
support structured data: principal component analysis (PCA), Singular Value Decomposition,
and t-Distributed Stochastic Neighbor Embedding. The properties of PCA are addressed
further herein due to their relevance to the present study’s implementation.

PCA is a linear transformation method for finding lower-dimensional space to maximize the
variance of a dataset [327]. The low-dimensional spaces should thus hold the most information
[328]. PCA is nonparametric, implying that the number of parameters to estimate may change
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during execution and tends to grow proportionally to the amount of training data [279]. PCA
has uncorrelated dimensions; however, they are challenging to interpret, and information loss
occurs through a lack of complex polynomial relations between features [329]. The objective
of PCA is to preserve variance.

Generative adversarial networks
GANs are a very different approach to clustering and DR in UML. Recently, GANs have been
used in computer vision tasks to generate new images. GANs, developed by Goodfellow et al.
[330], have high potential as generative models due to their visual quality and diversity [331].
They combine NNs, typically a generator and a discriminator, which challenge one another
during training [330]. However, GANs are difficult to train, and only a few architectures have
proven to be successful. Fig. 2.16 displays the general architecture of a GAN.

Fig. 2.16: Visualizes the generative adversarial network with two models: the discriminator (D) and the generator
(G); taken from Creswell et al. [332].

During the training phase, a GAN creates images from noise. However, during testing and
usage, GANs receive “regular” input images instead of noise. A typical GAN has the following
two parts:

• The generator (G in Fig. 2.16), which transforms an input into an output image; the
input image may be noise or a ground-truth training image; and

• The discriminator (D in Fig. 2.16), which assesses whether the generated image was
synthesized from noise.

The generator creates images from noise, and the discriminator judges their validity by
using ground truth images as a reference; see Fig. 2.16. This is an unsupervised technique as the
data do not have labels, nor does training generalize data samples into a model. However, it uses
a supervised loss in training. The discriminator (adversary) calculates distances between targets
and generated images [330]. GANs often implement EncDec architectures (e.g., Stargan_v2
[331]) to create latent space representations of data. By interchanging decoders, for example,
one can reconstruct a feature vector from an unseen encoding and create a new image. However,
the generator and discriminator can be implemented by any differentiable learning model that
maps data from one space to another [332].
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For further reference, Creswell et al. [332] presented an overview and discussed training
methods, network architectures, and applications, including classification, regression, image
synthesis, image-to-image, coloring translation, and super-resolution [332]. Furthermore,
Kusiak [333] summarized applications of GANs in manufacturing and observed their use in
image synthesis, engineering design, surface inspection, condition monitoring, fault diagnosis,
service robotics, energy, business, and security.

A highly researched field of GANs is image-to-image translation, which creates mappings
between visual domains [334]. Domains are sets of images that belong to a visually distinctive
category, such as cats, dogs, or faces. A style refers to the unique appearance of an image. For
example, the dog domain may include three different images of an Australian shepherd, of
which all three have different styles. Wang et al. [335] studied the state of the art and found
CycleGAN [336], UNIT [337], MUNIT [338], DRIT [339], TransGaGa [340], and RelGAN
[341] to be the most important networks for image-to-image translation. Choi et al. [331]
proposed StarGAN_v2, which combines the benefits of its predecessors and uses a single
generator to predict for multiple domains. The authors distinguished between two image
synthesis approaches, namely reference- and latent-guided synthesis, which are visualized in
Fig. 2.17:

Fig. 2.17: The use of GANs for synthesizing new images. The figure visualizes the reference- and latent-guided
approaches from Choi et al. [331].

Based on Fig. 2.17, the following list describes both approaches:

• Reference-guided synthesis requires a chosen style, namely the reference, for image
generation to be provided along with an input image. The generator modifies the input
image according to the style of the reference image [331], which describes a typical
image-to-image translation process [334, 342]. Further examples of works that have used
reference-guided synthesis include the studies of Chang et al. [343], Cho et al. [344], Ma
et al. [345], and Park et al. [346].

• Latent-guided synthesis uses styles of domains [331] as latent feature vectors and
applies them to input images. Hence, a GAN does not apply the style of one specific
image onto an input image but rather the features of a domain of styles. Furthermore,
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latent-guided synthesis can use random sampling to select a style within the domain to
generate an image [331]. Examples include the studies of Liu et al. [347] and Yu et al.
[348].

The framework of StarGAN_v2 has, besides the generator and discriminator, two additional
modules [331]:

• Style encoder (E in Fig. 2.17): This module extracts the style code from an image and its
corresponding domain [331]. It can create different style codes using different reference
images. It enables the generator to synthesize an output image with the reference image’s
style.

• Mapping network (F in Fig. 2.17): This module generates a style code for the latent-
guided approach. It requires a latent code and a domain [331]. The mapping network can
create multiple style codes as it samples the latent vector and domain randomly [331].

The previous subsections discussed various subfields of AI. However, their use and
application depend on the data samples they get. Hence, the following subsection discusses
the properties of various data representations for geometry and PMI.

2.3.5 Data representation

Joining element data may come in a wide variety of formats [19], including native CAD
system formats as well as neutral data exchange formats. Neutral data formats include lists
(e.g., Microsoft Excel) or XML files (e.g., xMCF [349]). Joining element information has a
geometric component that describes joining locations as well as a nongeometric component
that includes PMI. The latter is structured data generally represented in tabular form. Here,
features correspond to columns, and each data sample represents a row entry. Nongeometric
data describes PMI assigned to parts, such as the weight, material, or joining technology.
Moreover, geometry is less trivial to represent for ML. Data representations can be grouped
into Euclidean and non-Euclidean structures [350], which are described as follows:

• Euclidean structures have grid-like properties, such as descriptors, voxels, and
multiviews [350]. They consistently describe objects using the same parameters (global
parametrization) [350]. Additionally, Euclidean structures have common systems of
coordinates [350].

• Non-Euclidean data representations contain randomness and lack structure [350], such
as point clouds, meshes, and graphs.

Fig. 2.18 depicts representations with Euclidean structures and applicable deep learning
processes.

Recently, several research groups have surveyed work on 3D geometry and deep learning
including Ahmed et al. [350] (which was continued by Gezawa et al. [351] and Xiao et al.
[352]). They have discussed representations, datasets, architectures, and limitations in great
depth. The survey by Xiao et al. [352] found that research on geometry learning examines
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Fig. 2.18: Various popular representations of 3D data and their deep learning models, adapted from Ahmed et al.
[350].

either reducing computation and memory demands or increasing detail and structure. They
also looked into shape analysis, where methods usually extract latent factors for applications
such as the classification, retrieval, and segmentation of shapes [353]. Representations are
highly particular to applications but rely on their ability to retrieve the essence of shapes.
Shape classification determines the object class based on a 3D shape, for which many
benchmarks are available [353]. Fig. 2.18 presents the popularity and performance of voxel-,
point-cloud-, and multiview-based methods. Shape retrieval aims to find the most similar
shapes to an input 3D shape in a database, while shape segmentation aims to identify sections
from 3D objects and requires a spatial understanding of the shape [353]. Garcia-Garcia et al.
[289] reviewed semantic segmentation using deep learning techniques. Furthermore, Shen et
al. [354] surveyed object classification on 2D and 3D datasets and argued that multiview and
volumetric representations fit CNN-based architectures better compared with nonstructured
point clouds. The popular data representations are described in more detail as follows:

• Shape descriptors express key geometric or topological properties at abstract levels
[355]. They include familiar mechanical engineering terms, such as volume,
Zernike-moments (or moments of inertia), latent feature vectors, and diffusion-based
approaches. Simple shape signatures enable processing with low computational cost as
well as fast similarity evaluations and shape retrieval. The used shape descriptor and its
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implementation affect the nature and meaning of its shape signatures [350]. However,
descriptors lack specific geometrical information, which prevents applications in
classical computer-vision tasks, such as image segmentation and object detection.
Kazmi et al. [356] published a comprehensive survey on 2D and 3D shape descriptors.
Recent work often combines descriptors with learning-based models to extract features
on various hierarchical levels [350].

• Multiview representations describe 3D geometry using multiple 2D snapshots obtained
from different point views [357]. They function similarly to the 3D perception of
humans, which is a probable reason for its success [358]. This method can take
advantage of well-researched 2D computer vision approaches to classify or detect 3D
objects [354]. Multiview approaches aim to learn functions that model each view
separately before aggregating all views together into 3D shapes. Balancing the number
of views is essential; having too few views might not capture all properties, and having
too many may result in unnecessary computational cost [350]. Moreover, models with
multiview data produce better results for some applications than for voxel-based
datasets [358]. Furthermore, multiview representations are uniform and have a
Euclidean structure. However, recreating coordinates in a global coordinate system is
problematic. Seeland et al. [359] researched combining strategies of multiview images
for classification.

• Voxels are volumetric representations that describe the distribution of geometry in
regular grids with defined sizes and shapes [350]. Voxels have recently gained attention
in the ML field in classification and segmentation tasks, such as in the work of
Maturana et al. [360] and Meng et al. [361]. They are the 3D equivalents of pixels in 2D
images. The representation is straightforward, creates high semantic descriptions of
geometry, and can carry additional arbitrary data. However, voxels increase the
dimensionality of the data cubically. Hence, detailed representations have high
computational cost [362]. Voxels also store information on empty grid cells and create
sparse occupation matrices. Data representation becomes inefficient when large sections
of grids are empty [350]. Hence, Hane et al. [363] proposed considering only surface
voxels, reducing the number of parameters, and enabling smaller voxel sizes. The
architectures of various successful 2D NNs convert easily into voxel form [352].

Discussion
The latest works on geometrical deep learning methods have aimed to reduce computational
and memory costs as well as to increase detail and structure [352]. Specific tasks require
tailored 3D representations of geometry [352]. Gezawa et al. [351] created a summary that
listed the mode of acquisition, key features, advantages, and limitations of each 3D data
representation. Concerning the aforementioned Euclidean representations, they argued that

• Shape descriptors are ideal for shape analysis tasks; however, they may not learn enough
discriminating features;

• Multiviews are effective and simple but cannot fully represent 3D geometry; 2D
approaches may occlude important features that are only available in 3D; and
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• Voxels have a structured volumetric description of a shape but are less suited for
complicated tasks due to information loss bounded by the level of detail.

Initially, shape descriptors enable the analysis of 3D geometry using traditional 2D
approaches. They are easy to implement but cannot discriminate unique 3D features of shapes
[350]. However, shape descriptors can transform data into 2D formats using benchmark image
processing approaches. Alternatively, Sinha et al. [364] presented a projection-based method
for transforming 3D features into a 2D structure. Still, 2D formats lack detailed geometry
descriptions. Hence, adding a depth layer to images can improve performance greatly [365].

Recently, complete 3D geometry methods have gained more attention. Volumetric
representations are appropriate for analyzing rigid data with minimal deformations [350].
Volumetric methods use CNNs with 3D kernels and perform significantly better than other
approaches [350]. However, their main drawbacks are a high computational cost and
inefficient data representation [362]. Multiview approaches perform better on object
recognition tasks than full 3D-based methods, possibly due to the multitude of views [350]
and the benchmark in 2D architectures. This is also a catch as performance relies on the
number of views. Models may fail to recognize intrinsic geometrical properties. One study
was unclear on which the better representation is and concluded that it depends on the task
and resources [350]. The availability of high calculation capacity enables the use of complex
models and thus volumetric approaches.

However, many problems can not be described within one representation of data. For
example, not all problems are solely geometric. Hence, models need to cope with a multitude
of representations. The following subsection discusses various methodologies for their
integration.

2.3.6 Multimodality

Data that describe joining elements is multimodal; that is, it consists of multiple
representation types. For example, geometry describes the location to join, while PMI
describes the materials, thicknesses, and joining technology. Hence, ML needs to consider
various types of data simultaneously to make informed predictions. Multimodal ML
(MMML) integrates information from multiple representations to increase prediction
performance compared with unimodal approaches [366]. Although the field has become more
significant and has high potential, it faces the following five main challenges [367]:
representation, translation, alignment, fusion, and co-learning. The challenges that are
relevant to joining element design are described as follows:

• The representation of data can be distinguished into joint or coordinated
representation. Joint representations combine unimodal data in a representation space
[367]. Coordinated representations process unimodal data separately but under a set of
similarity considerations. Generally, the choice between either depends on the
availability of all modalities in the testing phase.

• Fusion integrates information from multiple modalities to increase the prediction
performance. Two distinctive categories distinguish the explicit dependency of ML
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methods for fusion. Model-agnostic approaches may use early, late, or hybrid
integration of modalities [368], whereas model-based approaches use specific methods
for MMML.

Guo et al. [353] presented an overview of multimodal representation learning that focused
on early fusion. This is the first and most researched subfield in MMML and enables more
robust predictions, captures complementary information, and remains functioning when a
modality is absent [367]. However, this subfield suffers from the integration of
multimodalities, supplementary information, and temporal dependency [367]. In contrast to
early fusion, late fusion aggregates results of multiple model outputs using ensemble ML with
averaging or voting schemes, such as in the work of Morvant et al. [369]. Guo et al. [353]
introduced three categories in early fusion, which are also depicted in Fig. 2.19:

Fig. 2.19: Three types of frameworks about deep multimodal representation: Joint representations, coordinated
representations, and encoder-decoders, adapted from Guo et al. [353]. The multimodal methodologies for joint and
coordinated representations are taken from Baltrusaitis et al. [367].

• Joint representations, which aim to learn a shared semantic subspace;

• Coordinated representations, which have separated architectures but shared constraints
between each modality; and

• EncDec frameworks, which translate one modality into another, keeping their semantics
consistent.

Studies may use the terms joint representation and early fusion interchangeably [353]. Both
terms bring multiple unimodal datasets to a shared representational space. Concatenation is the
most popular method for performing early fusion, and is also known as additive methods [353].
Examples include the studies of Liu et al. [370], Walsman et al. [371], Petscharnig et al. [372],
and Sindagi et al. [373]. A multiplication approach takes the product of the properties, as in the
work of Zadeh et al. [374] for fusing audio and video, or in the study of Fukui et al. [375] for
fusing visual and text properties through bilinear pooling.
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Pelka et al. [376] presented branding, which is an approach for fusing encoded text
properties and other data onto images. Fig. 2.20 depicts the branding approach using the
example of radiograph data samples.

Fig. 2.20: An overview of the procedure for adding branding to radiograph data samples; taken from Pelka et al.
[376].

Here, a second modality (keywords) is placed as blocks in images, expanding the graphic
information content. The keywords that belong to an image are clustered. The branded
radiograph has a white box on the index of each cluster identifier. This method retains the
original dimensionality but at the cost of overwriting informational content in the image.
Pelka et al. [377] later presented branding with gray-scaling, which could potentially fit a
regression approach.

MMML based on 3D data was not found in the surveys of Guo et al. [353] and Baltrusaitis
et al. [367]. However, some work has addressed multimodal voxels and multimodal
segmentation. Sindagi et al. [373] combined image and point cloud modalities to detect 3D
objects. They used the VoxelNet architecture and projected the features of images to regions
of interest in the voxel grid. Soltaninejad et al. [378] detected tumors from multimodal brain
scans using segmentation. The combination of MRT modalities enabled the correction of
weak borders in images that only occured in one modality.

Discussion
Although multimodality is gaining interest in the literature, implementing it correctly is a
complex endeavor. Much research has examined the creation of optimal unimodal studies with
assumed boundaries. Multimodality combines different datasets and often increases the
complexity of ML tasks. Baltrusaitis et al. [367] argued that it is difficult for models to learn
supplementary but not only complementary information. Information has a mutual influence
that models must consider as a whole and not perform two separate tasks at once.
Furthermore, noise is not constant between the two modalities and may affect samples in both
ways [367].

Model-agnostic fusion combines data with different structures and representations. Early
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fusion integrates features immediately after extraction [367] and before training, such as
concatenating representations [353]. By contrast, late fusion integrates data after decisions on
individual modalities [367]. Joining elements contain both geometry and PMI (i.e., materials),
which affect each other simultaneously. Hybrid and late fusion tend to ignore low-level
interactions between modalities, and hence, are less appropriate to implement for joining
element prediction.

Lastly, 3D geometry-based MMML is a little researched domain with a few exceptions in
health and medical imaging. Soltaninejad et al. [378] and Sindagi et al. [373] have combined
Euclidean representations of geometry that are supplementary. The combination of structured
and unstructured data, such as in the study of Pelka et al. [376] on images, was not found for
3D geometries.

This section already discussed many benchmark techniques and methodologies. However,
many are theoretical and lack a link to the research problem. As such, the following subsection
discusses applications of AI that relate to joining element design.

2.3.7 Applications of AI in the manufacturing industry

This subsection presents a dense overview of the application of AI in the manufacturing
industry. The aim is to demonstrate the variety of implementations in each field and
applications. To rate the complexity of the models and the mimicked cognition, Ullman [379]
categorized design tasks according to the degree of creativity in ascending order as follows:

• Selection is the choice of individual components, technologies, or parameters;

• Parametric design concerns dimension-driven parts that scale along predefined axes;

• Configuration refers to choosing multiple components for a system with specified
properties; it is possible to combine this with parametric design;

• Redesign describes work for adapting, modifying, and optimizing an existing solution
to meet a new set of requirements;

• Original design has boundary conditions from requirements; however, the principles
and details are free.

Hence, noncreative tasks are the simplest to automate [29]. Moreover, they create low-cost
and -maintenance models that can create large benefits. As such, most methodologies in the
literature start here.

Various reviews have been conducted on state-of-the-art methodologies that implement
AI. First, Dekhitar et al. [100] described various areas and applications of ML in
manufacturing, such as CAD, product life cycle management, generative engineering, and
recommender systems. Next, La Rocca [151] defined knowledge-based engineering as the
product of AI and CAD systems. In addition, Salehi and Burgueño [95] extensively analyzed
the applications, capabilities, restrictions, advantages, and potentials of AI in structural
engineering. Then, Burggräf et al. [380] reviewed the state of the art in knowledge-based
problem solving for physical product development. They synthesized CBR methodologies
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into an overall architecture. Next, Dogan and Birant [381] provided an overview of ML and
data mining in manufacturing. Lastly, Kusiak [333] reviewed applications of CNNs and GANs
in the manufacturing industry.

Research has not yet studied ML methodologies for predicting joining elements. Studies
have addressed the prediction of production processes (e.g., [104, 166]) and welding
parameters (e.g., [105, 169]). Other work had focused on the optimization of mechanical
structures (e.g., [47, 103]) and touched on location prediction.

AI also has applications that perform similar tasks to JTS. Hamouche and Loukaides [104]
implemented NNs to classify sheet metal forming processes. Hoefer et al. [166] classified CAD
models to machine or cast-then-machine using self-defined shape descriptors by evaluating
methods as k-nearest-neighbors, decision trees, and random forests. Machalica and Matyjewski
[382] classified CAD models with various benchmark ML algorithms on a set of predefined
features. Asaga and Nishigaki [252] used a small NN to predict material combinations for
modules for new layout design. These studies have demonstrated that NNs are applicable for
understanding CAD models for various classification tasks.

Besides technology selection, the literature contains studies on joining parameter
prediction. Sim et al. [169] predicted the weld nugget diameter based on parameter settings of
machinery, whereas Kim et al. [170] used ontologies and decision trees. Pillai et al. [105]
presented a methodology for predicting the mutual spot welding distances of spot welds from
part combinations. It integrated PointNet [383] to create part labels and prototype a
classification and regression approach. These experimental studies have demonstrated the
prediction of joining parameters and indicated the particularity of the design problem for
automation.

AI fields are also applicable in topology optimization and other geometrical tasks. Kiani
and Yildiz [47] applied genetic algorithms to evaluate crash-worthiness and optimize the
noise-vibration-harshness behavior of automobiles. Guirguis et al. [179] applied a similar
method to optimize frameworks for welded structures. Banga et al. [103] used CNNs to
accelerate topology optimization and predict structural topology using voxel representations.
Oh et al. [106] presented a combination of topology optimization and GANs. They used NNs
to increase the creativity of designs and topology optimization to increase their quality. Cao et
al. [384] implemented NNs with a graph algorithm to 3D-model assemblies from topological
wireframes. These studies demonstrate that AI can support structural designs and understand
geometry.

The following section presents an overview of the applications of AI in manufacturing
industry as well as methodologies mentioned earlier in this chapter.

2.4 Literature overview

This section presents an overview of the referenced literature in the previous three sections. It
first discusses relevant properties of methodologies in joining element design. Then, it presents
a table that evaluates all of the methodologies.

This study integrated three different fields: joining element design, modular product
design, and AI. The discussions in the respective sections have indicated that the fields have
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little to no overlap in the literature. Labeling methodologies using properties create an
overview of interfaces and relevant work for joining element design and AI applications in the
manufacturing industry. Table 2.1 contains all relevant state-of-the-art methodologies that
were addressed earlier in this chapter.

The properties used to evaluate the methodologies originated from the literature as well as
from the requirements for joining element design. For example, the properties from the
literature include those from the study of Hagemann et al. [101], who evaluated various
algorithms in the manufacturing industry. They described the properties of algorithms, such as
computational cost and determinism, and how these affect the results. Furthermore, the
requirements of joining element design referred to the identified advantages and
disadvantages of methodologies (see the summaries on joining element design [Section 2.1.6],
modular product design [Section 2.2.4], and applications of AI in the manufacturing industry
[Section 2.3.7]). The properties are described in more detail as follows:

• Design problem [JT, JL, JP, C, PP, PF, or O]: This represents the design
problem that the methodology solves. It includes the joining aspects and modularization
related perspectives: joining technology JT , joining locations JL, joining parameters
JT , complexity C, product portfolio PP , product family PF , and others O.

• AI Field [RBR, CBR, S&O, or ML]: This describes the main implemented AI field
used in the methodology; see Section 2.3.

• Deterministic [Y or N ]: This describes whether models output the same values for the
same given input. Deterministic processes enable engineers to verify results while the
output remains consistent. They provide transparency and insight into how algorithms
come to their conclusions. S&O, as well as ML approaches, may create different
outputs depending on a changing dataset or model due to built-in approximations and
randomness.

• Deductive [D or I] or inductive reasoning: This describes whether algorithms create
results from the top down or bottom up. Deductive reasoning D follows from several
steps of arguments with general rules to reach a logical conclusion. Inductive reasoning
I generalizes cases and examples into generic rules such that results have some form of
uncertainty.

• Optimality [1 − 5] of results: This describes how close the methodology reaches to the
optimal solution. Optimal designs require little to no rework, especially when
considering the scope of the entire product family over its life cycle. Mere feasibility,
suboptimal solutions, is the ability to reach a solution, not the solution itself. Values
from 1 to 5 represent feasible to optimal results, respectively.

• Scope [D, P, or F ]: This represents the size of product variety considered when
applying the methodology to a problem: domain D, product P , or product family F .
Domain refers to a local solution applied on a small section of products, whereas
product family refers to variety and its consequences.

• Genericity [P, I, or G]: This represents the ability to use the methodology outside of
its domain. Genericity enables the use of methodologies outside of the specified and
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limited experiments. The values are product P , industry I , or global G. Product
describes methodologies that are applicable only for the same product. Global implies
the applicability for any product, even outside of the industry or field of study.

• Holicity [1 − 5]: This describes the consideration of requirements and knowledge from
multiple phases of product development in the methodology. A value of 1 describes a
precise solution with a narrow scope that does not translate well into applicability over
the product’s life cycle. A value of 5 describes the full consideration and implementation
of life cycle requirements.

• Computational cost [1− 5]: This represents the required calculations and resources for
acquiring a solution. Computational costs express the idle time of designers in using
these algorithms. Values 1 to 5 represent low to very high computational costs,
respectively.

• Automation degree [1−5]: This represents the ability to automate the methodology and
the independence of experts and human interference. The degree of automation expresses
the developmental and maintenance effort required to implement the methodology in
practice. A value of 1 implies significant influence and input from designers to achieve
results. A value of 5 implies the ability to create almost no human-in-the-loop processes.

• Geometry [Y or N ]: This describes the consideration of 3D shapes, features, or models.
Considering geometry enables a complete picture of the joint as well as the prediction of
joining locations.

• Knowledge-based [Y or N ]: This represents the ability to take successful benchmark
solutions and transform them into the current solution. Knowledge-based
methodologies contain a database for utilizing the available data to optimize results and
reduce unnecessary design iterations.

Reference CL AI DE DI O S G H CC AD 3D K
AlGeddawy et al. [85] PP RBR Y D 4 F G 3 2 4 N N
AlGeddawy et al. [83] PF RBR Y D 4 F I 3 2 2 N N
Alkan et al. [385] C RBR Y D 4 P I 4 5 3 N N
Ambrozkiewicz et al. [192] JL S&O N I 5 D G 2 5 3 Y N
Asaga et al. [252] PF SML N I 4 P I 4 5 4 Y Y
Banga et al. [103] JL SML N I 5 P I 3 5 3 Y Y
Baylis et al. [87] PF;PP S&O Y I 4 F G 2 4 2 N N
Bednar et al. [136] C RBR Y D 3 F G 2 2 2 Y N
Bhatti et al. [130] JL S&O N I 3 D P 2 5 3 Y N
Bond et al. [41] JT RBR Y D 4 D I 3 2 2 Y N
Cao et al. [384] JL SML N I 2 D P 1 4 2 Y Y
Chaimae et al. [253] JT CBR Y I 4 F G 5 3 4 N Y
Chan et al. [147] C RBR Y D 1 F G 2 1 1 N N
Chavare et al. [188] JL S&O N I 3 P I 2 5 2 Y N
Chien et al. [155] JT S&O Y D 3 P I 3 2 2 N N
Choudry et al. [39] JT RBR Y D 4 D G 4 2 1 N N

Continues on the next page . . .
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. . . continued from the previous page.
Reference CL AI DE DI O S G H CO AD 3D K
Daie et al. [89] PF S&O Y D 2 P G 2 2 2 N N
Das et al. [40] JT CBR N D 2 F G 4 2 2 N Y
Desai [386] C RBR Y D 3 D G 2 2 2 Y N
Eilmus et al. [387] CC RBR Y D 3 G C 5 1 2 N N
Eom et al. [185] JL S&O N I 2 P I 2 3 2 Y N
Ertas et al. [184] JL S&O N I 3 D P 2 5 2 Y N
Etienne et al. [388] CC S&O N I 4 D I 3 5 2 N Y
Favi et al. [148] PF RBR N D 2 P G 3 2 1 N N
Florea et al. [44] JL S&O N D 5 P G 4 5 4 Y N
Florea et al. [46] JL S&O N I 5 D G 3 5 5 Y N
Friedrich et al. [168] JP S&O N D 4 D G 5 3 3 Y N
Galizia et al. [86] PP RBR Y D 3 F G 4 3 4 N N
Gauss et al. [91] PF S&O N I 5 F G 5 4 3 N Y
Geda et al. [109] JT;JP S&O N I 4 D I 4 5 4 N N
Geda et al. [157] JP S&O N I 4 P G 3 5 3 Y N
Ghazilla et al. [42] JP S&O Y I 5 P G 5 3 2 Y N
Guirguis et al. [179] JL S&O N I 4 P I 4 5 4 Y N
Haberhauer [107] JT RBR Y D 1 G G 5 1 1 Y N
Hamouche et al. [104] JL SML N I 3 D I 1 4 2 Y Y
Hasan et al. [389] C RBR Y D 3 F T 2 2 2 N N
Hasegawa et al. [183] JL S&O N I 3 D P 2 5 3 Y N
Hoefer et al. [166] JT SML N I 3 P G 3 4 5 Y Y
Jeandin et al. [164] JP RBR D D 3 D G 3 2 3 N N
Jung et al. [213] PF S&O Y D 4 F G 2 3 2 N N
Kadkhoda et al. [160] JT RBR N D 4 P G 4 3 3 Y N
Kaspar et al. [158] JT S&O Y D 5 P G 5 3 4 Y N
Kim et al. [390] C S&O Y D 3 F G 5 3 3 N N
Kim et al. [170] JP RBR Y D 2 P I 4 2 3 N Y
Kim et al. [117] JT RBR D D 3 D G 4 2 4 Y N
Krus [391] C RBR Y D 3 F G 2 2 2 Y N
Kwon et al. [28] JP RBR Y D 1 D G 3 2 1 Y N
Li et al. [250] PF RBR Y D 3 P I 3 2 2 N N
Long et al. [180] JL S&O N I 3 P G 2 5 3 Y N
Ma et al. [75] PF RBR Y D 3 P G 2 2 2 N N
Madrid et al. [34] JP RBR Y D 1 P I 3 1 1 Y N
Marini et al. [162] JT S&O N D 1 D I 2 1 1 N N
Mesa et al. [156] C RBR Y D 2 D G 2 1 2 Y N
Modrak et al. [392] C RBR Y D 2 F G 2 1 2 N N
Oh et al. [393] C SML N I 4 D I 3 5 2 Y Y
Ouisse et al. [129] JL S&O Y I 4 P P 2 4 3 Y N
Pakalapati et al. [176] JL S&O N I 2 P I 2 4 2 Y N
Pillai et al. [105] JP SML N I 2 D P 1 4 3 Y Y
Prüß et al. [154] JT RBR Y D 2 D G 1 1 1 N N
Ren et al. [90] PF S&O D I 4 P 4 3 2 3 N Y
Samy et al. [22] C RBR Y D 3 P G 3 2 1 Y N
Savic et al. [182] JL S&O Y I 3 D I 2 4 3 Y N

Continues on the next page . . .
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. . . continued from the previous page.
Reference CL AI DE DI O S G H CO AD 3D K
Schmidt et al. [68] C RBR N D 2 F P 1 1 1 N Y
Schuh et al. [394] PP RBR Y D 1 F G 2 1 1 N Y
Schuh et al. [395] C RBR Y D 2 F G 4 1 1 N Y
Sim et al. [169] JP SML N I 3 D P 1 4 3 N Y
Sinha et al. [246] PF S&O Y D 4 F G 4 5 3 N N
Stocker et al. [84] PF S&O Y D 3 D C 3 3 2 Y N
Thompson et al. [50] JL RBR Y D 1 D G 1 1 3 Y N
Ukala et al. [237] C RBR Y D 1 D I 1 1 1 N N
Weiser et al. [396] CC RBR Y I 2 P T 4 2 1 N Y
Woischwill et al. [45] JL S&O N I 5 P G 5 5 5 Y N
Wong et al. [135] PF RBR N Y 1 F I 5 1 1 N Y
Yang et al. [18] JL S&O N I 3 P I 2 5 3 Y N

Table 2.1: Literature overview. Column abbreviations: reference (R), class (CL), main AI field (AI), deterministic
(DE), deductive / inductive (DI), optimality (O), scope (S), genericity (G), holicity (H), computational cost (CO),
automation degree (AD), geometry (3D), and knowledge-based (K).

In addition to this literature overview, the following section summarizes this chapter.

2.5 Summary

This chapter has reviewed the state of the art in joining element design (Section 2.1), modular
product design (Section 2.2), and artificial intelligence (Section 2.3). The literature overview
(Section 2.4) summarizes and evaluates relative literature. This section summarizes the findings
of this chapter.

Large manufacturing industries generally spread out the design of their products and
variants. Holistic approaches in joint and component design require great collaboration effort.
Joining element design is a central part of product design and detailing phases and includes
many design dependencies [43]. Design processes are time-consuming due to work
compartmentalization and the many stakeholders involved. The literature contains various
solutions for designing joining element aspects, such as JTS (e.g., [40, 108, 109]), rule-based
design (e.g., [50], topology optimization [18]), and joining parameter determination (e.g.,
[169]). However, they barely consider product variety or successfully marketed products.

Moreover, modular product design is often used to manage product variety [90], but such
approaches do not support joining element design. A gap exists between joining element
design, modular product design, and knowledge reuse. This gap prevents designers finding
global optima and causes joining element design to remain a highly experience-based
endeavor [18], resulting in error-prone processes and costly rework [14].

Today, human-engineered AI methods support the design of joining element aspects [1],
such as RBR (e.g., [50]), S&O (e.g., [18, 168]), and CBR (e.g., [40]). However, these
methodologies are stand-alone, focusing on specific properties of joints. They do not consider
the holistic requirements of joining element design, nor is this always possible in early
product design. Studies have not explored ML as a solution path, although the methods have
been proven to automate expert-driven processes and opt for cost reductions [100].
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Manufacturing industries with large product variety possess much data on successful and
verified products. As product variety will continue to grow, the industry is developing new
products and variants, thereby increasing the amount of data. AI could use these data to
predict new joining element designs. Thus, successfully marketed products are ground truths,
representing some global (business) optimality in their designs. Hence, AI can harvest the
knowledge of these products. The structuring and automation of expert knowledge is a
necessity for creating design quality early in the development process [34]. This requires the
extraction of patterns and engineering rules from technical information about use cases,
know-how, inspection, and simulation data [34]. AI methods can extract implicit knowledge
of cross-company requirements, and some methods can generalize this knowledge to support
automation. Many joining elements and manufacturability requirements create the necessary
engineering data for exploring ML techniques and automating their design. Successful joining
element designs contain considerations of properly implemented standards, guidelines,
performance, modularity, complexity, and design experience. However, these considerations
require several challenges to be solved, such as the dimensionality, quality, heterogeneity, and
structure of data [100, 101].

Therefore, AI enables the automation of repetitive ambiguous tasks in joining element
design while reducing failures and lead time. In addition, AI methods can learn particularities
to predict joining elements closer to global optima as well as increase the effectiveness of
design processes. Fast and consistent predictions of joining elements are an enabler of
evaluating design alternatives and kickstarting design and integration processes. This ability
would enable designers to concentrate on their core competencies and to work on creative,
holistic problems.

After concluding the state of the art chapter, the next chapter presents a framework for
automating joining element design in high-variety products.
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Chapter 3

Framework

This chapter introduces a framework that organizes the main steps for automating joining
element design for high-variety manufacturing industries in Section 3.1. The section also
maps the state-of-the-art approaches within each step. Then, Section 3.2 addresses the
applicability and considerations of popular AI fields in manufacturing at each step. Based on
the framework, Section 3.3 describes novel concepts for predicting locations using an
evolutionary algorithm, SML, and a GAN. Furthermore, it presents commonalization
concepts for joining technologies, locations, parameters, and complete joints. Moreover, this
section presents a concept to modularize joining elements. Lastly, Section 3.4 summarizes and
concludes the resulting framework with respect to the research gap.

3.1 Framework for automating joining element design

For the sake of readability, “automated joining element design for manufacturing industries
with high product variety” is shortened to automated joining element design hereinafter. This
section presents a framework for automating joining element design called VICTOR (Variety
Integrated Connection Technology OptimizeR).

The development of a framework can provide structure and direction for automating
joining element design. In contrast to processes, frameworks can guide designers without
being too detailed or rigid. For example, as the state of the art indicates (see Section 2.1),
there are many concurrent, ambiguous processes in product development that affect joining
element design. A framework can respect these dynamics and uncertainties in development,
giving structure to applicable automation methodologies in various moments and
circumstances of product development.

Moreover, a framework can provide guidance. Steps within the design process tend to be
performed sequentially. Hence, VICTOR must align with the joining element design process
(presented in Fig. 2.5). To distinguish between the joining element design process of designers
and the framework, the former process shall be further addressed as the user journey.
Sequencing tasks give structure and meaning to the organization of automation
methodologies. For example, designers require a joining technology before they create joining
locations. The framework can take over such considerations. Fig. 3.1 visualizes the
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framework.

Fig. 3.1: Proposed framework for automating joining element design, which has four blocks: prediction, modular
design, structure, and sequence.

The framework for automating joining element design consists of four blocks: prediction,
modular design, structure, and sequence. The following list introduces these blocks, which are
explained in more detail in the upcoming sections:

• The prediction block addresses the automation of design in the user journey. It
describes how designers can integrate various methodologies to predict joining
technologies, locations, and parameters. These methodologies may implement an AI
technique.

• The modular design block describes the context of modular design while considering
joining elements. Thus, it focuses on the boundary conditions and requirements
necessary for fusing joining element design and modular product design. The modular
design block addresses the environment for commonalization and modularization
methodologies to create meaningful results. Together, the fundamental building blocks
set the necessary groundwork for structuring the state-of-the-art methodologies.

• The structure lies on top of the prediction and modular design blocks. It breaks
automated joining element design down into multiple individual design problems. Each
design problem represents a small part of automating the design of a joint. Design
problems include the prediction and commonalization of each joining aspect
(technologies, locations, and parameters) as well as the modularization of joining
elements. Design problems can implement any methodology as long as it fits the
circumstances of the user journey. For example, using ML requires a dataset; thus, a
methodology that implements ML in an early design stage with no available data is not
applicable. However, the same methodology might become applicable once data
become available, such as in later design stages.

Moreover, the breaking down of automated joining element design into design problems
enables the organization of applicable methodologies from the state of the art. Each
methodology implements certain techniques to solve the design problem. The structuring
of these techniques indicates how the literature has tackled the problems. Additionally,
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it shines a light on underused techniques, identifying potential new fields for solving the
problems.

• The sequencing block takes the design problems of the structure block and aligns them to
the user journey. By traversing the design problems sequentially, they become steps in the
automated joining element design process. The sequencing block organizes the structure
of design problems and guides designers through their user journey. For example, the
sequencing block first describes the selection of a joining technology.

The next subsections address each block of VICTOR in more detail.

3.1.1 Prediction block

Before discussing the implementation of AI in automated joining element design, it is
important to clarify its purpose and use. The state of the art describes the many
methodologies, approaches, and perspectives on joining element design. However, many of
these remain theoretical. In practice, designers often do not have the time, capability, or
resources to fully incorporate these methodologies [12]. Moreover, many of these
methodologies also have limitations that, once used, still require in-depth interpretation,
analysis, and possible manual rework. Furthermore, joining element design is a holistic
multidisciplinary problem [15]. Many designers employ an experience-based approach [18].
Therefore, much information is tacit, for which ML approaches are suitable [29].
Additionally, companies with high variety tend to have many parallel and sequential
development processes, including joining element design. Moreover, the potential for
automating design is positively proportional to increasing product variety and product
maturity [29]. Hence, there are many diverse stakeholders and requirements to consider. These
circumstances affect the applicability of current methodologies.

Consequently, the theoretical state of the art does not represent the applied state of the art.
Automating joining element design needs to be low-level, simple, and fast [29]. These
properties help designers to create joining elements without needing to learn unnecessary
programs, software, or processes. Simply put, a designer should click a button, and
recommendations for designs should appear. These requirements create a need to explore AI,
which can take over cognitive functions while considering numerous dependencies. Instead of
outsourcing design requests to other companies, joining element design can be outsourced to a
service consisting of an intelligent model. The sophistication of AI is that processing occurs
behind the scenes. This processing may be of any level of complexity. However, higher
complexity implies an increased capability to balance more parameters; thus, it may lead to
potentially higher-quality designs. However, designers must experience AI models as inherent
to their work [12]. Their functioning may not draw unnecessary attention. The tools or
techniques need to be easily graspable and may not intrude on the designer’s craftsmanship
[12]. In short, designers should receive recommendations for a given set of inputs.
Additionally, AI can be integrated into the user journey, enabling designers to retain their
workflows. Fig. 3.2 presents an exemplary process of implementing a prediction model into
the user journey.
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Fig. 3.2: High-level process of implementing artificial intelligence in the joining element design process (Fig. 2.5).

For readability, all implementations of methodologies that generate (aspects of) joining
elements are referred to as prediction models hereinafter. This definition does not differentiate
between ML prediction and multicriteria-based decision algorithms. Ultimately, they all aim to
generate data based on a set of inputs, while a designer remains responsible for accepting their
outputs.

Now, a walkthrough of the process depicted in Fig. 3.2 is provided. After receiving a design
request to generate joining elements, a recommender system suggests joining elements. The
designer evaluates a prediction and can optionally modify it using a CAD system. As depicted
in the user journey, the designer performs an initial validation of manufacturability; see Fig.
2.5. Unsatisfactory designs require new predictions or manual design effort to adapt them to
the requirements. Next, storage, formatting, and documentation are performed in the database
for downstream processes. The coordinator compiles the results for further validation. Lastly,
the prediction models may need updates over time, such as when requirements change or new
technologies become available.

The prediction block substitutes steps in the user journey, as depicted in Fig. 2.5.
Designers still need to filter the joining scenario and select the proper boundary conditions.
The design part itself is taken over. The process is valid for any of the three prediction tasks,
joining technology, locations, and parameters, with the properties described in Section 2.1.
For example, in very early design phases, only predicting the joining technology might be
sufficient to continue development. However, once development matures, designers may also
need to predict joining locations and their parameters. In such cases, the process may run
multiple times sequentially, or the prediction step (step 2 in Fig. 3.2) may predict multiple
aspects after one another.

Designers may also opt to let the model suggest all joining aspects at once, such as in
the topology optimization methodology of Florea et al. [46]. The division into joining aspects



3.1 Framework for automating joining element design 89

is not necessary. However, it reduces the complexity of prediction models significantly. The
prediction step allows any methodology to be implemented.

Moreover, designers may request multiple predictions to choose from by, for example,
letting the model predict joining designs from the three best-suited joining technologies. Such
recommendations may enable designers to take holistic decisions, such as whether to create
three spot welds, create two rivets, or use adhesive bonding. Consequently, recommender
systems in combination with designers could determine the optimal design for creative and
holistic design problems.

After approval by the designer, the joining designs require detailed analysis for validation.
The primary function of joining elements often concerns structural performance. The
prediction models may or may not explicitly integrate structural knowledge (in step 2 of Fig.
3.2). For example, when joining performance primarily relies on the ability to absorb
structural forces and loads, prediction models could actively consider them. This
consideration might involve the use of certain joining technologies or combinations, such as
combining spot welds with adhesive bonding, which is often seen in crash-relevant structures
in automobiles [397]. Moreover, by placing joining elements in outer sections of CRs, their
ability to handle bending, torsion, or buckling increases.

On the other hand, ML approaches exploit patterns in data to predict unseen cases. The
application of ML would enable learning from successful joining elements and applying them
to new joining designs. Here, the structural considerations are implicit. The prediction models
rely on designs that have already been validated. Their outputs assume that for similar cases,
similar patterns would result in similar structural performance.

In any case, the validation step acts as an adversary that evaluates the designs. The separated
adversary enables the prediction models to generate joining element designs. In this sense, this
setup functions equivalently to a GAN with freely creating and discriminating agents working
together. However, as depicted in Fig. 3.2, the designer remains in the loop to oversee and
verify results and processes. As such, the designer remains responsible for the joining designs
in case of changes or other issues arising.

3.1.2 Modular design block

After the prediction steps in the framework, the objective is to reduce variety by implementing
a modular design. The aim of the modular design steps in the framework is ultimately to
minimize the number of joining elements and the variety in their design. Furthermore, they
aim to create modules that retain the flexibility to create new product variants. Practically,
modular design converges the diversity in designs, bringing them to a necessary level.

The most applicable modular design approaches are commonalization and modularization.
Commonalization aims to unify joining element designs between product variants to reduce
unnecessary variety. Fewer joining elements imply lower complexity, lower variety, and lower
costs. Modularization aims to define shareable groups of parts (and/or joining elements) to
interchange between product variants. The following subsections explain the background and
strategy for commonalizing and modularizing joining elements.
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3.1.2.1 Commonalization

Commonalization is an approach for creating product platforms. Product platforms are the
groups of components shared by multiple product variants. Utilizing common components
adequately enables the efficient development of multiple product variants [398]. The same
strategy of sharing components between product variants can be implemented for joining
elements. Even reusing aspects of joining elements can increase development efficiency.

Large product platforms imply more shared components between all product variants and
lower overall costs. However, they also imply a reduction in flexibility and potentially the
offered variety. However, joints often remain the same, while components interchange due to
different product variants. As the joining element design remains constant, their variety does
as well.

As with the prediction of joining elements, the commonalization of joining element designs
might be simpler when considering the individual joining aspects. Commonalizing a single
joining aspect already reduces variety. For example, the reduction of the number of joining
technologies can reduce the change time and complexity [201]. Moreover, after commonalizing
individual joining aspects, the resulting joining elements also become more alike and their
commonalization is simplified. This bottom-up approach can even continue by considering
entire joints.

A study found that product family design and platform-based product development enable
the trade-off between product variety and the induced cost-effectiveness to be managed [91].
This balancing act can be the result of implementing both commonalization and
modularization. Here, commonalization increases the sharing of components over product
variants, whereas modularization combines shared components to create new product variants.

3.1.2.2 Modularization

Modularization is an enabler for product families. Product families are collections of product
variants that share one or more components [210]. These shared components can also be
modules. Each product variant satisfies specific customer needs through the selection of
appropriate modules. Preferably, modules are interchangeable without the need to change
other parts. Hence, to generate a new product variant, the goal can be to merely interchange
one module for an equivalent one. For readability, components are often also referred to as
modules hereinafter. Notably, modules can consist of one component

This one-to-one interchangeability of modules only works if the interfaces between
modules remain constant. Interfaces are the connection between a module and the rest of the
product. Hence, the standardization of interfaces enables the design of modules that can
interchange freely. Standardization helps to create robust designs and increases module
sustainability [82]. To do so, it induces a set of common requirements for the design of parts
and modules.

However, standardizing interfaces creates a conflict in modular design. Modularization
requires a set of commonalized requirements in design phases to prepare for the
interchangeability of parts. Hence, it limits the design freedom of components. Additionally,
modularization needs to determine the best interfaces for optimizing the interchangeability of
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modules, which limits the design freedom to create modular products. These conflicts are vital
to consider during modular design, especially when considering joining elements.

Designers create joining elements on the interfaces of parts (or modules). When the
interchanging of modules is enabled, each module still needs to be attached to the rest of the
product. Standardization of the interface would require the connecting components in a
module to remain equal in their properties for joining. Hence, the joining elements that exist
on the interface can remain the same. However, completely static, standardized interfaces are
not sufficiently flexible to meet the new requirements caused by continually changing
customer demands. Therefore, the interface and the assigned joining elements need to cope
with a certain variety.

Furthermore, the joining elements must comply with the changing conditions of
interchangeable modules. The properties, such as the materials, that a module brings to an
interface may change. The joints need to consider the combinations of changing properties of
modules for that interface. The same joining elements may connect different modules as long
as their properties on the interface remain constant. This is true regardless of the product
variant. Moreover, to workers or robots in the factory, the joint is the same. The joining
operations remain constant regardless of the modules they need to join. Consequently, joining
element designs are preferably the same for a given interface regardless of the modules they
join.

Consequently, this study refers to sets of joining elements to be reused in products as
joining modules. They may consist, for example, of three spot welds or five rivets. This
enables the selection of joining modules for module interfaces. Then, specific joining modules
may join specific combinations of modules. As a result, module interfaces need some
commonalization requirements only for selected combinations of modules. The interface
similarly requires the selection of an applicable joining module.

Optimally, the properties of modules on the interfaces are constant, implying that the
joining elements and their boundary conditions are the same. Constant properties on interfaces
induce one joining module being necessary to join all combinations of modules. However,
increasing variety in properties would increasingly require more and different joining
modules. Fig. 3.3 visualizes the concept of joining modules.

The product platform presents shared modules in product 1 and product 2 of a product
family; see Fig. 3.3. Design spaces represent functional requirements that adopt component
modules to fulfill their function. As a side note, these functional requirements are known as
positions in PDM methodologies [31]. The example presents four design spaces in each product
variant. Module interfaces (white dotted areas) indicate design spaces. Each interface can take
up a joining module (e.g., D or E). The design space of the interface is not necessarily bounded
by, for example, the geometry of the modules. As the combination of modules can change, so
too can their CRs. For an example, see the switch of module A and B in design space A. This
must also be considered in the selection of joining modules. Hence, joining modules are free to
be interchanged on interfaces as long as they respect manufacturability requirements. Fig. 3.4
illustrates different uses of joining modules: intra- and inter-modular.

Product A in Fig. 3.4 uses the same module twice. Each module consists of three parts:
one joining module and a blue and a gray component. The joining module is used
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Fig. 3.3: Overview of product family and platforms that convey the ideas of modularization and commonalization.
Module interfaces are highlighted to indicate the design space for joining modules.

intramodularly; that is, it exists within another module. The created module can also be
viewed as a subassembly. A potential use could be the outsourcing of their manufacturing.
Moreover, the module can be configured multiple times into the product. However, these
joining modules are bounded in terms of variety by components of the module they create.

For a more flexible use of joining modules, they should be used inter-modularly. For
example, product B (Fig. 3.4) does not have predefined modules. However, it integrates four
components and two joining modules directly in the vehicle. Again, note that modules may
consist of one component. Hence, product B instantiates the joining modules on the module
interfaces. The advantage manifests when one also considers product C. Here, the purple
joining module in product C connects different modules as in product B. It is also
re-instantiated twice, and both times to join different modules. Inter-modular joining modules
demonstrate the flexibility of considering joining elements in modular design.

Joining element modularization is the process of creating joining modules. Fig. 3.5 presents
exemplary states before and after modularization.

Fig. 3.5 visualizes three scenarios (A, B, and C) that all consist of two U-profile metal
sheets. The only difference between these components is that they have different lengths. All
joining scenarios have two CRs. However, scenarios A, B, and C have 3, 5, and 7 joining
elements, respectively. The stacked variety column represents the joining elements and modules
considered over the entire product family.

To visualize joining element modularization, the row without modularization presents
joining element designs directly after prediction. Each scenario generates one joining module
and, without modularization, results in 30 joining elements. The modularized row presents the
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Fig. 3.4: Three products that utilize joining modules differently. Product A has intra-module joining elements to
create subassemblies; Product B utilizes inter-module joining elements on interfaces of interchangeable modules;
and Product C indicates that the purple joining module can be combined differently with other modules.

results after the predicted joining elements are commonalized and modularized. It reuses
joining elements where they overlap and determines joining modules to reuse over the
scenarios. As a result, the joining modules contain fewer joining elements. Furthermore,
combining joining modules can create the joints for scenarios B and C. The stacked variety
columns indicate that a total of 14 joining elements remain. Moreover, scenario C has two
joining modules that both have four joining elements. Theoretically, re-instantiating the green
joining module twice could also make the brown joining module redundant.

To summarize, a joining module contains a fixed set of joining elements. It can be
configured multiple times into product variants, each time joining different modules. Joining
modules are not bounded by CRs but are linked to commonalized requirements on module
interfaces. In this respect, they function as any other module. For this, commonalization and
modularization approaches consider joining elements as individual components. Joints can
consist of multiple joining modules located on one or more CRs.

3.1.3 Structure block

The structure block defines the joining element and modular product design problems. Fig 3.6
indicates that it lies on top of the fundamental blocks (prediction and modular design). To
simplify automated design, the prediction block breaks the joining element design into smaller
design problems. There are three prediction design problems, one for each joining aspect. Then,
the modular design block reduces the predicted variety by employing a bottom-up approach.
There are two modular design problems to commonalize the joining aspects. Furthermore,
there is one commonalization approach for joints. Lastly, there is one modular design problem
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Fig. 3.5: An example of three scenarios and the virtual stacked result depicting a significant reduction in the number
of joining elements through commonalization.

that modularizes joining elements. Fig. 3.6 depicts the seven design problems for automating
joining element design, which is described in the following list:

Fig. 3.6: Identified design problems in the structure block of the framework.

• JTS regards the task of finding the best process for a set of to-be-joined components as
listed, for example, in DIN 4063 [17].

• Joining location prediction creates locations for joining objects (often points or curves)
that represent joining technologies.

• Joining parameter selection predicts the detailed information to describe the PMI of
the joining elements.
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• Joining technology commonalization reduces the variety of joining processes by
looking at multiple product variants at once. It can also reduce the variety in joining
parameters, with it being a similar design problem.

• Joining location commonalization determines substitutions for joining locations that
are shareable between product variants. Thus, it reduces the geometric variability
between overlapping joining elements.

• The commonalization of joints unifies them by substituting joining elements between
product variants. It reduces the number of joining elements in documentation.

• Module creation collects the joining elements of product variants into modules,
enabling the creation of, for example, subassemblies and joining modules.

The structure block in the framework enables the mapping of the methodologies to the
design problems. Various and multiple methodologies may solve each design problem. The
design problem has no defined input or processing requirements. They are relative to each
methodology and the stage of product development. For example, a topology optimization
approach for predicting joining elements requires a fully defined product variant (see Section
2.1.5). Moreover, rule-based prediction algorithms only require the CR between two
components. Although in both cases they use completely different techniques and data, they
still predict joining locations.

By organizing the methodologies in each design problem, research and company interests
and trends become clear in terms of how they intend to solve the problem. For example, there
is a great focus on multicriteria decision-making methodologies for predicting the joining
technology and a lesser focus on RBR or CBR. Each technique has its advantages and
disadvantages. For example, multicriteria decision-making methodologies tend to optimize for
one joining element design, often neglecting the product as a whole. Consequently, one can
identify gaps in unused techniques to apply their properties for solving the design problem (as
discussed later in Section 3.2).

In short, integrating the set of all design problems enables one to automate joining element
design. Each design problem may have various methods for joining element prediction as well
as commonalization. Combining these methods with modularization approaches enables the
reuse of joining elements in modules within the same product or product variants. Together,
these approaches determine the joining modules to reuse in the same product and other product
variants.

3.1.4 Sequence block

The design problems from the structure block have relationships between them. Identifying
these relationships will guide the designers. VICTOR enables the selection of processes for
the specific job at hand for any product maturity. Hence, it does not enforce selecting them all
sequentially. However, by aligning with the user journey (Fig. 2.5), designers tend to have a
theoretical workflow. Fig. 3.7 represents this workflow with black arrows, indicating a
sequential, theoretically sound, and smooth process.
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Fig. 3.7: The addition of the sequence block to the framework with exemplary process flows.

Similar to the user journey presented in Section 2.1.1, designers first need to determine the
joining technology. From that, they can derive the geometry, after which they attach PMI to the
objects. Each of these prediction steps has a commonalization counterpart. Joining technology
commonalization reduces the variety in joining processes. Joining location commonalization
aligns the geometric variance of joining locations. To commonalize the joining parameters,
the same methodologies can be used as for joining technology commonalization due to the
similarity in the design problems. Furthermore, the commonalization of joints unifies them by
adding joining elements from other product variants. Lastly, the modularization step contains
module grouping, which creates joining modules.

However, as the black arrows in Fig. 3.7 indicate, designers do not have to perform
commonalization approaches after all predictions. For example, in early product design,
designers may choose to unify joining technologies before predicting joining locations. This
sequence would prevent the creation of many joining locations that potentially need to be
removed as the technology would change due to unification. The blue arrows in Fig. 3.7
visualize these other sequences with higher probability.

In another example of performing nonsequential steps, after designing a few product
variants for a large product family, modularization practices may not be relevant. The modules
might require changes due to the continual development of product variants. Moreover,
modular approaches are often impractical. For example, the (outsourced) designers may not
have access to that information [8]. Hence, the sequential design of product variants in
evolving product platforms may require modular approaches to strategic moments in
development [135]. These strategic moments may also apply to commonalization approaches.
For example, unifying the technologies after every prediction may theoretically create a
unitechnology product.

3.1.5 Discussion

Joining element design is an integrative task; for example, it should also consider component
design. Product development is a creative process. Not all processes in product design
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co-occur or flow in perfect succession. Company strategies, such as outsourcing and work
compartmentalization, may cause unnecessary design iterations and variants. As seen in the
state of the art, methodologies do not always rely perfectly and synchronously on one another.
Hence, the starting point may not always be joining technology. Referring back to the
W-model of Kaspar et al. [43], joint section design is an intermediary state in component-level
design that integrates material and technology selection (Fig. 2.4). Joint section design is a
subsystem-level design methodology. It requires the simultaneous, integral design of
components and joints. However, VICTOR focuses specifically on the design of joining
elements, but this does not mean that the methodology conflicts with state-of-the-art beliefs:

• None of the joining element or assembly design methodologies consider product variety
in the authoring of joining elements – not in technology, locations, nor parameters.
Methodologies that, for example, determine an optimal joining technology are often
multicriteria decision-making methods that do not consider uncertainty or varying
characteristics of different components.

• Methodologies do not consider joining elements on the same hierarchical level as
components, resulting in a skewed dependency. Joining elements are designed
afterwards and are dependent on product design, although assembly account for
approximately 50% of the production costs. The joining elements are derivatives of
joined components when thinking purely in terms of subsystems and subassemblies.
This thinking causes problems for selection algorithms due to a lack of consideration of
the whole. Various product documentation methods have already highlighted the
significance of adequately documenting joining elements in a network instead of
hierarchical structures (e.g., [31, 33]).

• The prediction of joining elements after component design does not ignore the integral
component in joint section design. Functional requirements can already incorporate
assembly considerations in early design phases. Moreover, some topology optimization
methodologies integrate component and joining element design (e.g., [46]).
Furthermore, automating joining element design shortens the time of design iterations.
For example, ML predictions are almost instant. As a result, designers can have head
starts for new product variants and directly start collaborating with other stakeholders.
This increased speed of design supports the rapid evaluation of design choices for both
assembly and component design.

After presenting the framework for automating joining element design, the following
section evaluates AI fields on their applicability for solving each design problem.

3.2 Applicability of artificial intelligence fields

Based on the literature review, benchmark methodologies for every design problem in VICTOR
(Fig. 3.7) are mapped in the structure block. The methodologies are clustered according to
the main techniques they use, as illustrated in Fig. 3.8. The figure builds upon Fig. 3.7. It
positions design problems the same as it does for sequencing. The main difference is that Fig.
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3.8 depicts a wide range of approaches that solve each design problem. Each approach may
concern one or more AI fields (listed in Section 2.3). They also all involve an evaluation of
their appropriateness for the task. The structure block is the evolution of the automated design
processes initially published by Eggink et al. [2]. Fig. 3.8 presents applicable approaches for
each AI field for each design problem and distinguishes the methodologies from state of the art
and VICTOR.

Fig. 3.8: The applicability of artificial intelligence for predicting joining elements. The image is an extension of the
structure block in the framework shown in Fig. 3.7. It visualizes the state of the art and proposes new methodologies
from VICTOR; adapted from Eggink et al. [2].

The four main AI fields in the manufacturing industry (RBR in red, CBR in orange, S&O
in purple, and ML variants in shades of green) indicate for each approach the type of technique
used to solve a design problem. This section explains the novel approaches in more detail
and briefly addresses the benchmarks. The evaluation and grading of approaches follows from
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their ability to solve the joining element design problems from Fig. 3.7. They also address the
discussions in the state-of-the-art chapter (Chapter 2). The appropriateness of new techniques
was determined through the literature (e.g., [2, 29]), experimental results, and discussions with
experts.

Fig. 3.8 also visualizes the heavily researched domain of process and material selection
with the many different approaches. Joining location design also focuses on topology
optimization or similar methodologies. However, the commonalization of product families has
received little attention, and modularization approaches increasingly focus on matrix-based
methodologies and heuristics to derive modules. The following sections discuss the novel
approaches for joining technology and location prediction, commonalization, and
modularization in more detail.

This study defined joining scenarios (JSs) as the information that describes a joint using
geometries, PMI, product architecture, and assembly information [2]. A joining scenario
describes the physical and systemic environment, requirements, and components for the
design of joining elements.

The following subsections address the individual steps in the framework. They elaborate on
the evaluation of the applicability of each AI field from Fig. 3.8. For readability, each subsection
has a figure that is excerpt taken from Fig. 3.8. Additionally, the steps indicate opportunities
for new AI fields to solve these design problems.

3.2.1 Joining technology selection

Fig. 3.9 is an excerpt from Fig. 3.8 that indicates that the selection of joining technologies has
many different approaches.

Fig. 3.9: The applicability of artificial intelligence for predicting the joining technology. The image is an excerpt
from Fig. 3.8.

Multidisciplinary optimization includes methodologies (e.g., [108, 109]) that used
heuristics with a genetic algorithm. Hence, S&O approaches can solve this problem well.
However, they rely on consistent data, development effort, and designer inputs, and neglect
product variety. Moreover, RBR can screen for feasible technologies. However, it requires
extensive development and maintenance effort, mainly due to the vast solution space and
many distinct joining scenarios. Furthermore, liaison-based methodologies include the CBR
approach of Das and Swain [40] and the ontology approach of Chaimae et al. [165].

Selection is a classification task and can be solved using SML. However, it is crucial to
consider the quality and completeness of available training data. Joining scenarios become
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more detailed as a product matures. Hence, over time, the predictions of models will become
more accurate. SML considers historic design decisions implicitly, which is an advantage of
an inductive approach over a deductive one. The complexity of use cases prevents human-
engineered deductive rule-based approaches. Moreover, the complexity requires data-driven
approaches to automatically find correlations in data [399]. Furthermore, JTS for high-variety
industries with continuous development does not necessarily require a true optimal result for
individual scenarios. Steps that include commonalization and modularization techniques will
remove unnecessary variability from multiple predictions on multiple joining scenarios to reach
a global optimum.

3.2.2 Joining location prediction

The structure block reveals that current literature provides two main approaches for creating
joining locations (Fig. 3.10): RBR (e.g., [50]) and topology optimization-based design (S&O;
e.g., [18, 46]).

Fig. 3.10: The applicability of artificial intelligence for predicting joining locations. The image is an excerpt from
Fig. 3.8.

Joining locations derive partly from joining technologies. The technologies set
requirements for component geometry, such as a minimum CR size (flange overlap) for
enabling resistance spot welding [115]. Thus, technologies create boundary conditions for the
prediction of joining locations. Examples include whether to predict coordinates for
curve-based technologies such as clinching and riveting, or a set of coordinates for
curve-based technologies such as adhesive bonding and laser beam welding.

Joining location prediction requires knowledge of the technology to create the proper
output format, for creating either a set of individual coordinates that all represent individual
joining elements or sets of coordinates that represent curved joining elements. In any case,
individual methods may use different types of data formatting to represent these coordinates
through, for example, the use of images (e.g., Section 3.3.3), voxels (e.g., Section 3.3.2), or
points (e.g., Section 3.3.1). However, these types of data formatting require the reconstruction
of Cartesian coordinates.

Three AI techniques can assist in predicting joining locations on different levels of
cognitive automation and draw inspiration from manual design processes (see Section 2.1.1).
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First, algorithmic fitting is the automation of the designer’s variables to set rule-based joining
locations using use-cases (CBR) or history (SML). Second, grid-based drawing discusses a
fully SML approach that represents the visual aspect of analyzing geometry through
experience. Lastly, inexhaustible simulation uses RL to mimic the infamous trial-and-error
approach of designers and obtains joining design knowledge through many numerical
simulations.

The following section, Section 3.3, presents specific methodologies for algorithmic fitting
(Section 3.3.1) and SML (Section 3.3.2 and 3.3.3). The present section continues by
discussing and evaluating the properties, advantages, and disadvantages of using various AI
fields to predict joining locations. Addressing the approaches in detail will assist in imagining
the benefits of the new AI techniques:

• Algorithmic fitting
This approach utilizes human knowledge and engineers it into algorithms. The idea is
that sets of joining locations or joining-related features get reused without detailed
consideration of geometry, function, or structural performance. Hence, algorithmic
fitting may use different and straightforward AI techniques to predict joining locations.
Fig. 3.11 depicts several algorithmic fitting techniques. Each technique is briefly
addressed as follows:

– Joining feature prediction
First, algorithmic fitting may utilize SML to predict relevant features and positions
on CRs; see Fig. 3.11. The features may be a combination of the number and
distance of joining locations. Predicting such joining features can support other
algorithms in creating joining locations. For example, by using the number of
joining locations, an algorithm could distribute them on a CR according to a
specified rule set or optimization objective.
Moreover, the prediction of the number of joining elements correlates with the
structural performance. As mentioned in Section 2.1, static pull and push forces in
particular are directly related to the number of joining elements. For readability,
the length of curved joining elements is also referred to as the number of joining
elements hereinafter. This is because higher numbers of joining elements tend to
be placed on larger components that are required to handle greater forces.
Pillai et al. [105] demonstrated that NNs can predict mutual distances between
spot welds. Combining their results with the parametric RBR methodology of
Pakalapati et al. [176] creates a method for automatically predicting joining
locations on centerlines of CRs that consider successful designs.
Interestingly, predicting the mutual distance or number of joining locations is an
equivalent task in cases where the prediction model considers the CR. Equally
distributing a number of joining locations within a given space is similar to
determining how many joining locations with a given mutual distance would fit in
the same space. However, it is equivalent to point-based joining locations. For
curve-based joining locations, it is more interesting to predict the length as a
substitute for the number of discrete joining locations.
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Fig. 3.11: Overview of algorithmic fitting approaches.

– Joining location distribution

Joining elements populate CRs and are bounded by manufacturability
requirements, such as mutual joining element and edge distances. Joining location
distribution takes predicted joining features, such as five spot welds, and places
them in CRs. Where the joining locations end up depends on the distributing
algorithm. For example, the algorithm might use joining locations from databases
or aim to maximize mutual distances.

IInterestingly, optimizing for mutual distance or edge distance influences does not
necessarily optimize for structural performance, although the algorithms may have
an incentive to move joining elements out of the center (e.g., see Fig. 2.3). Still,
stresses induced by bending, torsion, or buckling benefit from joining locations
positioned specifically outside of CRs. The algorithm might need additional terms
to push joining locations further outward.

Defining the boundary conditions to limit the solution space is a typical problem
for RBR (e.g., [28, 50]). The number of joining locations depends on the
performance requirements of joints and firmly on component design [43],
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implicitly considering function, loads, and structural performance [188].
Prediction of the number of joining elements enables, for example, an RBR
algorithm to distribute joining locations equally on guidelines. In genetic and
evolutionary algorithms, S&O entails iterative processes that can create locations
within the boundary of the CR. Similar problems include evolutionary land-use
optimization algorithms that can distribute points and regions in geometry (e.g.,
[272, 273]). The implementation of this approach using an evolutionary algorithm
is described in Section 3.3.1.

– Joining module prediction
In addition, joining modules can consider modularization results directly. Joining
modules can be imagined as the positioning of LEGO® blocks on surfaces. For
example, a joining module may contain three spot welds or two laser beam welds
picked and placed on a CR. An algorithm would retrieve joining modules from a
database and attempt to placing them on CRs. Applicable joining modules may also
be selected by filtering with joining features.
Reusing joining modules reduces complexity and prevents unnecessary
development effort [81]. The modules can prevent redundant and ambiguous
joining element development. For example, reusing joining modules prevents the
design of new joining elements for other products, versions, or variants. The
selection of joining modules is a task for all AI fields, including RBR, CBR, SML,
and S&O. SML can predict specific modules or features of models to use as the
foundation for fitting joining elements. RBR would require high development
effort due to many variations and use cases. It can increase design complexity and
negate the advantages of automation. The approach requires the explicit
programming of all use cases, exceptions, and particularities that, through
changing environments, require constant updating.

– Knowledge-based prediction
Furthermore, CBR requires a large development effort. It also requires knowledge
representations of joining scenarios that are coherent and complete. These are
common structured vocabularies (i.e., ontologies) that define a fixed format for
information of joining scenarios. Knowledge representations structure joining
information, which then enables one to find relations between them. These
relationships (e.g., similarities) enable the retrieval of similar use cases. CBR can
then apply the designs of similar use cases to new design problems.
However, CBR also needs to retrieve the geometries of components. Shape retrieval
concerns similarities between components [400]. However, they may be difficult
to manage in large databases, where, for example, small features can be crucial
for distinguishing shapes. CBR with feature recognition would require additional
development effort. S&O algorithms can evaluate various module combinations
and position them accordingly.
The prediction of joining features or modules contains the solution space and
leaves much control in the hands of designers. The approach is transparent, so
designers can comprehend the model’s decisions. Furthermore, models train and
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predict rapidly, thereby limiting the required developmental effort. However,
optimal designs are not possible due to the fitting of predictions and the limited
design freedom of algorithms.

• Grid-based drawing

The second approach directly uses geometry to predict joining locations instead of
intermediate features that require positioning. This approach, namely grid-based
drawing, refers to the data representation and the task that the models attempt to
perform. The term “drawing” comes from the cells in the grid, which the NNs need to
“color.” That is, the models need to draw joining locations on a given sample. The term
“grid-based” refers to the required discretized data formatting for NNs. Euclidean data
representations enable consistent mappings between input and target samples,
regardless of whether 2D or 3D data are used. Implementing NNs to draw joining
locations is an SML technique. The successful use of SML for similar structural design
tasks was demonstrated by Banga et al. [103]. They successfully implement voxels and
a CNN to optimize 3D topologies. Fig. 3.12 depicts an overview of grid-based drawing
approaches using the example of image segmentation and probability estimation.

Fig. 3.12: Overview of grid-based drawing approaches.

The grid-based drawing approach relies on patterns in successful joining designs.
Similar to algorithmic fitting, it has no objective to generate designs with high structural
performance. The approach merely bases its predictions on designs that originate from
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similar input data. This reliance enables the implicit consideration of structural
performance. The data samples contain these considerations. Hence, an assumption
exists that the prediction model extracts this knowledge from the data samples in
training and applies them in new designs.

SML has two learning tasks, namely classification and regression. A typical
classification task is image segmentation. Image processing uses segmentation to
extract meaningful information by predicting sets of pixels [289], for example, to
extract a road, sky, or forest from an image. Similarly, a model could segment shapes, as
Wang and Lu [401] illustrated. A segmentation task can identify geometrical areas to
classify regions of geometry as joining locations. Moreover, Nibali et al. [402]
illustrated a regression approach to indicate points of interest in images. Typically, these
points are at the centerlines of CRs. Similarly, a regression task can indicate joining
locations by increasing probabilities. The model creates a heat map with increased
values at locations with a high chance of joining locations. Moreover, Choi et al. [331]
demonstrated a UML approach for applying the information of one image to others.
Models can learn patterns of joining element designs and apply them to unseen joining
scenarios to create new designs. Oh et al. [106] applied this concept to design new
vehicle rims. GANs could use the same data formatting but a different training setup to
perform predictions.

Euclidean data only describe geometry, but joining elements also include other
technological information and joining parameters. A pure geometrical concept
overlooks important supplementary information, such as PMI. This SML approach
requires additional processes to include this information. UML can create feature
clusters to add nongeometric data to datasets, as seen in the studies of Pelka et al. [376],
Soltaninejad et al. [378], and Sindagi et al. [373]. Such methods are not
nondeterministic and incomplete, but their results are generic as long training data
cover new joining scenarios.

Furthermore, 2D and 3D Euclidean data representations have the advantage of
transformable architectures of benchmark computer vision methodologies.
Shape-descriptor approaches are not applicable as their geometric abstraction prevents
the reconstruction of joining location coordinates, such as moments of inertia, Zernike
moments, or other feature-based properties [403]. The loss of geometrical cohesion in
encoded input samples prevents the construction of joining locations directly.

The SML approach also has complex models that need to understand the concept of
geometry and its influence on joining locations. This approach potentially creates more
accurate predictions due to the increased information, but at the cost of higher
development effort and model complexity. The implementation of grid-based drawing
using an EncDec architecture and a GAN are described in Sections 3.3.2 and 3.3.3,
respectively.

• Inexhaustible simulation
A simulation environment enables one to freely try joining location distributions and to
measure their performance. By inexhaustibly trying many distributions, the chance of
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achieving a good result increases. RL is an AI field that can learn the relation between
the joining location distributions and their performance. Fig. 3.13 visualizes a simulated
version of this trial-and-error approach.

Fig. 3.13: Overview of inexhaustible simulation.

RL first creates a joining element distribution and puts it into an environment (e.g., a
finite-element model). Then, an adversary (RBR) evaluates the design by performing
FEA with predefined load cases. The results of the FEA reward the model for its action.
Hence, good distributions will provide greater rewards. This feedback loop enables the
model to learn the relationship between joining distributions and performance. By
learning on many different product variants and load cases, the model can generalize
joining element design.

FEA simulates various individual performance metrics. Theoretically, RL models can
learn these simulations [404]. FEA is evaluated, for example, as seen in binary and size
optimization methodologies. The results aggregate into a reward for the RL. The reward
function explains the model’s performance, enabling it to learn. Better joining locations
comply more with performance requirements, and therefore, return greater rewards for
the RL model. Nevertheless, both RL and FEA have very high computational costs as
many FEAs must be run to enable learning. Furthermore, considerable development
effort is required for meshing, modeling, and simulation.

RL is most similar to designers’ learning and can generalize the results for product
variants and load cases. It is the only approach that may become more effective than
human capability and beat the Bayes error [284]. However, this is at the cost of
enormous computational resources. Furthermore, to achieve a global optimum design,
all factory and working processes require digital twins. Digital twins are virtual models
that describe and are linked to real-world products [405]. Hence, they can enable one to
perform simulations and optimize designs accordingly.
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3.2.3 Joining parameter selection

The joining parameters include dimensions and supplementary information of joining
elements, such as length, diameter, type of object, or additive material. These parameters are
standardized to optimize manufacturing according to DFMA considerations. Joining
parameter selection is a similar problem to JTS and can use the same methodologies. Fig. 3.14
is an excerpt from Fig. 3.8 presenting applicable AI techniques for predicting joining
parameters.

Fig. 3.14: The applicability of artificial intelligence for predicting joining parameters. The image is an excerpt from
Fig. 3.8.

Joining parameter prediction is a classification task that suits SML. However, developing
separate SML models for each technology’s joining parameters is an exhaustive and ambiguous
task [1]. Some exotic technologies may occur a few times in products but with very different
parameters. Others, such as spot welding, are bread-and-butter technologies in, for example,
the automobile industry [25]. One SML model created for all technologies would be more
difficult to train through addressing specialist technologies.

Moreover, joining parameters and their locations are intertwined. Parameters influence
performance in both design and production. Joining parameters have discrete and overseeable
solution spaces. Due to their high degree of standardization, RBR and CBR are viable
approaches. Furthermore, S&O can find an optimal set of parameters [168], but it maximizes
some objective functions and may consequently favor exotic parameters. Such results would
increase the variety in parameters with possible negative effects. Geda et al. [109] optimized
technology and parameters simultaneously, thus reducing the need to create separate models
but ignoring geometric boundary conditions.

3.2.4 Joining technology and parameter commonalization

To reduce product complexity, it is necessary to reuse joining elements over multiple product
variants. Product variants often share components using product platforms, which is a
transferable concept to joining elements. Commonalization redesigns joining elements to
reduce their total variety. Hence, these joining elements need to be managed as components.
Although, commonalization can apply to various levels in the product variety hierarchy (Fig.
2.9). With respect to joining elements, the framework identifies four commonalization design
problems; the three joining aspects (technology, locations, and parameters) as well as joints
themselves. This subsection addresses commonalizing joining technologies and parameters,
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as visualized in Fig. 3.15.

Fig. 3.15: The applicability of artificial intelligence for commonalizing joining technologies. The image is an
excerpt from Fig. 3.8.

This can reduce variability in manufacturing, practically automating the standardization
guidelines of DFA. Here, RBR is a typical AI field for managing and controlling selection. Its
effectiveness by was proven AlGeddawy et al. [85]. Other fields are less appropriate as RBR
provides stability to the product architecture through its determinism, and deductive character
[101, 237]. Rules can define actions or conclusions for simple IF-conditions, as Ukala and
Sunmola [237] proposed. For example, IF there are rivets of different diameters, AND there
is a sufficient area for replacing small-diameter rivets with larger ones, then DO recommend
using larger rivets for all holes [237]. This approach is further addressed and detailed in Section
3.3.6.

3.2.5 Joining location commonalization

Joining locations describe continuous geometry, in contrast, to discrete classifications for
joining technologies. Regardless of interchangeable components, local geometry remains the
same for joining locations, which enables their reuse. However, predictions may have small
perturbations in locations. As depicted in Fig. 3.16, clustering (UML) the joining locations of
individual variants creates shared locations and reduces geometric variability.

Fig. 3.16: The applicability of artificial intelligence for reducing variability in joining locations. The image is an
excerpt from Fig. 3.8.

Cluster algorithms can consider constraints (e.g., [406]) to comply with manufacturability
requirements. This approach is further addressed and detailed in Section 3.3.7. Furthermore,
S&O and RBR are appropriate to lesser degrees and require unnecessarily high development
effort to consider all use cases.

3.2.6 Commonalization of joints

The state of the art provides multiple applicable approaches for the commonalization of
joining elements; however, they were not designed specifically for this design problem. Fig.
3.17 presents the applicable AI techniques for commonalizing joints.
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Fig. 3.17: The applicability of artificial intelligence to reduce variety in entire joints. The image is an excerpt of
Fig. 3.8.

RBR typically reduces the differences in designs between two product variants of similar
parts. It requires the joints to be viewed as individual modules. Condition-based approaches
(e.g., [237]) can reduce process variety on each joint, similar to joining technology and
parameter commonalization. This variety reduction includes taking over the joining elements
of one joint and using them for others. However, a mere condition-based methodology would
require much developmental effort to create the RBR algorithm and might not be able to cope
with the required complexity. The task requires a more holistic view toward other product
variants to adapt adequately.

Moreover, a UML with RBR approach searches functional overlap between product
variants [85]. Joining elements also require the physical domain and explicit consideration in
determining relationships between components. This approach is further addressed and
detailed in Section 3.3.8. Furthermore, S&O approaches are also viable through using a tree
network optimization [86], but they are a rather cumbersome methodology for this relatively
simple task.

3.2.7 Joining module creation

The last design problem in the framework creates subassemblies and modules to manage
product variety. Modularization is a trade-off between larger cost-saving modules and smaller
flexible modules. Defining joining elements as components within modules enables them to
be standardized, but potentially at the cost of commonality and DFA [87]. Fig. 3.18) presents
applicable AI techniques for creating joining modules.

Fig. 3.18: The applicability of artificial intelligence for creating joining modules. The image is an excerpt from Fig.
3.8.

S&O algorithms can balance these requirements and evaluate every candidate module.
This approach is further addressed and detailed in Section 3.3.9. RBR is feasible and its
applicability has been demonstrated in the state of the art (e.g., [75]) despite high development
and maintenance effort; however, due to its deterministic nature, it can stabilize results. UML
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could work as well; however, it requires many constraints and its results lack transparency.
Additionally, UML has not been implemented in modularization.

The previous section evaluated AI fields for their ability to solve the design problems in the
VICTOR framework. Based on the evaluation and promising AI fields, the following section
presents new AI methodologies for automating joining element design.

3.3 Novel AI methodologies for automating joining element design

This section presents new methodologies to fill the current research gaps. These include new
methodologies for adding to the structure block of the framework (Section 3.1.3).
Furthermore, they include methods derived from the identification of unused AI fields for
various design problems (discussed in Section 3.2). The first four subsections concern the
prediction of joining locations, which is the most challenging task (compared with the other
joining aspects) to perform with ML. This section presents methodologies that implement an
evolutionary algorithm (Section 3.3.1), SML (Section 3.3.2), and GANs (Section 3.3.3). Then,
Section 3.3.4 presents an approach for evaluating predictions of joining locations. After
presenting new joining location prediction methodologies, this section continues with five
subsections that regard the modular design for joining elements. Firstly, Section 3.3.5 presents
an overview of novel modular design methodologies for joining elements as well as discusses
the required preprocessing considerations. Then, Sections 3.3.6, 3.3.7, and 3.3.8 present
methodologies for commonalizing joining technologies and parameters, locations, as well as
entire joints, respectively. Lastly, Section 3.4 discusses the modularization of joining
elements.

3.3.1 Joining location prediction using randomized optimization

This methodology is based on the algorithmic fitting approaches presented in Section 3.2.2.
Specifically, it implements an evolutionary algorithm. Algorithmic fitting distributes a number
of joining elements evenly over a CR. This blunt geometrical distribution approach neglects
requirements of the product as a whole; however, an even distribution generally creates a
strong static performance of spot welds on normal directions. Furthermore, standardized
mutual distances of joining locations support commonalization as the designs are not specific
to particular product variants. It is a simple approach for benchmarking complex prediction
methodologies. Additionally, it may make designers’ involvement in creating guidelines for
RBR approaches obsolete. The approach requires the number of joining elements, implying
their technology, as the input. This number determines the complexity of the distribution and
may originate from designers, but also from prediction algorithms using any field of AI.
Gerlach [407] implemented and prototyped this algorithmic fitting approach. The approach
assumes that the optimal distribution of joining locations implies maximizing the mutual
distances and edge distances, as illustrated in Fig. 3.19.

This enables one to define a function that sums the distances of all joining locations to the
nearest other joining location snn and nearest edge se; see Eq. 3.1, where nje is the number
of joining locations. Fig. 3.20 visualizes an example to calculate the objective function of a
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Fig. 3.19: An exemplary visualization of an optimization process for distributing joining locations.

sample image.

Fig. 3.20: An example of calculating the objective function Ld.

Using the variables depicted in Fig. 3.20, Eq. 3.2 presents the Euclidean implementation for
distance measurements. The coordinates pex and pey describe the closest edge point to joining
location jl; the coordinates px and py describe the i-th joining location; and lastly, pnnx and
pnny are the coordinates of the closest (nearest neighbor) joining location pnn. All coordinates
are real numbers: pex, pey, px, py, pnnx, pnny ∈ R. Weights for edge ws

e and nearest neighbors
ws
nn enable the contribution of each term to be tuned.

Ld =

nje∑
i=0

(
ws
esei + ws

nnsnni

)
(3.1)

Ld =

nje∑
i=0

(
ws
e

√
(px − pex)

2 + (py − pey)
2 + ws

nn

√
(px − pnnx)

2 + (py − pnny)
2

)
(3.2)
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Reaching the global maximum Ld implies that locations are the furthest from other points
and edges for a given sample. Hence, the algorithm converges and theoretically outputs an even
distribution. The distance function is similar to those defined in land-use optimization problems
by Mohammadi et al. [272] and Schwaab et al. [273].

Suppakitpaisarn et al. [408] used a gradient-based optimization methodology. However,
Gerlach [407] demonstrated that the distance-based function of Eq. 3.1 is not differentiable.
The change of distance values jumps when a point is reassigned from one closest point to
another. The change rate of distances is not continuous; hence, the function is not
differentiable, preventing a conventional gradient-based optimization. Gerlach [407] proposed
a basic evolutionary algorithm that makes iteratively random pixel-wise steps of joining
locations and evaluates whether Ld increases. An optimization of Ld makes the algorithm use
the new solution for the next iteration. In case the values did not increase, the algorithm uses
the old solution. Hence, the methodology rewards successful generations with further
optimization and removes unsuccessful ones, equivalent to evolution in nature.

Table 4.5 presents the evolutionary algorithm for point-based joining elements. It also
includes the properties of RI of locations and learning rate decay, which are defined as
follows:

• Uniform RI on the CR enables the joining locations to initialize relatively close to the
target joining locations without considering the input geometry, especially compared
with the initialization of all locations in the middle of the CR. Gerlach demonstrated that
the initialization of locations in the center of CRs leads to slow optimization progress
[407].

• A high learning rate (using large steps) boosts the first set of iterations to take larger
steps, thus increasing the objective value more rapidly. However, this is at the cost of
overshooting, as the algorithm may position new points outside of the CR. Lower
learning rates enable little tweaks to locations in the latter optimization iterations.
Learning rate decay slowly reduces the step size. After a specified number of iterations,
the learning rate will drop by, for example, half its previous value.

An exemplary process for distributing joining locations using randomized optimization is
depicted in Fig. 3.21. The following list elaborates each step:

1. One starts with a dataset that contains input and target samples with 2D snapshots of
CRs and spot welds. The process first retrieves the number of spot welds from the target
image, so the algorithm knows how many spot welds it needs to distribute.

2. The target samples are only of use during evaluation. The input samples continue into
the prediction process.

3. RI creates random points on the CRs. The initial objective value is calculated using Eq.
3.1 and the weights of the specific model.

4. The joining locations and objective value are stored as an intermediate result. This
storage helps to calculate whether the following iteration improves.
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Fig. 3.21: A flowchart that visualizes the process of randomized joining location distribution.

5. As long as the total number of iterations is not reached, the algorithm moves each joining
location independently in a direction (up, down, left, or right) with a step size equal to
the learning rate. The step size depends on the number of passed iterations.

6. The new objective value of the new locations is calculated.

7. Once the new objective value is better than the temporal one, the algorithm uses the new
joining locations and the objective value for the next iteration. If the new locations create
a worse objective value, the algorithm uses the old locations and objective value for the
next iteration.

8. Once the total number of iterations is reached, the algorithm creates the final output
images. The evaluation step compares the predicted images with the target images to
determine the performance.

The complexity of the problem scales exponentially. Every joining location has nine
potential new locations after the iteration, one for every adjacent grid cell plus the original
cell. Hence, every iteration the algorithm for five joining locations randomly picks one of
59 = 1.953.125 possible solutions. The movement of one joining location creates a more
effective solution for many distributions. Simultaneously, other joining locations may reduce
the objective function, cutting out the one better joining location. This effect causes CRs to
have many joining locations, which may significantly slow the optimization process. This
breaking effect leads to more iterations for larger problems. Additionally, it requires the
joining locations on the outside to first move to create room in the middle for redistribution.

The algorithm can only include manufacturability requirements at the end of optimization.
RI and optimization may include many invalid solutions. These non-manufacturable joining
locations may be necessary for achieving more effective solutions. Including a
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manufacturability check during optimization could prevent the creation of any new solutions
at all. Hence, one check at the end of optimization would either result in a correct result or a
requirement to restart the distribution of joining locations on that CR. Compliance to, for
example, the edge distance can also be considered at the start of the algorithm by offsetting
the outline of the CR by the minimum edge distance.

Curves require additional constraints for optimization. Discretized curves through points
quickly have too many points for the evolutionary algorithm due to its scaling complexity. The
discretization of corner and edge points reduces the calculation load tremendously. Constraints
enable one to move the points simultaneously, for example, to respect the length of each curve.
The algorithmic fitting of curves is performed on the edge points, although for nonstraight
lines, curves need middle points.

Instead of using an evolutionary algorithm, the following subsection presents a
methodology that implements SML to predict joining locations.

3.3.2 Joining location prediction using encoder-decoder architectures

This section addresses concepts that implement SML. One approach was presented in Section
3.2.2, namely grid-based drawing. This section also presents both a segmentation and
regression approach for predicting joining locations. Next, it discusses data formatting and
computational cost requirements as well as the similarity of the model between 2D and 3D
data representations. Lastly, it presents a methodology for implementing multimodality into
the models.

The most critical aspect for data representations of geometry for predicting joining
locations using ML is the reconstruction of coordinates, which is explained in more detail in
subsection 3.3.4.1. The discrete output of an ML model must be transformed into a
continuous coordinate system. Unstructured 3D representations may create different data
samples for the same joining scenario as the techniques include randomness. Then, input data
mapping becomes inconsistent with the fixed inputs of a model. For example, point clouds are
inconsistent when the same 3D surface is sampled multiple times. The SML approach uses
Euclidean structures to model data, which enables joining locations to be reconstructed from
Cartesian coordinates.

The postprocessing of a model’s output forms the joining locations. The model requires an
EncDec architecture to limit the computational cost and construct joining locations. An
autoencoder only aims to reconstruct the input from an information-dense latent vector.
However, it can generate data in the decoder by using different targets, as the autoencoder
typically does. Then, the latent space will contain the essential information of an input, from
which the decoder reconstructs coordinates. EncDec architectures have been implemented not
only in SML models for segmentation tasks (e.g., [409–411]) but also in coordinate regression
(e.g., [402]). The underlying idea is to provide the model with a semantic understanding of the
joining scenarios by giving geometry as the input and both geometry and joining locations as
the output. Hence, the encoder creates a latent vector of the input data, and the decoder takes
this and reconstructs the input together with joining locations.

The SML concepts in the following subsections were theorized by Eggink et al. [2],
detailed by Perez-Ramirez [412], and subsequently published by Eggink et al. [3]. Both the
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classification and regression concepts theoretically work regardless of Euclidean data
representations. The concepts define pixels or voxels as grid cells and images or voxel-grids
as grids. Moreover, the concepts use both a width W and height H dimension, and the
volumetric implementation includes a depth D dimension. The equations include all three
dimensions for completeness and readability. After the voxel concept, the subsection
discusses concept specifications for the multiview approaches.

x(i) ∈ RWx×Hx×Dx , ∀{x(i)}n0 ; y(i), ŷ(i) ∈ RWy×Hy×Dy , ∀{y(i)}n0 (3.3)

The generalized matrix x(i) represents the formatted input geometry (Eq. 3.3) for the data
sample (i) and similarly for the target y(i) and prediction ŷ(i) (Eq. 3.3). The input, target, and
prediction grids depend on the geometry’s level of detail and sizes. The resolution r expresses
the size of each grid cell (i.e., in mm/pixel or mm/voxel). The dimensions of geometry
must consider thickness. For example, the minimum mutual joining distance for spot welding
on steel sheets is 20 mm [115]. This would force a maximum cell size of 10 mm to prevent
sampling issues considering the Nyquist–Shannon sampling frequency requirement [413]. The
grid sizes W , H , and D depend on the size of the geometry in the data samples.

The following sub-subsections give structure to the presentation of the methodology for
predicting joining locations using EncDec architectures. Firstly, they present concepts for
classification and regression in sub-subsections 3.3.2.1 and 3.3.2.2, respectively. Then,
sub-subsection 3.3.2.3 discusses the formatting of data samples, which require filtering to
remove similar data samples, as sub-subsection 3.3.2.4 addresses. Furthermore,
sub-subsection 3.3.2.5 argues that 2D and 3D approaches using this methodology are
equivalent to one another. Lastly, sub-subsection 3.3.2.6 presents the implementation of PMI
into geometric data samples using a branding approach.

3.3.2.1 Segmentation concept

Segmentation is a multiclass classification approach and aims to classify grid cells that belong
to joining locations. It uses the number of geometry occurrences in each grid cell to distinguish
between classes. The following list presents the four classes of geometry occurrences:

• Class 0 describes empty voxels that represent the absence of geometry;

• Class 1 represents the geometry of a component;

• Class 2 describes CRs as two components that coincide in the same grid cell counting
two geometry occurrences;

• Class 3 represents joining locations as they add a third geometry into the same grid cell.

The definition of the four classes enables to determine a data formatting concept. Fig. 3.22
presents exemplary data formatting for the segmentation concept.

It depicts a joining scenario with two components and joining elements. Each grid cell gets
the class for the number of geometries with which it coincides. The figure provides examples of
input and target grids for a volumetric and image-based approach. The model needs to segment
class 3 from the input grids. Target grids are one-hot encoded along with the classes. One-hot
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Fig. 3.22: Visualization of data formatting for segmentation concepts. The top of the image depicts a joining
scenario where two CAD components are spot welded at top and bottom flanges. Each case encodes classes
according to the number of geometries that occupy a voxel. The bottom part of the image presents representations
of input and target grids.

encoding discriminates one from others over groups of bits [275]. Each group has one positive
bit (≡ 1) and the rest are zero (≡ 0). Each bit represents one label. Thus, each grid cell in the
target has four binary values, one for every class.

Lseg =

W∑ H∑ D∑ C∑
αcyw,h,d,c ln ŷw,h,d,c (3.4)

The loss function Lseg is the sum of all grid cell-wise weighted cross-entropy losses across
dimensions W , D, and H as well as classes C. Equation 3.4 expresses the loss function for one
data sample, where ŷw,h,d,k is the prediction of grid cell position w, d, h for class c and yw,h,d,k

is its target value. A normalized factor ac weighs grid cell classifications for class c ∈ 0, 1, 2, 3
with a0 < a1 < a2 < a3. Weights ac consider the occurrence and priority of classes over the
entire dataset; see Eq. 3.5.

Skewed class distributions reduce the ability to identify minority classes, yet class 3 grid
cells are most crucial to predict correctly. Weighing is vital for ensuring that the loss of
nonrelevant regions (i.e., class 0 or 1) has a lower impact on the learning than highly relevant
joining regions (i.e., class 2 or 3); see Eq. 3.5, where nM is the total number of data samples,
and nc,i represents the number of voxels with class c for data sample i. Furthermore, a scaling
factor βc enables the arbitrary tuning of each class c. Additionally, the weighting could suffice
by taking the inverse class frequency [414].
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a0 =
β0
nM

nM∑ n0∑
c∈C nc,i

∀c ∈ {0} (3.5)

ac =
βc
nM

nM∑ nc,i

n1,i + n2,i + n3,i
∀c ∈ {1, 2, 3} (3.6)

3.3.2.2 Regression concept

The probability mapping concept implements a grid cell-wise regression task instead of
classification. Each grid cell has one continuous value in the range of [0, 1]. A cell with zero
probability represents empty space, whereas a 100% probability value represents joining
locations. One component geometry (class 1) has very low probabilities, whereas
two-component geometry (CRs, class 2) assigns probabilities depending on distances to
joining locations using a distance dependency function [415]; see Eq. 3.11. Fig. 3.22 presents
exemplary data formatting for the regression concept.

Fig. 3.23: Visualization of data formatting for regression concepts. The top of the image presents a joining scenario
where two CAD components are spot welded at top and bottom flanges. The colors indicate the probability of a
joining location being present at that pixel or voxel. The bottom part of the image presents representations of input
and target grids.

Similar to segmentation, the regression methodology distinguishes four spatial regions:
empty, geometry, CR, and joining locations. These regions enable a spatially dependent
probability matrix T̃ to assign probabilities to grid cells. Additionally, this Boolean matrix
aids in tuning the loss function as it weighs the attributions of individual regions for each
prediction. The size of the matrix is equal to the target grids T̃ (i) ∈ RWy×Hy×Dy .

• Zero-probability regions (i.e., class 0) correspond to nongeometry-occupying voxels. For
a given sample, the matrix T̃ for class 0 has a value of 1 for those cells where the index
w, h, d has a value of 0 in the target.

T̃0 = (yw,h,d == 0) (3.7)
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• Low-probability regions (i.e., class 1) correspond to geometry-occupying voxels that
have no direct contact with joining locations (i.e., sheet metal). The threshold τ1 creates
a mask to limit the geometry-describing probabilities. For a given sample, the matrix T̃
for class 1 has a value of 1 for those cells where the index w, h, d has a value strictly
larger than 0, but strictly lower than τ1 in the target.

T̃1 = (yw,h,d > 0) ∧ (yw,h,d < τ1) (3.8)

• Medium-probability regions (i.e., class 2) correspond to geometry occupied by both
components and describe CRs. The thresholds τ1 and τ2 create a mask to define this
region. For a given sample, the matrix T̃ for class 1 has a value of 1 for those cells
where the index w, h, d has values larger than or equal to τ1, but strictly lower than τ2 in
the target.

T̃2 = (yw,h,d ≥ τ1) ∧ (yw,h,d < τ2) (3.9)

• High-probability regions (i.e., class 3) correspond to joining locations. The threshold τ2
describes the boundary of the probabilities that differentiate between CR and joining
location. The center of a joining location has a 100% probability. For a given sample, the
matrix T̃ for class 1 has a value of 1 for those cells where the index w, h, d has a value
larger than or equal to τ2 in the target.

T̃3 = (yw,h,d ≥ τ2) (3.10)

The probabilities in the target grid rise from CR values to a joining location value. The
distance-dependency function [415] creates a bell shape of increased probabilities around the
joining location. At a greater distance from the nearest joining location, the probability of the
corresponding cell reduces. The formula determines the target probability value of grid cell
yw,d,h if its center point p̄w,d,h is within Euclidean distance smd of the nearest joining location
pnear; see Eq. 3.11. The factor τd describes the width of the bell shape. Higher values of τd
create smoother and larger probability curves but potentially reduces the model’s ability to
discriminate joining locations on CRs. Grid cells on a CR that are further away than distance
smd of the nearest joining location pnear receive a regular CR probability P (c = 2) (class 2).

yw,h,d =

{
1

1+ d
τd

∥p̄w,h,d − pnear∥2 < smd

P (c = 2) otherwise
(3.11)

The target contains gradients of probability values in joining location neighborhoods.
Cross-entropy-based loss functions are less appropriate as they tend to push predictions
toward extremes (ones or zeros). The regression concept considers spatially dependent
weights to emphasize grid cells. The loss function Lreg is the sum of weighted mean squared
errors per probability range c using Boolean spatial matrices T̃c. The matrix T̃c has true (≡ 1)
values on indexes w, d, h, where the probabilities fall within a specified probability range
using the boundaries τ1 and τ2. It is false (≡ 0) otherwise. Weights ac can be calculated
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similarly to those in the segmentation concept using Eq. 3.5. Prediction ŷw,d,h and target
yw,d,h represent joining location probabilities at position w, d, h. Equation 3.12 expresses the
loss function for one data sample.

Lreg =
W∑ H∑ D∑ C∑

αc

(
T̃w,h,d,c (ŷw,h,d − yw,h,d)

)2
(3.12)

3.3.2.3 Data formatting for encoder-decoder architectures

Component geometries vary greatly in size and complexity. This geometric variety causes
mapping issues and high data dimensionality [2]. Components may have any size and shape.
For example, there are large components with a few features (e.g., panels on airplane wings)
as well as small and complex components (e.g., holders). Furthermore, ML models have
predefined input sizes. Products may have joining scenarios of any size that must all fit the
model’s input size. Naturally, a large input size enables one to input entire joining scenarios,
but this results in high dimensionality and massively increases the computational cost [2].
Moreover, small components have many empty grid cells, unnecessarily affecting training
performance. Reducing the level of detail during the discretization of geometry may lead to
information loss, losing the ability to represent small features.

Splitting joining scenarios into smaller chunks creates a trade-off between the amount of
information in each sample and computational cost. Fig. 3.24 illustrates the splitting of joining
scenarios into connection cases (CCs).

Fig. 3.24: Visualization of splitting joining scenarios into connection cases to balance between the level of detail
and grid size.

The EncDec concept views each chunk as a data sample. The chunks need to include
enough surrounding geometry to describe the form and function of components in a joining
scenario. A grid is the Euclidean data representation of a chunk; hence, it can be 2D or 3D. A
connection case is a data sample consisting of an input and a target grid.



120 Framework

Referring to Fig. 3.24, each CC has a size wcc, hcc, dcc and is geometrically centered in the
grid. A stride ss describes the step size of CCs in all grids’ axes ssi = ssw, s

s
d, s

s
h. As such, this

stride is equivalent to the stride used in CNNs that describe the movement of a kernel over an
image. The “strided” position represents the origin for the strides of each axis psi = j, k, l.

The CCs in Fig. 3.24 have a stride of ss = wcc that moves over the joining scenario.
Small values and variations in stride distance can create more training data and be part of a
data augmentation strategy. The last CC per axis is created in the opposite direction, spanning
inwards from the maximum extent (see CCn in Fig. 3.24). A filter for added geometry ensures
the CCs at least bring in a fraction τs of new data of the joining scenario. Hence, the distance
between points p4 and p5 must be larger than τs × wcc.

3.3.2.4 Similarity filter for data samples

A drawback of the splitting process is that it might return similar CCs. Fig. 3.24 indicates that
CC1 and the other CCi will contain similar geometry. Joining locations may differ, but the
component geometries overlap. Including both cases in training may result in data leakage and
noise. First, data leakage may occur as the unseen test set may contain similar samples as the
training set, resulting in inaccurate performance measurements. Second, noise may occur as
the same input grids would correspond to different target grids, lacking consistent input–output
mapping.

The Jaccard index [315] helps to identify similarities between CCs. The Boolean matrix G
is the sum of Boolean matrices of classes 1, 2, and 3; see Eq. 3.13. It is equal to the input grid
with all values larger than or equal to one.

G = T̃1 + T̃2 + T̃3 = (xw,h,d ≥ 1) (3.13)

The Jaccard index J must be less than the threshold value τJ ; see Eq. 2.7. It removes all
CCs from the dataset that are too similar with Jaccard index values above τJ . However, joining
scenarios with thin components, such as sheet metals, may not have robust similarity filtering
results. Small perturbations might cause similar CCs to have a low Jaccard index, such as when
CCs shift by one grid cell. Morphological methods such as binary dilation [416] can buffer
shapes and increase robustness in similarity analysis.

For example, matrix D is a d × d matrix with ones. Dilating matrix G by D offsets the
surface of ones in G. An example is presented in Eq. 3.14.

D =

∣∣∣∣∣∣
1 1 1
1 1 1
1 1 1

∣∣∣∣∣∣ G =

∣∣∣∣∣∣∣∣∣∣
0 0 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣
G⊕D =

∣∣∣∣∣∣∣∣∣∣
0 1 1 1 0
0 1 1 1 0
0 1 1 1 0
0 1 1 1 0
0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣
(3.14)

Eq. 3.15 presents the similarity criterion based on the Jaccard index and dilation of CCs A
and B. It incorporates the dilation into Eq. 2.7 and removes one of the CCs from the dataset
when the index surpasses τJ .
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J(G(A), G(B), D) =

∣∣(G(A) ⊕D)
⋂
(G(B) ⊕D)

∣∣∣∣(G(A) ⊕D)
⋃
(G(B) ⊕D)

∣∣ < τJ (3.15)

As a side note, various techniques exist for enlarging the dataset. Data augmentation
methods such as mirroring and rotation are applicable. They perform transformations on both
joining scenarios as CCs. Notably, newly created data samples add information to the dataset
and should be sufficiently dissimilar to other CCs. For example, mirroring components on
their symmetry axis may still create CCs with similar geometry. Hence, augmentation requires
a subsequent similarity analysis as previously described, and also for the same reasons.

3.3.2.5 Equivalency between 2D and 3D data representations

Additionally, Euclidean data structures enable the implementation of benchmark architectures
from computer vision. Both the multiview (2D) and volumetric (3D) approaches rely on
Euclidean data structures and only differ in the third dimension. Both representations have a
fixed grid-like structure with spatial dependencies that hold numerical values. Fig. 3.25
presents an example of the segmentation approach.

Fig. 3.25: Example of the similarity of training between a 2D and a 3D concept.

Su et al. [358] argued that single 2D images might reach a far higher accuracy than
state-of-the-art 3D shape descriptors. Furthermore, within their context, they found that a
single 2D view provided better results than a single view with a depth map. Multiview-based
approaches often aim to recognize and detect entire objects. However, the prediction of
joining locations focuses on specific areas of these objects. Hence, arbitrary rotations around
an object, as performed using the benchmark classifier RotationNet of Kanezaki et al. [417],
would work counterproductively for this study.
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Furthermore, multiview methods with arbitrary cameras, for example, that rotate around an
object, may occlude CRs and prevent the separation of components. Moreover, they introduce
views with perspectives that require the handling of depth with a complex reconstruction of
coordinates. Determining the Cartesian coordinates of pixels in an image with a perspective
is complicated and requires approximation [418]. The same coordinate predicted in multiple
images requires filtering to prevent the same coordinate being created twice.

Therefore, purposefully located 2D images prevent randomness and complex
postprocessing; see Fig. 3.25. CRs are of interest in joining location prediction. A top-down
camera view on the surface creates consistent and deterministic results. The 2D grids are
specific slices taken from a 3D grid, but only the slices that contain joining elements. This
remains a multiview approach as joining scenarios may have multiple CRs that may require
multiple 2D images to represent them.

Ahmed et al. demonstrated that projecting curved surfaces to create flat 2D images
enables their processing in deep learning [350]. Furthermore, CRs may be larger than one
image can capture due to their resolution and size. Again, this requires a splitting process to
create the CCs. Another drawback of the 2D approach is that data samples retain less
geometric information of joining scenarios. For example, the 2D image in Fig. 3.25 cannot
represent the joining of two U-profiles. Hence, it may require additional supplementary
information through, for example, using a multimodality approach. Figs. 3.22 and 3.23
visualized exemplary input and target images.

3.3.2.6 Multimodality in encoder-decoder architectures

The presented SML concepts exclusively concern geometry. However, nongeometric data
include PMI and provide descriptive information for designers when creating joining
locations. For example, different materials and thicknesses of components require different
mutual joining location distances. Expanding on existing concepts for multimodality requires
this information to be processed using the same architectures. Early fusion approaches supply
information to models before training, enabling them to find exploitable relationships between
the modalities. CNNs consider spatial features, and hence, a separate classification or
regression mapping between the input and output of the same data requires the same network
to perform two separate tasks.

Pelka et al. [376] presented a branding methodology that proposed using early fusion
through clustering text features and branding them as patches into images. These patches
worked equivalently to one-hot encoding of labels. Pelka et al. used small patches on the
image instead of singular bits. Similarly, each brand can represent one cluster, bringing the
information of joining scenarios to CCs. The branded labels express information without
creating additional classes for prediction or relevant, nonspatial regression tasks. Fig. 3.26
illustrates labels (black boxes) branded onto exemplary data samples of the segmentation
concept.

The figure depicts branding for 2D and 3D segmentation tasks by presenting a separate fifth
class to grids, indicated by the black boxes. Both the sample’s input and target contain branded
information. This forces the model to reconstruct these labels and take up the information into
latent feature vectors. It is assumed that the lack of labels in the target would train the model to
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Fig. 3.26: Data formatting for multimodal machine learning using branded product manufacturing information on
geometric data for a segmentation approach; based on Fig. 3.22.

remove the brand. This prevents these prediction results being considered in the loss function
and the model being evaluated on them. The reconstruction of labels would train the model to
find the relations between the input and target grids.

Nongeometric data for joining can be high-dimensional. It includes many heterogeneous
types of materials and free text nomenclature that describes the functions of components.
Linear clustering algorithms have difficulty with high-dimensional data. For example,
k-means should not be used above a dimensionality of 10 [419] to prevent high-dimensional
nonlinear behavior. Data reduction methods extract the essential information yet enable
clustering algorithms to find clear and meaningful distinctions between sets of joining
scenarios. After DR, clustering creates labels for branding. Each label position represents a
cluster. Joining scenarios belonging to multiple clusters receive multiple labels [376], each of
which has a fixed position on the edge of a grid spanning the entire width.

Linear methods easily find the nearest cluster for an unseen data point. Nonlinear data
reduction methods, such as t-SNE, transform space to preserve local neighborhoods. New
joining scenarios that do not fit this space do not obtain a consistent input–output mapping.
These scenarios would transform space locally and change the clustering result. Van der
Maaten [420] solved this problem by using an NN to reconstruct the functionality of t-SNE.
Similarly, random forests can learn the mapping of input and output samples to transform
unseen samples onto a nonlinear data reduction space [421].

Instead of using an EncDec architecture, the following subsection presents a methodology
that implement a GAN to predict joining locations.

3.3.3 Joining location prediction using generative adversarial networks

In Section 3.2.2, the grid-based drawing approach was presented. However, this methodology
does not use SML, but rather GANs. GANs are a benchmark approach for generative models
in computer vision. Image synthesis methods generate new images using an input image and a
style. Similarly, GANs can take input images with geometry (e.g., the left columns of Figs.
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3.22 and 3.23 and apply a “joining location” style from a similar CC to predict joining
locations. Gerlach and Eggink [5] presented this experimental methodology, which is based
on the reference- and latent-guided synthesis as proposed by Choi et al. [331]. Firstly,
reference-guided image synthesis enables style transfer through the selection of one image, as
visualized in Fig. 3.27.

Fig. 3.27: Example of the process and results when implementing reference-guided image synthesis. The geometry
of input samples apply the style information of similar data samples to synthesize new data samples.

The reference-guided approach applies preselected styles as joining location inspiration
on an input image. The GAN trains on the entire training dataset. The selection of the right
image as a reference is critical. The reference style should concern a joining scenario or CC
similar to the input CC. This selection works under the assumption that similar joining
scenarios receive similar joining element designs. Reference image selection is a
use-case-based method, where the solution of a similar problem is applied to a new one. CBR
and SML (classification) are appropriate methods for finding these styles. Much research has
examined this topic, such as Rout et al.’s [422] review of image retrieval systems. The
freedom of shapes makes it difficult for RBR to determine whether similarity limits results
either to the nearest neighbor search of parameters (e.g., number of joining elements) or
overlap (e.g., Jaccard index). In addition to the reference-guided approach, Fig. 3.28 depicts
the latent-guided approach, which enables style transfer through the selection of an entire
domain.

The latent-guided approach applies style codes, that is, latent vectors generated from a
domain to predict joining locations. Here, an encoded style is the generalization of a set of
joining scenarios. The domain has selected joining scenarios that are assigned through, for
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Fig. 3.28: Example of the process and results when implementing latent-guided image synthesis. The geometry of
input samples apply the style information of a domain to synthesize new data samples.

example, clustering approaches. These can be the same clustering results created for MMML;
see subsection 3.3.2.6. The clustering of shape descriptors can consider the entire joining
scenario geometry, even when they are too large to fit in one CC. Furthermore, the clustering
of nongeometric data for domains represents information as the materials, nomenclature, and
function of the components.

After clustering, the latent-guided approach selects the most appropriate domain, which
requires CCs to be classified to domains. Depending on linear or nonlinear clustering methods,
this would require one to find the nearest cluster or to train an SML predictor. This selection
is a similar problem to that in the reference-guided approach, although a direct comparison
between data samples is not possible. First, these samples must be encoded and brought into
latent space.

Regardless of the previously mentioned approaches, each class may take up a channel in
an exemplary RGB image to differentiate between geometry frequencies. These classes are
similar to the encoding of class in the segmentation approach (Section 3.3.2.1). A GAN has the
same formatting considerations for the EncDec architecture, such as size and resolution. The
fourth class that represents “emptiness” can be colored white, thus, uses fully the color channels
in the RGB image. Segmentation tasks remain unchanged. However, data formatting directly
corresponds to data working with computer vision algorithms. It can retrieve coordinates and
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measure the performance of the models.
GANs apply styles to input images, but they also change them. Details of component

geometries such as holes may disappear in the prediction, changing the geometrical layout.
Bau et al. [423] observed similar behavior when experimenting with the generation of houses.
They found that objects that occur randomly in training images, such as cars or people, are
often discarded by GANs. As Gerlach and Eggink [5] suggested, letting the GAN predict only
the red channel of RGB images solves this problem.

The experimental results of Gerlach and Eggink [5] demonstrated that GANs can learn
the task to predict spot welds. The authors experimented with both the reference- and latent-
guided approaches. The reference-guided approach created feasible predictions. Spot welds
only appeared on CRs and were distributed logically. Interestingly, the number of spot welds
on the reference images did not seem to influence the predicted number. The CR’s border
seemed to affect the predicted number of spot welds more.

Regarding the latent-guided approach, the authors’ results indicated difficulty in
synthesizing feasible images. To create the domains, they implemented both the clustering of
nongeometric data (subsection 3.3.2.6) and images (using transfer learning [424] of a
pretrained VGG16 network [425] on ImageNet [426]). Each input image had synthesized
images from every domain. Interestingly, the model could only create feasible results from
domains that contained the input image. Other synthesized images were completely deformed
and did not resemble anything of the input image.

The reference-guided approach seems most promising due to its feasible results. The
training of GANs is generally difficult [275], which may have played a role in the
latent-guided approach, where clustering might have added unnecessary complexity into the
system. The experimental results indicated that GANs are applicable for predicting joining
locations; however, they are still unstable and require much additional research.

To measure the quality of prediction of the previous presented methodologies for predicting
joining locations, the following subsection presents several performance metrics.

3.3.4 Measuring the performance of joining location predictions

This section does not address a separate concept for predicting joining locations; rather it
presents an approach for evaluating prediction models regardless of their data formatting,
architecture, learning task, or similar. First, it discusses the creation of coordinates from
Euclidean data representations (subsection 3.3.4.1). Secondly, it proposes metrics for
measuring the performance between the predicted coordinates (subsection 3.3.4.2).

3.3.4.1 Coordinate reconstruction

Predicted grid cells must be transformed back into Cartesian coordinates for use and evaluation.
Each group of adjacent cells represents a joining location. Fig. 3.29 presents an overview to
calculate joining locations from a grid-like Euclidean data structure.

The coordinate follows from the weighted center point of all grid cells’ indexes. Each
grid cell has a probability of belonging to class 3. A weighted average of the indexes can
set locations between grid cells. The coordinate p of joining location j in a CC (pj,cc) is the
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Fig. 3.29: A grid with probabilities of cells that belong to the joining location. 2D prediction generated coordinates
are on the right. Coordinates follow from the weighted voxel indices for groups A, B, and C. Noise filtering
prevents voxel groups that are too small becoming coordinates; see index (5, 1)

weighted sum of n indexes xi with weights ai divided by the sum of the weights ai; see Eq.
3.16. A noise filter removes perturbations in the output by forcing each group to have a minimal
number of grid cells τg. The average weight ājcc of location pj,cc expresses the confidence of
that joining location; see Eq. 3.17.

pj,cc =

n∑
aixi

n∑
ai

∀n > τg (3.16)

w̄j
cc =

1

n

n∑
ai ∀n > τg (3.17)

The segmentation and regression concepts have slight differences when filtering the cells
belonging to joining locations. Segmentation takes all class 3 values and uses their classification
probabilities as weights, whereas regression has a continuous probability value filter, such as
the spatially dependent spatial matrix T̃τl , with a threshold ŷw,d,h ≥ τl. This matrix gathers
high probability grid cells and uses their values as weights.

The origin locations pcc of CCs must be transformed back into the coordinate system of
the joining scenario; see Eq. 3.18. This requires reverse engineering of the data formatting
processes. The joining location pli for CC(i) at the strided indexes is = k, l,m with stride
lengths ls = lw, ld, lh compensate for the splitting. The grid resolution rn transforms the
coordinates between the data representation and product space. Unseen joining scenarios
require a striding length equal to the CC size to be used to prevent overlapping or negligence
of geometry in predictions, as visualized in Fig. 3.24.

ps = rn × pcc × is × ls (3.18)

Coordinate reconstruction for curves is more complex than for discrete joining locations.
If a model predicts both points and curves, the latter require identification before the weighted
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averages of grid cells are calculated. Curves have minimal lengths for the sake of
manufacturability (e.g., [150]), which creates a lengthy distribution of adjacent cells. Vice
versa, point-based joining locations may have a modeled cylinder or sphere representing a
spot weld or rivet. The groups of cells that are significantly larger than point-based sizes are
classified as curves. Theoretically, a joining location predictor might predict multiple joining
technologies. For instance, the aerospace and automobile industries regularly use a
combination of adhesive bonding and spot welding to create crash-worthy structures [46].

A weighted average of a grid cell group for curves returns its center of gravity. A
topological skeleton, also known as the medial axis, is the thinnest version of a shape that is
equidistant to its boundaries [427]. The skeleton of a circle is a point and that of a cylinder is a
line over the rotation symmetrical axis. The discrete points of the medial axis can reconstruct
curves. The centerline represents the curve line. Each point along this line describes a
discretization point that a nearest neighbor algorithm may connect to for reconstructing the
curve line. Various methods exist for finding the medial axis of shapes (e.g., [428]. They
perform morphological erosion, which is the opposite of dilation; see subsection 3.3.2.4. The
computational cost and complexity of postprocessing a skeleton-based approach are
unnecessarily high for discrete joining locations compared with the aforementioned method of
coordinate reconstruction, as there is no need to erode voxels or retrieve a centerline.

3.3.4.2 Performance metrics

The evaluation of coordinates measures the performance independent of data formats, learning
tasks, or ML architectures. The task of models is to predict coordinates that align with target
coordinates. First, this subsection addresses point-based, discrete joining locations, followed by
curves. Performance evaluation requires a similarity measurement between the predicted and
target coordinates, which are referred to as sets of points hereinafter. Models might predict too
many or too few coordinates. The minimum number of points of the two sets of points defines
the basis for similarity. Similarity can only measure equally large sets; for example, if the
prediction on a CC has three joining locations, whereas the target contained four, the similarity
evaluation is performed on three joining locations. Fig. 3.30 presents various examples for
determining the performance when predicting joining locations.

Leftover coordinates in either set prevent meaningful similarity expression as a point in
one set would refer to several in the other. Performance evaluation requires at least two
measurements, namely the number of viable coordinates and the similarity. Let a valid
coordinate pair p̃ij consist of a unique combination of a predicted i and target j coordinate
within the distance limit τv. The accurate distance threshold at τv prevents the inclusion of
outliers or random predictions in the similarity measurement. Similarity measures the distance
between all valid pairs. Valid pairs prevent models that tend to predict too many joining
locations to have accidentally high similarity values. The chance that a predicted joining
location is closer to the target is higher when predicting more joining locations on the same
CR.

Every point of both sets may occur in only one valid pair. The pairing of points between two
sets is a cumbersome task. A brute-force pairing method (S&O) would determine valid pairs by
minimizing the sum of distances between all possible pair combinations. The lowest sum finds
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Fig. 3.30: Example of the performance measurement variables and use cases. The figure visualizes leftover
coordinates, threshold distances, and the necessity of valid pairs.

the nearest valid pairs. However, calculating all possible pairing combinations is a factorial
function that scales with the number of coordinates. By contrast, naive nearest neighbor-based
combinatorics finds valid pairs in quadratic time but may result in incorrect measurements (see
Fig. 3.31).

The Kuhn–Munkres or Hungarian matching algorithm proposed by Kuhn [429] and
reviewed by Munkres [430] solves assignment problems in cubic time [431]. It is
deterministic and aims to find a perfect matching in a bipartite graph, thereby optimizing the
total cost. A typical use case of the algorithm is for assigning workers to jobs, where each
worker has a different cost to perform each job. Thus, each worker must be allocated to a
particular job to minimize the total cost. Similarly, workers, jobs, and costs are equivalent to
predicted coordinates, target coordinates, and mutual distances, respectively. The algorithm
considers predicted Ŷ and target Y points of length lŶ and nY respectively, as a bipartite
graph G = (Ŷ , Y ;E).

Each edge E in graph G represents the distance sij between point i from Y and j from Y .
The perfect matching constraint in the Hungarian matching algorithm leaves leftover
coordinates out of the results. The resulting assignment evaluates the similarity performance
correctly. Four measurements determine a model’s performance: the difference in the number
of points, accurateness, similarity, and correctness. These measurements are described as
follows:
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Fig. 3.31: Visualization of possible faulty measurements using nearest neighbor combinations to determine a
model’s performance. A and B are targets and I and II are predicted coordinates. The proposed performance
algorithm finds valid pairs p̃A,II and p̃B,I (average Euclidean distance = 7) instead of the optimal pair combinations
p̃A,I and p̃B,II (average Euclidean distance = 5).

• The difference in the number of points ∆N represents the difference between the
number of points in the predicted nŷ and target ny set. Positive values of ∆N indicate
that the model has predicted too many joining locations, whereas negative values
indicate the opposite. The number of joining elements in a joining scenario is linked to
the applied loads and forces. Joints that require a higher stiffness tend to have more
joining elements (or, for example, longer adhesive bonds). Regardless of positioning,
the number indicates the ability to hold static loads, which is an essential consideration
in many location optimization methodologies.

∆N = nŷ − ny (3.19)

• Accurateness A considers the difference in the number of valid points between two
coordinate sets. It provides insight into the usefulness of the predicted coordinates and
measures the ratio between the number of valid pairs nv and the number of targets
coordinates ny. It represents the deviation from ny and expresses the structural
contribution of every joining location. Thus, it assumes that predicting one additional
joining location on a target with 20 joining locations is less harmful than doing so on a
target with three joining locations.

Notably, the term accurateness is purposefully chosen to express a form of accuracy on
predictions. However, accuracy already has been defined in the state of the art (Section
2.3.3) as a metric for evaluating SML models. Hence, the change of the word accuracy
into accurateness indicates a difference but retains the original connotations.

A =

{
max

(
0,

2nv−nŷ

ny

)
nŷ > ny

nv
ny

otherwise
(3.20)

• Similarity S measures the distance between coordinate sets bounded by the number
of points in the smallest set. Similarity represents the mean distance of all valid pairs
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V . Expressing the similarity using a Gaussian function (see Eq. 3.21) has a couple of
advantages over the traditional Euclidean distance. A Gaussian function is nonlinear
and decreases with an increasing distance – it ranges between 0 and 1, where a value
of 1 represents complete similarity. It enables the modeling of stability and prevents a
significant impact of outliers when averaging over all predictions. The value σ handles
the steepness of the curve, which determines the rapidness of the similarity going to 0
with increasing distance.

S =
r

nv

p̃ij∈V∑
exp
(
− ∥p̃ij∥2

2σ2

)
(3.21)

A Euclidean distance expression is possible (see Eq. 3.22) but expresses dissimilarity.
A distance of zero would be optimal, whereas high values of large distances measure
dissimilarity. Scaling this dissimilarity with the grid resolution r expresses it in input
dimensions (e.g., mm).

S =
r

nv

p̃ij∈V∑
∥p̃ij∥2 (3.22)

• Correctness Q is a Boolean value 0 or 1 representing whether all coordinates in both
sets map onto one another within the threshold distance τq. A prediction for a CC is
correct when all predicted coordinates create valid pairs with all target coordinates, and
all do this within τq distance without leftover coordinates.

The performance measurement of curves requires a small adaptation. Here, coordinate
reconstruction creates centerlines. Curves consist of multiple discrete points that create a line
after connection. Breaking a curve down into sets of points enables performance measurement
to be conducted between the predicted and target curves. Similarly, as for discrete joining
locations, the total sum of all absolute distances between each matched pair of points
measures the similarity. Then, the Hungarian algorithm finds pairs of curves that correspond
to one another. However, it uses a curve similarity metric instead of the Euclidean distance
between two joining locations. Alternatively, a matching methodology can measure similarity
between two curves [432].

The previous subsections regarded the prediction of joining locations. However, they did
not regard modular design, thus, create a high variety in resulting joining elements. To cope
with this, the following subsection presents an overview for the modular design of joining
elements. In addition, it presents the required preprocessing steps.

3.3.5 Preprocessing for the modular design of joining elements

This section addresses boundary conditions for the modular design of joining elements. First,
it provides an overview of the relevant design problems mentioned in the structure block of the
framework (Fig. 3.7). Then, it discusses the use of overlapping CRs as the basis for modular
design.
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Overview
The methodologies within each design problem all have different input and output
requirements. Their pre- and postprocessing steps are mostly methodology-dependent and are
left out of the framework.

Joining aspects depend on one another. For example, a joining technology generally infers
one of two geometrical shapes, namely points or curves. The technology sets the
manufacturability, creating boundary conditions for designing joining locations. For example,
joining parameters describe PMI and are assigned to joining locations in CAD systems [19].
The commonalization of joining parameters has no separate methodology. The same approach
works for JTS due to the same nature and challenges of the problem.

The modular design steps follow the same sequence as the design of joining element
aspects; see Section 2.5. They go from the bottom up, first commonalizing each joining
aspect, then joining elements, and finally modularizing to create joining modules. Fig. 3.32
illustrates the process for the modular design of joining elements, which includes the
following five-steps [4]:

Fig. 3.32: Visualization of a methodology with input and output dependencies. Abbreviations: (JS) Joining scenario,
(CR) Contact region, (UoCR) Union of contact regions, (IoCR) Intersection of contact regions, (JT) Joining
technology, (JL) Joining location, (JC) Joining cluster, and (JE) Joining element.
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• Preprocessing (described in the present section) determines the module interfaces
through overlapping CRs between product variants. These originate from the virtual
stacking of product variants (e.g., as illustrated in Fig. 3.5). Overlapping CRs consider
both functional (i.e., joining scenarios) and geometrical boundaries (i.e., overlapping
surface areas).

• Joining technology commonalization (Section 3.3.6) reduces the variety of processes
on each overlapping CR. It evaluates joining technologies or parameters using a ranking
method that considers all involved product variants.

• Joining location commonalization (Section 3.3.7) clusters joining locations on
overlapping CRs. It determines a new location as a substitute to share between joining
scenarios. Joining location commonalization can reduce the variability in predicted
locations.

• The commonalization of joints (Section 3.3.8) aims to substitute the joining elements
of one product variant into others. This methodology uses geometrical boundaries in
overlapping CRs. The commonalization of joints reduces product platforms of joining
elements at the cost of adding joining elements to joining scenarios.

• Module creation (Section 3.3.9) collects the shared joining elements between product
variants. It balances commonality and modularity to create subassemblies and joining
modules.

Preprocessing
Preprocessing determines the module interfaces through overlapping CRs between product
variants. These originate from the virtual stacking of product variants (e.g., as seen in Fig.
3.5). Overlapping CRs consider both functional (i.e., joining scenarios) and geometrical
boundaries (i.e., overlapping surface areas).

Commonalization uses CRs to identify module interfaces. CRs are geometrical interfaces
between components. The positioning of components in a joining scenario determines a joining
shape (e.g., lap or butt joint), thus reducing feasible technologies. Interchanging components
between product variants tends to retain the joint shape, enabling the same joining technology
to be applied. CRs may change in size but the joining shape remains the same; see Fig. 3.5.
Hence, the joining elements defined on these CRs can also remain the same, although they
remain subject to manufacturability requirements. The overlapping CRs can form the basis
for the essential standardization of interfaces, which is in agreement with statements made by
Ericsson et al. [229] about minimizing information flows.

A functional definition of an interface between two components ignores geometry. The
decomposition of products into functional modules can include the definition of functional
joining modules (e.g., see Gauss et al. [91] and Fig. 2.8). Such modules may describe preferred
and available joining technologies based, for example, on resource availability in production,
performance requirements, or aesthetics. Such joining modules receive functional requirements
and design parameters in the joining element design process. Steps such as joining technology
commonalization still work, even without overlapping CRs. However, they would require a
basis for aggregating variants by, for example, design spaces or functional requirements (see
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Fig. 3.3). Nevertheless, modular design of joining elements that considers geometry needs
various considerations for determining overlapping CRs, as Fig. 3.33 depicts.

Fig. 3.33: Various considerations for overlapping contact regions in the preprocessing step for the modular design
of joining elements. The left column presents examples of the geometry of contact regions. The middle column
displays examples of overlapping contact regions and the required buffer for enabling joints that involve more than
two components. The right column depicts the creation of the union and its intersection of contact regions from
three joining scenarios.

Furthermore, the geometry of CRs may include not only curved lines but also complex
curved surfaces (see the left column of Fig. 3.33). Simpler CR shapes decrease the complexity
of design and modularization. Flat surfaces, such as flanges, enable the shifting of components.
For example, the Lucas method [147] gives lower complexity scores for the simple fitting and
handling attributes of components, such as symmetry in the (rotational) orientation of parts.

Overlapping CRs are the shared geometrical interfaces of multiple joining scenarios. The
right-hand column in Fig. 3.33 presents CRs of three scenarios (with component combinations
of D&C, A&C, and A&B) created by four components (A, B, C, and D). They create two
CR-based collections for commonalization (see Fig. 3.33): the union and intersection of CRs.

• The union of CRs (UoCR) refers to the merger of multiple CRs through the virtual
stacking of product variants. The UoCR defines a collection of joining scenarios with
overlapping CRs. It limits commonalization and modularization approaches and
includes all joining scenarios relevant for module interfaces. The geometry of the UoCR
determines the shape and size of the module interface.

• The intersection of CRs (IoCR) is a unique subset of the UoCR shared by a unique
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combination of joining scenarios. IoCR geometrically defines potential joining element
platforms. Within the IoCR, manufacturability conditions are constant. IoCRs with
multiple joining modules or redundant joining elements would create unnecessary
complexity. IoCRs from the same UoCR may have different mechanical properties due
to varying component combinations. For example, the presence or absence of an
additional metal sheet changes the thickness of the stack joint and thus also the
production (and joining) parameters.

Joints might consist of more than two components. CRs are the result of components that
touch each other. However, “touching” might be a harsh requirement in cases of three
components. The “Definition of contact regions” column of Fig. 3.33 depicts a joint with three
components (A, B, and C) consisting of two overlapping CRs (AB and AC). The thickness
of component B creates a distance between CRs AB and AC.

The consideration of this distance results in different definitions of joining scenarios and
IoCRs. The z-axis, or normal vector, needs a buffer during the assignment of CRs to the same
UoCR; see Fig. 3.33. Ignoring the z-axis reduces design and modularization freedom. The
buffer supports numerical irregularities and a more robust behavior during commonalization.
An increase of the buffer length along the z-axis may assign more CRs to the same UoCR and
include more joining elements into consideration for commonalization. Moreover, a buffer that
is too large may include irrelevant CRs.

Preprocessing for the modular design of joining elements helps to create a basis for further
algorithms. The use of CRs provides a geometric playing field for modifying joining element
designs systematically. Overlapping CRs visualize the overlap of product variants. In this sense,
the UoCR gathers all nearby product variants, while the IoCR identifies the joining elements
that are uniquely shared for a certain set of product variants.

The following subsection presents a methodology that uses the overlapping CRs to
commonalize joining technologies.

3.3.6 Commonalizing joining technology with technology unification

Process variety is one of the main factors in complexity and production cost [136]. Traditional
JTS methodologies (e.g., [43, 161]) often implement MCDM approaches to find the optimal
technology for a joining scenario. However, these approaches do not consider product variety
and historical sources, potentially leading to a great variety of joining processes. It is not the
individual optimal joining solution of a single component that leads to the most valuable
cross-component integration [158]. Methodologies select joining technologies while
considering a single joining scenario. Hence, technology unification (TU) is required to
commonalize technologies on module interfaces to reduce process variety. For example, Fig.
3.34 illustrates exemplary TU between four joining scenarios.

Fig. 3.34 presents an example of joining technology prediction used to determine two
feasible technologies for each joining scenario. The weights represent, for example, the
confidence of each prediction, but they may include more parameters, such as sales volume or
designer preferences. The figure demonstrates that when only the highest scoring prediction
for each joining scenario is considered, spot welding has the highest sum of weights. Thus,
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Fig. 3.34: Visualization of the choice between multiple unified technologies on a union of contact regions or the
use of a suboptimal one.

spot welding becomes the unified technology. However, TU can also consider multiple
predictions at once. Fig. 3.34 indicates that clinching scores higher when considering the
second best predictions. TU can find the overall best technology by including the second best
predictions.

TU is similar to a traditional MCDM approach as it adds an abstract layer to traditional
technology selection methodologies. The methodology aligns with the traditional three-step
process of Ashby et al. [161], namely screening, ranking, and selection, which is detailed
further as follows:

1. Screening checks feasibility and filters technologies that do not fit all joining scenarios in
the UoCR. Predicted technologies require validation against standards and guidelines to
ensure manufacturability in terms of properties such as geometry, material, and function.
Therefore, the screening step in TU functions similarly to the step in regular MCDM
methodologies.

However, it might be that none of the technologies applies to all joining scenarios. This
would induce a trade-off between introducing an additional joining technology or
choosing the second-best technology. The former requires determining technologies for
subsets of joining scenarios in the UoCR. However, it also requires multiple valid
technologies for each joining scenario. Splitting the UoCR into subsets introduces
another challenge in finding the optimal selection of subsets. Multiple technologies are
counterproductive in reducing process variety but retain better performance in each
scenario. Selecting the second best technology creates a feasible and TU assigns it to all
joining scenarios. This may result in more costly and complex joining element designs
compared with introducing an additional joining technology.
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2. Ranking takes the feasible processes and ranks them according to their score for every
joining scenario. For each joining technology, ranking calculates a sum of scores
weighted by variety-relevant parameters. This section later addresses these parameters,
which include confidence, sales volume, CR size, implementation factor, and
preferences. They weigh joining scenarios according to their significance to product
variety. These unification weights may also include geometrical, functional, and
manufacturing requirements, such as those listed by Kaspar et al. [32]. The benefit of
ranking through weighting is that it can include popular criteria such as costs,
complexity, modularity, or commonality, besides technical properties. It enables a
holistic evaluation of relevant parameters that can be customized for each use case.

3. Selection outputs the unified technologies. As previously stated, a consistent second-
best solution on every joining scenario may be preferable to a solution that works very
well for only half of them. Including second- and third-best candidate technologies in
TU can balance the results and increase the unification potential. Selection considers
manufacturability and decides whether to pick a suboptimal joining technology for all
scenarios or to pick several more optimal technologies for fewer scenarios.

TU employs an overall ranking for each technology. For this, it uses summing weighted
joining scenarios; see Eq. 3.23, where uu represents the unified technology resulting from the
technology u with the largest sum; ns includes all joining scenarios in a UoCR; and us is the
joining technology u of scenario s. Mathematically, it is a binary vector with each value
assigned to a specific technology. The vector u has only a 1 at the index of the joining
technology us, and a zero for all other joining technologies. The weight aus takes the
importance of each joining scenario s into account and consists of several parameters; see Eq.
3.24. Consequently, Eq. 3.23 considers a unification formula that includes an additional
weighted sum over the number of predictions per joining scenario nŷ:

uu = argmax
u

{
ns∑
s

np∑
usa

u
s

}
(3.23)

The bottom section in Fig. 3.35 illustrates that riveting is the joining technology with the
highest ranking in both the top 1 (nŷ = 1) and top 2 (nŷ = 2) of predictions in each scenario.

However, riveting is not feasible in scenario I , for example, due to thickness ratio or plate
thickness violations [114]. Spot welding is possible on all variants and the second-best scoring
technology. Strict commonalization would state that spot welding is the unified technology,
even though its score is worse than riveting; see Fig. 3.35. Suboptimal solutions after
unification might create other design problems, such as compliance with structural
performance, aesthetics, or production time.

Moreover, when none of the joining technologies are feasible in all joining scenarios, the
process outputs several technologies. It is incapable of fully unifying the joining technologies
on the UoCR. The introduction of a threshold τu enables decisions between two unification
strategies. It considers the percentage of the total score from weights for every technology. A
threshold of at least τu = 30% would require confident predictions and output a
multitechnology result; see Fig. 3.35. A threshold value of τu = 20% would enable full
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Fig. 3.35: Visualization of the choice between multiple unified technologies on a union of contact regions or the
use of a suboptimal one.

unification for both cases when nŷ = 1 and nŷ = 2. In both cases, designers and engineers
should analyze the design and possibly conclude that they should redesign the parts [433].
Fig. 3.36 briefly visualizes modular design of joining elements in case TU results in a
multitechnology solution.

The modular design process must consider conflicting technologies, such as separate
UoCRs. This separation permits the commonalization of locations, entire joints, and module
creation to work properly without restrictions or additional complexity within their
algorithms. Instead of one sequential process per overlapping CR, they become multiple
simultaneous processes.

Contrary to unifying technologies, JTS methodologies may consider unification and
variety requirements up front after predicting them, which might prevent the need for
unification methodologies. Selection methodologies could integrate variety-related variables,
use inductive approaches, or penalize variety in output. For example, SML tends to predict
similar technologies for similar scenarios.

Variety-related parameters purposefully enable TU to treat joining technologies and
scenarios unequally. This reduces randomness in the outcome and focuses on product variety
impactful joining scenarios. The parameters can be extended with any relevant property for
specific companies and industries to either favor or disfavor joining technologies. Weights
contain various parameters for tuning unification. Eq. 3.24 presents a simple proposal of a
generic linear function to weigh technologies aus with a normalized vector xui to balance,
scale, and tune every i-th parameter.

aus = EtP
u
s (x

u
1Is + xu2Rs + . . . ) (3.24)
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Fig. 3.36: Illustration of consequences in case of a multitechnology solution.

• Confidence (P u
s ) expresses certainty in prediction and reduces the importance of low

scoring technologies. Algorithms that predict or select joining technologies (e.g., [43])
output scores to determine the optimal solution. Higher values indicate a more
appropriate technology, and its weights and potential for unification should be
increased. Values between joining scenarios in the UoCR must be in the same
dimensions and ranges during all modularization steps. Normalization between values
of equivalent methodologies sets joining technologies on the same scale. All parameters
are of a dimensionless scale; hence, P u

s ∈ [0, 1].

• Sales volume (Rs) expresses the popularity of a set of product variants. A higher sales
volume requires more optimal designs in terms of cost and quality, and therefore, they
receive larger weights in commonalization. For example, joining elements configured in
virtually all products have higher performance requirements and should receive a more
cautious decision for changes compared with those that occur in a few exotic variants.
The normalization of sales volume scales weights fairly between joining scenarios. Sales
numbers may be difficult to estimate. A backup scoring function using, for example, the
values {1, 0.5, and 0.1} could describe high, medium, and low prospects, respectively.

• Implementation factor (Is) considers different maturities of joining element designs
due to continuous product development. Already in manufacturing, joining elements
might need to be commonalized with joining elements of new variants. Joining
elements in production have high rework costs for design changes (see Fig. 1.2) and
require higher weighing. The rapid rise of change costs for joining elements increases
interest in not commonalizing. Preferably, the implementation factor scales equally as
fast as costs for a redesign. This requires an exponential relationship between steps.
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Then, the factor could have the following values, again in a range of [0, 1]: 10−3:
concept / design phase, 10−2: validation, 10−1 production ramp-up, and 100: product on
market.

• Preferences (Et) enable engineers to strategically tune for holistic requirements or
company strategies. As mentioned by LeBacq et al. [159], local and company-specific
parameters enable tuning as not all design considerations are easily expressed for
optimization. Every technology has a specific preference value in the range [0, 1].

In addition to commonalizing joining technologies, the following subsection presents a
methodology to commonalize joining locations.

3.3.7 Commonalizing joining locations with spatial aggregation

Currently, joining location design methodologies use a topology optimization approach and
only consider one product (e.g., [18, 46]). Multiple slightly different product variants may have
different locations for the same joining scenarios. Joining element distributions are unique for
every product, even though product variants share many components. Spatial aggregation (SA)
finds shareable joining locations through searching for small groups of joining locations over
product variety.

SA virtually stacks the joining locations of joining scenarios. The methodology clusters
joining locations in close vicinity to one another. The UoCR holds the joining scenarios for
each SA run. The UoCR ensures that clustering algorithms are bounded by local requirements
and contain the search space. Fig. 3.37 visualizes SA creating joining locations I , II , and III
from joining locations {1, . . . , 6}.

Fig. 3.37: Overview of spatial aggregation. The left-hand side shows two joining scenarios from the same union of
contact regions. The right-hand side shows the created joining clusters that function as substitutes for the joining
locations from the input.

Both joining scenarios (A&B and A&C) have three joining locations in Fig. 3.37.
Designers would create six joining elements without commonalizing joining locations as
every location is unique. SA would take locations 1 and 4 and create a new joining location A
as a surrogate to replace the two locations mentioned above. This joining cluster A is the
cluster centroid calculated by taking the average of the two joining locations 1 and 4. The
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figure depicts a similar process for locations 2&5 and 3&6, creating joining clusters B and C,
respectively. Hence, SA creates three joining elements by reducing local variability.

SA can use K-means clustering with constraints (e.g., [406]) as its core algorithm to
determine surrogate joining locations, also referred to as joining clusters for the sake of
readability. K-means has several properties that fit this particular purpose:

• It creates circular clusters that solve the variability of joining locations. These circular
clusters support compliance to minimal mutual distances of joining elements.

• Results are density-invariant such that cluster sizes and shapes do not change due to the
distributions of joining locations.

• The maximum cluster size sc ensures joining clusters for each outlier. Joining clusters
must remain close to joining locations to prevent significant performance changes.
Additionally, the maximum cluster size ensures minimum mutual and edge distances
described in standards and controls the potency with which the algorithm clusters.
Larger cluster sizes span over more locations of more product variants, creating higher
degrees of commonalization.

• Constraints (referring to work of Wagstaff et al. [406]) prevent clustering joining
locations of the same joining scenario.

Fig. 3.38 presents an example process of SA, which is explained as follows:

Fig. 3.38: Spatial aggregation clustering process flow.

1. The algorithm runs on each UoCR. These UoCRs are a set of CRs from different joining
scenarios. Each CR has joining locations, such as the outcome of prediction models.
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2. Every joining location is assigned uniquely to a cluster, ensuring transparency and
simplicity. Joining scenarios must have an equal number of joining elements after SA.
Hence, the minimum number of joining clusters in a UoCR is equal to the maximum
number of joining locations on any CR in the UoCR.

3. The number of final clusters is unknown a priori. Hence, SA needs to perform an
iterative search with k-means. K-means clustering’s constraints concern, for example,
the maximum clustering size and that joining locations from the same joining scenario
may not end up in the same joining cluster.

4. The algorithm continues re-iterating as the number of joining clusters increases. It does
this until all joining locations are assigned to joining clusters.

5. Once the requirement is met, the algorithm substitutes the original joining locations
with the resulting centroids of joining clusters. These joining clusters become the new
joining locations; however, they remain linked between the joining scenarios. This
linkage induces the shareable locations. To its extent, it also induces the
commonalization of joining locations.

The algorithm may stop once it finds the first solution that complies with requirements.
However, additional optimization iterations might create better outcomes. More joining clusters
move joining locations over smaller distances. These will remain closer to the initial locations
but will create additional joining clusters, thus increasing variety. An evaluation approach (e.g.,
the elbow, average silhouette, or gap statistic method) could determine the optimal number of
clusters.

SA also works for joining technologies with curved geometry, such as adhesive bonding or
laser welding. Discretized curves have start and end points. These points create intersections
with overlapping curves and divide them into shorter curves. SA can consider each of the points
as discrete joining locations and then create joining clusters that simulate the start and end
points of curves. Fig. 3.39 on the left-hand side depicts curves creating point–line intersections,
which refers to where one joining element ends and another continues.

Using the point–line intersections, SA clusters the start (p1a, p2a) and end (p1b , p2b ) points
of curves, as shown in the center column of Fig. 3.39. This results in three joining clusters
visualized with purple and yellow points (pc1, pc2, pc3). From these three joining clusters, the
algorithm can reconstruct two curves, as seen in the right-hand side of Fig. 3.39.

The definition of IoCRs and the consideration of standards and guidelines create
unwanted joining regions; see Fig. 3.33. These are sections on UoCRs that preferably should
not contain joining elements. Joining elements that lie in unwanted regions cannot be fully
commonalized, as at least one joining scenario prevents it through manufacturability
requirements. Requirements from one of the CRs in the UoCR might also induce this (e.g.,
minimum edge distance). Fig. 3.33 visualizes the edge distances on each CR. The IoCRs are
all bordered with a pattern to indicate the edge distance. Commonalization processes must
recognize consequences for all affected products to prevent manufacturability problems.

Analogous to TU, SA can consider various parameters to control clustering results. These
parameters expand on weight aus for joining scenarios used in TU. The weighted average scales
coordinates of joining locations to new cluster centroids, proposing a linear SA weight alp for
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Fig. 3.39: The extension of spatial aggregation to curves by considering start and end points as surrogate locations
for commonalization.

joining location p with normalized vector xl to balance, scale, and tune every parameter; see
Eq. 3.25

alp = aus

(
xl1P

l
p + xl2

(
1− sp→pc

sumin

))
(3.25)

• Confidence (P l
p) considers a probability score P l for joining location p. Less confident

locations should affect the moving of cluster centroids less and vice versa.

• TU weight (aus ) brings all joining scenario dependent weights over to SA. The same
variety of parameters apply to joining locations as to their technologies. Integrating the
joining TU weight enables one to integrate parameters such as sales volume,
implementation factor, and engineer preferences. Moreover, it applies these weights for
each joining scenario. Uncertain predictions reduce the weights in TU, which can
cascade through to joining locations in SA. Consequently, SA can also consider the
product variety-relevant parameters relative to each joining location.

• Distance-to-center (s) measures the distance between the joining location and its
joining cluster. This parameter helps to create joining clusters in the center of small
dense groups and reduces the impact of outliers. sp→pc is the (Euclidean) distance
between the joining location p and assigned cluster centroid pc. Dividing the
distance-to-center by the minimum joining distance sumin of joining technology u
creates a dimensionless parameter. A negative fraction moves the parameter toward zero
when a joining location moves toward stmin. Lastly, the weight of joining locations
scales linearly with its distance-to-center.

Weighing may still induce the translation of joining elements, even for those with very high



144 Framework

weights. A solution for retaining implemented joining elements might be binary SA. Instead
of taking a weighted average, the joining location with the highest weight becomes the joining
cluster. All other joining locations in the cluster move accordingly. The term binary represents a
weight of 1 for the most important joining location, whereas the other locations receive a weight
of 0. Binary SA might be useful in product development where the first product variants have
reached the market.

The effectiveness of SA follows from the ratio of reduced joining locations over their total
number. Optimally, the algorithm achieves this by moving joining locations very little, as this
may affect the structural performance of the joint [18]. Many performance metrics in the
literature have considered the number of (sold) product variants to determine commonality
(e.g., [213, 394]). Unfortunately, such information is unknown in early product design. The
Percent Commonality Index (%CI) of Siddique and Rosen [236] is a simple yet effective
metric for measuring commonality; see Eq. 2.6. More specifically, one of the terms, the
commonality of connections, specifically addresses joints. It enables one to measure
commonality before and after SA. As SA specifically considers joining element
commonalization, this study considered the Percent Commonality Index (%CI) as the only
relevant factor for expressing the commonality of connections.

The previous subsections addressed commonalization of individual joining aspects.
However, entire joints also require commonalization to reduce unnecessary product variety.
The following subsection presents a methodology for this.

3.3.8 Commonalizing joints with element densification

Creating product platforms implies the sharing of components in as many product variants as
is beneficial. TU and SA reduce much of the process variety in joining aspects. The objective
of element densification (ED) is to standardize sets of joining elements on module interfaces.
Optimal commonalization would imply that the interface has one joining module for any
module combination.

ED uses the IoCR as a geometric boundary. The IoCR is precisely the shared region over a
unique set of joining scenarios. Commonalizing joining elements that lie on the IoCR enables
them to be shared between all joining scenarios of the IoCR. ED considers IoCRs that have the
same joining technologies over multiple product variants.

ED becomes a trade-off of joining element quantity when it is performed after TU. The
previous step commonalizes technological variety, and every UoCR uses the same joining
technology, as addressed in the multitechnology process (Fig. 3.36). Thus, the goal is to
determine whether to substitute all joining elements of one scenario on the IoCR into all other
joining scenarios. The same piece of geometry with similar boundary conditions will have
different joining elements depending on the product variant. Increasing the number of joining
elements in some joining scenarios can create more efficient joining element modules, which
can be utilized in multiple variants. However, this may lead to increased manufacturing costs
as it induces unnecessary joining processes. Therefore, ED must balance joining elements.
Ultimately, ED may increase the number of joining elements in product variants, but it
reduces the number of joining modules and as a result the total complexity.

ED may not reduce the joining performance. The approach only commonalizes through
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the substitution (densification) of joining elements. Removing joining elements reduces
structural performance requirements. The process assumes that increasing the number of
joining elements does not drastically reduce structural performance. However, this may not
always be the case. Yang et al. [18] argued that a proper distribution of joining elements is
crucial in high-performance structures as the uncontrolled or arbitrary removal and addition of
joining elements reduce performance. Fig. 3.40 depicts the process of ED, which is also
explained in the following list:

Fig. 3.40: Element densification process flow.

1. The algorithm starts by sorting joining clusters in descending order by the number of
spatially aggregated joining locations. Sorting helps to increase the shareability of key
joining locations.

2. Then, it sorts joining scenarios according to the number of joining locations in their
joining clusters in descending order. Successively, it sorts the number of joining elements
in the joining scenarios.

3. Next, the algorithm iterates through all IoCRs as well as iterates through all similar
joining technologies for each IoCR.

4. The following nested iteration creates the retrieval of joining clusters. Densification is
possible for joining clusters of both joining scenarios that lie on the same IoCR. The
algorithm does not consider individual joining elements to densify, as these might require
unavailable space and reintroduce variety.

5. Testing for standards and guidelines ensures that joining clusters that create new joining
locations in other joining scenarios are manufacturable, considering edge distances, sheet
thicknesses, or materials.
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6. Lastly, the algorithm considers the trade-off to determine the benefit of densification.

ED is economically beneficial when the reduction in development costs (due to fewer
joining modules) is greater than the increase in production costs (due to additional joining
elements on some variants). From a performance point of view, each joining element that is
added to a joining scenario and thus to a set of product variants will be manufactured
unnecessarily. Once the sales volume of product variants with that joining scenario becomes
greater than the reduction in the complexity of product documentation and design effort,
densifying stops being advantageous. The catch here is that the benefits of modular design,
especially for one joining element, are difficult to calculate as it is often too challenging to
determine positive and negative effects in trade-offs [434].

Unfortunately, it is challenging to calculate investment and recurring costs in early
product design, mainly due to product variety-induced complexity costs [435]. Therefore,
studies have used indices, such as commonality metrics, as proxies for activity-based costing
(e.g., [81]) in the design, manufacturing, and assembly of product variants [234]. High
degrees of commonality between variants indicate high proportions of component reuse,
implying more potential for companies to achieve greater economies of scale and scope [230].
ED can use any metric depending on the company interests. Gauss et al. [91] presented both
module and product family evaluation criteria, including: modularity, utility cost, interaction,
lead time, commonality, variety, or environmental perspectives. Furthermore, Alkan et al.
[385] presented a method for assessing structural assembly complexity that can help designers
to evaluate design alternatives that meet functional requirements.

The assessment of assembly complexity in early design phases is a viable proxy for a cost
assessment as it combines the complexity of joints with their relation to the product
architecture. The structural assembly complexity metric of Alkan et al. [385] further
addressed as assembly complexity, considering component, interface, and topological
complexity. Without going into depth for each term, the equation is presented in Eq. 3.26,
after which each term is described:

C = CP + CICT (3.26)

• Component complexity (CP ) expresses the sum of complexities of individual system
components in the system. It describes the developmental and managerial effort of
isolated components independent of the product architecture.

• Interface complexity (CI ) describes the sum of complexities of interfaces of every
pair-wise connection between two components. The factors for calculating individual
component and interface complexities originate from the Lucas method [147, 385].

• Topological complexity (CT ) expresses the inherent arrangement of connections by
dividing the graph energy over the number of components. The graph energy measures
the complexity of representing or reconstructing the adjacency matrix used in the
interface complexity [54]. Highly dense networks correspond to more complex matrices
for representing the adjacency matrix, resulting in high graph energy.

Fig. 3.41 presents the evaluation criteria with structural assembly complexity for whether
to densify joining elements between joining scenarios A and B.
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Fig. 3.41: Example of element densification of two joining scenarios A&B. Cases I and II show the undensified
and densified situation, respectively.

The undensified case I has two nodes representing the joining components D and E of
joining scenarios 1 and 2, respectively. The densified case II has only one joining component
D to join both joining scenarios. Component D is more complex than joining component E as
it contains more joining elements CP

E < CP
D . Case II utilizes component D twice: 2 × CP

2 .
However, case II has a more simple and centralized graph compared with case I , and thus,
CT
1 > CT

2 . Here, only one joining component D connects nodes A, B, and C, instead of both
joining components D&E in case I .

Fig. 3.41 visualizes the densification by removing the joining module E. It removes an
edge and a yellow node from the graph. Component D becomes a central node in the graph
that joins components A, B, and C together. ED would remove joining module E from product
documentation, assigning its function to another module D. It centralizes the architecture [54]
creating bus components, which are integral-type modules that have connections with most
other modules [213].

Structural assembly complexity enables an objective comparison of the densified (I) and
undensified case (II); see Fig. 3.41. However, this requires a few changes to the assembly
complexity of Alkan et al. [385], specifically changes to complexity terms for components CP

and topology CT . The interface term CI remains as is.

1. A temporary joining component is defined as a “group of all joining elements on the
same IoCR.” Joining components contain joining elements that all share the same product
variants.

2. The part fastening attributes of the Lucas method [147] are not sufficient for expressing
the complexity of joints. The component term CP must consider the number of joining
elements. Each joining component describes the complexity of the individual joining
elements. For example, joining components with three, four, or five laser welding bonds
must entail increasing complexity [436]. Furthermore, the complexity of each joining
element can include a term for the weights of TU and SA.

3. Joining modules are part of the product architecture. Therefore, ED requires the
integration of modules as nodes to express the topological complexity. Contrary to
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Alkan et al. [385], this would only include the “essential” components A, B, and C
(Fig. 3.41), and the topology term CT needs to include joining components as nodes.
Moreover, the graph virtually stacks all product variants to evaluate complexities for the
configurations created from the IoCR. For joining scenarios 1 and 2, Fig. 3.41 depicts
the topological complexity for all three components A, B, and C. Individual product
variants would only integrate either A & B or A & C. It expresses the commonalization
of the joining module over the joining scenario.

ED is beneficial when the assembly complexity of case II is lower than that of case I; see
Fig. 3.41. The example indicates that the total component complexity CP is lower in case I ,
but the topological complexity term CT is lower in case II . The interface complexity term CI

is equal for both cases, as there are no changes to components or the joining technology [385].

CII < CI (3.27)

CP
II + CI

IIC
T
II < CP

I + CI
IC

T
I (3.28)

CP
II + CICT

II < CP
I + CICT

I (3.29)

CP
I − CP

II > CICT
II − CICT

I (3.30)

∆CP > −∆CT (3.31)

This trade-off (Eq. 3.31) states that it is beneficial to densify if the increase in component
complexity from reusing fewer complex components is smaller than the reduction in
topological complexity from removing joining components. The topological term can be
negative for cases where there are no interchangeable joining components on the IoCR.

The previously discusses methodologies concentrate on commonalization. They are
enablers for modularization of joining elements, of which a methodology is discussed in the
following subsection.

3.3.9 Modularization with module grouping

Joining elements commonalized by TU, SA, and ED provide a solid basis for creating joining
modules. Module creation collects joining elements used in the same products and places
them together in modules. The modularization of joining elements is a necessary step for
increasing manageability and reducing complexity in product documentation. To quickly
recap, modularization standardizes components and processes. It enables the resulting models
to be combined with many product variants [206]. Modularization deconstructs products into
independent functional blocks, enabling parallel development and interchangeable parts to
fulfill these functions.

The previous subsections describes methodologies to commonalize joining elements.
These methodologies enable a more effective modularization, as was argued in Section 3.1.2.
Commonality expresses similarity between products, aiming to decrease the number of
components in a product family. An increase of shared components means a higher grade of
commonality, which is expected to decrease cost and complexity. Module creation performs
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commonalization and modularization to create groups of joining elements. Both approaches
produce different results when optimized; see Fig. 3.42.

Fig. 3.42: Visualization of the difference between maximum commonality and maximum modularity when creating
joining modules.

Fig. 3.42 also presents Venn diagrams with joining elements and components for each
joining scenario. Every segment visualizes a shared group of components that share the same
set of product variants. Maximum modularity in the right column indicates that joining
elements can be redundant between two joining modules. However, this redundancy assigns
entire joining modules to interfaces instead of combining multiple modules. However, module
grouping may also include the components, as Fig. 3.43 illustrates.

Including components during modularization creates independent modules, enabling
parallel development and outsourcing. These modules can be regarded as subassemblies and
behave as a single unit. However, redundant joining elements decrease transparency and
increase complexity.

Module creation grouping for maximum commonality results in joining modules being
shared uniquely by product variants. This grouping implements one basic rule, namely that
components included in the same set of product variants should be placed in the same module.
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Fig. 3.43: Visualization of the difference between maximum commonality and maximum modularity when creating
modules and subassemblies.

The maximum commonality of components results in nonredundant components. Joining
modules may become small, causing joints to consist of multiple joining modules.
Furthermore, joining modules may contain any arbitrary combination of joining elements in
product variants due to shared occurrences. It may be that structurally and functionally
nonrelated joining elements on different positions become a single joining module. High
levels of commonality may increase the complexity in modules, module interfaces, and
product architectures.

The grouping of joining elements must involve trade-off between modularity and
commonality. A component shared by many product variants could be shared by fewer to
allow it to integrate with other modules [437]. The functional requirements of components,
joining elements, and products determine which approach is best suited. Baylis et al. [87]
maximized commonality while considering modularity. They modularized sets of common
components between products. Systematically reducing common components increased the
modularization potential of individual products. A Pareto analysis enabled a trade-off between
the two assessments. Although Baylis et al. [87] proposed one solution for balancing these



3.4 Discussion 151

properties, methodologies such as those of Galizia and ElMaraghy [86] and Stocker et al. [84]
can also create joining modules.

Regardless of the commonality–modularity trade-off, the results must be sustainable.
Modular sustainability refers to the ability of modules to cope with changes. It may require
the redefining or creation of joining modules. Joining modules require size and joining
element variety to be considered during their design. Han et al. [80] stated that
“[c]ommonality is limited to common modules defined by fixed physical standards.” They
opted for greater flexibility on interfaces and proposed uncertainty-oriented product platforms.
The product development process itself is continuously reiterating, creating new variants
asynchronously. Large and diverse modules are less sustainable, even though customer
requirements might induce small changes.

This section proposed new AI methodologies to automate joining element design. To
conclude the chapter, the following section discusses the VICTOR framework, the
applicability of AI fields to automate joining element design, and proposed methodologies.

3.4 Discussion

This chapter has discussed the design of joining elements in manufacturing industries with
high product variety. It has presented a framework called VICTOR with modular
methodologies depending on company needs. The framework organizes various AI methods
that it can implement to predict or modularize joining elements. They work as a divergent and
convergent force on designs. Prediction approaches have the freedom to make designs, after
which modularization methodologies collect results and bring them to a common sustainable
denominator. This chapter also identified and discussed the applicability of AI methods to
automate joining element design.

The applicability of AI methods relies on many factors, which differ for each company
and industry. The manufacturing industry continually implements new joining technologies
and component designs, inspired by trends such as lightweight design. These scenarios are
difficult to model, and thus, they often fall outside of ML model boundaries. Therefore, human
designers or optimization methodologies are required to solve unencountered problems, such as
in the study of Florea et al. [46]. The VICTOR framework contains methodologies applicable
for every specific use case regardless of product maturity. It can take over repetitive and time-
consuming tasks in the user journey. In turn, this will enable designers to concentrate on their
core competencies [2]. It is crucial to recognize that there is a proper time and place for all
methodologies. Moreover, the applicability of AI fields (Section 3.2) reveals that ML cannot
completely take over as the only AI method for the automation of joining element design.

The framework introduces ML for tackling multiple problems in automated joining
element design. It takes advantage of historical data by learning the designs of successful
product variants. It can also learn the relationships of joining scenarios to the product as a
whole yet also predict joining scenarios. ML mimics manual design practices on various
levels of cognitive abstraction. First, it may predict features such as joining technologies or
the number and distribution of joining locations. Furthermore, it can directly predict joining
locations through geometric ML. Lastly, it can learn from topology optimization algorithms
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and apply generalized knowledge of numerous load case simulations to new products. All
solutions align with the minimalistic, experience-based, and use case-based manual design
methods. Increasing the complexity in ML models would increase the ability to predict
joining elements but also increase the solution space. Hence, computational cost limits the
implementation of ML methods for joining element prediction.

The prediction of joining locations is the most challenging task due to the enormous
solution space induced by geometry. First, training one model for each joining technology
helps with performance. Another strategy may be to input the joining technology as a
multimodal feature and let the model learn the relationship between joining locations and its
technology. Second, ML approaches require consistently structured data with a fixed number
of inputs and outputs. However, joining scenarios may consist of varying numbers of
components. Moreover, geometries vary in size and complexity, requiring the balancing of
geometric details and computational cost. Euclidean data structures retain spatial
dependencies in samples, creating a relatively straightforward process of reconstructing
Cartesian coordinates. 2D image-based ML models more effectively limit computational cost
as fully 3D counterparts. They can use the same classification and regression concepts.
However, significant drawbacks are the projection of curved CRs onto 2D images as well as
coordinate reconstruction, which requires the inverse of the projection. Furthermore,
multiview-based methods with arbitrary camera positions suffer from the necessity of
coordinate reconstruction.

The commonality and modularity methodologies reduce variety in joining element design
by aggregating and standardizing joining elements. They aim to reduce product variety-induced
complexity costs and aggregate uncertain predictions. Hence, they integrate DFA principles in
early product development phases from a modular design perspective.

The methodologies consider every joining element as an individual component, enabling
one to define joining modules on module interfaces. A five-step modular design model for
joining elements (see Section 3.3.5) commonalizes joining aspects (technology as well as
parameters and locations) and joints. Modularization may include joining elements alone or
with components, for example, to create subassemblies.

Moreover, the methodologies fill gaps in product family modeling. These gaps were
identified from the meta-process of Gauss et al. [91]. First, the modular design block of
VICTOR defines interfaces for joining elements. These interfaces become functional modules
themselves. To this extent, the interfaces using geometrical layouts to create a mapping of
structural dependencies between components; see Fig. 2.8. Furthermore, they enable physical
modules, such as a group of spot welds, to be independent and interchangeable. The physical
joining modules are derived from commonalization methodologies that can reduce variety in
joining elements. Subsequently, modularization methodologies can create these building
blocks.

Furthermore, commonalization processes might create suboptimal solutions for individual
joining scenarios and potentially violate performance-containing requirements. Standards and
guidelines only validate the manufacturability of joining scenarios, but not their performance,
such as strength or stiffness, using finite element methods. The uncontrolled or arbitrary
removal and addition of joining elements might reduce performance [18]. Thus, after applying
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commonalization and modularization, designers need to revalidate the designs to ensure their
quality.

TU might leave multiple technologies open due to manufacturability limitations. Multiple
technologies would require modularization steps in parallel UoCRs. Joining elements then
map as variants and potentially still may share the same joining locations. For example,
sophisticated documentation methods enable varying parameters [31]. They might have
different technologies and parameters depending on a specific product variant. However, such
implementations depend on the size and complexity of product documentation as well as a
company’s strategy for handling them.

The modularization of joining elements remains highly dependent on the quality of
component design. Suboptimal designs or variety considerations may result in low-quality
joining modules. However, the results of individual steps enable further analysis and insight
into the complexity induced by joining element designs [433]. Analyses may recommend
tuning the weights of modularized joining elements and their modules, thus assisting the
modular sustainability of the product family.

After summarizing this chapter, the following chapter discusses the validation of several
proposed methodologies in the VICTOR framework.
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Chapter 4

Validation

This chapter describes the validation strategy of the VICTOR framework. Whereas Chapter 3
discussed how to generate joining element designs, this chapter applies this knowledge to
generate designs using real data. Suppose that a firm has generated many joining element
designs. These designs create a dataset that methods such as ML can train on. Additionally,
they enable other methods to measure performance compared with successfully marketed
designs.

The framework from Chapter 3 supports designers in selecting appropriate methodologies
and tools for generating joining element designs. Moreover, it identifies underused techniques
within these methodologies, such as ML for joining location prediction. These techniques
may help overcome the various limitations in state-of-the-art joining element design, which
currently include the consideration of successful designs, entire products, and other product
variants.

Thus, the framework identified the promising applicability of various AI fields, such as
SML (Section 3.2). This chapter aims to validate these findings through various methodologies.
Fig. 4.1 visualizes how to place these methodologies in the framework.

The figure presents relevant AI fields and techniques (Fig. 3.8) and links them to the
sections of this chapter. The next few paragraphs introduce the topics of validation.

For the prediction of joining technologies, locations, and parameters, SML is deemed
applicable. However, no methodologies were found in the literature for these tasks (see
Section 2.3.7). Hence, this chapter explores SML for predicting joining technology (Section
4.1) and locations (Sections 4.4 and 4.5). This chapter aims to validate whether the
classification of joining technologies using SML as a rapid design tool is an alternative to
multidisciplinary optimization methodologies. Its validation for predicting joining locations is
more complex.

Recent computer vision techniques rapidly set new benchmarks in the performance of
image segmentation and object detection. These are techniques that, with a few adaptations,
might work for the prediction of joining locations (Section 3.2.2). This chapter aims to
validate that SML (using the grid-based drawing concept from Section 3.2.2) enables the
reuse of joining designs, and also to determine its boundary conditions. Therefore, it first must
determine the more appropriate learning task: classification or regression (Section 4.4). Then,
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Fig. 4.1: Allocation of the proposed methodologies in the framework of Fig. 3.8.

the chapter validates the integration of nongeometric data into a computer vision-based
prediction model (Section 4.5). Nongeometric data, such as material and function, contain
additional information about the joint that is supplementary to geometries [376]. It enriches
the information for prediction models, thereby improving their performance.

However, SML prediction models for joining locations require data samples that contain
geometries. The representation of these geometries is vital in the balance between
computational cost and informational content (see section 2.3.5). Therefore, this validation
chapter also explores algorithmic fitting (Section 3.2.2) as a more lightweight prediction
model. Algorithmic fitting can use S&O techniques for distributing joining locations, thus
preventing the high developmental effort required in RBR methodologies [101]. Additionally,
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the distribution does not rely on patterns within joining locations, which enables its
application in earlier product design phases. The aim is to validate whether predicting the
number of spot welds using SML (Section 4.2) and distributing these points using an
evolutionary algorithm (Section 4.3) work as a simpler, faster implementation compared with
only using SML.

Besides evaluating the applicability of AI for predicting joining elements, VICTOR also
presents four modular design problems for joining elements (Section 3.2). The literature does
not contain many methodologies for these design problems. Although, it describes
methodologies that are equivalent or perform similar tasks as TU (Section 3.3.6) and module
grouping (Section 3.3.9), for example, the studies of Ukala and Sunmola [237] and Stocker et
al. [84]. respectively. Hence, methodologies proposed in the VICTOR also include SA
(Section 3.3.7) and ED (Section 3.3.8), which are conceptually novel. SA aims to reduce the
variability in joining locations caused by nondeterministic prediction models (Section 4.6).
Moreover, ED aims to unify joints between multiple product variants (Section 4.7). Together,
these are two methodologies systematically commonalize joining element designs to reduce
the negative impacts of product variety.

All of the methodologies being validated must be evaluated according to the same set of
criteria. The state of the art indicates that the main problems in the joining element design
process are time-consumption and quality. In early product design in particular, where many
boundary conditions and dependencies are still unknown, rapid results are vital to ensure that
designers can continue their work. Speed enables quicker iterations and reduces lead times.
Higher quality through, for example, the consideration of successful designs or other product
variants prevents unnecessary design iterations. However, these properties are difficult to
measure between the different boundary conditions for each methodology in this chapter.
Hence, the methodologies receive a qualitative rating. In addition to the main issues in the
joining element design process, comments are also made on the methodologies’ development
effort, computational cost, structural performance, and applicability to actual use cases. The
assessment section of this chapter (Section 4.8) lists the methodologies according to the same
set of properties used for the literature overview (Section 2.4).

However, this validation chapter does not assess the structural performance of predictions
in depth (as introduced in Section 2.1) due to the developmental effort, the scope of this study,
and practicality. Proper structural performance requires testing of the product as a whole as
well as many use cases [25]. Moreover, as the scope of this study included product variety, the
joints also had to be tested for multiple product variants. These variety tests were required to
validate the joints under various stresses and strains.

Hence, and as aforementioned, a large real dataset enables the comparison of predictions
with successful designs. Thus, regardless of how that dataset came into existence, this
validation chapter assumes it to contain ground-truth “optimal” designs. However, small
qualitative discussions are also presented on structural performance during the analysis of
selected predictions. Additionally, the correlation between the number of spot welds and
nongeometric data, as well as the prediction of the number of spot welds (Section 4.2), briefly
addresses the ability to cope with tension and compression stresses. This chapter focuses on
resistance spot welding for the following reasons:
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• Modeling and product life cycle analyses are significantly different between joining
technologies. Prediction models that would consider multiple joining technologies
would induce difficulties due to variety and uncertainty. For example, technologies such
as riveting and clinching create holes in components that change their structures and
performance. Additionally, some curve-based joining locations, such as laser beam
welding, are located on edges of components’ flanges, creating a significantly different
CR and boundary conditions.

• Resistance spot welding is one of the most commonly used joining technologies in the
automotive industry [25]. This popularity creates a large dataset. Additionally, its
popularity in the literature indicates global interest in the joining location prediction of
spot welds.

• Learning approaches require historical data to train and test models. Although spot
welding is a somewhat dated joining technology, its popularity over the years has
created a large dataset. Furthermore, the modeling of spot welds is relatively simple.
Often, mere Cartesian coordinates can represent spot welds.

Additionally, the design of joints using spot welding has been researched extensively (see
Section 2.1.5), especially in the automotive industry [18]. The reasons for this interest are as
follows:

• The automotive industry is a leading sector in product variety and modularization [438];

• There is extensive documentation of products [19];

• There are high-quality design requirements due to regulations and safety [8];

• There are a high number of joining elements in every product variant [18].

Therefore, this validation chapter uses a dataset from the automotive industry. The raw
dataset includes 13 cars from Mercedes-Benz that differ in designs through properties such as
carlines, model types, and steering sides. It includes the geometry and some parameters in
CAD files, which were extracted from PDM systems. Hence, the raw dataset comes from
actual successful vehicles on the roads today. The samples in the dataset consist of joining
scenarios. Each scenario describes two CAD parts with joining elements, resulting in 6517
data samples. Joints that assemble more than two components were reduced into
two-component joints. This simplification keeps the data structures constant and significantly
reduces complexity in algorithms. Then, the combination of two components without joining
elements represents the input state, and with the joining elements the output state (ground
truth).

The particularities of each methodology in the validation require them to have subsets of
the raw dataset. For example, to predict the number of spot welds, a dataset that only contains
the appropriate joining scenarios is required. Fig. A.1 presents the steps used to create the
datasets for each validation. Each methodology briefly addresses the derivation of the dataset
in their respective section of this chapter.

Before validating the methodologies, a preliminary data analysis was performed (Appendix
A.2). That section discusses the properties of both the joining technologies and the number of
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joining locations in the nongeometric dataset. Some methodologies in this chapter have their
results confirmed on the basis of the analysis.

Most methodologies were validated using separate datasets, methods, and performance
measurements. However, to maintain structure in this chapter and to retain the linkage to
VICTOR, each of the following sections describes one methodology and is divided into six
subsections: approach, implementation, process, results, discussion, and evaluation. This
division not only helps to find parallels and distinctions between the methodologies but also to
structure each methodology.

Following the sequence of steps in the user journey (Fig. 4.1), the first section in validation
is the prediction of joining technologies.

4.1 Joining technology prediction

Section 3.2 identified SML as a promising field for predicting joining technologies. The
prediction model needs to recommend the appropriate technique through classification
(Section 2.3.3). The multiclass classification model shall output conditional probabilities for
each joining technology. The highest probability corresponds with the selected joining
technology class. The goal of validating this methodology is to determine whether SML can
predict the joining technology.

Approach
Joining technology prediction using SML enables rapid recommendations, especially in early
product design. Current methodologies that, for example, implement MCDM optimize for the
best joining technology. However, they require much information that is not necessarily
available at a given moment in time (Section 2.1.3). As SML relies on patterns in data, it relies
on similar use cases. Moreover, the selection of a joining technology must consider the
component geometries. However, as the model performs a classification task, the data
representation of these geometries may be abstract, such as size, weight, or encodings. Hence,
data preparation may combine the geometric information with further structured data, such as
materials and functions (see joint representation in Section 2.3.6).

The state of the art describes many different methods in SML (Section 2.3.3). To validate
the methodology, it is beneficial to keep the prediction model simple. Decision trees are
simple to understand and to preprocess, and they can handle the required data formats [279].
Additionally, designers can trace every decision in the tree to verify its outcome. Although
decision trees are relatively simple to train, they require appropriate data and formatting to
achieve good results.

Implementation
Fig. 4.2 depicts the data preparation process for predicting joining technology.

The image indicates the effect of each step on the number of data samples m and the
number of features nf . The latter is distinguished in the number of numerical features plus (+)
the number of nominal features. The following list presents the steps of this process:
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Fig. 4.2: Data preparation process for predicting the joining technology. It tracks the number of features nf and
number of data samples m throughout the process.

1. Feature selection filtered the raw dataset by removing nonrelevant attributes. This
includes nonrelevant PMI in the CAD files, such as versions or multilingual
nomenclature.

2. Nominal attributes may include text and numerical values. Cleaning and formatting
repaired errors such as spelling mistakes in nomenclature and inconsistent material
naming.

3. One-hot encoding [275] split all string values into individual words and codes that
represent the information. Each class became a feature. Here, each data sample may
receive one 1 for a given class in a feature. Moreover, label encoding enabled multiple
words to be addressed if the original feature was a text. When each word in the text was
a new feature, label encoding set true values (≡ 1) at all of these words.

4. The preprocessing of target features handled outlier target classes. For example, when a
given exotic joining technology occurred twice in the entire dataset, it might have an
undesirable effect on the performance of the prediction model. Additionally, this
processing step integrated subvariants of joining technologies into one, such as
combining self-piercing riveting with blind riveting into riveting. This step increased
the available data samples for the class of riveting, but also reduced the complexity of
the prediction model.

Classes below 15 data samples were filtered, resulting in 18 different target labels.
These classes included labels representing combinations of technologies (e.g., adhesive
bonding with spot welding).
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5. Features with very weak relationships with the target classes were filtered. The variance
filter removed features with low variance (≤ 2%), which would likely distract learning
algorithms. Furthermore, the correlation filter removed features with a high correlation
(≥ 75%) to the target classes as they were redundant in the prediction task. The
correlation filter calculated coefficient pairs of selected features. For
numeric-to-numeric features, it used the Pearson correlation coefficient [439], whereas
for nominal-to-nominal features, it used Pearson’s χ2 test [440] normalized by
Cramer’s V [441] with p = 0.05.

6. The filtering of features may create duplicate samples in the dataset. The removal of
duplicates step filtered these to prevent any biases when training the prediction model.

7. After preprocessing the data samples, they were split into a training dataset and a test
dataset. Stratified splitting implies that the distribution of each target class is equal
between both datasets.

The training and test sets had 2506 and 627 data samples, respectively. Each sample had
126 attributes, of which eight were numeric.

Now, the dataset contained useful features for the prediction of joining technologies.
However, to validate the prediction models, feature engineering might help to assess the
importance of each feature in prediction. The most critical features are the most vital ones to
create in early product design to enable joining technology recommender systems based on
SML. Additionally, they enable the analysis of noise and additional complexity when
compared against a model trained on all features.

Feedforward feature selection enables the evaluation of the importance of each feature. It
finds and ranks the best features for the prediction tasks. Feedforward feature selection starts
with individual features to determine the most important one. Then, it evaluates all
combinations of two features, considering the previous best feature. It continues this process
for all combinations of best features. Measuring the importance of features requires three
methods: decision trees, random forests, and XGBoost to cross-validate their results. The
process of feedforward feature selection is discussed further in the process section as well as
Fig. 4.3.

For example, Fig. A.5 presents the feature importance for each of the classifiers, namely
decision tree, random forest, and XGBoost, respectively. The following list presents the
selected features using each method. These sets were cherrypicked using the elbow method
[322]. The features were often similar between the methods, such as the thickness, moment of
inertia, material, and coating.

• Decision tree (12×): car line, a coating, base materials of both components, alloy of
component 2, thickness of both components, depth in the product architecture of
component 1, cross member in component 2 (nomenclature), closing sheet
(nomenclature), a submodule, and a moment of inertia of component 2.

• Random forest (9×): car line, surface areas of both components, one moment of inertia
of both components, thickness of component 2, front seat (nomenclature), roof structure
(nomenclature), and above (nomenclature).
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• Random forest (16×): features of random forest (9×), pillar (nomenclature), product
structure depth, main floor (nomenclature), front wall (nomenclature), fund seat
(nomenclature), and two coatings.

• XGBoost (10×): one moment of inertia of both components, thickness of component 2,
area of component 2, product architecture depth, part (nomenclature), casting, a
submodule, and two coatings.

The feature sets include traditional information that corresponds with engineering
considerations for the selection of joining technologies. For example, the moments of inertia
and thicknesses indicate an expected load due to the dimensions of the components.
Furthermore, the coatings of components may indicate corrosion from, for example, water
leakage, which sets up for adhesive bonding. A prediction model will receive each set of
features. The process of training of these models is addressed next.

Process
Fig. 4.3 presents the generic process for generating decision tree-based models for the
prediction of the joining technology.

Fig. 4.3: Process of training classification and regression decision trees for feature engineering and hyper-parameter
tuning for the tasks of predicting the joining technology and number of spot welds.

Fig. 4.3 displays both the process of feedforward feature selection and hyperparameter
tuning for any model (e.g., random forest and XGBoost). The inputs are the preprocessed
datasets with the aforementioned sets of features; see Fig. A.2. The following list discusses the
steps in the process:

1. The dataset splits into a training and test dataset with an 80%/20% ratio. This step is
redundant to the last step in Fig. 4.2.

2. The features on which to train are selected. These features may include the entire dataset
or cherry-picked features. Additionally, they may result from a process to determine the
most important features, such as the top 10.
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3. Synthetic Minority Oversampling Technique (SMOTE) [442] is a statistical method for
increasing data samples for classes with low frequencies. It generates new data samples
by combining feature values of nearest neighbors (nnn = 5) for every target class.

4. The decision trees are generated using k-fold cross-validation (CV) to verify the results.
CV uses small test sets, where statistical uncertainty is more considerable for the
estimated test error, preventing confidence in evaluations between models [275]. An
implemented 10-fold CV splits the dataset into 10 equally sized subsets [443]. Every
subset is used once as a target set the other times included in the training set. Averaging
the test errors over k-folds returns the models’ test error [275].

Here, the forward feature selection method finds and ranks the optimal features for the
prediction tasks. Besides forward feature selection, the hyperparameter tuning process
performs a grid search on the properties of decision trees, such as their number and
depth. Increasing these parameters enables the decision tree to increase the complexity
of the task. The following list presents the values used for the hyperparameter tuning of
regular decision trees, random forests, and XGBoost classifiers:

• Random forest and regular decision trees
Maximum tree depth: [5, 10, 20, 30,None]
Number of trees: [50, 100, 200, 250]

• XGBoost
Maximum tree depth: [2, 4, 6, 8, 10, 12, 14]
Learning rate: [0.1, 0.2, 0.3]
Number of boosting rounds: [50, 100, 150, 200, 250, 300, 350]

5. Evaluation scores the best model after hyperparameter tuning on the hold-out test set.
The measurements include the accuracy (A), F1-score (F1), and Cohen’s kappa (κ)
(Section 2.3.3).

Feature engineering resulted in four feature sets after feedforward feature selection. These
sets implemented three different decision tree methods. Random forest and XGBoost are more
complex and robust methods than the use of only one decision tree. Hence, the decision tree
method is only used in feedforward feature selection. The empirical analysis resulted in the
following six prediction models for validation:

1. Random forest classifier on all features of the dataset after data preparation;

2. XGBoost classifier on all features of the dataset after data preparation;

3. Random forest classifier using the 12 most important attributes from feature
engineering with regular decision trees (FE-DT);

4. Random forest classifier using the nine most important attributes from feature
engineering with random forests (FE-RF-9);

5. Random forest classifier using the 16 most important attributes from feature engineering
with random forests (FE-RF-16);
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6. XGBoost classifier using the 10 most important attributes from feature engineering with
XGBoost (FE-XG).

Results
Table 4.1 presents the joining technology prediction results. The identifiers of the rows
correspond to the numbers of the models in the list above. All models demonstrated promising
results, as indicated by the test set scores being above 70% for all metrics. XGBoost seemed
more promising for models that use all features with an F1-score of 85.8%. However, the
random forest classifier using the nine most important features resulted in an F1-score on the
test set of 94.8%. The Cohen’s kappa scores led to a similar conclusion when accounting for
the class frequencies.

ACC F1 κ

ID F DT TR TE TR TE TR TE
1 all RF 99.4 90.7 99.4 82.2 99.4 87.3
2 all XG 99.4 92.7 99.4 85.8 99.4 90.0
3 FE-DT RF 94.9 79.6 94.8 74.6 94.6 73.0
4 FE-RF-9 RF 98.8 95.7 98.8 94.8 98.7 94.1
5 FE-RF-16 RF 99.0 94.3 99.0 91.9 99.0 92.2
6 FE-XG XG 96.3 83.8 96.3 78.4 96.1 77.7

Table 4.1: Results of the trained models for predicting the joining technology. Abbreviations: F – selected features
set, DT – tree learning method, RF – random forest, XG – XGBoost, TR – training set, CV – cross validation set,
TE – test set, ACC – accuracy, F1 – f1-score, and κ – Cohen’s kappa.

Table 4.1 provides an overview of the models, while Fig. 4.4 presents the distribution for
each predicted class of each model.

The figure normalizes the distribution of the spot welds to make the models comparable.
The x-axis lists all target labels. The graph also visualizes the dominance of spot welds creating
a skewed distribution for the learning task. All models seemed to replicate the target distribution
of classes rather well. However, model ID3, which used a random forest with a decision tree-
based feature set, followed the trend the least. Table 4.1 also indicates that this was the model
with the worst overall performance.

Discussion
The results were promising. The random forest prediction model (ID4) that used the nine most
important features achieved a high performance, whereas the random forest model that trained
on all of the data (ID1) achieved a lower performance. It may be that the tree depth or number of
trees for the random forest classifier was too low. This parameter tuning might have prevented
the model becoming complex enough to explain the variance in the data. In other words, the
model had size limitations. Another explanation might be that the other features contained
noise, which could distract the model. The model (ID1) achieved 99.4% on the test set for
all performance measurements. This performance might also indicate overfitting of the model
on the training set, which would reduce the performance when predicting on unseen cases.
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Fig. 4.4: The predictions of the joining technology normally distributed over the classes. Abbreviations of target
classes: RSW – resistance spot welding, SC – cutting clinching, MIG – metal-inert gas welding, RIV – riveting,
LW – laser welding, and PW – projection welding.

Nevertheless, reducing to nine of the 126 features enabled the performance to significantly
increase.

Compared with the random forest models, the XGBoost models exhibited the opposite
behavior after feature engineering. While, one XGBoost model (ID2) achieved a similar
performance when using all of the features as Random Forest model (ID1), it lost
performance when using the 10 most important features, dropping to 77.7%. The used
features largely overlapped with those found by random forest-based feedforward feature
selection. Possible reasons may include not only the hyperparameter settings but also the data.
The variance in the data might lend itself better to training with random forests. This
performance difference might not occur for other use cases and data formatting. Interestingly,
the XGBoost models also required a significantly longer training time. Still, XGBoost is a
technique to consider in joining technology prediction.

As mentioned, hyperparameter tuning might have a significant impact on the outcome.
However, the training of models requires expert knowledge. Joining scenarios become more
complex with combinations of technologies and subvariants thereof. The skewed distribution
– in the dataset of this automotive use case – between bread-and-butter technologies, such as
resistance spot welding and exotic ones such as riveting (see Fig. 4.4), makes training and
implementation tricky. Preprocessing must aggregate certain variant technologies under more
generic labels for a consistent dataset. This includes defining a set of technologies, such as
resistance spot welding over an adhesive bond, as one surrogate technology. Moreover, two
components may have multiple joints that all consist of multiple technologies. In short, the
simplification of target features and data preprocessing has an effect on bringing such models
into practice. Large simplifications might increase the performance significantly. However, this
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performance increase reduces the precision of models. Here, precision describes the ability to
predict specific types of joining technologies for a given data sample.

Furthermore, the sets of the most important features are largely generic and well-known to
the industry, such as thicknesses and moments of inertia. However, other features are highly
application-specific, such as coatings and terms in nomenclature. Keywords such as “front
seat” and “roof structure” add value but are specific to this dataset. The nonstandardization of
nomenclature, material, surface treatment, and coating documentation creates many features
and cumbersome preprocessing. Hence, these features aid models in becoming specific to the
use case.

Moreover, the selected features from feature engineering overlapped with those specified
in table-based approaches, such as in the work of Bond et al. [41]. Their methodology enables
designers to manually select joining technologies based on materials and joining
characteristics, such as sheet thickness, joint dimensions, surface finish, and strength.
Moreover, the selected features overlapped with the process groups of l’Eglise et al. [152].
The recurring features validated feature engineering and confirmed correlations in the dataset;
in other words, the models could not find an arbitrary combination of features that
coincidentally achieved a similar performance.

Evaluation
Table 4.2 summarizes the trained models.

ID F DT Perf. Speed Dev. Comp. Struc. Appl.
1 all RF 2 2 2 1 – 2
2 all XG 2 2 2 3 – 2
3 FE-DT RF 1 3 3 1 – 1
4 FE-RF-9 RF 3 3 3 2 – 3
5 FE-RF-16 RF 2 3 3 2 – 3
6 FE-XG XG 2 3 3 3 – 1

Table 4.2: Evaluation of the trained models for predicting the joining technology. Values [1 − 3] correspond with
low to high scores. The minus (−) indicates no differentiation between models on criteria. Abbreviations: F –
selected features set, DT – tree learning method, RF – random forest, XG – XGBoost, Perf. – performance, Dev –
development effort, Comp. – computational cost, Struc. – structural performance, and Appl. – practical applicability.

It rates each model according to the six validation criteria discussed at the beginning of
the chapter: performance, speed, development effort, computational cost, structural
performance, and practical applicability. The ratings are qualitative as a result of the results
and discussion. The range of values is [1− 3], where 1 is low and 3 is high. A minus sign (−)
presents nondifferentiating criteria. For example, structural performance is not relevant for
joining technology prediction due to the type of task. The rating for each model in Table 4.2
has the following considerations:

• Models that rely on feature engineering have increased computational cost. An additional
process is necessary for determining the most important features.
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• Moreover, these models require increased development effort to set, analyze, and create
the prediction models.

• However, the resulting prediction models from feature engineering are simpler. These
models implement a smaller number of features. This reduction increases the speed of
prediction and validation.

• Regular decision trees and random forests train significantly faster than XGBoost. This
property of the method prevents quick validation and experimentation for large feature
sets.

• The industrial applicability favors simple models in times of new materials and
technologies. Additionally, model ID4 has the highest performance.

Table 4.2 indicates that feature engineering using feedforward feature selection with
random forests is the most likely model to have promising results. The model also aligns best
with the boundary conditions of the use case. It relies only on a few features that are available
in early product design, has high performance, and predicts rapidly. However, much research
exists on new joining technologies and materials. SML models need to be retrained on
strategic moments to cope with new trends and boundary conditions.

In short, joining technology prediction is a highly feasible task to perform using SML. The
random forest-based models predicted with an F1-score up to 94.8%. Feature engineering can
positively affect prediction performance, training speed, model complexity, and its ability to
generalize. Because the most important features are generic in nature, models that utilize them
can support designers during the early phases of product development.

Whereas this section regarded the prediction of joining technologies, the following section
validates a subproblem in predicting joining locations; predicting the number of joining
locations.

4.2 Prediction of the number of spot welds

VICTOR, the framework provided in Chapter 3, presents algorithmic fitting as a promising
approach for creating joining locations. However, it proposes algorithmic fitting as a
combined methodology. First, this requires data on the joining locations and how many there
are, which are then distributed on CRs. The prediction of the number of spot welds enables a
secondary algorithm to determine the joining locations. This number correlates with the
structural performance. Typically, it implies more spot welds in areas that need to cope with
higher stresses and strains. However, predictions of the number of spot welds mainly correlate
with tension and compression. Other stresses require the consideration of geometry and
joining locations; see Section 2.1. Therefore, this methodology can only consider a small part
of structural performance. Hence, the main goal of this validation was to determine whether
the number of spot welds can be predicted using SML.

The learning task can be regression and classification. The target feature (number of spot
welds) is a numerical value. Regression can treat this value as continuous. Continuous variables
enable the model to interpolate and extrapolate in cases where unseen data samples fall in
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between or outside of others. Moreover, a classification task requires the number of spot welds
(or a range) to be considered a class. It must simplify the classes in the target feature to prevent
a skewed distribution of classes. Validation includes both learning tasks.

Limiting the scope to spot welds prevents other joining technologies affecting the
prediction performance. It also prevents the model from determining the joining technology.
For example, by including curve-based joining technologies such as adhesive bonding, a CR
may have one joining location, namely a curve. However, spot welding of this joint could
involve 15 joining locations. The popularity of spot welding in the automotive industry
ensured that the dataset was large enough for validation.

Approach
Similar to joining technology prediction using SML, predicting the number of spot welds has
the same boundary conditions. It enables rapid recommendations, even in early product
design, by relying on successful designs of the past. Pelka et al. [376] performed a similar task
by predicting the mutual distance of spot welds. However, they mainly considered the
geometry of components. This consideration left out information about, for example, the
component’s function. Furthermore, detailed geometry might be unavailable in early product
design phases. Similarly, as for joining technology prediction, the input for predicting the
number of spot welds may combine geometric information with further structured data, such
as material and function; see joint representation in Section 2.3.6. In addition to the similar
dataset processing, the prediction methods can also be similar. Because the goal is to validate
whether the prediction is possible, this methodology also implements decision trees, which
can perform both classification and regression tasks.

Implementation
As previously mentioned, the implementation was similar to joining technology prediction, so
the figure that visualizes the data preparation process is found in the Appendix (Fig. A.2). The
number of spot welds used the same raw dataset of features as JTS. However, it only considers
the joining scenarios that use spot welds; hence, the values for the number of data samples m
and number of features nf differ. The number of spot welds also had a skewed distribution.
There were low frequencies of joining scenarios that have many spot welds; see Fig. A.3.
To prevent a negative effect on the performance, the classifier models used an outlier class,
which represented joining scenarios with more than 33 spot welds nRSW > 33. The class had
m33+ = 135 of the total m = 3133 samples.

The training and test set had 2100 and 525 samples, respectively. Each data sample had
131 attributes, of which 21 were numeric. This dataset had fewer features than the dataset
used for predicting the joining technology. Not all of the features in data samples contained
enough information to pass the variance and correlation filters. To validate the features used in
the prediction models, feedforward feature selection was used to determine the most important
ones. Fig. A.6 in the Appendix illustrates the feature importance for the XGBoost classifier.
Feature engineering resulted in the following selected features for each model:

• Decision tree (6×): surface area of component 1, a moment of inertia of component 2,
thickness of component 1, depth in product architecture of component 1, and a coating.
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• Random Forest (4×): surface area of both components, a moment of inertia of
component 2, and thickness of component 2.

• XGBoost (8×): surface area of both components, a moment of inertia of component 2,
thicknesses of both components, depth in product architecture of component 1, a coating,
and two manufacturing methods of component 2.

These feature sets included the traditional information that corresponds with engineering
considerations. They seemed more geometrically driven than the selected features for joining
technology prediction. This also aligns with the work of Pelka et al. [376], who predicted the
mutual distance of spot welds based on geometry. The features include moments of inertia
and thicknesses, indicating more load and force-based considerations. The feature importance
graphs revealed that only a few features have an impact. Hence, the feature sets are smaller than
for joining technology prediction. Furthermore, creating all numeric and all nominal feature
sets enabled the validation of the high geometrical influence in predicting the number of spot
welds.

Process
Similar to the data preparation process, the process for prediction aligns with that of joining
technology prediction. Fig. 4.3 presents this generic process, which was further described in
Section 4.1.

The process for predicting the number of spot welds used eight prediction models. This
methodology also validated a regression task. Additionally, it aimed to provide insights into
the correlation between numeric features and the number of spot welds.

1. Random forest classifier on all features of the dataset;

2. Random forest regressor on all features of the dataset;

3. XGBoost classifier on all features of the dataset;

4. Random forest classifier using the six most important attributes from feature
engineering with regular decision trees (FE-DT);

5. Random forest classifier using the four most important attributes from feature
engineering with random forests (FE-RF);

6. XGBoost classifier using the eight most important attributes from feature engineering
with XGBoost (FE-XG);

7. Random forest classifier using 21 numeric features (NUM);

8. Random forest classifier using 110 nominal features (NOM).

As stated, predicting the number of spot welds can be a classification or regression task.
Comparisons between both types of predictors require the same metrics. Hence, the floating
output value of the regressor models needs to be converted to an integer. Then, it may be
regarded as labels enabling the evaluation of typical performance measurements for
classification. Nevertheless, graphs that visualize differences to the target number enable an
analysis of the error size for false predictions.
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Results
Table 4.3 presents the results from predicting the number of spot welds using variants of
decision trees.

ACC F1 κ
ID F DT TR TE TR TE TR TE
1 all RF 95.4 77.3 95.4 76.9 95.3 75.7
2 all RF-reg n/a 16.8 n/a 10.7 n/a 11.2
3 all XG 99.4 83.2 99.4 80.0 99.4 82.0
4 FE-DT RF 79.5 54.3 79.2 57.9 78.9 51.5
5 FE-RF RF 73.0 40.8 72.3 48.3 72.2 37.3
6 FE-XG XG 75.6 49.8 75.2 39.4 74.8 46.6
7 NUM RF 89.0 65.9 88.8 66.9 88.6 63.5
8 NOM RF 90.4 59.8 90.2 61.0 90.1 57.3

Table 4.3: Results of the trained models for predicting the number of spot welds. Abbreviations: F – selected feature
set, DT – tree learning method, RF – random fores, XG – XGBoost, TR – training set, CV – cross-validation set,
TE – test set, ACC – Accuracy, F1 – F1-score, κ – Cohen’s kappa, NUM – numeric, and NOM – nominal.

The IDs overlap with the numbers of presented prediction models in the list above. The
performances indicates that the predictions were promising yet not convincing. Model ID3
utilized all 131 features, and an XGBoost classifier had the best F1-score with 80.0%. Feature
engineering did not improve the prediction performances. The best feature engineered model
was a random forest classifier (ID4) with the six most important features determined by regular
decision trees, resulting in an F1-score of 57.9%. Interestingly, when using only numerical
or nominal features, the F1-scores of random forest classifiers were 66.9% (ID7) and 61.0%
(ID8), respectively. Furthermore, the random forest regressor (ID2) was the worst model with
an F1-score of a mere 10.7%.

However, Table 4.3 does not offer insights into the false predictions. Predicting a class
falsely is binary: one spot weld too few or too many is just as wrong as 20. Theoretically, the
worst performing model (ID2) could still be performing close to other models. Hence, Fig. 4.5
visualizes the difference in the number of predicted spot welds.

Model ID3 (XGBoost model on all features) produced the best results in Table 4.3 with a
mean difference in the number of spot welds of ∆NRSW = −.461. The negative mean seemed
to be a trend for all models, which predicted too few spot welds. The left tails were also thicker
than the right tails of every model.

Fig. 4.5 confirms the suboptimal quality of the regression model (ID2). Only this model
had a mean value that did not coincide with a zero difference. Models with high performance,
such as the all-feature XGBoost model (ID3), were thin and had a sharp peak at 0.
Worseperforming models exhibited opposite behavior; their curves widened outward.
Nevertheless, the differences between the predicted and target numbers were small. Fig. 4.5
enabled the analysis of the model’s prediction precision. To this extent, Fig. 4.6 maps how
often each model predicted each number of spot welds.

Fig. 4.6 indicates the performance of each model for each class. The black line shows
the target in relative occurrences. Models with higher performance should be able to follow
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Fig. 4.5: The normalized difference between the number of spot welds in the target vs. predictors.

this line. The figure indicates a skewed class distribution. Most joining scenarios contain a
number of spot welds below, for example, 10. Generally, the models seem to predict the joining
scenarios with either a low or a high number of spot welds correctly. The mid-range around
[5− 11] exhibits an increased difference between models, as indicated by their distance to the
target line.

Discussion
The prediction of the number of spot welds using decision trees produced promising results.
For example, the XGBoost model that used all features (ID3) achieved an F1-score of 80.0%
(Table 4.3). However, the model seemed to need many features to achieve this result. Feature
engineering provided undesirable results and attained in the best case an F1-score of 57.9%.
One explanation is that it only resulted in a few important features. This restricted number did
not allow the model to learn from enough information to perform the task well. On the other
hand, it also signals that the number of spot welds depends on many features. Moreover, it may
be that the required features were not present.

The experimental work of Pillai et al. [105] aimed to predict the mutual distance of spot
welds. Their models also considered some form of represented loads and forces through
considering geometry. Decision trees on structured data are advantageous as they train more
quickly, are less complex, and require less processing. However, these trees use abstract



172 Validation

Fig. 4.6: The predictions of the number of spot welds distributed normally over the classes.

geometrical representations, such as volume, weight, and moments of inertia. These features
may not contain enough detail about the joining scenario to predict the number of spot welds
correctly. This statement is backed up when one examines Fig. A.4 (Section A.2). Here, many
features correlate weakly with the number of spot welds, confirming this hypothesis.

For example, taking only numerical (ID7) or nominal (ID8) features both resulted in
higher performance compared with the models that implemented feature engineering (Table
4.3). These models also indicated that the numerical 21 features achieved better results than
the 110 nominal features. However, the number of nominal features was large compared with
the total 2625 data samples. The prediction models may have extracted coincidences between
features in samples to predict the number of spot welds.

These coincidences may also explain the overfitting of models. The difference between
scores on the training and test set were large. For most models, it seemed to be above 20%.
The dataset might be small for the prediction tasks, especially considering the large number of
features.

Moreover, the number of target classes was 33, which is rather high for 2100 unique data
samples. The under-representation of large joining scenarios may also have influenced the
prediction quality. As Fig. A.3 shows, the number of joining scenarios for each class fell off as
the number of spot welds increased. Most joining scenarios contain a number of spot welds
below, for example, 10. Hence, models can achieve a high performance for predicting
correctly on small joining scenarios.
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Moreover, the continuous nature of the task may have affected the models. Figs. 4.5 and 4.6
visualize the distributions of predictions. Many models often predicted one or two spot welds
from the target number. The evaluation scores indicated that such predictions were clearly
wrong. However, Fig. 4.6 indicated that the predictions were not randomly wrong. Certain
areas of the graph indicate that the models follow the black target line rather well. However, the
mid-section seems troublesome. Possible explanations for this include fewer data samples as
well as the higher geometrical complexity of components. The geometries could increasingly
vary in size, thus affecting the numerical features, but without increasingly more spot welds
such as plating on the outside of the vehicles. Furthermore, smaller scenarios might have fewer
options for spot weld designs and could be more straightforward. Furthermore, large scenarios
have lower frequencies that tend to contain less variability in the dataset after using SMOTE.

Evaluation
Nevertheless, predicting the number of spot welds is a promising pathway. The initial results
suggested that prediction is feasible with only a few core features. The number of spot welds
expresses a form of the expected loads and forces on components. These models enable quick
results, supporting designers and potentially RBR methodologies, as in the work of Thompson
and Salerno [50].

Table 4.4 summarizes the trained models. It has the same structure and setup as Table 4.2.
However, the rating for each model in table 4.4 has one additional consideration:

• Besides performance, the rating considers structural performance, which concerns the
difference to the target number of spot welds. It explains a model’s ability to predict
close to the required number.

ID F DT Perf. Speed Dev. Comp. Struc. Appl.
1 all RF 2 2 2 1 2 2
2 all RF-reg 1 2 2 1 1 1
3 all XG 2 2 2 2 2 2
4 FE-DT RF 1 3 3 2 1 1
5 FE-RF RF 1 3 3 2 1 1
6 FE-XG XG 1 3 3 3 1 1
7 NUM RF 1 2 2 1 2 1
8 NOM RF 1 2 2 1 1 1

Table 4.4: Evaluation of the trained models for predicting the number of spot welds. Values [1 − 3] correspond
with low to high scores, respectively. Abbreviations: F – selected features set, DT – tree learning method, RF –
random forest, XG – XGBoost, Perf. – performance, Dev – development effort, Comp. – computational cost, Struc.
– structural performance, and Appl. – practical applicability.

Although, the prediction of the number of spot welds is a partial solution, the
methodology is transferable to other joining technologies. However, this implementation
required an implementation for each joining technology. The results were not of such
importance to enable the assumption that one model for predicting the number of joining
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locations would suffice. The methodology seems too specific for discrete joining elements.
Hence, a practical application would become highly use-case-driven, such as for predicting
the number of spot welds in the automotive industry, whereas the aviation industry might
benefit from such an implementation for riveting. In such cases, the number of joining
locations for other technologies would require a different method.

Predicting the number of spot welds supports the prediction of joining locations. The
following subsection validates an evolutionary algorithm to distribute joining locations on a
CR.

4.3 Randomized distribution of joining locations

The number of spot welds is an input for distributing joining locations. Algorithmic fitting
first requires a number before it can determine the joining locations. Section 3.2 identified that
S&O is an AI field only used in topology optimization methodologies. Currently, RBR
(Section 2.1.4) can only equally distribute a number of point-based joining elements on the
centerline of a CR. Furthermore, topology optimization (Section 2.1.5) has a high
computational cost and requires an entire product to consider all loading cases. S&O can
enable more complex distributions to, for example, create better joining locations in terms of
structural performance. Additionally, S&O can remain relatively simple and fast. These
properties form a middle ground between current state-of-the-art approaches. The aim of
validating this methodology was to determine whether a relatively straightforward S&O
methodology can create meaningful results, especially as the algorithm lacks knowledge of
successful designs.

Approach
Section 3.3.1 presented joining location prediction using randomized optimization. An
evolutionary algorithm tries each iteration to increase the mutual and edge distances between
joining locations. The section also presented an optimization objective, the main
hyperparameters, and an initialization method.

However, the structural performance becomes harder to validate without using FEA. S&O
aims to distribute joining locations while considering properties such as mutual and edge
distances. However, it does not rely on successful validated designs. In this sense, it is
uncertain whether the performance of the resulting joining locations will be good. Therefore,
the discussion here addresses whether predicted joining locations are plausible and
meaningful. The results of this methodology are not mechanically validated.

Implementation
This joining location distribution methodology uses a 2D dataset with spot welds; see Fig.
A.1. It uses the geometries of components of all joining scenarios. Then, it reduces the dataset
on joining scenarios that contain spot welds. Furthermore, to reduce the complexity of
location distribution, this methodology only considers flat (2D) CRs. CRs that bend into 3D
space require compensation for their curvature, making the algorithm unnecessarily complex.
Additionally, it is not the aim to optimize for all types of CRs, but merely to determine
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whether such an algorithm works for spot welds. Furthermore, the dataset contained a
sufficient number of data samples for evaluating the performance of the methodology. Section
A.4.1 describes the process of identifying flat CRs, which is illustrated by Fig. A.7.

In short, the data preparation process finds a flat CR and creates a snapshot of it. As a result,
the CR becomes a shape on the image. This process is similarly visualized in the state-of-the-
art chapter (Section 2.1); see Fig. 2.1). The preparation process creates two images for each
flat CR: one with and one without spot welds. It draws spot welds as circles on the shape of the
CR.

The distribution algorithm knows the required number of joining elements up front. This
knowledge is taken from the target image and supplied to the algorithm. This step enables the
specific evaluation of the distribution of joining locations.

The images have a size of 256 × 256 pixels with a rn = 2 mm/pixel resolution. They
are stored as RGB bitmaps. Bitmaps store information pixel-wise and enable simple pre- and
postprocessing. For every pixel, it is clear to what class they belong. As a result, bitmaps enable
filtering on each channel, similar to one-hot encoding. Compression methods such as JPG
might create an unnecessary interpolation of values. The data representation has the following
color coding:

• Empty – white – (255, 255, 255).

• Components – blue – (0, 0, 255).

• CR – green – (0, 255, 0).

• Spot weld – red – (255, 0, 0).

The algorithm needs a starting point, for which it takes the number of spot welds of the
target. Next, the algorithm initializes joining locations randomly on the CR. It creates points
by generating a random x and y value within the bounding box of the CR’s shape. Then, the
algorithm tests each point for whether it lies within the polygon shape. It stores only those
within the CR of the initial set of joining locations L. This process repeats until it reaches the
required number of joining elements nje.

After initialization, the algorithm evaluates each iteration according to an improvement in
the objective function (Eq. 3.1). This function involves weighing to balance the influence of the
mutual and edge distances. The results of the algorithm are highly impacted by these weights.
Empirical research found that for a nominal weight for edges ws

e = 1.0, smaller weights for
nearest neighbors were required ws

nn = 0.5 or ws
nn = 0.9.

Process
After setting the data representation, the hyperparameters follow. the algorithm runs for an
empirically determined 6000 iterations. The learning rate starts at 20 to make rapid progress
in the initial optimization phase. Every 1000 iterations, the learning rate halves. Hence, after
4000 iterations, the learning rate is 1, which is the smallest step size when representing a pixel
on an image.

Section 3.3.1 presented a process for the randomized optimization of joining locations (Fig.
3.21). Table 4.5 presents the implemented algorithm based on Fig. 3.21.
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Input Polygon representing a contact region P
Number of joining elements nje

Maximum number of iterations
Learning rate
Learning rate decay rate

Output Set of joining locations L
1: While the length of the set of joining locations |L| < nje

2: Initialize point p uniform randomly within bounding box of polygon P
3: If point p within border of polygon P
4: Add point p to the set of joining locations L
5: Calculate value of objective function Lbest

d

6: For i in number of iterations
7: Copy the set of joining locations L in a temporary list Ltmp

8: For ptmp in the set of joining locations Ltmp

9: Translate ptmp with [−1, 0, or, 1] times the learning rate
10: Check if ptmp remains within polygon P

11: Calculate value of objective function with new joining locations Ltmp
d

12: If new joining locations are better than the old distribution Ltmp
d > Lbest

d

13: Set new joining locations as best L := Ltmp

14: Reduce learning rate on half-life time
15: For p in the set of joining locations L
16: Check if p is conform the manufacturing requirements
17: Return the resulting set of joining locations L

Table 4.5: Randomized location optimization algorithm for point-based joining elements.

The validation considered multiple prediction models to analyze the influence of weighing
and optimization. Varying weights provided insight into the generic behavior of the models
as well as the basis for future work. The results of RI enabled a benchmark comparison and
validation of the optimization steps. To analyze optimization fairly, the result of RI was seeded.
For each data sample, the state after RI was equal for all three models.

• RI benchmarking (RIB) is a benchmark model. The output of this model equaled the
random state after initialization. This model aided in assessing the quality of
optimization.

• RI + nearest neighbor weight ws
nn = 0.5 (AF1) is also a model that optimizes the

locations after RI. This model used the edge weight ws
e = 1.0 and a mutual distance

weight of ws
nn = 0.5.

• RI + nearest neighbor weight ws
nn = 0.9 (AF2) is a model that optimizes the locations

after RI. It used the same edge weight but a higher mutual distance weight of ws
nn = 0.9.

The output of the prediction models required postprocessing to acquire the performance
measurements. Section 3.3.4 describes a method for reconstructing coordinates from grid-like
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data structures (subsection 3.3.4.1), such as images. Furthermore, the section describes a
method for coordinate-based performance measurements (subsection 3.3.4.2). Both of these
methods need to set parameters.

• Coordinate reconstruction
A typical spot weld creates a group of approximately 16 pixels in the target. Hence, to
filter noise out of the predicted image, a minimal group size of τg = 4 was required. The
noise filter removed groups with fewer adjacent joining location pixels.

• Performance measurements
The relevant measurements (from subsection 3.3.4.2) included accurateness, similarity,
and correctness.

– Accurateness (A; see Eq. 3.20)
The accurate distance svalid = 40 mm prevented the consideration of outliers in
performance measurement. It is twice the minimal welding distance, implying that
imprecise spot welds were still regarded in the evaluation.

– Similarity (S; see Eq. 3.21)
The Gaussian variable σ = 1.6 for the similarity evaluation. Eq. 3.21 has a value
of 1 for perfect similarity. It approaches zero for a Euclidean distance of
approximately 40 mm with a resolution of 2 mm/pixel. Fig. 4.7 plots the
similarity function with σ = 1.6.

Fig. 4.7: Visualization of the similarity function for S = e
−x

2×σ2 , where σ = 1.6 and x = seucl
rn

.

– Correctness (Q)
A correct prediction implied that all predictions were within the threshold
scorrect = 3mm of the targets without any leftovers.

Results
Table 4.6 presents the results for three models: RI benchmarking (RIB), a low nearest neighbor
weight (AF1), and a high nearest neighbor weight (AF2).

The RIB model predicted 79% of the locations within 40 mm (20 pixels) of their targets.
Evolutionary optimization improved joining locations compared with the benchmark RIB
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ID ws
e ws

nn A S Q ∆N

RIB – – 0.79 0.11 0.01 –0.10
AF1 1.0 0.5 0.87 0.25 0.17 –0.03
AF2 1.0 0.9 0.87 0.23 0.16 0.01

Table 4.6: Randomized location distribution results. Abbreviations: RIB – randomized initialization, AF –
algorithmic fitting, A – accurateness, S – similarity, Q – correctness, and ∆N – difference between the number of
predicted and target spot welds.

model as performance measurements improved, but only by a small amount. Models AF1 and
AF2 differed only by 2% and 1% for similarity (S) and correctness (Q). The correctness of
AF1 stagnated at 17%.

Noteworthily, although the models all used the number of spot welds from the target, a
difference existed between the number of predicted and target coordinates. This difference
originated from overlapping joining locations that were recognized as one pixel group (see
subsection 3.3.4.1). The model AF2 revealed, due to its increased nearest neighbor weight
ws
nn = 0.9, that it was closer to zero difference ∆NAF2

je = 0.01.

Discussion
The discussion starts with several cherry-picked predictions. These help to offer a deeper
insight into the performance of the algorithm on top of the generic results in Table 4.6.

A deeper analysis of specific data samples revealed the behavior, advantages, and
limitations of using the randomized evolutionary algorithm. The optimization models (AF1
and AF2) had almost identical results in terms of performance measurements; see Table 4.6.
Figs. 4.8 and 4.9 present the input and output samples of the optimization process with two
separate weight settings for the nearest neighbor: ws

nn = 0.5 and ws
nn = 0.9.

Both figures also present the performance metrics of each sample. The input images are
the result of the RI process. The RIB model had two objective values due to the differences in
weighing terms, making the results comparable for the two prediction models. The characters
positioned on the left side of the image correspond with the characters in the list below that
discusses each sample. Additionally, the sample identifiers overlap between the figures and the
list.

a. Sample x(6) optimized five spot weld points. The results demonstrated that the outer
points moved toward the outer edges. Model AF1 placed all points on the centerline of
the CR. It was observed that initialization grouped three points in the bottom part of the
CR as the number of iterations was not quite high enough to separate them all. Model
AF2 pressured the outer points to move into the corners of the CR.

b. Sample x(5056) contained six points to distribute over the polygon. Both models collected
the points at the bottom of the CR. The points for both models traversed the smaller area
to get there. AF1 placed the points in the bottom of the skeleton of the polygon. AF2
created a similar result but placed the locations slightly further apart. The models could
not construct the targeted straight line of locations.
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Fig. 4.8: Cherry-picked exemplary results for the discussion of data samples [6, 5056, 5354, 5596] for images
[a− d], respectively. Contact regions are in green and blue areas represent the geometry of components.

c. Sample x(5354) had 11 spot welds that needed to be distributed over a large surface
with no clear centerline. Model AF1 tended to optimize the edge distance such that the
points were equidistant from it. It seemed that the points moved toward the skeleton of
the shape. The mutual distance term in the objective function lacked weighting to move
them apart. This resulted in overlapping spot welds in the center of the polygon, thus
reducing the number of predicted spot welds. AF2 forced the locations to remain further
apart and created a group that seemed arbitrarily positioned relative to the CR.

This sample indicated that the prediction of AF2 had a higher structural performance.
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Fig. 4.9: Cherry-picked exemplary results for the discussion of data samples [5641, 5698, 5759, 5776] for images
[e− h], respectively. Contact regions are in green and blue areas represent the geometry of components.

The locations were further from the center and better spread over the CR. This spreading
is better for stresses, such as those from bending, torsion, or buckling.

d. Sample x(5596) had one CR with three larger areas for three joining elements. RIB
predicted a location in each larger area. The algorithm could have difficulty moving the
points out of each area for small learning rates. A large initial learning rate (step size)
helps to jump points from one area to another. The results for both models indicated that
outer points were located in corners of their respective areas. The algorithm did not
consider the CR shape to put the locations in the center of the enlarged areas.
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e. Sample x(5641) had six joining locations on three CRs with different area sizes. RIB
placed three locations in the left smaller area. The algorithm ended up with more joining
locations in the middle. Model AF2 placed each of the right number of joining locations
in each CR due to the support for creating equidistant locations, as the positioning of the
CRs allows it to do. AF1 placed a group of four locations in the center of the two outer
locations.

f. Sample x(5698) only had one joining location. The optimizer slightly moved it to the
centerline of the CR. No other location was available for distribution. Furthermore, the
objective function only considered the nearest edge, preventing the joining element
traversing to the center of the CR. Nearly all algorithm iterations were irrelevant, and a
stopping criterion was implemented if the optimization stagnated for too long. This
implied that once the value of the objective function did not increase for 2500 iterations,
the algorithm stopped. Due to the same arbitrary step, the distance to the edge improved
minimally. Hence, both models ended up with the same joining location.

g. Sample x(5759) had three joining locations, and both models seemed to find the target
points rather well. This distribution had the largest distance between the locations.
Coincidentally, it overlapped with the target distribution, resulting in an accurateness of
1.

h. Sample x(5776) resulted in two locations at the edges of the CR, where they mutually had
the greatest distance to one another. Therefore, both models produced the same results.
The current objective function cannot predict spot welds on a centerline in a rectangular
CR, which suggests the need to consider the polygon’s shape in the objective function.

Several samples exhibited unbalanced results. For example, the outlier points in samples
x(5056) and x(5354) raise the question of whether an additional term that considers the
distribution of locations may increase the performance. This section briefly explores the
following two terms to add to the objective function of Eq. 3.1: the standard deviation in the
mutual distances between locations, and the variance in the area of Voronoi regions.

• Deviations in mutual point distance refer to whether the nearest neighbors of points
snni are close to the average distance between nearest neighbors µnn. The aim is to
promote the algorithm to set equidistant points. The objective function requires the
inverse to minimize the difference. To compensate for the small number, a large weight
is required for the term wσ

nn. Thus, the objective function of Eq. 3.1 becomes Eq. 4.1:

Ld =

nje∑
i=0

(
ws
esei +ws

nnsnni +
wσ
nn√

1
nje

∑nje

i=1(snni − µnn)2

)
, where µnn =

∑nje

i=1 snni
nje

(4.1)

• Voronoi regions refer to the spaces around points equidistant to other points [408]. All
points within each region are closest to the point that defines it. The areas of Voronoi
regions express a measure of distribution. Unequal sizes indicate that there are small
groups around the object.
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The term measures the difference of the area of a Voronoi region AV
i to the average area

of regions µAV . Minimizing the difference should increase the distribution of Voronoi
regions and thus their points. As with mutual point distance, a large weight is required
to compensate for the small value after inversion. Thus, the objective function of Eq. 3.1
becomes Eq. 4.2:

Ld =

nje∑
i=0

(
ws
esei + ws

nnsnni +
wσ
AV√

1
nje

∑nje

i=1(A
V
i − µAV )2

)
, where µAV =

∑nje

i=1A
V
i

nje

(4.2)

The weighing terms wσ
nn and wσ

AV were determined empirically at wstddev
d = 104.

Furthermore, the models used the other weights of model AF1. Fig. 4.10 illustrates the effect
of these models on two data samples x(6) and x(5354) (also depicted in Fig. 4.8).

Fig. 4.10: Examples of adding the standard deviation to the objective function based on Voronoi-region sizes or
nearest neighbor distances.

Notably, the deviation-based terms did not improve the results. Moreover, joining
locations moved away from meaningful locations in sample x(6). The results of AF1 and AF2
seemed cleaner. Additionally, the deviation-based terms did not aid in producing more
equidistant results. The Voronoi results seemed a very small improvement compared to the
results after RI.

Similarly, Sample x(5354) exhibited no discernible pattern. Although the Voronoi-based
prediction created locations at the skeleton of the CR’s shape, this was similar behavior to
AF1. The nearest neighbor-based prediction made two groups of locations without any better
distribution over the entire CR.

Furthermore, the deviation-based terms did not seem to aid the distribution process. They
might even clutter the simplicity of merely considering edge and mutual distances. Gerlach
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[407] experimented with a hybrid optimization of distances and Voronoi regions, but without
promising results. Lastly, an additional disadvantage of these extra terms was that they
increased the algorithm’s complexity, thereby slowing its execution time and increasing the
difficulty of converging.

After analyzing additional terms for the objective function that aimed to improve the
distribution of joining locations, the performance of models RIB, AF1, and AF2 need to be
addressed. First, the results in Table 4.6 also exhibited a difference in predicted and target
coordinate measurement ∆Nje. Although the algorithm took the target number of spot welds,
a difference existed in the results. The problem originated from data formatting. As model
AF1 in Fig. 4.8 indicates, poor optimization left multiple spot welds practically on top of one
another. The locations derived from the red spots on target images. However, coordinate
reconstruction (subsection 3.3.4.1) was unable to differentiate between these spots and
handled them as one. Hence, by examining this metric, model AF2 was more effective at
distributing the locations due to the higher weight for this term. This weight resulted in a
∆Nje closer to zero.

Regarding another performance metric in Table 4.6, namely the accurateness (A), both
models that optimized predict joining locations closer to the targets. The increase in similarity
(S) confirmed this. However, the accurateness after RI was 79%. This high base accurateness
originated from the data structure. As the data samples were 256 pixels × 256 pixels with a
resolution of rn = 2 mm/pixel and area of 512 mm × 512 mm, the CRs were only a small
part of this. As RI may only create joining locations within this shape, the probability was high
that spot welds would end up within the threshold svalid = 40mm of a target location.

Still, 13% of the spot welds were not located within this 40 mm threshold of the targets
after optimization. The analysis of individual data samples revealed that the algorithm had
difficulties with large CRs. These CRs had no straightforward equidistant pattern, nor could
the algorithm create plausible patterns (e.g., see samples b. x(5061) and c. x(5354) in Fig. 4.8).

However, accurateness only measures a form of meaningfulness of the prediction.
Similarity expresses how closely the predicted joining locations aligned with the target
locations. The similarity was zero if the distance for each location exceeded 40 mm, where it
was 0.5 for a distance of approximately 20 mm. The similarity after optimization ended for
model (AF1) at 0.25. On average, most spot welds were one minimum spot welding distance
(≈ 20mm) from their target.

However, a low similarity would not necessarily mean that the predictions are not
meaningful. As Section 2.1 addressed, setting joining locations at the edges of CRs increases
the ability to absorb stresses, such as bending, torsion, or buckling. Generally, the spot weld
locations shown in Figs. 4.8 and 4.9 move away from the center, which was naturally caused
by the nearest neighbor term in the object function. However, the results might still be useful
in early product design for quickly creating joining locations. This hypothesis requires this
methodology to be validated with respect to structural performance.

Regarding the low similarity score, the correctness (Q) for model (AF1) was 17% (Table
4.6). This score implied that the models could barely reproduce joining locations similar to
the target. One explanation is that successful joining locations do not comply simply with the
equidistant behavior of edges and nearest neighbors. This underscores that the design of joining
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locations is not a trivial task and justifies the amount of scientific interest that it receives (see
Section 2.1.5).

In addition, the weights affecting the edge and nearest neighbor distances exhibited very
different results. Lowering the nearest neighbor weight ws

nn to 0.5 revealed locations ending
up on the skeleton of the CR; see samples b. x(5061) and c. x(5354) in Fig. 4.8. The objective
function rewarded points that were equidistant to the polygon’s border. Consequently, these
results regularly violated manufacturability requirements for minimum mutual distances.

The evolutionary algorithm is robust when distributing locations along CRs originating
from flanges (e.g., sample a. x(6) in Fig. 4.8). These long and small polygons require joining
elements to be ordered in a line. Samples with large CRs will receive less meaningful results.
The algorithm either aims to put joining locations on the skeleton of a CR or arbitrarily creates
groups of equidistant locations with a few outliers.

Moreover, the nearest neighbor weight ws
nn = 0.9 emphasized distances between points.

The results revealed no overlapping and joining locations that were often equidistant. An
interesting behavior was that groups of points started to exist together with outliers in far
corners of the CR; see sample b. x(5061) and c. x(5354) in Fig. 4.8. There was one spot weld in
the top corner, whereas the rest resided at the bottom.

Besides the weights of terms, the number of iterations is another delicate parameter. It
affects the optimization time significantly, especially when the number of joining elements is
large. The learning rate optimizes the execution time and aids the algorithm in traversing
complex CRs. Polygons may have smaller connecting areas over which locations need to
traverse. Their traverse is challenging when the learning rate is low, as demonstrated by
Gerlach [407], who did not use a learning rate. Consequently, the algorithm might have
required millions of iterations, which would have affected the optimization time greatly.

A small learning rate also affects the risk of falling into local optima. The algorithm might
not overcome these optima, resulting in suboptimal outcomes. Large learning rates enable the
jumping of locations between CRs; see sample f. x(5641) in Fig. 4.9. A high learning rate
enables the redistribution of joining locations that can be stuck in a separated CR. After the
initial distribution with large rates, learning rate decay slowly reduces step sizes to approximate
a global optimum of the objective function. Besides the learning rate, another option is to run
the algorithm several times. Locations get reinitialized and randomly redistributed, and then
the optimal result can be the final prediction.

Regardless of whether weights or hyperparameters are being tuned, the algorithm has some
structural weaknesses. The distance optimization sometimes forced joining locations to the
outer borders of the CR. This effect was significant on CRs requiring two joining locations.
Here, the mutual point distance shared between two points naturally weighed heavier compared
with the edge distance optimization; see Fig. 4.11. As a result, the mutual distance term in the
objective function effectively pushed the two joining elements apart. Such results would not
comply with manufacturing requirements. A preventive erosion (inwards offset) of the CR
polygon by the minimum edge distance would prevent the joining elements violating the edge
distance requirement; see Fig. 4.11.

However, such a solution does not solve the behavior of the algorithm. For this, the second
nearest neighbor and second nearest edge as additional terms might enable the algorithm to
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Fig. 4.11: Visualization of optimization behavior for contact regions with two spot welds and the solution for
complying with the manufacturing requirements as edge distance.

better consider engineering requirements. Furthermore, one can decide to prevent measuring
the same edge between two nearest neighbors. Lastly, one could add a rule set to the algorithm
that considers manufacturing requirements as minimum and maximum distances for edges and
nearest neighbors.

Evaluation
The randomized distribution of spot welds is a straightforward approach for creating joining
locations, although the performance measurements were not convincing regarding the potential
of this methodology. However, most predictions seemed to be meaningful. Theoretically, it
could work in early product development phases as an initial design. However, this would
require these predictions to be validated using, for example, FEA and simulations.

The best predictions come from small and long CRs that require a spot weld location in a
straight line. However, these are simple use cases for RBR methodologies, such as the work of
Thompson and Salerno [50]. In this regard, the randomized distribution algorithm would not
necessarily improve the benchmark performance. Table 4.7 illustrates this.

ID Perf. Speed Dev. Comp. Struc. Appl.
RIB 1 3 1 1 1 1
AF1 2 2 2 2 2 1
AF2 2 2 2 2 2 1

Table 4.7: Evaluation of the models for predicting the joining locations of spot welds using randomized distribution.
Values [1 − 3] correspond with low to high scores, respectively. Abbreviations: RIB – randomized initialization,
AF – algorithmic fitting, Perf. – performance, Dev – development effort, Comp. – computational cost, Struc. –
structural performance, and Appl. – practical applicability.

The industrial applicability in the current form is low. The algorithm does not improve on
a state-of-the-art rule-based approach. Various considerations led to the ratings in Table 4.7:

• The performance is unsatisfying after a comparison with the results of RIB (Table 4.6).
The performance requires significant improvements for this methodology to become
applicable in industry.
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• The algorithm’s speed, which is tied to the computational cost, is satisfying but only
after implementing a learning rate decay.

• The developmental effort of the algorithm itself is not high. However, data preprocessing
and further experimentation for improving it might increase this effort significantly.

• The algorithm seems to output meaningful spot weld locations. However, structural
performance still requires validation.

The randomized distribution of joining locations is a partial solution for algorithmic
fitting. Together with predicting the number of spot welds, this methodology can create
joining locations. However, results for both methodologies are not convincing in terms of
algorithmic fitting’s potential. Connecting these methodologies in a series also chains their
errors, lowering the overall performance.

Consequently, the following section validates a methodology that implements SML to
predict joining locations.

4.4 Exploration of supervised machine learning tasks for voxel-
based joining location prediction

Another AI field, besides S&O, that VICTOR identifies for predicting joining locations is
SML (Section 3.2). Furthermore, VICTOR proposes using SML to perform grid-based
drawing (Section 3.2.2). It involves prediction models coloring the cells in grids, such as
images, and drawing joining locations on data samples.

ML can exploit patterns in data to predict unseen data samples. Thus, it can apply
knowledge of successful joining location designs to new joining scenarios. This property can
be vital for companies with large products and a high product variety, such as those in the
automobile and aviation industries. Current state-of-the-art RBR and optimization approaches
lack these considerations (Sections 2.1.4 and 2.1.5), and consequently, their results are prone
to rework.

The aim of validating this methodology was to determine whether these patterns in joining
locations are exploitable through SML. However, SML consists of two learning tasks, namely
classification and regression. This section aims to determine which learning task better suits
the use case.

Approach
The framework presents an approach for using EncDec architectures to predict joining
locations (Section 3.3.2). These architectures enable a consistent mapping between input and
output. This constant data structure helps to reconstruct Cartesian coordinates of the joining
locations systematically. Additionally, these architectures enable state-of-the-art computer
vision methods to be implemented, for tasks such as object detection and image segmentation.
These methods provide validated ideas on, for example, networks and data formatting.

Hence, the classification concept corresponds to an image segmentation task; see
subsection 3.3.2.1. This task aims to assign a class label to each grid cell (e.g., pixel or voxel).
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It helps to locate objects in the input grids. Furthermore, the regression concept corresponds
with probability mapping (see subsection 3.3.2.2). To each grid cell, it assigns the probability
of it containing the target label.

Previously, predicting the number of spot welds (Section 4.2) already demonstrated their
high reliance on geometry. Hence, to predict joining locations and prevent models from
becoming unnecessarily complex, this methodology only considers geometry. Moreover,
component geometry is a requirement for predicting joining locations. It purposefully neglects
nongeometric data, such as materials, coatings, and functions aside. However, Section 4.5
considers these data.

The SML approach uses Euclidean structures to model data. More specifically, this
methodology represents geometry using voxels. Compared with pixels in images, voxels have
three dimensions, which quickly induces challenges with computational cost. Nevertheless,
voxels enable the representation of 3D curved CRs. Additionally, they can consider more of
the surrounding component geometry.

Eggink et al. [3] present the initial comparison between the regression and classification
approach. This work aimed to explore both approaches and determine whether SML with
encoder-decoder architectures is a viable solution to predict joining location.

Implementation
Many considerations exist when implementing SML to predict joining locations. As Section
3.3.2 already suggested, the key is to determine appropriate resolutions, grid sizes, and data
formatting for the classification and regression concepts (subsection 3.3.2.3).

Fig. A.1 presents the dataset being derived for 3D spot weld location prediction. It takes
only the geometry of each joining scenario that contains spot welds. Furthermore, the data
preparation process is complex, leaving fewer data samples (m = 3138) than, for example, for
2D location prediction using the randomized distribution methodology (m = 4634).

The data preparation process is explained in Appendix A.4.2. It creates voxel grids (i.e.,
CCs) containing CRs and joining elements from joining scenarios consisting of two CAD
geometries. However, the resolution and sizes for the CCs are not trivial. The grid dimensions
x, y, and z follow from a preliminary analysis of the geometry of joining scenarios. Table 4.8
lists the mean and standard deviation for each axis of a region of interest.

Measurement x [mm] y [mm] z [mm]
Mean 225.95 164.38 152.25
Std. dev 232.35 191.79 122.93

Table 4.8: Mean and standard deviation in [mm] in the x-, y-, and z-directions of the intersection bounding box
from the bounding boxes of both components.

The region of interest describes the intersection between bounding boxes of each
component; see Section A.4.2. The CRs and joining elements reside within the intersection of
bounding boxes. CCs neglect the other geometry in favor of the computational cost.

Large CCs contain joining elements to predict. However, after considering the cubic scaling
of data dimensionality and the results in Table 4.8, the grid sizes were set to W , H , and D at
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cubic grids of 200mm×200mm×200mm. Furthermore, cubic grids simplify convolutional
operations, the selection of strides and filter sizes, and data augmentation.

Additionally, the resolution for voxels rn highly influences the level of detail, grid size,
and computational cost. Fig. 4.12 illustrates that smaller voxels can represent geometry more
accurately but more voxels are required to do so.

Fig. 4.12: Examples of different voxel resolutions; taken from Perez-Ramirez [412].

The use case in the automobile industry involves metal sheets that can have thicknesses of
0.5mm. Proper sampling (e.g., considering the Nyquist frequency [444]) of geometry requires
that rn = 0.25 mm, resulting in a 512 · 106 dimensional input grid. Doubling the resolution
voxels/mm scales grids by a factor of 8 (= 23). Hence, this study opted not to model the sheet
thicknesses due to calculation costs.

Empirical research found that pitches above rn = 2mm/voxel contained little information
for training models. Hence, the resolution rn = 2 mm/voxel and CC dimensions 200 mm×
200mm× 200mm provided the input grid of size W×H×D = 100×100×100, resulting in
106 input dimensions. Consequently, each voxel represented a 2mm×2mm×2mm cube. The
following list contains further implementation settings, most of which were discussed earlier
in Section 3.3.2.

• The method involves the modeling of spot welds as cylinders with a 2 mm radius
according to their average nugget diameter [115]. Their length is derived from the sheet
thicknesses of both components. The data representation of spot welds differs for the
classification and regression tasks.

• The resolution and grid sizes define the input, target, and prediction shapes of the data
samples. Referring to Eq. 3.3, the segmentation approach of input (i) has shape x(i) ∈
R100×100×100, where each grid cell has a value of x(i)w,h,d ∈ {0, 1, 2}.

• The classification approach has output y and prediction ŷ shapes of
y(i) = ŷ(i) ∈ R100×100×100×4. The fourth dimension is one-hot encoded over each class
y
(i)
w,h,d,c = ŷ

(i)
w,h,d,c ∈ {0, 1}.
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• The regression approach has the same shapes for input, target, and prediction grids
x(i), y(i), ŷ(i) ∈ R100×100×100. Each cell has the same range of values in the interval
between zero and one: x(i)w,h,d, y

(i)
w,h,d, ŷ

(i)
w,h,d = [0, 1]. The probabilities for the spatial

regions are bounded by τ1 = 0.008 and τ2 = 0.7. The target values and probability
ranges for the spatial matrix T̃ are listed in Table 4.9, where CR probability equals τ2,
P PROB
2 = 0.008.

Class (c) Target value (yw,h,d) Probability range matrix (T̃c)
0 0. yw,h,d = 0
1 0.0001 0 < yw,h,d < 0.008

2 Eq. 3.11 0.008 ≤ yw,h,d < 0.7

3 1. yw,h,d > 0.7

Table 4.9: Target values and boundaries of spatial regions of the regression concept.

The distance dependency function of Eq. 3.11 uses τd = 32. This approach uses the same
weights to scale each spatial region in the loss function as for the segmentation approach.

• Weighting all classes is critical for preventing equal rewards by predicting empty
voxels or a joining location correctly. Eq. 3.5 calculates the weights for each class
c ∈ {0, 1, 2, 3} and ensures that a0 < a1 < a2 < a3. The additional scaling factor
further arbitrarily prioritizes joining location assigned voxels βc ∈ {0.1, 0.1, 0.2, 0.6}.
After normalization, this results in ac ∈ {0.004, 0.014, 0.225, 0.757} for
c ∈ {0, 1, 2, 3}.

• Strides ls for creating CCs out of joining scenarios are set as equal to the sizes of the CCs
themselves, wcc, hcc, dcc. No limit is implemented for minimal striding information τs.

• Coordinate reconstruction and performance measurement use the same settings as
specified for randomized distribution (Section 4.3). To filter the joining locations from
the probability approach, the threshold for T̃3 is set to τl = 0.6.

The resulting CCs have a highly unequal class distribution; see Table 4.10.
Grids on average have 97% of voxels labeled as 0, representing empty geometry. Class 3,

joining locations, occupy approximately 0.001% of the voxels in a grid. Component geometry
(class 1) and CRs take up approximately 2.7% and 0.3% of the voxel grid. Ratios of the means
for classes 0, 1, 2, and 3 are approximately 7824 : 214 : 25 : 1, respectively.

Process
This section describes the method’s implementation for training ML models. Fig. 4.13
illustrates the prediction process.

The preprocessing steps of the methodology involved splitting data into training and test
datasets. Joining scenarios can be split into multiple CCs. Hence, preprocessing splits joining
scenarios with stratified sampling [445]. Stratified sampling enables an equal distribution of the
number of joining elements between the datasets. Splitting of the dataset created the training
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Class Median Mean Std. Dev.
0 978,359.5 970,146.2 30,708.0
1 19,196.5 26,574.0 28,008.1
2 1,557.5 3,155.6 7,031.0
3 84.0 124.1 175.0

Class Min. 25% 50% 75% Max.
0 695,315 965,639.5 978,359.5 988,149.75 999,982
1 0 10,306.75 19,196.5 30,489.5 304,048
2 0 919 1,557.5 2,768.75 154,504
3 2 47 84 143 3,356

Table 4.10: Class distribution of all target samples. Abbreviations: Std. Dev. – standard deviation, Min. – minimum
value, 25% – 1st quartile, 50% – 2nd quartile, 75% – 3rd quartile, and Max. – maximum value.

Fig. 4.13: Visualization of the prediction process for predicting joining locations with supervised machine learning.

Dtrain and test set Dtest in a 80% : 20% ratio, respectively. Fig. 4.14 presents the distribution
of the classes between the sets.

The area of each distribution added up to one, indicating that the datasets had roughly
the same distribution of voxel classes. Hence, their CCs came from approximately the same
distribution.

After creating the datasets, it was crucial to define the NN for predicting the joining
locations. A network architecture with an EncDec structure considered spatial structures and
feature-based hierarchies over larger spatial regions [360]. The implemented architecture was
related to the synthesis network of Chen et al. [446], inspired by the VGG-like architecture for
the deep CNNs used for image recognition tasks [447]. Fig. 4.15 presents the architecture,
which used a smaller number of layers compared with the depth synthesis network of Chen et
al. [446] to contain computational cost.
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Fig. 4.14: Distribution of voxel class frequencies between the training + cross validation (blue) and test (green)
sets.

Implemented networks based the architecture of Fig. 4.15 used Xavier initialization and a
mini-batch of 10. Each convolutional layer had rectified linear unit (ReLU) activation
functions and implemented batch normalization (see Goodfellow et al. [275]). Deconvolution
layers do not have an activation function nor do they implement batch normalization. The
architecture used skip connections to build deeper networks by reducing training problems
from, for example, vanishing gradients [275]). Skip connections take outputs from an encoder
layer and add them to outputs of a decoder layer of the same size. The Adam optimizer with
standard settings was used [291]. Empirical testing determined an initial learning rate of
1 · 10−4.

The network for the segmentation concept had a Softmax operation on the final layer
(feature-map size = 4). It performed an Arg-max function across the feature maps to output
the class with the highest assigned probability per voxel. The probability concept utilized
min-max normalization in the final layer since a Sigmoid layer failed to converge during
training. The network had approximately 5.4 · 106 trainable parameters.

The entire network had to process the information from the edge of the input data.
Convolutional networks are sparse, meaning that the number of neurons connected to other
neurons is relatively low compared with fully connected NNs [275]. Due to this sparsity,
CNNs must be deeper (i.e., have more layers) to ensure the indirect connection of deep layers
to the entire input. The receptive field refers to the scope of the input affected by hidden units
in NNs [275]. Araujo et al. [448] presented mathematical derivations and a programming
library to calculate the receptive fields of CNNs. The receptive field of the presented
architecture (Fig. 4.15) was 97%, implying that almost the entire network was connected
indirectly.

After defining the NN and before starting training, it was crucial to create a benchmark
model. Benchmark models support the validation of concepts and implementations. They
should enable the argument to be made for whether naive and random models may be superior
to the developed methodology. Models trained on a loss function, and only the evaluation
phase analyzed constructed coordinates due to the computational cost. Hence, during training,
standard classification metrics, such as the F1-score, were used to evaluate model quality. The
low frequency of joining location voxels enabled a 99.999% accuracy to be achieved by
merely reconstructing the input. Similarly, a model that only predicts zeros would have a 97%
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accuracy. For simplicity, the randomized benchmarking model implemented the classification
concept and changed a class 2 (CR) voxel into a class 3 (joining location) voxel with a certain
probability. A probability of 15% provided the best results after empirical experimentation
[421]. Besides the randomized benchmark model, validation included one regression and one
classification model.

• Randomized benchmarking (RB) randomly transformed 15% of CR voxels in the input
voxel-wise into joining location voxels in the output.

• Segmentation (SEG) performed a multiclass classification task with a weighted cross-
entropy loss function (Eq. 3.4).

• Probability mapping (PROB) performed a regression task with a weighted mean
squared error loss function (Eq. 3.12).

The implementation employed the TensorFlow v1.3 GPU library as an ML framework.
Besides the learning rate adjustment, the training was stopped after 400 epochs as the F1-score
did no longer optimized significantly. Furthermore, doing so limited the computational cost.
A machine with 32× Intel® Xeon® CPU E5-2667 v4 @ 3.20GHz with 256 GB RAM and an
NVIDIA Quadro P6000 trained the models in approximately three days. The training time was
too short for hyperparameter tuning of any sort. However, the hyperparameters used were the
result of empirical research.

The performance measurements for determining the quality of the models were similar to
those used for randomized distribution (Section 4.3). Section 3.3.4 describes the
measurements in detail. Furthermore, subsection 3.3.2.5 explains the equivalency of creating
coordinates between 2D and 3D approaches. Notably, this methodology uses Euclidean
distance in the similarity metric; hence, a higher performance correlates with lower similarity
scores.

Results
Table 4.11 lists the performance of the three models.

ID Cost F1 A S Q

RB N/A 6% N/A N/A N/A
SEG 5.51 · 101 96% 99% 0.07 86%
PROB 6.83 · 102 N/A 92% 1.01 26%

Table 4.11: Results of the test set of trained models for determining the suitability of concepts. Abbreviations: F1
– f1-score, A – accurateness, S – Euclidean dissimilarity, and Q – correctness.

The values clearly demonstrate that the segmentation model (SEG) had the best results
for every performance. The randomized benchmarking model (RB), with its F1-score of 6%,
demonstrated an inability to predict joining locations. The other performance measurements
were not available due to the random distribution of the class 3 voxels. The regression concept
(PROB) had a significantly higher similarity (S) measurement than segmentation (SEG). The



194 Validation

inability of the regression model to predict joining elements close to the targets resulted in a
lower correctness score of 26%.

Discussion
First, this subsection discusses the regression approach from subsection 3.3.2.2. It continues
by discussing the segmentation approach from subsection 3.3.2.1.

• Regression approach
Fig. 4.16 displays four prediction extremes produced by the probability mapping
concept: low cost CC(3107), high cost CC(17), low accurateness CC(2107), and high
accurateness CC(3400). Coordinates, as presented in Fig. 4.17, are average indices
within the input volume H × W × D and do not express Cartesian coordinates at the
joining scenario level. The grids in the images only display probabilities above 0.08%,
corresponding with at least CR probabilities for the sake of clarity and readability. Both
approaches implement Euclidean dissimilarity to measure the deviation of target joining
locations.

– CC(3107) had a meager cost. The input geometry was rather complex, but the model
identified the small CR to predict spot welds.

– CC(17) had a very high cost but predicted spot welds accurately. Cost scales with
the confidence of predicted spot welds. The dissimilarity indicates the ability to
localize them.

– The model predicted four distributed spot welds in CC(2107) on the large vertical
CR, where the target indicated one near the bottom (see dotted circles in Fig. 4.16).
The dissimilarity was relatively high due to the pairing of the target coordinate
to one of the predicted coordinates. Nevertheless, the model predicted the three
remaining target coordinates correctly, resulting in 25% accurateness.

– CC(3400) was a highly accurate prediction. Here, the probability mapping concept
focused on spot welds by neglecting the reconstruction of CRs. In contrast to
CC(2107) with spot welds on all CRs, for CC(3400) the model predicted spot
welds only in the targeted locations.

To summarize, the regression approach tended to scatter blue – increased probability
voxels in most predictions arbitrarily. The noise in empty space and at the edges of CCs
had little effect on cost. Furthermore, the model occasionally reconstructed undefined
CRs (e.g., CC(2107)) or ignored their reconstruction (e.g., CC(3400)). Together, these
properties make the regression approach less viable for predicting joining locations.
Inherent uncertainty existed in the results, making postprocessing steps cumbersome.

Moreover, the model suffered from data leakage, which usually positively affects
performance measurements. However, this is not observed in the results. The
performance of the regression model remains unconvincing, considering the data
leakage. For example, as the reconstruction of CRs was difficult, the traceability of the
manner in which the model made decisions was reduced. This made further
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Fig. 4.16: Four prediction examples of a probability mapping concept using a regression approach; adapted from
Eggink et al. [3].
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optimization and understanding of the model more difficult. Lastly, Eggink et al. [3]
found that the regression approach worked better with a smaller network. The model
might have started overfitting in a larger network that fitted the segmentation approach
better.

• Classification approach
Fig. 4.17 presents four examples of prediction extremes made by the segmentation
concept: lowest cost CC(2401), highest cost CC(4320), low accurateness CC(2293), and
high accurateness CC(2844).

– CC(2401) had the lowest cost with an optimal dissimilarity, implying that predicted
coordinates exhibited no deviation from targets.

– The highest cost of CC(4320) resulted in an inaccurate prediction. Here, the model
did not reconstruct the CR correctly, preventing the prediction of spot welds.

– CC(2293) was an exact prediction, but with missing spot welds exactly on CC
splitting planes.

– CC(2844) indicated that the model can reconstruct complex curved geometry
accurately considering many rectangular shapes in the training data. Despite the
high cost, it predicts coordinates correctly.

To summarize, predictions using the classification approach are clean and with very
little noise. One can observe that the model learns geometric dependencies. For
example, CRs appear in overlapping geometry areas, and spot weld locations always lie
on them. An ultimate example is CC(4320) , which had no prediction of coordinates
without reconstructed CRs. The classification approach makes a robust impression as it
can recreate the targets highly accurately, also considering the data leakage problem.

Both models proved capable of predicting spot weld locations (Table 4.11). The table and
figures indicate that segmentation tasks had more robust results with the used setup and
training strategy. All performance metrics beat the probability mapping model. Although the
network architecture may be more suitable for the segmentation approach, Nibali et al. [402]
performed regression tasks using ResNet models designed for image recognition. The
regression approach provided feasible results, but the output was noisy and the model did not
reconstruct the geometry well.

Notably, the randomized benchmarking model (RB) had a very low F1-score, which was
probably due to individual voxels being set to class 3. Although both learning tasks exhibited an
ability to predict joining locations, a more robust benchmark model could better indicate their
performance by, for example, taking the target number of spot welds and randomly distributing
joining locations. This random model would be similar to the benchmark model in terms of
validating randomized distribution (Section 4.3).

However, the model (SEG) had excellent scores (F1-score of 96% and correctness of 86%).
After analysis, the training and test sets had similar CCs. This created data leakage, where
models are evaluated on data samples they have trained on. The similar CCs had two main
origins: product variety and splitting.
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Fig. 4.17: Four prediction examples of a segmentation concept using a classification approach; taken from Eggink
et al. [3].
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• Product variety created a large dataset but also contains many similar joining scenarios.

• Splitting created small grids from joining scenarios, resulting in many repetitive CCs.

Hence, the models provided overly optimistic results for properly validating the concept.
Nevertheless, Table 4.12 and the analysis of predictions in Figs. 4.16 and 4.17 indicate that the
classification-based segmentation approach seemed more robust.

Evaluation
Table 4.12 lists the evaluation of the models.

ID Perf. Speed Dev. Comp. Struc. Appl.
RB 1 3 2 2 1 1
SEG 3 2 3 3 3 2
PROB 2 2 3 3 3 2

Table 4.12: Evaluation of the best SML learning task for predicting spot weld locations. Values [1− 3] correspond
with low to high scores, respectively. Abbreviations: RB – randomized benchmarking, SEG – segmentation concept,
PROB – probability-mapping concept, Perf. – performance, Dev – development effort, Comp. – computational cost,
Struc. – structural performance, and Appl. – practical applicability.

As seen in the results in Table 4.11, the classification task through an image segmentation
approach had the highest performance for all measurements. Furthermore, further criteria for
evaluating the prediction models did not significantly differ from one another.

The results of the experiments are not sufficiently representative for objectively measuring
performance due to data leakage problems. However, the results did reveal some structural
behaviors of each concept. The more promising results for the segmentation approach created
a basis for analyzing the concept in more depth. The segmentation approach exhibits an
understanding of spatial dependencies in geometry. More specifically, it predicts spot welds
on CRs. The spot welds are of the same size and distributed logically. This implies that if the
segmentation model cannot reconstruct the CR, then it consequently will not be able to predict
the required joining locations. The following section explores the segmentation concept
further with multimodality and multiview approaches.

4.5 Predicting voxel-based joining locations considering
nongeometric data

This section validates the implementation of nongeometric data in Euclidean data
representations using branding. The previous section (4.4) concluded that the segmentation
concept is more promising due to robust and precise predictions. Hence, this section continues
with the implementation of a classification task. This methodology aims to validate whether
branding is a suitable method for improving the prediction of joining locations by considering
nongeometric data.
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Approach
Including nongeometric data in the segmentation concept creates MMML. This involves
bringing multiple data structures together to perform one task. Nongeometric data are
structured enabling their representation in tables (e.g., see datasets for predicting joining
technology [Section 4.1] or the number of spot welds [Section 4.2]). On the other hand,
geometry is free-form and requires appropriate discretization to enable the training of ML
models.

Subsection 3.3.2.6 roughly explained the approach for using branding as a technique to
fuse nongeometric data and geometry. Through DR and clustering, labels can represent the
nongeometric data of each data sample. A set of voxels represents each label. These labels are
burned onto the input and target data samples; see Fig. 3.26. This section compares various
branded models with benchmark (nonbranded) prediction models.

Additionally, the data leakage observed in Section 4.4 was reduced by using a
cross-validation dataset, a similarity filter (subsection 3.3.2.4), and a new splitting strategy for
large joining scenarios.

Implementation
This subsection discusses the implementation for reducing data leakage, including data
augmentation and branding. Considering data leakage, splitting regards multiple CCs that
originate from the same joining scenario. First, geometry for a new CC must at least occupy
more than τs = 0.5 along the splitting axis. This prevents the last CC from copying a large
part of the previous one; see the potential overlap of the blue box in Fig. 3.24. Second, all CCs
derived from a given joining scenario are moved into one dataset. There is an increased
probability that these CCs have similarities, such as after the splitting of long beams. Moving
them into one dataset prevents information leakage from these CCs to the test set.

Moreover, data augmentation can increase the number of data samples and potentially
also the prediction model’s performance. Empirical research provided additional information
by rotating and mirroring CCs along the x- and z-axes. The sheet metals in a small scope of
200 mm × 200 mm × 200 mm had slight differences, and augmentation may affect
generalization to unseen cases. Due to internal symmetry axes, the similarity filter removed an
additional 30% of the data after augmentation.

A further measurement for preventing data leakage is the similarity filter. It compares the
geometry of CCs with one another. The implementation did not use dilation to buffer sheet
metals. The similarity threshold τJ = 0.3 removed 23% of the CCs.

Branding requires labels for each data sample. Clustering nongeometric data categorizes
joining scenarios, creating a branding concept for EncDec architectures. Fig. 4.18 presents the
detailed preparation process for creating labels.

Preprocessing handles all typos, missing data, and one-hot encoding of nomenclature for
the categorical (nominal) features. It is largely equivalent to the preparation process depicted in
Fig. A.2. It creates binary vectors with one of the words included in the nomenclature, splitting
the dataset into training, CV, and test sets at a ratio 70% : 15% : 15%. The datasets contained
the same joining scenarios as for the training, CV, and test sets of geometrical ML. The similar
datasets prevented data leakage through the branding of clustering results.
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Fig. 4.18: Process for creating branding clusters and listing all multimodal models.

• Linear correlation and a variance filter removed features that added little additional
information to each sample. After splitting, the training set had 5212 samples with 682
features. into Linear correlation filtered all coefficients greater than 75%, thus reducing
the number of features to 540. Numeric-to-numeric features were filtered using
Pearson’s correlation coefficient with p = 0.05 and degrees of freedom df = 5211.
Nominal-to-nominal features were evaluated for correlation using Pearson’s χ2 test
[440] normalized by Cramer’s V [441] with p = 0.05. The variance filter removed all
features that explained under 2% of the variance and contained little information, thus
reducing the number of features to 536.

• PCA reduced the dimensions of the dataset. Fig. 4.19 visualizes the scree-plot for
determining the number of output dimensions for all nongeometric data.

The plot does not clearly display an elbow. Hence, the PCA used identified elbows at 2,
4, and 7 eigenvectors. This reduction preserved 3.0%, 5.1%, and 7.5% of the information,
respectively. Data that did not exhibit a clear angle in the scree-plot indicated that PCA
might not be optimal. However, DR methods such as t-SNE did not create a meaningful
clustering with, for example, large differences in the number of samples for each cluster.
The small amount of information resulting from the PCA was likely due to the sparse
features caused by the one-hot encoding of nominal features.
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Fig. 4.19: Scree-plot of PCA for determining the number of dimensions for the dimensionality reduction of
nongeometric data.

• After normalization of the PCA results, the number of dimensions was low enough for
stable clustering. However, two cluster strategies are possible for branding. The first is
to cluster all components individually and then combine them for every joining
scenario. The second is to cluster the combinations of components for every joining
scenario. The former approach creates (nclusters)

2 labels for joining scenarios. Not only
does this rapidly scale with the number of clusters but also some component–cluster
combinations may have a rather small sample size, preventing a model from learning.
The second approach directly considers the combinations of components and their
relations. A drawback is that clustering runs with almost twice as many features.
Additionally, clusters may be more difficult to distinguish as combinations of very
different components may be leveled by DR and clustering. Appendix A.5 discusses
exemplary clustering results.

Instead of the silhouette coefficient for cluster evaluation, the EM algorithm implemented
a 10-fold cross-validation approach that checked whether the log-likelihood increased
by increasing numbers of clusters [449]. The models of normalization, PCA, and created
clusters were applied to transform the test data separately.

In addition to the extensive data preparation process, the data analysis revealed that the
number of joining locations correlated most with weight and moments of inertia (Fig. A.4).
Therefore, these features were also selected separately as features for clustering. The
distribution of weights did not create clear clusters when using K-means or EM. Instead, a
binning method enabled dividing the weights into three bins. Each bin contained 1,737
samples. The weight attributes came from both components. Therefore, the two features had
the following bins: [−0.917,−0.543], (−0.543, 0.04], (0.04, 5.555] for component 1, and
[−0.778,−0.591], (−0.591,−0.042], (−0.042, 3.427] for component 2. The moments of
inertia consisted of six features for each component: Ixx, Iyy, Izz , Ixy, Ixz , Iyz . PCA reduced
these to two, and five dimensions after which the EM algorithm found 16 and two clusters,
respectively.

After clustering nongeometric data to create the labels, branding necessitated identifying
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the label’s regions (subsection 3.3.2.6). Branding requires fixed regions of voxels to
correspond to specific clusters. Choosing the right edge reduces lost information due to
branding. Fig. A.10 in the Appendix plots geometric information summed over all voxel grids.
Most voxels contain approximately 50 times the geometry. Relative to the approximately 6000
CCs, this is approximately 1% of the time. The total number of voxels on the ribs (with
thickness lrib = 3) was 10,656, or approximately 1% of the grid’s total. This clearly
demonstrates that little information existed toward the outside of the grid. Consequently, Fig.
4.20 visualizes the frequencies of geometry at the edges of the grid. It depicts only voxels that
represent fewer than 10 times the geometry. Dark red voxels have the input value of 0
throughout the entire dataset. The edge that is darkest, and hence with the least information,
runs along the z-axis from (100, 100, 0) to (100, 100, 100).

Fig. 4.20: Analysis of informational content in voxel grids for determining the edge for branding. The figure
highlights barely used voxels (dark red) at the edges of the grid.

Branding used this entire edge to position labels. The dimensions of each label were lrib ×
lrib × lbrand and they were spaced with lspace = 1 voxel. The number of clusters nclusters

determined the length of the brand label lbrand; see Eq. 4.3. The number of brands and their
spaces determined the length of the feature vector lfv. The edge length ledge equaled the grid
height hcc. Lastly, cluster cli (0-indexed) of nclusters was branded from voxel index ib until and
including voxel index ie.

lbrand =

⌈
(ledge − ((nclusters − 1)× tspace))

nclusters

⌉
(4.3)

lfv = nclusters × (lbrand + lspace)− tspace (4.4)

ib = cli(lbrand + tspace) (4.5)

ie = ib + lbrand (4.6)

Branding assigned class 1, component geometry, to all voxels of the label. It retained the
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spatial structures that the model learned between the branded and nonbranded approaches. An
additional fifth class (i.e., class 4) would increase the output dimension, forcing the model to
predict an extra 106 voxels. Using class 2 or 3 for branding would interfere with the relationship
between these classes as joining elements appeared.

Process
Fig. 4.21 depicts the updated process from Fig. 4.13.

Fig. 4.21: Visualization of the updated prediction process for predicting joining locations with supervised
multimodal machine learning.

The updated steps are in blue: data augmentation, similarity filter, branding, splitting, and
the additional feedback loop using the CV set. The training, CV and test sets Dtrain, DCV , and
Dtest were split at a ratio of 70%, 15%, and 15%, respectively.

After the datasets had been prepared, the training of the models remained largely the same.
The process validated each model after it was trained on the cross-validation set. This loop
enables changing the architecture or hyperparameters if, for example, the performance is not
sufficient. It also enables multiple models to be trained without having feedback on the final
quality of the test set.

This methodology was used to validate 11 models, which were separated into three groups:
the benchmark, clustering & branding, and feature selection & branding models. The groups
offer insight into how they affect the models’ performance.



204 Validation

1. The first benchmark classification model with an augmented dataset. It did not perform
MMML. It differed in results between models ID2 and ID3 due to the RI of weight.

2. The second benchmark classification model with an augmented dataset. It did not
perform MMML. It differed in results between models ID1 and ID3 due to the RI of
weight.

3. The third benchmark classification model with an augmented dataset. It did not perform
MMML. It differed in results between models ID1 and ID2 due to the RI of weight.

4. The fourth benchmark classification model without data augmentation ID4. It did not
perform MMML. It provided insight into the usefulness of data augmentation.

5. The first multimodal model through data reduction and clustering ID5. It found two
main dimensions using PCA (Fig. 4.19) and three clusters using K-means (Fig. A.9).

6. The second multimodal model through data reduction and clustering ID6. It found
four main dimensions using PCA (Fig. 4.19) and four clusters using K-means.

7. The third multimodal model through data reduction and clustering ID7. It found
seven main dimensions using PCA (Fig. 4.19) and eight clusters using K-means.

8. The fourth multimodal model through data reduction and clustering ID8. It found two
main dimensions using PCA (Fig. 4.19). These dimensions were the same as for model
ID5. Furthermore, it determined 16 clusters using EM (Fig. A.9).

9. The first multimodal model through feature selection ID9. It supplied the models with
the number of spot welds from the target of the joining scenario. These 33 clusters were
the same as for the prediction of the number of spot welds (Section 4.2).

10. The second multimodal model through feature selection ID10. It supplied the models
with binned weights of components. Each component had three bins. Considering two
components per joining scenario, this resulted in nine labels.

11. The third multimodal model through feature selection ID11. It supplied the models
with moments of inertia after their dimension reduction with PCA to two dimensions.
Furthermore, it determined 16 clusters using EM.

All models trained for 400 epochs to create a cut-off point for evaluation as well as to
contain computational cost (models trained for approximately three days). The models trained
for 400 epochs as from this point the cross-validation error surpassed the test set error, while
its F1-scores remained almost constant.

Results
Table 4.13 lists the results of the segmentation concept and compares them with those of models
that also had access to nongeometric data.

Generally, only slight differences existed between models’ performances on the test sets.
They all remained within a few percent, let alone the benchmark model without augmentation.
Moreover, models ID1, ID2, and ID3 differed by ±2% in their F1-scores. This variation
overlapped that of the MMML models as well as for metrics such as similarity and
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MODELS TRAIN CV
ID MMML DR CM nC E C F1 C F1

1 – – – – 365 33.39 0.99 1852.78 0.45
2 – – – – 365 32.14 0.99 1699.58 0.46
3 – – – – 290 33.39 0.99 1656.80 0.45
4 – – – – 295 31.42 1.00 2653.83 0.31
5 ALL 2 K 3 275 39.80 0.99 1698.77 0.47
6 ALL 4 K 4 350 39.31 0.99 1499.55 0.46
7 ALL 7 K 8 375 36.36 0.99 1983.37 0.46
8 ALL 2 EM 16 390 34.31 0.99 1922.39 0.46
9 NRSW – – 33 305 32.89 0.99 1832.82 0.47
10 WEIGHT – B 9 225 34.87 0.99 1727.40 0.46
11 INERTIA 2 EM 16 385 33.50 0.99 1754.72 0.46

TEST
ID C F1 A S Q ∆N

1 2238.94 0.38 0.62 0.45 0.22 –0.62
2 2038.28 0.40 0.63 0.47 0.23 –0.49
3 2030.98 0.39 0.63 0.45 0.23 –0.39
4 2731.41 0.30 0.58 0.38 0.13 –0.39
5 1998.67 0.42 0.65 0.46 0.23 –0.30
6 1794.79 0.41 0.64 0.45 0.22 –0.43
7 2601.20 0.40 0.63 0.45 0.23 –0.34
8 2352.27 0.39 0.65 0.46 0.23 –0.42
9 2208.68 0.40 0.64 0.47 0.24 –0.40
10 2105.80 0.40 0.65 0.45 0.23 –0.38
11 2144.69 0.39 0.62 0.46 0.22 –0.62

Table 4.13: Results of the trained models for determining the suitability of concepts. Abbreviations: MMML –
selected features for multimodal machine learning, DR – output dimensions of PCA, CM – used clustering method,
K – K-means, B – binning, EM – Expectation Maximization, E – number of epochs, nC – number of output clusters,
TR – training set, CV – cross-validation set, TE – test set, C – cost, F1 – f1-score, A – accurateness, S – similarity
(Gaussian with σ = 1.6), Q – correctness, and ∆N – difference in number of spot welds between output and target.

correctness. Furthermore, the performance of the models stagnated well before the 400
epochs. Notably, the test set contained 899 unseen samples. Hence, each percentage
improvement would correspond with approximately nine additional correctly predicted
samples.

Model ID5 had the highest F1-score of 41%, accurateness of 65%, and Gaussian similarity
value of 0.47, and also the highest number of spot welds on the test set. Notably, Gaussian
similarities of 0.45 and 0.47 with σ = 1.6 correspond with Euclidean distances of 4.09 mm
and 3.87 mm, respectively. Furthermore, models ID2 and ID9 achieved this. Model ID9 had
the highest correctness of 24%. Models ID1 and ID11 exhibited the worst values for correctly
predicting the number of spot welds (−0.62). Model ID10 (weight) added the least information
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to the training data. Although, the weights are features that most highest correlate with the
number of spot welds (see Fig. A.4). Although, this model did not yield interesting results.
Lastly, model ID4 trained on a smaller, nonaugmented dataset, which resulted in significantly
lower results. Fig. 4.22 presents the distribution of the predicted number of spot welds to the
targets for models ID2, ID4, and ID5.

Fig. 4.22: Plot of the differences in the predicted number of spot welds for models ID2, ID4, and ID5.

The curves of the models exhibited a considerable overlap, as was expected after referring
to Table 4.13. The graph generally indicates that the models were more likely to predict too few
spot welds, as the curves on the left-hand side reduced more slowly than on the right. Model
ID5 predicted 369 of the 899 test samples with the correct number of spot welds. This value
was 310 and 353 for models ID2 and ID4, respectively.

On the other hand, model ID5 predicted 177 cases (20%) with a difference of more than ±2
spot welds. All models in the results table (Table 4.13 exhibit negative values for the number
of spot welds. The models also unanimously predicted too few spot welds. As the distribution
in Fig. A.3 indicates, having fewer spot welds was much more likely. The chance of predicting
a smaller number of spot welds was also higher. Furthermore, the noise filter during coordinate
creation might filter small voxel groups that would otherwise be joining locations. However,
lowering this requirement might affect the accurateness and similarity negatively.

Interestingly, the performance metrics did not all explain the models’ quality equally well.
Fig. 4.24 already indicated a lack of correlation between cost and F1-score. It is assumed that
a lower cost would imply a better F1-score as voxel-wise differences between predictions and
targets reduce. Table 4.14 presents the correlation of the performance metrics in the predictions
of the test set for model ID5.

The table shows the linear correlation using the Kendall’s product-moment coefficient
[450] with p < 0.05. The F1-score of the joining location class was a better predictor of
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Model 5 Cost F1 MCC A S Q ∆N

Cost X –0.38 –0.37 –0.22 –0.37 –0.305 0.132
F1-score (class 3) X 0.99 0.65 0.94 0.83 –0.11
MCC (class 3) X 0.65 0.94 0.82 –0.10
Accurateness (A) X 0.61 0.55 0.12
Similarity (S) X 0.79 –0.05
Correctness (Q) X –0.07
Diff. number (∆N ) X

Table 4.14: The correlation between the performance metrics of the test set results of model ID2. Abbreviations:
F1 – f1-score, A – accurateness, S – similarity (Gaussian with σ = 1.6), Q – correctness, and ∆N – difference in
the number of predicted and target coordinates.

coordinate-based performance than cost. The latter barely correlated with any of the other
metrics. Currently, the loss function considers voxel-wise differences, neglecting relations
between voxels. The loss function might benefit from considerations of the other
characteristics. For example, although coordinate-based metrics have a high computational
cost, a term similar to the intersection over unions (Jaccard index) might aid the model during
training.

Moreover, the performances of MMML and the benchmark models only differed slightly
(Table 4.13). Hence, Table 4.15 presents the results from applying models ID5, ID6, and ID7
regarding whether branding has an effect on performance.

ID SET Cost F1 A S Q ∆N

5 Branded 1998.67 0.42 0.65 0.46 0.23 –0.30
5 Benchmark 1991.26 0.41 0.65 0.46 0.23 –0.29
6 Branded 1794.79 0.41 0.64 0.45 0.22 –0.43
6 Benchmark 1788.79 0.40 0.64 0.46 0.22 –0.44
7 Branded 2601.20 0.40 0.63 0.45 0.23 –0.34
7 Benchmark 2601.20 0.40 0.63 0.46 0.23 –0.34

Table 4.15: Results of MMML model ID5 on a nonbranded dataset. Abbreviations: F1 – f1-score, A – accurateness,
S – similarity (Gaussian with σ = 1.6), Q – correctness, and ∆N – difference in number of spot welds between
output and target.

These models used the benchmark augmented dataset (of models [1 − 3] in Table 4.13).
Consequently, the MMML models had no access to the branded information. If they relied on
labels, the performance should have dropped. Comparing these predictions with the
performances in Table 4.13, it becomes evident that no significant difference existed between
the models. They were able to predict joining locations with and without the branded meta
data equally well. Moreover, Fig. 4.23 presents that model ID5 reconstructed the label (yellow
stripe in the left graphs).

The label indicated that the information traveled through the network. However, model ID5
made the same mistake on sample CC(3593) by predicting four instead of the required one spot
welds. All of these four spot welds were located on the same spot.
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Fig. 4.23: Predictions of model ID5 on the branded and nonbranded dataset for sample CC(3593).

Therefore, the models did not integrate the informational content of labels into their
predictions. The following experiment validated the prediction of labels using nongeometric
data. It sought to demonstrate whether a prediction model can create a mapping between
nongeometric data and cluster labels. A random forest classifier predicted cluster labels from
the normalized training data before DR (see the first Normalize step in the process of Fig.
4.18). Then, the classifier needed to imitate the PCA and clustering step. The random forest
classifier used the settings described in Section 4.1. Classifiers having high performance
would suggest that it is possible to learn the differences between the branded labels.

The classifiers were trained on the labels used in models ID7 and ID8. They had different
numbers of dimensions after PCA as well as different clustering algorithms (K-means and EM);
see Table 4.16.

ID MMML DR CM nC Accuracy κ

7 all 7 K 8 0.984 0.980
8 all 2 EM 16 0.942 0.935

Table 4.16: Validation on the training set of the branding labels by using random forest regressors to model the
dimensionality reduction and clustering for models ID7 and ID8. Abbreviations: MMML – selected features for
multimodal machine learning, DR – output dimensions of PCA, CM – used clustering method, K – K-means, EM
– Expectation Maximization, nC – number of output clusters, and κ – Cohen’s kappa.

The dataset was split into an 80% : 20% ratio between the training and test set. The results
indicated that the random forest classifier could map the normalized input data to the output
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clusters effectively. This indicated that this mapping is learnable and that the models could
classify nongeometric data from unseen cases with high performance for model ID7. The
somewhat lower performance for the EM clustering result was likely due to its ambiguity as
clusters consider variance distribution. Nguyen demonstrated that random forest regressors
can mimic nonlinear DR methods on nongeometric data of spot welds, such as t-SNE [421].

Besides the performance metrics themselves, the models’ performance between the
datasets was also examined. All models exhibited variance in costs and F1-scores between the
training and cross-validation sets; see TR and CV in Table 4.13. This variance probably
originated from the overfitting of the training data. Variance describes a lack of a model for
generalizing knowledge [275]. It results in significantly lower performance on unseen samples
in the test set. Specifically, the lack of data augmentation in model ID4 indicated that the
dataset was relatively small. Fig. 4.24 clearly visualizes the variance problem.

Fig. 4.24: Exemplary training curves measuring the cost and F1-score of class 3 for models ID2, ID4, and ID5.

The blue and orange lines represent the model’s performance on the training and cross-
validation set, respectively. The cost plots show the orange curve quickly rising after a few
epochs, whereas the blue training curve lowers. Hence, longer learning on the training set
reduces the capacity of the model to predict more accurately on the cross-validation or test set.
However, the plots with F1-scores exhibit early stagnation but not necessarily overfitting on the
training data, implying that the models would rapidly perform significantly worse, as the cost
curve suggests.

Moreover, splitting joining scenarios into CCs might influence data leakage and variance
problems. For example, long beams found in automobile structures might create many similar
CCs. Although the similarity filter removes many overlapping data samples, slight differences
might still come through. Similarly, small joining scenarios might consist of specific parts,
such as reinforcements or halters. These scenarios tend to be more diverse as they are specific
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solutions between larger parts. Table 4.17 depicts the performance of model ID5; see Table 4.13
on subsets of CCs of split joining scenarios. The split CCs have a slightly better performance,
but the difference is not significant enough to state that those CCs are often similar.

ID Subset m A S Q

5 all 899 0.65 0.47 0.23
5 split 208 0.68 0.47 0.24
5 not-split 691 0.64 0.46 0.22

Table 4.17: Results on the test set of model ID5 for determining the influence of splitting. Abbreviations: m –
number of samples, A – accurateness, S – similarity (Gaussian with σ = 1.6), and Q – correctness.

Discussion
This subsection analyzes the differences between models ID2 and ID5, representing benchmark
non-MMML and MMML, respectively.It focuses on the differences in predictions in the test
set. Figs. 4.25 and 4.26 present five CCs with their input, target, and predictions for model ID2
and ID5. The exemplary CCs were cherry-picked based on CR shapes, spot welding distances,
and geometry complexities.

• CC(70) had four locations in the target grid (Fig. 4.25). Both models predicted the spot
weld locations almost perfectly. The cost was very low and coordinates differed only
within hundredths of a millimeter. The spot welds lay equidistant in the middle of the
CR. The input image from the next sample CC(1703) originated from the test set of model
ID5, showing the branded label in the top right corner.

• CC(1703) had a complex component geometry and the CR lay on one side in the grid
(Fig. 4.25). The target required three coordinates. Both models created too many spot
welds by attempting to fill the entire CR. Furthermore, they exhibited uncertainty as the
joining locations were not points, but rather more like stains. They were smeared over
the surface. Moreover, there were small individual voxels, or noise, in between the larger
spot weld voxel groups. These did not translate to coordinates due to the filtering function
in the performance measurement.

• CC(3593) was a CC with a large CR, yet it required one target coordinate (Fig. 4.25).
Both models aimed to distribute multiple spot welds over the CR. Performance metrics
such as F1-score, MCC, and similarity were acceptable as both models predicted the one
required coordinate.

• CC(4771) had two CRs that required four target spot welds in total (Fig. 4.26). The
models seemed to distribute spot welds on the larger region equidistantly, thus
predicting too many joining locations. Model ID2 predicted one spot weld too many;
however, it had a higher cost, yet a lower F1-Score, MCC, and similarity than the result
of model ID5. Only the accurateness metric and the difference between the number of
spot welds indicated the “overprediction” of model ID5.

• CC(5913) contained two long rectangular CRs with a high mutual distance between spot
welds in the target grid; see Fig. 4.26. None of the models output equidistant spot welds.
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Fig. 4.25: The analysis of samples CC(70), CC(1703), and CC(3593). The figure plots the input, output, and
predictions of model ID2 (no-MMML) and model ID5 (MMML), and also lists the performances of the models.
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Fig. 4.26: The analysis of samples CC(4771) and CC(5913). The figure plots the input, output, and predictions of
model ID2 (no-MMML) and model ID5 (MMML), and also lists the performances of the models.

Interestingly, model ID2 predicted three too many and model ID5 two too few spot welds.
All performance metrics exhibited very low results, but still the output of the models
seemed feasible. The CRs were properly reconstructed, and spot welds only appeared on
the blue areas. Furthermore, no real sign of noise existed.

All models provided plausible results. However, a detailed analysis was required to find
differences between the predictions. The models meticulously reconstructed the CRs and
predicted spot welds that only occurred within them. Hence, they created a consistent
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input–output mapping of the geometry. The EncDec network recreated the joining component
geometry and CRs accurately. Furthermore, joining locations were very often tiny cylinders of
approximately the target size. The locations only appeared on the CR area with an appropriate
edge distance to the flanges. Most predictions did not contain noise in the form of tiny spot
weld voxel groups. These properties of the models ensured that many of the predictions
seemed feasible and even manufacturable.

However, several problems must be addressed. First, the grid size of a CC is a cube with
20 cm ribs. This creates a small scope of geometrical context for the model. This scope also
incurs similarity problems in datasets, such as shifted joining locations on large CRs or data
leakage (Section 4.4). One solution might be to use the grid-based drawing approach on 2D
images. For example, Dhameliya [451] presented exploratory work that predicted spot weld
locations using a smaller network that considers larger geometric surface areas.

Moreover, structures over many product variants often contain similar components and
combinations. They use specific components and structure orientations to optimize safety
requirements, such as crash-worthiness. These considerations limit the data augmentation
possibilities. For example, the rotation of a CC might duplicate another nonaugmented
sample.

Thus, large components do not to fit the defined size of data samples. However, splitting
causes the samples not to relate to one another. Long short-term memory models can combine
data samples to reconstruct large components. An autoencoder similar to that of Essien and
Gannetti [452] could load all data samples before prediction. This would enable entire joining
scenarios to be considered at once and would also potentially increase the prediction quality.

Besides the grid-size, the resolution also limits geometric information for models. The
implemented resolution is r = 2 mm/voxel. This is a trade-off between the level of
geometrical detail and computational cost. This resolution prevents representing the
thicknesses of most sheet metals. Engineers actively consider component thicknesses and
materials as a decisive factor in determining minimal spot weld distances [350]. Higher
component thicknesses and stronger materials correlate with increased forces and loads on
joints [118]; see Section A.4. Theoretically, MMML enables supplying models with such
information, such as component weight, albeit unfortunately without significant
improvements to their performance.

The resolution, grid size, product variety, and data augmentation create the need for
independent data samples. The similarity filter aims to determine these data samples.
However, it is a cumbersome endeavor with a high computational cost. Similarity filtering
requires all CCs to be compared with another, and it is still an empirical task to determine the
degree of similarity. The task involves estimating the amount of additional informational value
a given CC adds to the dataset based on a similarity measurement. However, instead of
similarity filtering on voxel grids, filtering on component geometry (e.g., using shape
descriptors) of joining scenarios may create more robust datasets.

Furthermore, the similarity filter aims to reduce data leakage that models in the previous
section suffered (Table 4.11). These models had excellent scores, but the performance of
benchmark models (Table 4.13 with identifiers [1 − 4]) dropped significantly. This drop
indicates the size of the data leakage.
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Nevertheless, the models still predicted plausible spot weld locations. The results indicated
that the models found patterns for specific geometries and could map them to new unseen CCs.
On the other hand, design freedom on larger geometries may bring uncertainty into the model
as solution spaces increase. Distributing the joining locations may be difficult as the target data
includes asymmetric solutions that would likely throw off ML models.

As the performance measurements dropped after similarity filtering, the branding
implementation could not compensate for it. MMML did not perform to expectations.
Moreover, the performances did not significantly differ from the benchmark models. There are
various explanations for the lack of performance increase, including increased complexity
with identical conditions, suboptimal data reduction, clustering, and branding applicability.

• Models need to learn that branding increases the informational content of samples.
The model needs to relate labels to both geometry and resulting joining locations. This
requires a dataset that includes similar geometries that relate differences in branding
labels to differences in spot weld distributions. However, similar geometries require
filtering to prevent data leakage, and consequently, the variance of data samples might
be too small, making branded labels irrelevant.

Furthermore, branding increases the complexity of models. Besides the geometry-based
prediction task that occurs in the benchmark models, prediction models must determine
the relation of a label to joining locations. Hence, these models must perform more
complicated prediction tasks with the same architecture. Consequently, discarding
information with PCA and inconsistencies in clusters may even distract models from
predicting joining locations, thereby lowering their performance.

• Subpar data reduction and clustering might create counterproductive labels. Model
ID7 had the highest remaining information content after DR. These clusters represented
7.5% of the variance of the nongeometric data.

Additionally, clusters might be ambiguous. Thus, CCs might receive different labels to
geometrically similar CCs. This might in particular create issues for clusters that
contain a smaller number of samples. For example, model ID4 had eight branding
labels. Three labels contain only 3%, 6%, or 7% of the examples. These data samples
may be underrepresented in the dataset and may be interpreted as noise by the model.

However, decision trees reveal that clusters seem predictable from nongeometric data,
implying an achievable input–output mapping. Still, the dataset requires enough samples
to learn the particularities of labels, their relation to CCs, and their influence on joining
locations.

• The branding concept might not be applicable for the task or dataset of predicting
joining locations. The few studies that have implemented branding (e.g., [376]) have
used pre-trained models of image recognition. This study applied the concept in the
field of geometrical ML. The implemented EncDec structure, hyperparameters, or
dataset may not enable the integration of information from the brand labels onto the
geometric considerations for generating joining locations.

Regardless of multimodalities, some generic issues need to be addressed. The introduction
of a separate holdout (test set) enabled the visualization of overfitting issues (Fig. 4.24), such
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as the large gap between the cross-validation and test set curves. There may be two main
explanations for the variance.

• Differences in the data distribution between datasets: Samples in the training set
described different CCs to those on the cross-validation and test sets. However, Fig.
4.14 reveals that the classes between the training & validation (blue) and test data
(green) for all classes overlapped. However, the figure also presents the distribution in
the frequency of classes; for example, it neglects the distribution of certain joining
location patterns or component properties.

• A small dataset may not contain enough variety in samples for the model to generalize
well. A more extensive dataset increases the informational content, enabling better
generalization and thus performance. Additionally, other data augmentation strategies
might also boost the performance.

Furthermore, performance measurements, such as accurateness, similarity, and difference
in the number of predicted joining locations, explain much about a CC. However, they are blunt
instruments for model evaluation, as observed in the CC analyses. The metrics suffer from an
abstraction of performance, sometimes making it difficult to interpret quality. Additionally, the
model assumes target samples to be ground truths, although they are mainly experience-based
manual designs. Measuring the performance relative to the target does not necessarily express
the quality of the predicted joining locations. For example, the CCs CC(3593), CC(4771), and
CC(5913) indicated that the model predicted feasible and manufacturable designs, but without
directly overlapping joining locations. The objective measurement of the quality of an ML
model would require an FEA that evaluates the joining locations within the entire product.

Interestingly, the difference in the number of predicted and target spot welds was lower for
the best MMML voxel-based model ID5 ∆Nvox

je = −0.30 than for the best
number-of-spot-welds predictor ID3 (XGBoost; see Section 4.2) ∆NXGB

je = −0.461.
Naturally, the datasets differed in size, formatting, and scope (CCs versus joining scenarios).
Still, the models predicted the correct numbers in both cases rather well. The XGBoost
predictor had no information about geometry, such as the CR size. Moreover, the
MMML-based predictor was clueless regarding the material, function, and size of the
components. Both models’ relative success in predicting the number of spot welds confirmed
the contribution of both nongeometric and geometric data in joining element design.

Evaluation
Table 4.18 presents the evaluation results of the 11 models. The following list explains the
ratings in the table:

• As seen in the results table (Table 4.13), no significant difference existed in (structural)
performances between models.

• However, there was additional development effort for the branding approach (ID5 to
ID11). The effort was even higher for creating labels through DR and clustering (ID5 to
ID8).



216 Validation

• The speed of prediction and computational cost followed the same considerations as for
development effort.

• Based on the current implementation, the benchmark models (ID1 to ID3) are the most
promising direction for application in industry.

ID Perf. Speed Dev. Comp. Struc. Appl.
1, 2, 3 2 2 1 2 2 3
4 1 1 1 1 1 1
5 2 3 3 3 2 1
6 2 3 3 3 2 1
7 2 3 3 3 2 1
8 2 3 3 3 2 1
9 2 2 2 2 2 1
10 2 2 2 2 2 1
11 2 2 2 2 2 1

Table 4.18: Evaluation of the best SML learning task for predicting spot welds locations. Values [1−3] correspond
with low to high scores, respectively. Abbreviations: Perf. – performance, Dev – development effort, Comp. –
computational cost, Struc. – structural performance, and Appl. – practical applicability.

All models confirmed the hypothesis that ML models can predict joining locations. Hence,
ML techniques possess the capability to automate joining element design. Contrary to state-
of-the-art approaches, these models predicted locations by considering existing engineering
knowledge stored within market-validated data. Thus, they integrate the flexibility of rule-based
approaches while considering products as a whole, similar to topology optimization (Section
2.1.5). The voxel-based approach enabled the prediction of joining locations directly in 3D
space.

Moreover, models that rely solely on geometry produced meaningful predictions. However,
considering nongeometric data (in the current setup) did not improve performance. Moreover,
it seemed that the models neglected the branded labels. They needed larger datasets and more
computational power for further validation. This led to a variance problem as well as a small
geometric scope. Consequently, these boundary conditions prevented the models achieving
performances that would support designers.

Regardless of the quality of predicted joining locations, the following section validate a
methodology to commonalize them.

4.6 Spatial aggregation on flat surfaces

The aforementioned methodologies concerned the prediction of joining aspects. However, the
structure block of the framework also presents commonalization design problems (Section
3.1.3). To this extent, VICTOR evaluates the applicability of AI fields for commonalizing
joining locations (Section 3.2.5). Section 3.3.7 presented this methodology.
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Commonalization aids in reducing the variability in joining locations when considering
multiple product variants. For example, if two product variants consist largely of the same
components, there can be similar joining scenarios. These combinations of components can
have a joint in the same position. Practically, this joint is the same between the two product
variants, although, one of the components it joins may differ between them. Prediction models
create joining locations on CRs for one product variant. Hence, these locations may differ
between product variants. These locations require commonalization to reduce their variety
between product variants. This section describes the validation of the commonalization
methodology for joining locations.

Approach
Product development requires methodologies such as SA to run on strategic moments, and thus,
after designers have made several new joint designs. Consequently, commonalization is not in
the user journey (Fig. 2.5). However, SA aggregates joining element designs as the results of
multiple user journeys.

In short, this methodology is not a design approach, and it does not generate new data.
However, it does organize designs for improving coping with the effects of product variety. The
methodology systematically aggregates joining locations of multiple product variants, creating
fewer that can be shared between them. Consequently, the methodology may reduce the joining
performance for an individual product variant. However, it increases their manageability for all
product variants. As a result, joining location commonalization has two main tasks (Fig. 4.27):

Fig. 4.27: Properties and validation purpose of the two datasets for commonalization.



218 Validation

1. Determining shareable joining locations between product variants: The methodology
determines the joining locations to commonalize for sets of product variants.

2. Reducing variability in joining locations: The methodology determines surrogate joining
locations for those in close vicinity after considering multiple variants at once.

The input and output of the methodology are joining locations assigned to product variants.
However, the overall number of unique joining locations should reduce after the methodology.
This reduction occurs due to shared joining locations between product variants. This validation
focuses again on spot weld locations. Their number, simple geometry, and use case are the
main factors.

The methodology employs a UML method to cluster joining locations. UML enables
commonalization due to the geometric freedom in designs. For example, fields such as RBR
would require a high development effort to achieve similar results. The K-means clustering
algorithm has various properties that serve SA (listed in Section 3.3.7). The cluster center
represents the commonalized surrogate joining locations.

The aim of validating this methodology was to determine whether SA is beneficial for
modular design. Moreover, because joining location commonalization is a novel method,
performing SA on a dataset with real data enables its potential to be determined.

Therefore, similar to the randomized distribution of joining locations (Section 4.3), the SA
employed a 2D approach. The largest advantage is that CRs and the resulting UoCR (Fig. 3.33)
are straightforward to derive by, for example, using overlapping polygons. A 3D approach
would include complex curved surfaces, adding little additional value toward validating the
methodology.

Implementation
SA used the same dataset of the 2D approach to distribute spot weld locations (Section 4.3);
see Fig. A.1. Fig. A.7 presents the process used to create the 2D data samples (Section A.4.1).
However, it required additional processing to determine overlapping CRs. The following list
describes these process steps; see also Fig. 4.28. The first three steps explain CRs being found.
Finding overlapping CRs is an equivalent process.

1. All flat surfaces on each mesh of all joining components were determined.

2. A pair-wise comparison was conducted between each joining component regarding
whether it has parallel flat surfaces that touch another.

3. CRs were created when these coinciding surfaces might hold joining elements.

4. A pair-wise comparison was conducted between all CRs regarding whether they were
parallel to and touched one another

5. A union of all pair-wise overlapping CRs was created using transitive closure [453].
Transitive closure found all adjacent CRs. This step links CRs that do not directly
overlap, but only through another CR.

However, overlapping CRs do not consider the design characteristics of products. For
example, products may be symmetrical, and although their components are mirrored between
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Fig. 4.28: Data preparation process for creating 2D overlapping contact regions.

both sides of a product, their CRs and joining requirements might be similar. Transforming
specific joining scenarios into new origins can consider such design characteristics. This
process can add CRs to UoCRs, thereby increasing the commonalization potential. The
combination of the product’s geometric characteristics (e.g., mirroring and rotation),
functional requirements (e.g., crash-worthiness and plating), and design parameters (e.g.,
materials and dimensions) can help to identify joining scenarios for SA. An increasing scope
considers more joining elements at once as well as increases the modularization potential. The
following three types of scopes can be distinguished [2]; see Fig 4.29:

• The global scope transforms (all) UoCRs into one origin (i.e., the global origin of the
product). Here, all CRs overlap, creating one UoCR. This scope creates the lowest
number of resulting joining elements by affecting the most product variants at once.

• The local scope considers the UoCRs in global product space without any
transformations. UoCRs remain in place and do not consider product characteristics to
commonalize more joining scenarios at once. Joining elements are more optimal in each
product variant, but at the cost of additional joining modules, possibly including
unnecessary complexity.

The algorithm runs at a local scope considering all joining elements at their location in
the final assembled product (product space). The local scope prevents the transformation
of data, which eases the interpretation of results.

• The domain scope takes a subset of joining scenarios and transforms them into the
same origin using a shared property, such as function, space, or assembly station. For
example, a distinction between structural and aesthetic functions lets joining elements
fulfill their function correctly. This hybrid between local and global enables increased
modularization potential without over-commonalization.

The scope and definition of commonalization tasks (Fig. 4.27) enable the datasets for
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Fig. 4.29: Visualization of the use of scopes to control the degree of commonalization. Colors of joining modules
indicate their uniqueness. A local scope does use transformations to increase the number of joining scenarios into
unions of contact regions. A global scope would transform everything into one union of contact regions. Lastly,
domain scopes aggregate joining scenarios into unions of contact regions, which may have functional, geometric or
other similarities.

validation to be determined. Each dataset enables a task to be validated. Table 4.21
summarizes the properties of these datasets.

1. Determining shareable locations originates from a dataset with target coordinates (2D).
The expected result is that the methodology finds all joining locations with the same
coordinates in the product space.

The entire dataset of 2D spot welding joining scenarios has (m2D = 4634) data
samples. This implementation focuses on the collection and calculation of shared
locations for reusable joining elements. It reconstructs the common joining locations
from joining scenarios that have been taken apart in two-component joints. Using the
entire dataset provides insights into the potential, degree, and value of commonalizing
joining elements.

The 2D dataset contains 1698 joining scenarios that have 4634 CRs creating 339 UoCRs.
Each UoCR has on average nUoCR

cr = 2.24 CRs. The number of spot welds per CR in the
UoCR is ncr

l = 3.50. Joining scenarios have on average 5.88 joining locations.

2. To reduce location variability,a dataset with predicted coordinates (TE-VOX) is used.
The aim is to reduce small perturbations in locations due to various prediction processes.

An example is the output of the benchmark model (ID2) from Section 4.5. Comparing
it with the targets provides insight into the reduction of prediction variability through
combining multiple predictions.

A few steps are required to acquire coordinates for 2D data samples from the 3D voxel
predictions. First, Eq. 3.18 can transform the predicted coordinates from voxel grids to
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global space. Next, the component combination identifiers of predictions are matched to
those in the UoCR. Then, 2D data samples are created according to the regular process
(Section A.4.1). However, instead of target coordinates, the predicted coordinates are
used.

The 899 CCs in the test set of the voxel-based approach come from 360 joining scenarios.
Preprocessing identifies nUoCR = 30 UoCRs. Each UoCR has on average nUoCR

cr = 2.27
CRs. The number of spot welds perDR in the UoCR is ncr

l = 2.59. Joining scenarios
have on average 3.84 joining locations.

This dataset uses the test set data samples of the 3D voxel-based approach. The dataset
is smaller (mTE-VOX = 899) than the dataset m2D for the previous task. Consequently,
the number of UoCRs is significantly reduced. Hence, the number of UoCRs forces a
per-sample analysis on the effects of SA.

Besides dataset preparation, the algorithm (Table 4.19) has various parameters for
controlling the results. However, this implementation does not use additional weighing
parameters for each joining location, such as those proposed through Eq. 3.25. Hence, each
location has an equal weight on the resulting outcome. Furthermore, the maximum cluster size
sc is set to 10 mm, which prevents large movements of locations and reduces the impact on
structural performance.

Process
For each SA task, there is one dataset. The process implements two models with equal settings
(Fig. 4.27). The only difference between the models is the dataset:

• The creation of joining element platforms (SA1) uses the entire dataset of 2D spot
welding joining scenarios.

• The reduction of prediction variability (SA2) evaluates the predicted versus target
coordinates, commonalizing joining locations predicted by the voxel-based classifier
model ID2.

As the input and output of the methodology describe joining locations, this may be
confusing. For the sake of clarity, the output and “spatially aggregated joining locations” are
referred to as joining clusters hereinafter.

This implementation used the algorithm presented in Table 4.19 on each UoCR. This
algorithm describes the implementation of the process flow in Fig. 3.38.

To validate SA’s impact, the percent commonality index (%CI) of Siddique is used
[236].However, only the term “commonality of connections” (%CI l) is used; see Eq. 2.6. The
component and assembly term are ruled out. SA does not impact these terms, enabling them
to be left out of the measurement. Eq. 4.9 presents the calculation of the commonality of
connections. The percent commonality of connection %CI l is the fraction of the number of
joining clusters that occur in more than one joining scenario nc, where njs

c > 1 and the total
number of joining clusters nc.
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Input Superset with joining scenarios j ∈ JS
Sets of joining locations for each set p ∈ j
Minimum number of clusters kmin

Output Set of joining clusters C containing aggregated joining locations p
1: For k ∈ {kmin, . . . , |JS|}
2: Let set C have k clusters with first kmin clusters

from p of argmaxj |j| ∈ JS and random selected p

for all other clusters c
3: Calculate Euclidean distances dp,c for all p ∈ JS to all c ∈ C
4: For each location p ∈ JS
5: Sort C in ascending order on distances dp from p to c
6: For every cluster c ∈ C
7: If point p within maximum cluster size dp,c ≤ rmax

8: If no locations of same JS, c ∩ {p ⊃ j} = ∅
9: Assign p to cluster c

10: If all locations assigned, C ⊇ JS
11: For each cluster c ∈ C
12: Update centroid c :=

∑
{alpp ∈ c}/

∑
{alp ∈ c}

13: Iterate between line 3 and line 12 until convergence
14: If all locations of joining scenario p ∈ j for j ∈ JS are

okay with standards
15: Return clusters C

Table 4.19: Spatial aggregation clustering algorithm for one set of joining scenarios from one union of contact
regions.

%CI l =
100 ∗ common connections

common + unique connections
(4.7)

%CI l =
number of joining clusters shared by multiple joining scenarios

total number of joining clusters
(4.8)

=
nc , where njs

c > 1

nc
(4.9)

Results
This section presents the results of SA on a predicted and target dataset. Fig. 4.20 lists the
results of both models. This subsection addresses the results for each model separately.

• Results of SA on 2D target coordinates (SA1)

The algorithm started with nl = 2747 joining locations. SA combined them into
nc = 1755 joining clusters (−36.0%). The commonality of connections expressed the
following fraction of joining clusters: %CI l = 881/1755 = 25.4%.
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ID DS nl nc %CI l s̄l s̄s
SA1 2D 2747 1758 49.8% 0.07 0.99
SA2 TE-VOX 174 138 25.4% 0.04 0.27

Table 4.20: Spatial aggregation results on the target dataset (SA1) and the predictions of the voxel-based model
SA2. Abbreviations: DS – dataset, TE-VOX – test set prediction of model ID2 in the voxel-based approach, 2D
– entire 2D spot weld dataset, nl – initial number of joining locations, nc – number of resulting joining clusters,
%CIl – percent commonality index, s̄l – mean translated Euclidean distance of joining locations in each cluster,
and s̄s – mean translated Euclidean distance of joining locations in each cluster without clusters containing one
location.

The mean translated Euclidean distance of each joining location was s̄l = 0.07 mm in
each cluster. After excluding all clusters with one joining location, this became s̄l =
0.14mm. The mean Euclidean distance of all joining locations translate within a joining
scenario to s̄s = 0.99 mm.

• Results of SA on predictions (SA2)

The algorithm started with nl = 174 joining locations. After SA, nc = 138 joining
clusters remained. Hence, it reduced 36 spot welds corresponding to 20.7%. The number
of shared joining locations (35) over the total number of locations (138) expressed the
following commonality of connections: %CI l = 35/138 = 25.4%. Table 4.20 lists the
results of both validation datasets.

The mean translated Euclidean distance of each joining location was s̄l = 0.04 mm in
each cluster. After excluding all clusters with one joining location, this became
s̄l = 0.15 mm. This distance resembled a small movement of points, indicating that the
predicted points occurred in almost the same position. It seemed that the ML model
found patterns and applied them consistently in its predictions. Further, the average
Euclidean distance of all joining locations translated within a joining scenario to
s̄s = 0.27mm.

Discussion
This subsection first analyzes cherry-picked examples in depth. Notably, the sample images
used a different color scheme compared with those in the previous prediction sections (red for
component geometry and blue for spot welds). The new color scheme aimed to indicate the
difference between design and commonalization tasks. Fig. 4.30 presents three interesting data
samples: UoCR(2), UoCR(9), and UoCR(11).

• UoCR(2) consisted of two CRs from the joining scenarios JS(207) and JS(234). The
irregularity of prediction can be observed in the overlapping locations on the right-hand
side. The left CR(104) has five joining locations while the right CR(130) has four, as the
first row of images shows.

The second row maps the joining locations of the other CR over (white circles with black
borders). SA creates the blue circles, which represent the joining cluster that contained
one location of both CRs. Here, black points also represent joining clusters; however,
they only consist of one joining location.
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Fig. 4.30: Analysis of spatial aggregation results of the voxel-based dataset.
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SA output three joining clusters to share between the two CRs. Additionally, three joining
clusters remained specific to each.

• UoCR(9) had two CRs from the joining scenarios JS(503) and JS(597). SA reduced
seven initial joining locations to five as it enabled the bottom two points to be shared
between the joining scenarios. The ML model already predicted these points on top of
one another (i.e., coinciding points) and did not require a new joining cluster coordinate
to be found.

• UoCR(11) had two CRs from the joining scenarios JS(549) and JS(550). The algorithm
found one shared joining cluster for a joining element in the middle and reduced the
number of joining locations from seven to six.

This discussion has neglected the data samples of model SA2, which considered the
predicted joining elements. The analyzing these samples would not bring additional insights.
They were similar in their structure and results to the data samples provided in Fig. 4.30. The
results in Table 4.20 indicate that the geometrical movement s̄l were minimal. Moreover, due
to matching 2D flat CRs from the 3D CCs, the samples were incomplete.

The sample analysis of the SA results revealed inconsistencies in overlapping points; see
Fig. 4.30. For example, samples UoCR(2) and UoCR(11) exhibited shared joining clusters
located in between nonshared joining clusters. The shared joining clusters might have
originated from prediction consistencies. However, the goal of SA was to reduce variability
and create a meaningful basis for modularization. Future joining modules for the latter
UoCR(11) will overlap. The joining elements of one module sit in between joining modules.
This effect reduces transparency, as designers need to validate requirements for each product
variant. These inconsistencies and results invite designers to rethink their designs. Such
considerations would align with Kuhn et al. [433], who stated that complexity analysis can
summon transparency, feedback, and adaptability.

Moreover, the commonalization of joining locations may reduce the modularization
potential. Again, focusing sample UoCR(11) in Fig. 4.30, plain modularization would result
in one module with three spot welds and one module with four. Nevertheless, SA identified a
joining cluster in the middle. Modularization could result in three modules with one, two, and
three spot welds. Naturally, a task for modularization is to consider this. However, it indicates
that the increased commonality of joining locations may negatively affect product
variety-induced complexity.

Now, the focus of this discussion shifts from the sample analysis to the overall
performance (Table 4.20). The algorithm reduced the number of predicted spot welds by
20.7%. This reduction helped efforts in planning, documentation, and management. This
value was lower than for the 2D CRs. However, the smaller dataset had fewer overlapping
CRs. For example, the 4634 samples of m2D created 339 UoCRs, whereas there were 30
UoCRs for the 899 samples of mTE-VOX. There is a factor 11 between the resulting UoCRs.
Hence, the effectiveness of the methodology was severely impacted by the number of
overlapping product variants in the dataset.

Furthermore, the potential of sharing locations for 2D CRs achieved approximately 50%.
The algorithm achieved these values with a local scope, leaving all locations on the global
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product coordinates. A domain-based scope may find relations in the product architecture that
might meaningfully increase the percent commonality index (%CI l).

An increase in commonality came at the cost of moving joining locations. The models on
average did not move joining locations by much (s̄l < 1 mm). Consequently, adding
parameters as specified in Eq. 3.25 would not have influenced the results significantly.
Furthermore, the average number of CRs in a UoCR is just over 2. Hence, most joining
clusters created by two joining locations are their midpoint. Moreover, joining clusters that
contain one joining location have a distance of sl = 0 mm, which reduces the mean
significantly (see the difference between s̄l and s̄s).

Although the moving distances of joining locations are low, model SA1 will probably never
reach zero. An explanation lies in the design of joining locations. By constructing coordinates
on surfaces, designers may set them on sheet metal’s top or bottom surface. However, the
preprocessing step maps all joining locations on a coinciding plane between the surfaces (Fig.
A.7), which creates a translated distance that appears in the results.

The methodology’s performance highly depends on the use case. Moreover, the results
and their interpretation rely on the dataset. The automotive industry designs vehicles with
many curved shapes, limiting 2D overlapping CRs for product variety. A solution may be to
ignore overlapping CRs and consider joining locations freely in space. Neglecting CRs
reduces functional and geometric constraints but increases the potential for commonalization.
The methodology becomes prone to over-commonalization, thus potentially reducing the
overall modularity.

Evaluation
This evaluation does not include a table as the evaluations of the prediction methodologies
did. Both models represent the task of joining location commonalization, not the dataset or the
model. Model SA1 focused on creating shareable joining locations between product variants,
whereas model SA2 focused on reducing variability in joining locations after prediction. There
was no benchmark available for comparing their results. However, this evaluation addresses the
validation criteria in the text.

• First, the performance was difficult to validate. The unexpected large dependency on
the dataset suggested that the methodology needs more testing. For example, it could be
tested multiple times during a product development trajectory.

• Hence, its applicability in industry is debatable.

• In any case, the methodology found joining locations and made joining clusters
effectively. The distance of moved joining locations after clustering was low. Hence, it
was assumed that the structural performance was not greatly impacted.

• Furthermore, SA is a relatively quick algorithm. The number of joining locations in a
UoCR was relatively low for clustering algorithms.

• However, the developmental effort is high. Determining all CRs between all relevant
components in overall product variants is complex to implement. Moreover, regarding
geometry, it has a high computational cost.
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In short, SA can support designers in commonalizing joining elements. The methodology
converges the variability in predictions and enables the sharing of joining locations between
product variants. However, the methodology is highly dependent on the use case. Hence, it
only brings value when performed at strategic moments during product development.

As a logical step after commonalizing joining locations, the following section validates a
methodology to commonalize entire joints.

4.7 Element densification using flat surfaces

The previous section discussed the commonalization of joining locations, which concerned a
single joining aspect. This section discusses the commonalization of joints. The framework
defines this design problem to consider overall joining aspects at once (Section 3.1.3). It
reduces the variety in joining elements. VICTOR determines the most applicable AI fields to
be deterministic (Section 3.2.6), such as RBR. A condition-based implementation can help
designers to control and understand the adaptations to joining designs by the methodology.

Section 3.3.8 presents the methodology. In short, ED aims to increase sharing of the
joining elements. These joining elements are designed on overlapping CRs, which describe a
geometric boundary for joining elements (see Fig. 3.33). Hence, when interchanging a
component between product variants, the overlapping CR remains. Consequently, it may be
beneficial to share the joining elements on these overlapping CRs. This section describes the
validation of commonalizing joints. The aim is to determine the functioning of this
methodology, its potential, and its limitations.

Approach
Whereas SA in the previous section (Section 4.6) aimed to commonalize joining locations,
ED considers entire joints, although both methodologies have a similar use case. Their
application is required on strategic moments in product development after many new joining
designs. Prediction methodologies are divergent in designs. Commonalization methodologies
are convergent, meaning they run from the bottom up.

ED is a logical step to perform after commonalizing individual joining aspects. By
reducing variety in technologies, locations, and parameters, less variety remains to be
considered on the level of joints. For example, performing ED after SA prevents the
densification of two joining locations with near-zero distance as they lack identification as one
element. In other words, the densification algorithm must consider the manufacturing
requirements of all joining aspects. Moreover, the algorithm might need to perform similar
tasks to achieve the same results. Similar to SA, the methodology identifies tasks for the
commonalization of joints through ED through the following actions:

1. The determination of shareable joining elements between product variants: The
methodology determines the joining elements to commonalize for sets of product
variants.

2. The reduction of variability in joints: The methodology determines surrogate joints for
shared overlapping CRs by considering multiple variants.
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The input and output of the methodology are joining elements. However, the overall
number of unique joining elements should be reduced after the methodology is applied. This
reduction occurs due to shared joining elements between product variants. This validation
focuses again on spot welded joints. Their number, simple geometry, and use case are the
main factors. Picking one joining technology reduces the many manufacturability
requirements that need consideration in the algorithm. Additionally, the high product variety
and use of spot welds in the use case support this scope. The aim of validating this
methodology was to determine whether ED can reduce variety. Hence, a dataset with real data
can determine the benefits of this methodology.

The methodology employs an RBR approach. This enables the systematic substitution of
joining elements on joints, such as for unifying their designs on a shared overlapping CR (also
defined as the IoCR). Condition-based approaches can enable designers to make final
decisions. However, it is the traceability and certainty of such approaches that support
designers. Substituting joining elements has a large influence on the product, not only in terms
of structural performance but also of manufacturing capabilities and resources.

Implementation
ED was run on the same flat CR joined by a spot welding raw dataset as SA. However, instead
of the UoCR, this methodology implemented the IoCR; see Fig. 3.33. The IoCR describes the
shared CR over a unique set of product variants. Commonalizing joining elements between
IoCRs enables them to share the assigned variants.

As ED performed similar tasks to SA, it used the same datasets. The implementation
subsection in Section 4.6 explained each dataset, and Table 4.21 below summarizes them.

DS m ns nUoCR nUoCR
cr ncr

l ns
l

2D 4634 1698 339 2.24 3.50 5.88
TE-VOX 899 360 30 2.27 2.59 3.84

Table 4.21: Properties of datasets for element densification. Abbreviations: DS – dataset. TE-VOX – test set voxel-
based approach, 2D – entire 2D spot weld dataset, m – number of samples, ns – number of joining scenarios,
nUoCR – number of unions of contact regions, nUoCR

cr – mean number of contact regions for each UoCR, ncr
l – mean

number of joining elements for each contact region, and ns
l – mean number of joining locations for each scenario.

However, the datasets did not validate each task separately. Both datasets jointly enabled
the evaluation of the ED algorithm.

1. To determine shareable elements, a dataset with target coordinates was required. The
expected result was that all joining elements that can fit other joining scenarios without
violating manufacturing requirements would be found.

2. To reduce variety in joints, a dataset with predicted coordinates was required, which
was small. Hence, it provided insight into performing ED early in product design. At
this level of product maturity, many joining elements have not yet been designed.
Moreover, the prediction model created joining locations on CCs. Due to similarity
filtering, among other reasons, joining scenarios may not contain complete joints. ED
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may complete these joints, such as when other predictions coincidentally contain
joining elements for overlapping CRs.

Besides dataset preparation, the algorithm (Table 4.22) entails a trade-off for controlling the
results. Substituting joining elements into other joints is beneficial for companies. ED reduces
the complexity due to an increased modularization potential. However, this needs to make
up for the increase in manufacturing time and cost of producing more joining elements; see
Eq. 3.31. The methodology proposes the calculation of the difference in assembly complexity
as a proxy for the trade-off. However, the main goal of validating this methodology was to
determine its functioning and behavior. The implementation of the trade-off was neglected for
simplicity reasons and the focus remained on the main goal. Hence, the validation considered
all densifying tasks (each trade-off) as beneficial.

Process
The algorithm iterated through all intersections in a UoCR. It determined intersections of CRs
that contained unequal numbers of joining elements between the affected joining scenarios. For
such cases, ED added joining elements to those with fewer elements. However, it added them
only when the new joining elements did not violate one or two manufacturability requirements:
edge < 5 mm and mutual distance < 20mm.

Notably, the addition of joining elements is a simplification of the methodology presented
in Section 3.3.8. The methodology originally presented the substitution of joining elements.
Substitution takes all joining elements of one joining scenario (within the IoCR) and puts them
in another, while discarding the ones that were in it. Addition seeks available space on a CR
for setting a joining location from one on the other. This change in functioning was due to
simplification in the implementation.

The algorithm was run after SA. The addition of joining elements became simpler after
shareable joining locations were identified, which reduced variability and supported the process
of finding shareable joining elements. The validation considered two models – one for each
dataset. The process implemented the following two models with equal settings:

• Densification on target spot welds (ED1), used the entire dataset of 2D spot welding
joining scenarios (2D);

• Densification on predicted spot welds (ED2), which commonalized locations from the
dataset (TE-VOX) predicted by the voxel-based classifier model ID2 from Section 4.5.

This implementation used the algorithm presented in Table 4.22 on each UoCR. This
algorithm describes the implementation of the process flow in Fig. 3.40.

The validation of ED’s impact employed the percent commonality index (%CI) of
Siddique [236]. Similar to SA, it only used the term “commonality of connections” (%CI l);
see Eq. 4.9.

Results
Table 4.23 presents the results of the implementation as well as some results of SA for
comparison. This enables a discussion of the effectiveness of ED.
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Input Set of joining scenarios JS
Sets of joining clusters JC ∈ JS
Sets of joining locations JL ∈ JC

Output Set of joining clusters C for each joining scenario JC ∈ JS

1: Sort JC on number of JL in descending order
2: Sort JS by containing JC with most JL; then most JC on JS
3: For each intersection of contact regions iocr ∈ IoCRs
4: For all equal joining technologies u grouped in iocr
5: For each joining scenario sA ∈ iocr
6: Get JCs laying on iocr of joining scenario s
7: Number of JCs njc in sA ∈ iocr is highest argmaxsA{n

s
jc}

8: For JCs on jc ∈ sA are manufacturable on other JS sB
9: If densifying trade-off (Eq. 3.31) is profitable

10: Add jc to joining scenario sB

Table 4.22: Joining element densification algorithm for one set of joining scenarios from one union of contact
region.

SA ED
ID DS nl nc nc

shared %CI l nl nc nc
shared %CI l

ED1 2D 2747 1758 875 49.8% 2788 1758 899 51.3%
ED2 TE-VOX 174 138 35 25.4% 182 138 42 30.4%

Table 4.23: Element densification results on test set predictions of voxel-based Model ID2 and the target dataset.
Abbreviations: DS – dataset, TE-VOX – test set voxel-based approach, 2D – entire 2D spot weld dataset, SA
– spatial aggregation, ED – element densification, nl – initial number of joining locations, nc – number of
resulting joining clusters, nc

shared – number of shared joining clusters over multiple scenarios, and %CIl – percent
commonality index.

• Results of ED on a 2D dataset (ED1).

The algorithm was run on 18 of 339 UoCRs (5.3%). The percent commonality index
of connections (%CI l) increased after SA was run (49.8% vs. 51.3%). The samples in
the 2D dataset were consistent and the result of successfully marketed products. Hence,
designers already considered product variety. Consequently, ED added nl

ED − nl
SA = 41

new joining locations to joining scenarios.

Furthermore (not in table), joining scenarios shared nc
sharedED − nc

sharedSA = 24 new
joining clusters that otherwise represented one joining location. In other words, 24
joining clusters from SA that contained only one joining location now reoccurred in
multiple joining scenarios.

• Results of ED on the predicted dataset (ED2)

ED was run on three UoCRs of the voxel-based predictions corresponding to 10% (refer
to Table 4.20). Furthermore, the total created joining locations increased from 174 to 182.
However, they were still managed by 138 joining clusters as the algorithm did not create
new clusters. ED added eight joining clusters to new joining scenarios. Furthermore,
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seven joining clusters that represented one joining location after SA now represented two
or more. The percent commonality index of connections increased to %CI l = 30.4%.

Discussion
This subsection first analyzes cherry-picked examples in depth. Fig. 4.31 presents three
interesting data samples from model ED2: UoCR(126), UoCR(266), and UoCR(292).

All cases indicated that SA organized the spot welds due to the overlapping points. The
images depict undensified CRs of scenarios on the left-hand side and densified on the right-
hand side. The middle blue image represents all IoCRs generated by the algorithm.

• Sample UoCR(126) had two contact regions that overlapped almost completely. The
joining scenario JS(2369) received one additional joining element. The CR seemed to
be designed to have a joining location there. The CR(2369) most likely switched out a
spot weld for, for example, a rivet, which was filtered during dataset generation. This
might also explain various other asymmetrical samples visualized throughout the report.
Nevertheless, ED took the opportunity to reuse a joining cluster of CR(1237) to stitch
the components back together.

• Sample UoCR(266) had four highly similar joining scenarios. The CRs exhibited
minimal differences, as indicated by the orange circles on the left-hand, undensified
side. The high similarity originated from components with newer versions used in more
recent car lines. Components may undergo non-joining-related changes, promoting the
reuse of previously designed joining elements. ED added the middle spot weld to three
other CRs and, as a result, all CRs had 13 spot welds.

• Sample UoCR(292) had six varying joining scenarios. Here, CR(4685) was similar to
CR(5067) of sample UoCR266. The local scope of preprocessing prevented these
overlaps being found. ED processed CRs on their location in the final product, which
may in this case be the left and right sides of the product. The six CRs aligned vertically
as an exploded view of all intersections of CRs. This sample visualizes the complexity
of results for SA. Joining scenarios shared clusters in varying components, sizes, and
distributions. ED added four joining locations in total, as indicated by the orange circles
on the right-hand side.

Similar to the SA model SA2, this discussion excludes the data samples of model ED2 that
considered the predicted joining elements. The analysis of these samples would not bring any
new insights. Moreover, the results were incomplete due to the fewer number of spot welds for
each joining scenario.

Now that individual data samples have been discussed, some generic remarks should be
made. The execution of ED was not frequent. The large 2D dataset with 4634 sample CRs had
18 overlapping combinations to densify. Furthermore, the purpose of ED is to set up joining
elements for modularization, which promotes the sharing of joining clusters. The results
demonstrated this in the number of joining locations nl increasing by eight and 41 for ED1
and ED2, respectively. These numbers could increase as individual product variants may have
CRs with more joining elements. However, it also requires enough space for adding joining
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Fig. 4.31: Analysis of element densification results for the 2D dataset.
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elements. Furthermore, the percent commonality index %CI l increased as product variants
shared the joining clusters multiple times. This effect increased %CI l by 5.0% and 1.1% for
ED1 and ED2, respectively.

Nevertheless, the low frequency of the algorithm’s execution indicated stringent boundary
conditions. The execution frequency might become even lower after implementing the
assembly complexity trade-off. Furthermore, the IoCRs are relatively small surface areas that
bring joining scenarios together. A solution might be to implement a domain scope. Changing
scope would enable the integration of more CRs into the IoCR. However, this scope may lead
to a limited increase in commonality. This theoretical limitation is due to the IoCR. The
intersections split CRs, and hence, the unique shareable CRs remain small.

Another solution for increasing the algorithm’s effectiveness is to implement a
substituting task. Currently, geometric boundaries limit the addition of joining elements.
However, the mutual distances between joining elements also require consideration. For
example, two joining elements might be positioned in the middle of a small CR. A third
joining element would only fit after the two others move to make space. The addition of
joining elements would not make it possible to cope with this situation. However, substitution
would remove the two joining elements and replace them with three from a different joining
scenario.

Furthermore, ED seemed forgiving on forgotten joining elements. The filtering on spot
welds induced a missing joining location in UoCR(126). The algorithm interpreted this as a
chance to densify. This may aid designers in creating robust joining modules during the
generation of multiple product variants with slightly changing requirements. Moreover,
UoCR(266) exhibited the unintended capability of the algorithm in design reuse. Updates of
versions or new component combinations using the same CR may inherit designed joining
elements.

Interestingly, this RBR algorithm picks and places available joining elements from the
database on new joining scenarios. The method is called algorithmic fitting in the framework
in Fig. 3.8. However, this methodology would require a tailored selection procedure for joining
elements to be picked and placed. Sample UoCR(291) indicated that large CRs received all
joining elements; see CR(4685). A consequence of high product variety may be new widely
overpopulated joining scenarios. The prediction of joining features and the number of joining
locations as SML approaches may aid this system.

Evaluation
Similar to SA, this evaluation subsection does not include a table as those for the prediction
methodologies did. The models differ in terms of dataset input. Hence, the reflection is
presented in writing and employs the validation criteria mentioned at the beginning of this
chapter.

• The performance was unsatisfying. The execution frequency was too low due to the
intersections of CRs. Furthermore, the performance was difficult to validate. The
unexpected large dependency on the dataset indicated that the methodology required
more testing and validation after modularization.
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• Additionally, the structural performance was not greatly impacted due to the few joining
elements that were added.

• Besides, ED itself is a quick algorithm. Thus, it was relatively straightforward to add
joining elements.

• However, the data preparation was computationally and developmentally costly. It was
essential to determine all CRs between all relevant components for overall product
variants. This cost increases when implementations are considered in 3D space.
Moreover, including a trade-off that calculates assembly complexity might increase the
running time, developmental effort, and computational cost as well.

• Consequently, the applicability in industry is debatable. Regardless, during densification,
the algorithm worked as intended.

ED identified and applied joining elements on joining scenarios to increase the
commonalization of joints. The algorithm required SA to clean the variability in joining
locations. However, the algorithm did not increase commonality significantly. The
geometrical constraint of the IoCR prevented it. Nevertheless, with a few adaptations, ED
seems to be an approach that could work for algorithmic fitting. It could pick and place
joining elements from databases into a new joining scenario.

The previous sections validate various methodologies. Although, all evaluations remained
within the scope of the experiment. The following sections summarizes the results and
compares them with the state-of-the-art methodologies.

4.8 Assessment of the methodologies

This section summarizes the results of this validation chapter. For each methodology, an
evaluation of various models has been presented. However, these evaluations now need to be
placed in perspective. Hence, this section addresses how the methodologies relate to the use
case. It also discusses the framework. In doing so, it summarizes the results of the chapter.
First, Table 4.24 lists the validated methodologies according to the criteria in the literature
overview (Section 2.4). The list at the end of this section summarizes the assessment of the
validated methodologies.

The framework presented in Chapter 3 distinguished several design problems in joining
element design. For each problem, the framework evaluated various AI fields to support
automated joining element design (Section 3.2). Using these AI fields and research gaps
(identified in Chapter 2), it presented novel AI methodologies for automating joining element
design (Section 3.3).

This chapter has validated the methodologies for four design problems (Fig. 4.1). The
main goal has been to reduce time-consumption and increase the quality of designs. The
framework identified SML as an underused technique for achieving these goals. Additionally,
SML may rectify current limitations, such as the considerations of successful designs,
products as a whole, and other product variants.

After the data analysis (Appendix A.2), the first methodology used decision trees to
predict joining technologies (Section 4.1). The best model achieved a satisfactory
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Methodology CL AI DE DI O S G H CO AD 3D K
Joining technology JT;JP SML N I 3 F G 4 2 4 Y Y
prediction
Algorithmic fitting JL S&O N D 2 D I 3 3 2 Y Y
Grid-based drawing JL SML N I 3 F G 3 4 3 Y Y
Spatial aggregation PP S&O Y D 2 F I 2 2 2 Y N
Element densification PF RBR Y D 2 F I 2 2 2 Y N

Table 4.24: Assessment overview of novel validated methodologies. Column abbreviations: reference (R), class
(CL), main AI-field (AI), deterministic (DET), deductive / inductive (DI), optimality (O), scope (S), genericity (G),
holicity (H), computational cost (CO), automation degree (AD), geometry (3D), and knowledge-based (K). Section
2.4 explains the properties and values in detail.

performance, which confirmed that SML can be employed as a recommender system as an
alternative to multidisciplinary optimization methodologies. Moreover, the random forest
model required a few features for predicting joining technologies. However, all decision trees
required heavy simplification of the data. Hence, their application would make more sense in
earlier product design phases. Detailed optimization methodologies enable higher-quality
predictions in later phases.

The next validated design problem was joining location prediction (Section 3.2.2). The
framework identified various approaches for using AI, of which this chapter has validated two,
namely algorithmic fitting (Sections 4.2 and 4.3) and grid-based drawing (Sections 4.4 and
4.5). Algorithmic fitting used an evolutionary S&O approach to distribute joining locations.

Section 4.3) validated randomized distribution, which optimized spot weld locations
considering edge and mutual distances. The algorithm is lightweight and straightforward,
making it useful in early design phases. However, the results were debatable. Most predictions
seemed meaningful; for example, the current implementation had the best predictions for
small and long CRs, which required spot welds in a straight line. Consequently, it did not
necessarily improve the benchmark of RBR methodologies.

Additionally, algorithmic fitting requires a prediction method for the number of joining
locations to distribute. The prediction of the number of spot welds (Section 4.2) used decision
trees as an SML technique. A random forest method required all features to classify the
numbers; however, the data lacked detailed geometric considerations, thus limiting the
performance. Combining the prediction of the number and distribution of spot weld locations
stacked the uncertainties of both methodologies, creating an unsatisfactory algorithmic fitting
approach. Additionally, the methodologies considered one joining technology, requiring high
developmental effort for generalization. This approach requires more research to overcome the
benchmark joining location prediction methodologies. In short, algorithmic fitting is a simple
approach, but its results lack structural performance and knowledge-based considerations.

Grid-based drawing uses SML to exploit patterns in successfully marketed designs. It can
reuse joining designs but with different prediction tasks. Section 4.4 presented the
implementation of image segmentation as a technique for classifying spot weld locations.
Furthermore, it validated a probability mapping technique as a regression task. Both of the
SML implementations could predict joining locations meaningfully. Classification provided
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more robust and accurate results, probably due to an increased understanding of spatial
dependencies. However, these models only considered geometry.

Therefore, the integration of nongeometric data in a computer vision-based classification
model was validated (Section 4.5). The branding technique was used to implement DR and
clustering to create labels of nongeometric data. However, the models did not recognize the
additional information of the branded labels. Hence, the geometry-only classification model
was the most promising. Regardless, this methodology is complex and has many variables. For
example, the product variety in the dataset caused problems with data leakage. The advantage
of a large dataset due to variety was negatively affected by its ambiguity and similarities. As a
result, much research is still required to overcome the variance and scaling problems.

Besides prediction, this chapter has validated two novel commonalization methodologies
of joining locations (Section 4.6) and joints (Section 4.7). They aimed to cope with the
negative effects of product variety through increasing commonality in joining element design.
Additionally, they prepared joining element designs for modularization.

First, SA aimed to reduce the geometric variability of joining location predictions.
Additionally, it determined shareable joining locations between product variants. SA used the
unsupervised learning technique K-means to cluster spot weld locations on overlapping CRs.
This methodology led to promising results. It was relatively quick and effective at solving
both tasks. However, this highly depends on the size of the dataset. Thus, the algorithm must
be used on strategic moments during product development.

Second, ED employed RBR to determine shareable joining elements. This enabled the
reduction of the variety of joints. The methodology added joining elements to shared
overlapping CRs between variants, which it did quickly and effectively. However, the
overlapping CRs created a constraint on the algorithm’s execution. These boundary conditions
occurred rarely, making it difficult to evaluate the performance and harvest its benefits.
Additionally, the dataset must allow for such a methodology to work. However, an unexpected
result was found, namely that ED can lend itself to a rule-based prediction methodology.
Theoretically, it can reuse joining elements by picking and placing them into new joining
scenarios.

To summarize the aforementioned assessment, the lists in Appendix A.7 concludes the
validation of the methodologies with their pros and cons. To conclude this validation chapter,
the framework identified promising AI fields for automated joining element design.
Additionally, it proposed novel methodologies using these fields. This chapter has validated
several methodologies, several of which had promising results. After additional research and
validation, they may be found to be alternatives to benchmark approaches. They addressed the
main problems in joining element design, namely time-consumption and suboptimal results,
for specific use cases. For example, they reduce the time required by either optimizing the
prediction speed with fast algorithms (e.g., randomized distribution) or by reducing the
number of design iterations. Additionally, commonalization methodologies can determine
shareable joining elements, automating the modular design necessities.

After summarizing the assessment of validated methodologies, the next chapter concludes
the dissertation study, provides an overview of results, and presents an outlook for further
research.



Chapter 5

Conclusion and outlook

Joining element design in the manufacturing industry is a complex and multi-disciplinary field
[15, 116]. Today, customer demands are diversifying and companies must cope with the trend
of increasing product variety [6]. As a result, the sheer number of joining elements in one
product variant and the relationships between them are causing the complexity of their design
to surpass human capabilities [6, 31, 59]. This creates the need for joining element design to be
automated, which will accelerate development processes, reduce unnecessary design iterations,
and optimize design quality. Automation can relieve designers of cumbersome and repetitive
tasks, freeing them to concentrate on more creative and holistic problems [101].

This chapter has five sections. Section 5.1 answers the research questions regarding how to
implement AI for designing joining elements while considering product variety. Next, Section
5.2 addresses the results that provide support for these answers. Then, Section 5.3 lists the
contributions of this thesis. Furthermore, Section 5.4 provides recommendations on potential
future research directions. Lastly, Section 5.5 presents a closing summary on this dissertation
study.

5.1 Research questions and objectives

This section discusses the research questions and objectives of this dissertation. It relates the
meaning and implications of the results to each question. This section starts with the
subquestions, before answering the central research question. The first subquestion was as
follows:

How are products developed and how does this impact joining element design?
Product development is a continuous endeavor [11]. Companies already begin the process

of creating new and updated versions of products when they are developing and producing
their predecessors. Moreover, companies that manufacture many different variants of the same
product may have multiple parallel development processes [13]. To cope with the tremendous
effort and complexity in development required to offer a high variety of products, companies
may develop variants sequentially [135]. Their development starts with a few base variants,
after which each added variant emerges from small additional modifications [58]. Hence, the

237
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continual development of new products combined with the sequential design of product
variants create a highly complex development. Companies can outsource tasks to optimize
their internal processes [8]. Outsourcing enables them to focus on their core activities, through
which they can add the most value to their products [8].

As new product variants are created sequentially and continuously, so too are the designs
of their joining elements. Joining elements depend on the components they join; hence, they
depend on the selected components in each product variant. For example, an interchanging
component between two product variants might require a change of the joining technologies
that would otherwise join the affected components.

Moreover, joining element design plays roles in the design, engineering, and
manufacturing phases of development [116]. They are multidisciplinary tasks with numerous
and varied stakeholders. Consequently, creating quality joining element designs becomes both
difficult and complex [454], especially for companies with high product variety.

Historically, joining element design was a manual task on 2D drawings. Today, highly
sophisticated, powerful 3D CAD software supports the creation of benchmark designs;
however, designers still use workflows based on 2D methodologies [26]. They work with
traditional experience and trial-and-error approaches that are prone to causing unnecessary
design iterations and costly rework [18]. There are a (limited) number of solutions available
for automating the design of joining elements. However, these solutions do not consider the
requirements for designing products with high variety. As a result, major problems exist in
joining element design concerning both the time-consuming nature of the design process and
the resulting quality of designs [1].

• Time-consumption: The current design of joining elements is unnecessarily
time-consuming. A major reason is the lack of automation in their design. Designing
joining elements manually may entail highly cumbersome and repetitive work.
Additionally, joining element designs require validation for every product variant
regarding, for example, their manufacturability. These validations becomes highly
complex for products with high variety. Consequently, faulty designs will require
rework, implying an additional flow through the design process.

• Suboptimal solutions: Joining element design is multidisciplinary and becomes more
difficult due to new and changing customer demands, such as higher performance
requirements and new technological innovations. These circumstances constrain
designers from finding global optima. Furthermore, the solution space becomes too
large to find the best possible designs. Moreover, as these tasks can be outsourced,
designers who may not have insight into the product as a whole will experience even
more difficulty in creating quality designs.

After discussing how products are developed and how it impacted joining element design,
the second subquestion was as follows:

How can joining element design be automated?
Today, several tools and methodologies support joining element design. Examples of such

methodologies include multidisciplinary decision-making for selecting the best joining
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technology and topology optimization for determining joining locations. However, these
state-of-the-art methodologies do not consider previous successful designs nor the designs of
other product variants. The methodologies treat joining elements as individual design
problems and tend to neglect viewing joints from the perspective of the products as a whole.
Therefore, their results are joining designs that are optimized for individual product variants.
However, these designs may be not optimal when considering the entire product. The
collection of all joining element designs will become unnecessarily diverse and complex over
time. This variety may become a cause for delays, quality issues, and costly rework
throughout product development [6]. The consideration of other successful designs, such as
by using a knowledge-base, would enable the generation of more complete designs that could
potentially reduce the aforementioned disadvantages of variety.

To tackle these challenges from the state of the art in automating joining element design,
this study adopted a broad perspective on AI. Currently, there are various popular AI fields
in the manufacturing industry [101], categorized by RBR, CBR, S&O, and ML. Organizing
the state-of-the-art methodologies indicated that joining element design lacks the use of ML.
Saliently, ML exploits historical data to predict new solutions. It can find patterns and apply
them to solve unseen problems [275]. Moreover, ML considers a whole large dataset at once.
Hence, it may automatically have a more holistic view of the product compared with current
methodologies. These properties solve the need to consider both successful designs and holistic
considerations in joining element design.

To simplify the implementation of AI, distinguishing different aspects of joining element
design is of great help. Each joining element has information about its technology, geometry,
and parameters. The joining technology describes the type of manufacturing process, such as
clinching, riveting, or spot welding. The joining geometry represents the shape and location,
such as a point for setting a spot weld or a line for an adhesive bond. Lastly, the joining
parameters entail the necessary information for manufacturing, including the diameter of a
clinching point or the type of glue for adhesive bonding. Consequently, different AI
techniques suit the automation of different joining aspects. The applicability of each AI
technique depends on the availability, structure, and formatting of the data.

SML, as an AI technique, can handle the task of classifying joining technology, joining
parameters, and the prediction of the number of joining locations. The methods validated in this
study include the use of decision trees and NNs. Their implementations can remain relatively
straightforward and simple. For example, it might only need a few key features to predict the
joining technology with a sufficient quality for early design phases. Moreover, these approaches
may theoretically also predict the joining parameters as their design tasks are quite similar.

However, automating the design of joining locations, also referred to as joining location
prediction, is the most difficult task compared with designing the other joining aspects. It
requires the consideration of both geometric and nongeometric data for generating coherent
designs, making this a multimodal prediction task. MMML requires much effort to implement
successfully, even with current technologies. Therefore, this dissertation has presented three
approaches with different levels of cognitive automation to predict joining locations.
Cognitive automation refers to the number and complexity of tasks that the approaches take
over from designers. The core of these approaches is the prediction of geometrical features.
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The inclusion of nongeometric data is optional for potentially increasing the quality of their
predictions.

• Algorithmic fitting: This approach aims to position a given number and size of joining
elements systematically on CRs. First, it must predict one or several features, such as
the number or length of joining locations. This prediction can be classified by an SML
model. Then, the algorithm can distribute joining locations according to the predicted
number. Furthermore, the algorithm may implement a pick-and-place approach for fitting
already designed joining elements from a database.

This study implemented an evolutionary optimization algorithm that distributes the
locations by equalizing their mutual and edge distances. The algorithm produced
promising results even for a randomized implementation. However, the validation also
revealed that the prediction performance fell off rapidly for nontrivial design problems
with high solution spaces, such as CRs with large surface areas.

• Grid-based drawing: Due to advances in computer vision techniques, ML models can
understand and transform imagery. These models can predict the regions that represent
joining locations in grid-like (Euclidean) structures, such as images or voxel grids.
Practically, these models draw joining locations on CRs, either in 2D (pixels) or 3D
space (voxels). In particular, NNs with architectures that can consider spatial coherence
are applicable for such tasks, including CNNs and GANs. These NNs can perform both
a classification or regression task. However, the classification implementations, through
image segmentation techniques for example, seemed more robust and promising than
the regression approaches. They were able to reconstruct geometry more consistently
from the input samples. As a result, they seemed to have a better understanding of the
relationship between geometry and joining locations, and to that extent, of parts and
joining elements.

Considering nongeometric data in Euclidean supervised models requires additional
processes. ML models require consistent, discretized data structures that are not
provided by the multimodality of geometric and nongeometric data. However, an
MMML approach, through early fusion for example, can integrate nongeometric data
with geometry. The study explored using an approach also known as branding, which
adds labels to images. Each label may represent a cluster of nongeometric data that, for
example, describes reinforcement parts or types of material. The implementations
included various expressions of nongeometric data. However, unfortunately, models did
not seem to pick up on the additional labeled information, partly due to large DRs
causing a loss of information and a suboptimal dataset for MMML.

• Inexhaustible simulation: This is the only ML technique that could theoretically surpass
human performance in joining element design. In a simulated environment, an algorithm
can try several different joining location distributions inexhaustively. Each distribution is
evaluated by, for example, several FEAs on one or more performance metrics. Over many
iterations, the reinforcement learning algorithm learns the impact of joining locations in
a distribution by analyzing the resulting performances of joints.
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To summarize the answer to this research question, a variety of AI techniques can predict
joining elements. Specifically, ML is a promising upcoming field in the manufacturing
industry. It possesses the necessary properties to consider successful designs and other
product variants. However, there is no one-whole methodology. Dividing joining element
prediction into three subtasks reduces the complexity of automation. These subtasks consider
the joining technology, location, and parameter prediction. Here, joining location prediction is
the most challenging task due to geometric considerations. As a result, this study presented
three approaches that tackle the challenge on different levels of machine cognition. These
levels align with the resources, capabilities, and maturity of the product design phase.

After discussing how the design of joining elements can be automated, the third and final
subquestion was as follows:

How should product variety be considered in joining element design?
Many strategies exist for coping with product variety, among which modular product

design is highly popular [79]. It entails approaches such as standardizing interfaces and
sharing components between multiple product variants. Doing so can reduce the negative
effects of product variety inside companies without limiting the ability to meet customer
demands [6]. Modular design approaches, such as modularization and commonalization, are
particularly suitable for joining element design. Commonalization aims to increase the sharing
of the same parts and properties between multiple product variants, whereas modularization
aims to dissect products into large integrated interchangeable chunks called modules.

Many regard commonalization as a general strategy for product platforms. However, the
literature lacks methodologies that purposefully include it in design processes. Actively
considering commonalization during design can reduce variety in designs [85] as well as the
need for design changes in later phases. For example, as joining element design considers
modularity, the changes required by modular design methodologies might be fewer in number.
Besides parts, commonalization can also be implemented on properties and joining elements,
such as by reducing the variety in materials, suppliers, or technologies. Increasing the shared
properties of parts and joining elements between product variants makes it easier to cope with
product variety.

Modularization has received much interest in the scientific world. Most methodologies
aim to define either strategic modules for many product variants or technical modules with
highly interconnected components [75]. However, no modularization methodologies
specifically address joining element design. They only optimize for assembly
operation-related criteria, such as parts handling and insertion. This lack of research has
resulted in unnecessary design iterations as products will have unnecessary variety in joining
elements between their variants. Moreover, highly detailed management of joining elements
tends to affect the assembly operations of products negatively.

Furthermore, unnecessary variety in designs makes modular design more difficult. By
containing the variety in the design of new joining elements, approaches such as
commonalization and modularization become more effective. They require fewer
modifications to the original designs as each modules needs to account for less variety.
Through promoting ML approaches for designing joining elements, the probability that



242 Conclusion and outlook

predictions will follow the pattern in the dataset increases, thereby reducing the chance of
generating exotic, low-frequency design solutions. This is in contrast to optimization
methodologies that would determine the optimal individual solution for each design problem.
However, variety containment during design is also possible with methodologies less
sophisticated than ML. Even setting up a database to pick and reuse designs from other
product variants would enable the rapid prediction of joining elements. In short, automated
joining element design can consider product variety by implementing ML.

Joining element designs require a certain variety to properly join each product variant.
Joining designs are specific to a local use case, hence, product variants may consist of many
differentiating designs. However, the great variety in designs of joining elements rapidly invoke
variety problems. Furthermore, the variety requires joining element designs diverge for both
larger products and an increasing number of product variants. For example, an ultimate remedy
is to commonalize such that all joints are designed with one overall technology. However, these
degrees of commonalization are often not feasible. There is a trade-off between optimal joint
design within each product variant and between all other variants.

This trade-off requires a convergence of designs, i.e., reducing the variety of designs to a
few key design which are shareable. Modular product design – and within its extent
commonalization and modularization – enables this. Modular product design enables the
creation of interchangeable modules to fulfill each functional requirement demanded by
customers [206]. Modularization reduces the level of detail of products and with it the variety
in designs. The challenge that the literature has neglected is considering joining elements as
objects when defining modules.

To enable modular product design to fully integrate joining elements, this dissertation
defined and considered joining elements as individual components. This consideration enables
their standardization and reuse over multiple product variants. It also enables joining elements
to be picked and placed on modules’ interfaces. Furthermore, this definition enables the
modularization of joining elements as objects and not as optimization criteria. Modularization
methodologies should treat joining elements as components and can create integrated modules
of all objects. Thus, a reusable group of joining elements is a joining module, similar to a
reusable group of parts. Joining modules create new boundary conditions in part design as the
interfaces between parts require standardization. Standardization enables the
interchangeability of joining modules. Different joining modules could join the same
combination of parts. Hence, the standardization of interfaces is a requirement that enables the
consideration of product variety in joining element design.

Considering joining elements as individual components also enables algorithms to
commonalize them. Similar to predicting each joining aspect, they may commonalize each
joining aspect individually. For example, commonalizing only joining technologies can reduce
the number of different robots, tasks, and operations in manufacturing. As joining elements do
not directly derive from customer demands, changes to their design are simpler than for
components as their main consideration is the performance of joints. However,
commonalizing joining elements requires them to remain manufacturable. Additionally, they
need to at least have the same structural performance. Hence, every change requires an
extensive validation of designs for all affected product variants.
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The answers to the three aforementioned subquestions enables to answer the main
research question, which was as follows:

How can joining element design be automated for high-variety products?
Optimal joining element designs consider the entire product life cycle over all products.

Their multidisciplinary and holistic design requirements are highly diverse and may change
throughout product development. Furthermore, optimal designs are relative to the environment
of the application. They may differ for each company, use case, and moment in time. Hence,
they require balancing over many, often uncertain and dynamic, requirements.

Moreover, these requirements will increase in number and difficulty, yet some, such as the
relationship of product variety and joining elements, have received little research attention.
However, they are necessary for designing successful products. Therefore, answering this
research question involved two aspects, namely the intelligent automation of joining elements
and their modular design.

• The generation of joining elements must consider other designs. The use of AI,
particularly ML, enables knowledge of successful designs to be re-instantiated and the
design process to be accelerated. It requires a database of designs to find patterns and
then to apply them to new problems. However, ML and AI techniques generally require
much more research in order to achieve human design performance. The skills of
human designers remain superior to automation, especially for joining element design
problems with a large solution space. Hence, initially achieving more optimal designs
would require a combination of human creativity and expertise with machine support.
This combination enables designers to concentrate on the most difficult problems, of
which automation can solve the most cumbersome and repetitive.

• Modular product design keeps joining elements manageable and transparent. It creates
an environment where both designers and algorithms advance toward optimal joining
data for high-variety products. Increasing the number of joining elements will cause
their designs to diverge. Therefore, it is not sufficient to consider successful products
during prediction; rather, products must undergo an active strategy to create modular
designs. Moreover, ML approaches require databases of relevant samples, which may
not be available during new product development. As a result, modularization and
commonalization approaches must clean up the created variety; that is, they need to
reduce the variety within any joining element design, regardless of whether it concerns
the joining technology, locations, or parameters. Moreover, through substituting joining
elements in CRs, the variety in groups of joining elements (i.e., potential joining
modules) can be reduced. Enabling the reuse of joints over multiple product variants. In
this sense, commonalization enables modularization to determine the necessary
modules for coping with the variety in joining element designs.

This dissertation has presented a framework called VICTOR that integrates the design
automation of joining elements with their modular design. The framework organizes
automated joining element design into various design problems, including the prediction and
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commonalization of each joining aspect. For example, a function may concern joining
location prediction or the commonalization of joining technologies.

The design problems were determined by structuring the literature. In doing so, this study
considered the relevant studies on state-of-the-art joining element design, modular design, and
AI. Furthermore, the design problems were aligned with the steps of the joining element design
process. Hence, each design problem can be performed using various methodologies, between
which the techniques and methods differ. This study’s evaluation of the methodologies for a
given design problem relied on recommendations, experimental results, and discussions with
experts.

The framework captures the design problems in the structure block. This block is built upon
a prediction block and a modular design block. These blocks describe the fundamental ideas for
enabling automated joining element design. They define the boundary conditions for the design
problems. These blocks also act as divergent and convergent forces on designs. Prediction
approaches have the freedom to make designs, whereas modular design methodologies collect
results and bring them to a common sustainable denominator.

Moreover, the sequence block is placed on top of the structure block. This block describes
the relations of the design problems. It presents sequences for integrating automated joining
element design into the user journey of designers. The sequence block aids not only designers
but also researchers through guiding them through the design problems, as not all problems can
be solved sequentially. For example, not every problem is relevant at a given moment in time.
As a result, the framework’s nature helps to select the relevant AI fields and methodologies for
each design problem.

The framework structures the task of automated joining element design by dividing it into
seven design problems, which are not independent. However, splitting them enables
application-specific solutions to be generated. Additionally, the framework enables
experimentation with new technologies to achieve a higher degree of automation.

Using the framework, this study evaluated popular AI fields in manufacturing within each
of the seven design problems. It discussed the advantages and disadvantages of methodologies
within these fields and assessed their applicability for automated joining element design.
Hence, the framework enables designers and researchers to select the most applicable
methodologies for their design problems.

For assessing the applicability for AI, the framework presents new methodologies. These
methodologies explore the use of new AI techniques. However, they also aim to fill current
research gaps. These new methodologies include joining technology, location prediction, and
the commonalization of joining aspects. The prediction of joining locations is of particular
interest as it is a highly difficult task, which is due to the many unresolved issues in state-
of-the-art methodologies. These problems include the consideration of successful designs, fast
predictions, and use of state-of-the-art AI techniques. Furthermore, this study found no modular
design methodologies explicitly for joining elements.

Now that this study’s research questions have been answered directly, the following section
moves on to listing the results of the newly proposed methodologies.
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5.2 Overview of the results

The proposed methodologies in VICTOR originated through the identification of new AI
fields in the framework. This section discusses how they meet expectations and fit the theory.
The following subsections follow the same order as those in the validation chapter, which is
indicated in the following list. The last subsections address considerations for generalizing the
methodologies as well as the limitations of this dissertation study.

• Joining technology prediction – using an SML approach

• Prediction of the number of spot welds (algorithmic fitting approach) – prediction of the
number of joining locations using SML

• Randomized joining location distribution (algorithmic fitting approach) – prediction of
joining locations using an optimization approach

• Voxel-based joining location prediction (grid-based approach) – prediction of joining
locations using SML while only considering geometric information

• MMML (grid-based approach) – prediction of joining locations using SML considering
both geometrical information and PMI

• SA – commonalization of joining locations using UML

• ED – commonalization of joints using a RBR approach

• Generalization – generic remarks on the validated models

Joining technology prediction
The goal of this implementation was to determine whether nongeometric data contain sufficient
information that can be employed to predict the joining technology using SML. A random
forest classifier with the nine most correlated features was able to predict the joining technology
with an F1-score of 94.8%. It used conventional features such as thickness and surface area,
but also application-specific nomenclature such as “roof structure” and “above.”

Its performance was very high, although the model used simplifications to cope with the
many subtechnologies and combinations of technologies in joints. Such simplifications may
grow problematic as joining technologies are and will become increasingly more specific and
varied in the future. For example, designers are increasingly using combinations of
technologies to improve joining quality. Furthermore, the growing variety of the joining
technologies themselves is reducing the number of data samples for each technology. This
reduction in samples is increasing the difficulty of training models and, as a result, datasets
must rely on simplifications even more heavily. This effect will limit the potential
performance of predicting joining technologies. Consequently, it is vital to consider both the
application during feature engineering and to keep the models up to date in a dynamic
development environment.

Nevertheless, this validation revealed that SML is a proper alternative to multidisciplinary
optimization methodologies. Joining technology prediction can aid designers during early
phases of product development. Fast predictions accelerate the design process and may give
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designers a head start. Using this information, designers and automation methodologies may
select the final technology (combination) that is most suitable for the design problem.

Prediction of the number of joining locations
Algorithmic fitting requires the prediction of joining features, such as the number of joining
locations, before distributing them over a CR. This study’s validation of this methodology
aimed to determine whether geometric features, such as the number of spot welds in a joint, are
predictable from nongeometric data using SML. In other words, it aimed to determine whether
correlations exist between nongeometric and geometric data and, if so, whether models can
exploit them.

An XGBoost classifier using all nongeometric data obtained the best results in predicting
the number of spot welds with an F1-score of 80.0% and an average difference of -0.46. Feature
engineering did not improve the performances of the prediction models. The results indicated
that the number of joining locations is difficult to predict from nongeometric data only. For
example, the voxel-based spot weld location classifier had a lower difference in the number of
predicted spot welds of –0.30.

However, a direct performance comparison between the decision tree and voxel-based
model was not possible, as the models had significantly different boundary conditions.
However, the results indicated the relative ease of a geometric-based model for achieving this
performance. The number of spot welds also depended on other possible joining technologies
in the joining scenario. For example, some joints with components that have similar properties
might have additional adhesive bonding as well as spot welding. This would create a similar
challenge to that in joining technology prediction, where the number and variations of
technologies are also difficult to represent in ML models.

Furthermore, the number of joining elements is correlated with the loads, forces, and other
design requirements. For example, increasing numbers of elements tend to correlate with
increasing loads as joints require increasingly more strength to hold structures. These complex
circumstances limit the use of such approaches to early product design phases, where they add
value due to their simplicity and rapid design generation. Consequently, this allows one to
combine such models with lightweight algorithmic fitting approaches to predict joining
locations.

Hence, decision trees are unsuitable for predicting the number of spot welds based on
nongeometric data alone. The models were relatively complex compared with those in joining
technology prediction. These results enabled this study to argue that such tasks require
prediction models that consider geometry. In short, algorithmic fitting is a simple approach,
and its results lack structural performance and knowledge-based considerations.

Randomized joining location distribution
The number of spot welds are an input. Algorithmic fitting uses an evolutionary algorithm
to create joining locations. The aim of this validation experiment was to determine whether
a relatively straightforward optimization algorithm can create meaningful joining locations.
Randomized distribution can significantly accelerate the initial design of joining elements, but
it requires further analysis and research into the objective function.
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An implemented evolutionary algorithm aimed to randomly optimize the distance of spot
weld locations to the edge as well as to one another. The results revealed an accurateness of
87%, similarity of 25%, and correctness of 17%. The algorithm used 2D samples, which tend
to contain less complex problems than 3D samples. For example, flat (2D) CRs for spot
welding often imply a strip where the algorithm can distribute the elements along a centerline.
For such CRs, it achieved particularly good results; however, for CRs with a higher solution
space, such as large square surfaces, it experienced great difficulty. Nevertheless, a blunt
algorithm implementing random distribution positioned 87% of the joining locations on
meaningful locations within 40mm of their target coordinate.

This methodology creates meaningful predictions, and it is fast and straightforward;
however, these are also its limitations. Thus, it is not suitable for any type of CR. Additionally,
inconsistencies in the results led to it not improving the benchmark RBR methodologies.
Consequently, randomized distribution might be useful in early design phases, but only after
additional research and development efforts.

Voxel-based joining location prediction
This approach applies image segmentation, a 2D computer-vision technique, to 3D voxels
with the aim of drawing joining locations on a voxel grid. This methodology enables patterns
in data to be exploited to predict on unseen data samples. It implements a large CNN with an
EncDec architecture to predict joining locations. The main aim of the validation was to
determine which SML task (i.e., classification or regression) best suits the use case of spot
welds in the automotive industry.

The results of using this SML approach for predicting joining locations were satisfying.
The experimental results indicated that both regression and classification tasks both predict
spot weld locations by only considering voxel-based geometry. However, the classification
approach exhibited a more promising performance than regression as it explicitly incorporated
geometric reconstruction. This behavior led to more robust and feasible predictions, whereas
the regression approach often output noise in the predictions. Classification resulted in an F1-
score of 40%, accurateness of 63%, similarity of 47%, and correctness of 23% on the test set.
Notably, these scores cannot be directly compared with the results of randomized distribution
as both the dataset and data formatting were significantly different.

The model was able to predict complicated joining location distributions as long as the
training data covered them. All of the implemented voxel-based models suffered from variance
problems, implying that the dataset did not allow them to generalize well. This is partly a
consequence of product variety. This study assumed that product variety was an enabler of SML
by providing large datasets. However, it also had a significant drawback due to high similarities
between product variants and, as a result, also between parts and joints. Part variants with only
minor deviations create similar data samples, which makes approaches prone to data leakage,
as was observed in the exploratory concepts. The models exhibited falsely good performance as
they were evaluated on the same samples that they were trained on. Hence, high product variety
requires filtering of similar data samples. The careful cleaning and preparation of the dataset
are also crucial. Precise effort is required to balance the size of the dataset and the additional
information brought by every data sample.
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These models were difficult to train. The results originated from empirically determined
sets of hyperparameters, architectures, and loss functions. The high computational costs
limited the ability to experiment and to optimize the models. Nevertheless, the
segmentation-based SML approach could predict advanced patterns and produced robust
results. The models demonstrated NNs’ promising ability to predict engineering data. They
exhibited an understanding of geometry; for example, joining locations only appeared on CRs.

Nevertheless, the voxel-based methodology worked for both regression and classification.
Moreover, SML with an EncDec architecture was able to predict joining locations while
exploiting patterns in the data. The results indicated that joining location designs reoccur for
similar data samples. This indicates that this methodology fills the research gap in joining
element design by considering the knowledge of successfully marketed products.

Multimodal machine learning
The aforementioned methodology only utilized geometry to predict joining locations. It
neglected data, such as PMI. By contrast, MMML integrates geometric and nongeometric
data, supplying models with more information. The inclusion of nongeometric data
theoretically enables models to increase their prediction performance. The implemented
multimodal models were evolved from voxel-based classification models through applying a
branding approach. Branding adds a label to data samples representing the cluster that they
belong to.

Unfortunately, the models did not lead to significant improvements. The best-performing
model employed PCA to reduce the number of nongeometric data dimensions to seven, after
which K-means clustering determined eight clusters. It achieved an F1-score of 42% and
accurateness of 65%. These performance metrics were only slightly better than those of
models that only considered geometry. As tests on the benchmark revealed that RI can explain
differences of ±2%, the branding approach did not significantly improve the models.

Although branding creates additional complexity in prediction tasks, the models did not
seem to apply the additional information to affect the joining locations. Various reasons may
exist for this lack of a performance increase, three of which are described as follows:.

• First, clusters might contain too much overlapping information, which would cause the
model to fail to distinguish the properties of each cluster. However, even when this study
reduced the features to only include weights of parts (i.e., the feature that correlates the
most with the number of joining elements), there were no significantly different results.

• Second, samples might not contain significantly different joining locations between the
branded labels. This behavior would make branding only suitable for use on matured
datasets, as then only small particularities in the labels would create different outcomes.

• Third, variables such as network architecture or the branding approach itself might cause
MMML to be unsuccessful. Thus, the integration of 3D geometry with nongeometric
data requires further research.

Hence, the geometry-only classification model was the most promising. Regardless, this
methodology is complex and has many variables. Nevertheless, the results demonstrated the
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potential for SML in engineering design. The models understood spatial dependency and were
able to create structurally meaningful joining element designs. However, further research is
required to overcome the variance and scaling problems.

Spatial aggregation
Besides the prediction of joining aspects, the validation chapter also discussed two
commonalization methodologies: (1) SA used to commonalize joining locations, which
reduces their location variability when considering multiple product variants; and (2) SA used
to determine shareable joining locations between product variants. This study validated the
methodologies on two different datasets.

The first dataset contained predictions of the voxel-based joining location approach to
determine the ability of SA to reduce the variation of predictions due, for example, to noise.
The algorithm reduced approximately 25% of the initially defined locations. The second
dataset contained ground truth values to determine SA’s ability to create joining locations over
multiple product variants. Here, the algorithm reduced approximately 50% of the locations
when considering flat contact surfaces in the database.

The results demonstrated that the commonalization of joining elements is an enabler for
modularization. Unfortunately, a consequence is that commonalization may also reduce
modularity when only subsets of elements are shared between product variants. SA can
significantly reduce effort in planning, documentation, and management by reusing the same
location.

The algorithm was quick and effective. However, the methodology also highly depended
on the dataset’s size and quality. Therefore, the algorithm must be used on strategic moments
during product development.

Element densification
This methodology commonalizes joints. ED aims to add individual joining elements to joints.
These additions enable the reuse of entire joints. The algorithm is designed for high-variety
products as it requires overlapping CRs between product variants to contain different numbers
of joining elements.

In the validation experiment in this study, ED increased the shared joining elements of the
same two datasets used in SA by 5.0% and 1.1%, respectively. These values seem relatively
small, but may equate to a large impact for designers in large products with high product
variety, such as those in the automobile industry. However, the methodology requires
modularization results to measure the effect on its ability to cope with product variety. ED
enables the creation of simpler joining modules. The commonalization of an entire joint may
potentially result in one joining module being reused over the affected product variants.
Additionally, the implementation only added joining elements as the substitution of joining
elements may be more effective at increasing their shareability. Substitution seems less prone
to the geometric constraints of overlapping CRs. However, this requires additional research.

ED itself was quick and effective at its task; however, the overlapping CRs created a
constraint on the algorithm’s execution. These boundary conditions occurred rarely, making it
difficult to evaluate the performance and harvest its benefits. Additionally, the dataset must



250 Conclusion and outlook

allow for such a methodology to work.
Besides the commonalization of joints, ED employed an active design reuse strategy. It

selected joining elements from databases and applied them on the CRs of new product
variants. This behavior of the methodology was unexpected as the design of the algorithm
used a modular product design philosophy. Adapting ED to perform as an algorithmic fitting
approach for predicting joining locations requires further research.

Generalization
The simplest solutions often suffice for a problem. Many design problems are complex and thus
require design iterations by default to achieve quality results. The aim of automation should be
to create new designs fast, but not necessarily to achieve a global optimum with the initial
prediction. It is the cumbersome, repetitive tasks that create most mistakes and rework. The
prediction of both the technology and number of spot welds can create a solid starting point for
designers and algorithms. Such technologies are simple to train, update, and optimize.

However, more complex ML models that exploit Euclidean data structures also have
promising results. They can distribute joining locations arbitrarily on more complex geometry
and thus lead to more creative designs. However, this ability comes at the cost of significantly
higher computational cost and effort for training the models. The computational cost and
limitations on the sizes of data samples limit the indefinite scaling of this method to include
large components.

Regardless, the predictions of the presented methodologies in this study required
validation in a real or simulated environment. The proposed performance only measured
differences with successful data. However, it did not imply that the predictions were
necessarily wrong. For example, the structural performance was difficult to measure and
required detailed analysis. FEA and evaluations by expert designers can help in assessing the
quality of these methodologies and optimizing them accordingly.

Moreover, the generalization of models to other industries and applications is more
straightforward for simple feature predicting models. The models implemented in this study
relied on data from the automobile industry, which traditionally has a high product variety and
many spot welds per product variant. However, the dataset was barely large enough for the
number of trainable parameters in NNs and the necessary information in each data sample.
Other industries might not have such a database, and hence, they would be limited by even
smaller datasets. However, such methodologies are transferable to any industry and any type
of assembly. As a result, generalization might originate from creating models that span many
industries and applications.

Limitations
This research only focused on validating whether the developed concepts are feasible. It did
not aim to determine the best AI technique or concept nor its best implementation. The aim
of validating for feasibility prevented making statements regarding the best methodology for
automating joining element design. Even for the given use case, no complete comparison nor
recommendation was possible.

Time and computational constraints also restrained this study from cherry-picking concepts
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for validation, including the creation of a viable dataset for each concept. The dataset, concept,
time, and study may lack some depth due to the experimental results.

Furthermore, many companies do not publish their internal processes and resources to
retain market advantages. Joining element design, which is typically an in-house endeavor, is
difficult to describe from an outside view. Hence, companies’ processes in joining element
design along with considerations and stakeholders can differ significantly.

Moreover, the findings were derived from resistance spot welding data from the
automobile industry. Although this is of much research interest, it is a specific use case that
contains typical designs for that industry. The findings can therefore only demonstrate that the
feasible implementations are valid for automating joining element design for this particular
use case.

In addition, product development is a creative process, and many things only become clear
after multiple design iterations. Still, this study aimed to find a generic process for representing
joining element design. Therefore, the process is not directly applicable for some companies
that must distill their needs from this dissertation.

Summarizing the overview of results section, the validation of the methodologies
demonstrated that the framework can identify methodologies and technologies for automating
joining element design. Various validated methodologies were capable of performing their
tasks. They have their use cases and fit within the design problems of the framework. The
following six criteria enabled the assessment of the proposed methodologies: performance,
speed, development effort, computational cost, structural performance, and applicability to
industry. These criteria enabled an initial evaluation. More in-depth research would need to
consider other criteria, such as sensitivity and user friendliness. Nevertheless, a vast number
of other – possibly unidentified – technologies exist. The VICTOR framework will enable
these technologies to be structured and placed into context.

The study presented a new framework and many new methodologies that support
automated joining element design. The following section succinctly lists the contributions of
this dissertation study.

5.3 Contributions

As result of this dissertation study, five papers were published in scientific conferences. The
papers covered the larger parts of this study’s methodology and validation chapters. These
papers, listed in chronological order, concerned the following:

1. The state of the art and the research gap [1];

2. The framework and the applicability of AI [2];

3. Voxel-based joining location prediction using CNNs [3];

4. Modular product design with joining elements [4];

5. 2D joining location prediction using a GAN [5].

In addition to these papers, this dissertation provides several overarching contributions that
follow from reflections on the gaps in the existing research:



252 Conclusion and outlook

• This study explored the intersection between joining element design, modular product
design, and AI. It reframed the design process by taking a different perspective on the
current practice of engineering and design. As a result, the study proposed a framework
that organizes both joining element and modular design methodologies. Moreover,
within the framework, it evaluated the properties of AI for automated joining element
design.

• This study adds to the young research area of engineering and creating process data
using ML. The literature has integrated AI into the manufacturing industry, although
only slightly in the design and engineering fields. Besides a new engineering field, little
ML and geometry research has been conducted into generative design as most
applications concern object detection, recognition, or pose estimation. Relevant
literature is even thinner in terms of data representations in 3D space.

• Engineering includes designing geometrical features in the context of
products-as-a-whole where components fulfill functions and have individual
requirements and properties. Integrating PMI with geometry through MMML scratches
a field that has until now seen the most implementation in medical domains.

• Product variety management has implications for joining elements, which experience
high complexity due to the interchangeability of components and modules. This study
has presented a modular design philosophy for joining elements and proposed
commonalization and modularization methodologies. Until now, the literature has
focused primarily on modularizing components with rudimentary modeling of assembly
and connection information. Commonalization has seen only a few approaches, even for
components.

In addition to the contributions of this study, there were many ideas that could not be
included. Hence, the following section presents an outlook for further research.

5.4 Outlook

This section lists recommendations for future research related to the automated generation of
joining elements in manufacturing industries with high product variety. This work explores the
overlap between joining element design, modular product design, and AI.

• The framework focuses on automated joining element design for high product variety.
As previously stated, many perspectives require attention during joining element design.
Therefore, this framework is by no means complete and static. Other perspectives, such
as ecology or economics, can evolve the framework further.

• The applicability evaluation of AI methods in joining element design was limited to the
main fields. However, each field has multiple methodologies, and evaluating them in
more detail may reveal new insights and identify novel applications.

• The newly proposed methodologies need to be validated in a productive environment as
well as analyzed by expert designers. Additionally, the proposed performance metrics
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describe the quality of models in a theoretical manner. It is still difficult to meaningfully
describe predicted designs using these metrics. For example, implementing prediction
models in designers’ workflows will enable the measurement of the (structural)
performance and validation of predictions with, for example, FEA.

• Further generalization and integration of such research approaches may result in fully
automated design and the manufacturing of products without human intervention. As
long as humans remain in the loop, modularization approaches must keep information
understandable, clear, and transparent. Full automation will enable individual product
variants to have more individual optimal designs. This would increase internal product
variety regardless of the perceived external variety, yet also enable products to have
higher quality and performance.

• All SML models have empirically determined hyperparameters. Without a doubt, the
results can be improved through experimenting with network architectures (e.g., UNet
[410] or GANs [331]), hyperparameter tuning and data formatting (e.g., Yolo [319]), data
representations (e.g., point clouds [455]), weights (e.g., inverse of frequency [414]), and
loss functions (e.g., dice loss [456]). It can also follow from analyses of layers in NNs
or different datasets. This also includes other tricks for containing computational cost
and increasing training speed or resolution (e.g., dropout [457]). Lastly, the benchmark
YOLO framework [319] for predicting joining locations also seems a promising concept,
as Perez-Ramirez proposed [412].

• The validation of models considers all types and shapes of joining elements and the
predicted locations of multiple joining technologies, including curves in one or multiple
models. Furthermore, research into a 2D approach that includes projections for
predicting joining locations on curved surfaces is required. Besides joining elements,
the methodologies require validation outside of the automotive industry. This would
provide insight into the generalizability of the methods as well as the transferability of
this knowledge.

• The behavior and potential of models with multimodality compared with a sole
geometry model remain unclear. The relationships between the clusters and their
influence on joining locations are also unclear. The branding concept may require
additional exploration in applicable combinations of DR with clustering methods and
feature selection. Besides branding, an implementation using multimodality might use
2D images with 3D shape descriptors or entirely different concepts that include late
fusion. Additionally, multimodality can affect joining locations positively through
implementing the latent-guided approach for GANs. Successful clustering might create
the basis for setting up domains within to create new joining locations in new,
unexplored areas of product design.

Voxel-based (3D) methodologies received much attention in this study for the sake of
evaluating the applicability of ML for joining element design. However, simpler 2D
image-based methodologies might have fewer problems regarding computational cost
as well as enable larger data samples. Relevant exploratory works by Dhameliya [451]
(multiview-based CNNs) and Gerlach [5] (GANs) require further research for
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evaluating the potential of their methodologies. Additionally, the use of depth buffers
might supply 2D methods with additional geometric information [350].

• The prototyping of the reinforcement learning approach in the case of computational cost
is not an issue. This approach would theoretically provide the best results and require a
tremendous setup in terms of the automation and validation of pre- and postprocessing
algorithms. Furthermore, The use of FEA as an adversary in every optimization loop
has a enormous computational cost. To optimize calculation times, SML models may
predict stresses and strains by, for example, using the standardized modeling of beams,
as scholars such as Issler [120] have employed.

• This study did not implement proposed methodologies such as TU and module
grouping. Similarly, the effects of the local, global, and domain scopes for CRs remain
unknown. Furthermore, the performance of the commonalization and modularization
approaches compared with benchmark modular product design requires research.
Thereto, the optimization potential in costs is unclear. For products with high variety in
particular, how to rapidly determine an optimum while also considering joining
elements remains also unclear.

• Modular design using graphs and heuristics should also be explored further. The
presented approaches are relatively simple and employ straightforward, state-of-the-art
techniques. For example, SA would also work with an EM method with appropriately
set boundary conditions. SA and ED require validation after modularization to
determine their true benefits and performance.

To conclude the dissertation, the following section presents a brief closing summary.

5.5 Closing summary

This dissertation has presented a process for automating joining element design for product
variety. Today, joining element design is time-consuming and highly practical, which results
in unnecessary rework. Therefore, this study evaluated state-of-the-art methodologies and
presented a framework. The framework first described design problems for automating the
various aspects of joining element design. Second, it organized methodologies for each design
problem. Lastly, the framework identified new AI applications for each design problem. After
evaluating AI fields, this study presented several concepts for predicting various aspects of
joining elements.

Furthermore, this study validated several concepts, including joining technology prediction
with decision trees, joining location prediction with a random optimization algorithm, and
several NN implementations. Moreover, this study explored the commonalization of joining
elements. In short, the validation experiments produced promising findings, which can be used
in the automation of joining element design in industries with high product variety. However,
further research is required to optimize and implement this study’s findings into a productive
environment.
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Appendices

The appendix hold some supplementary information for the validation of methodologies in
chapter 4. It contains the following sections:

• Section A.1: Datasets.

• Section A.2: Preliminary data analysis.

• Section A.3: Feature engineering.

• Section A.4: Geometric data preparation processes.

• Section A.5: Exemplary clustering results of product manufacturing information for
branding.

• Section A.6: Frequencies of geometry occupying voxels.

• Section A.7: The summary of the validation of the methodologies.

A.1 Datasets

The particularities of each methodology in validation requires them to have subsets of the raw
dataset. For example, to predict the number of spot welds, it needs a dataset that only contains
the appropriate joining scenarios. Fig. A.1 shows the used steps to create the datasets for each
validation. Each methodology addresses briefly deriving the dataset in their respective section
of this chapter.

A.2 Preliminary data analysis

This section briefly analyzes the non-geometric features of the data samples. Furthermore, a
uni-variate and bi-variate analysis help gain insight for decision making in later sections. The
section is based on results from work of Nguyen [323].

Wirth & Hipp [458] propose a circular 6 step process for data analysis and prediction
models: data collection, data exploration, data cleaning, model, model evaluation, and feature
engineering. Data collection focuses on gathering necessary and available information while
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Fig. A.1: The created datasets for validation of prediction methods. The variable m represents the number of joining
scenarios in the dataset.

considering project goals and challenges. Data exploration analyzes data to understand
dependencies between and distributions of variables [459]. Data cleaning and preprocessing
depend on data and its application but typically include removing outliers and noise, structural
modifications to variables, and handling of missing values. The model step considers the
selection, configuration, and transformation of prediction models. Model evaluation
determines the quality of the model using predefined and use-case-specific metrics. Lastly,
feature engineering changes data preprocessing activities or settings of the model to improve
the quality of predictions.

Non-geometric data of joining scenarios describe available information for each
component. Data exploration gives insight into relations between joining elements and
components. Especially the relation between non-geometric data and shape descriptors on one
side and the number of spot welds is of interest. It describes the scalability and considerations
models need to make during prediction. The number of spot welds would be the
straightforward evaluation of the model to determine its ability to understand performance
requirements. The work of Nguyen lays the basis for this data analysis [421]. Fig. A.2 shows
the process of data collection, exploration, and cleaning. It shows the number of data samples
m and features nf for the prediction of the number of spot welds NRSW and joining
technology us.

Feature selection removes non-relevant attributes. Clean and format nominal attributes
correct spelling and formatting issues. Nomenclature contains a free text field and creates
difficulties for many machine learning algorithms that demand fixed input sizes. Creating a
bag of words [460] splits each word of every nomenclature resulting in a dictionary for the
entire dataset. A binary vector has true values (≡ 1) where words in the nomenclature
coincide with those in the dictionary. The dictionary removes, e.g., punctuation and
non-informational words such as “and” & “or”.
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Fig. A.2: Implementation of process for data analysis and prediction model creation.

Uni-variate analysis explores a single target variable. Fig. A.3 shows the distribution of the
number of joining elements over all joining scenarios. There is no normal distribution and are
outliers in the maximum values (91 and 97). The number of joining elements nje with highest
frequencies are 4, 2 and 8 with (512, 428, and 321), respectively. The available metric features
of each component: thickness, weight, height, area, volume, density, the center of gravity, and
moments of inertia. Categorical features of each component: nomenclature, material, coating,
and submodule [31].

Fig. A.3: Frequencies of the number of joining elements on each joining scenario.
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Bi-variate analysis considers correlations between two variables. Various correlation
coefficients have been introduced for numeric correlations, most notably Pearson [440],
Spearman [461] and Kendall [450]. Pearson expects a normal distribution of data, which is
absent [462] (see Fig. A.3, determined using a Lilliefors test with α = 0.05, and
p− value < 2.2e− 16, also after Log and Box-Cox transformations. Spearman is sensitive to
data inconsistencies [463], which is often the case in manufacturing industry [101]. Kendall
has a higher robustness and asymptotic efficiency [463]. Hence, Kendall is the most
appropriate coefficient to express metrical correlation for the number of joining elements
[421].

Fig. A.4: Correlation matrix of numerical variables using Kendall with α = 0.05. Taken from Nguyen [462]

Fig. A.4 shows the correlations between numerical variables for both components in a
joining scenario. The number of joining elements has the strongest correlations with the
weight, area, and moment of inertia of the x-axis. The second component has lower
correlation values with nje probably due to the order of documentation [66], as designers may
select bus components first. Moments of inertia, weight, area, and volume correlate with each
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other as they essentially use the same variables in their calculation. The density and center of
gravity correlate between the first and second components due to the fulfillment of the same
function at the same location in a product variant. Similar components often join with another.

The fig. A.4 indicates that many variables correlate with the number of spot welds. It is
logical that thicknesses, weight and moments of inertia seem to correlate more with the number
of spot welds than other variables. Larger components weigh more and to their extent tend to
need a higher joining performance. By keeping the technology the same, the number of joining
locations probably should increase.

These results are expected, when referring to the paragraph on structural performance in
section 2.1. For example, weights derive from volume times density. Volume largely depends
on thicknesses together with surface area. Together, the moments of area are described by
the thicknesses and the dimensions of components. For example, take a rectangle of Fig. 2.3.
Also, note the equation 2.2 to calculate the second moment of area. The latter measures the
ability of cross-sectional shapes to resist bending caused by loading. The base dimensions of
a component aggregate into moments of inertia. The equation only illustrates a small example.
In this sense, the results of the correlation matrix (Fig. A.4) are rather trivial. Still, it confirms
that the dataset contains these relations which prediction models can learn.

Various tests can analyze the relationship of the number of joining elements nje to
categorical variables. One way ANOVA assumes that the continuous dependent variable nje

follows a known distribution [464], such as a normal- or Poisson distribution, however, is
absent for the dataset [462]. Unfortunately, the test’s residues need to have a normal
distribution, which is not the case. The Kruskal-Wallis test [465] is non-parametric and
applied in case the assumptions of ANOVA fail. The test evaluates for significant differences
between a continuous dependent variable nje and a categorical independent variable, e.g.,
material. However, the test only considers the correlation between the variables, not their
categories [466].

Table A.1 shows results of the Kruskal-Wallis and Dunn tests for the nominal independent
variables: nomenclature, module, and material. There are significant differences between the
groups of the variables and the number of joining elements. The Dunn test [467] analyzes
correlations of individual groups within an independent variable and the continuous variable
nje [466]. Dunn tests results (p < 0.05) for nomenclature, sub-module, and material resulted
in almost all groups with differences, too many groups to evaluate, and no interesting results
respectively [462].

Independent Sign. Kruskal-Wallis left Kruskal-Wallis right
variable diff. χ2 df χ2 df
Nomenclature y 1943.9 607 2183.1 690
Module y 2344.3 1253 26582 1367
Material y 364.18 72 612.49 79

Table A.1: Results Kruskal-Wallis and Dunn post hoc tests. The dependent variable is the number of spot welds.
The p-value for the Kruskal-Wallis test is p < 2.2e− 16. χ2 - Chi-squared. df - Degrees of freedom.
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A.3 Feature engineering

The following exemplary figure was used to determine the feature importance for predicting the
joining technology 4.1. It is seen that after a few key features, the additive value drops rapidly.
Fig. A.5 shows the most important features through training of Random Forests to predict the
joining technology. Validation picked the best 9 and 16 to evaluate 2 models.

The following exemplary figure was used in determining the key features for predicting
th number of spot welds 4.2. Fig. A.6 shows the most important features through training of
XGboost to predict the number of spot welds. Validation picked the best 8. Notably, the value
of features drops significantly quicker as in the figures to predict the joining technology.

A.4 Geometric data preparation processes

This section presents two data preparation process. The first section A.4.1 presents creating
data samples for methodologies that required 2D flat surfaces. These methodologies include
randomized joining location distribution (section 4.3), spatial aggregation (section 4.6), and
element densification (section 4.7).

The second section A.4.2 presents the process to create voxel-based connection cases
from joining scenarios. These connection cases are used in methodologies as exploration of
supervised machine learning tasks for voxel-based joining location prediction (section 4.4),
and predicting voxel-based joining locations considering non-geometric data (section 4.5).

A.4.1 Implementation of process to create 2D data samples

Fig. A.7 visualizes the identification of contact regions and reproducible steps to create the 2d
dataset. Each step is explained in the figure.

A.4.2 Implementation of process to create connection cases 3D

This sub-section describe the generation of data samples for the voxel-based methodologies in
sections 4.4 and 4.5. Fig A.8 visualizes the process. The list below explains on each step.

1. Load and set the 2 component-meshes of a joining scenario (STL-files) into vehicle
space. This sets the components in place.

2. Create bounding boxes with a slight padding around each component.

3. Perform an intersection between the bounding boxes. This step identifies the area of
interest. The area where the bounding boxes intersect contains the contact regions. As
such, it also contains the joining elements residing on these contact regions.

4. Use the intersected bounding box to cut out the relevant geometry of each component.

5. Voxelize each piece of cutout geometry.

6. Set the voxels in a grid with the same dimensions. This ensures that the meshes coincide
again after voxelization.
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7. Voxels have 1 values in grid-cells that contain geometry and 0 otherwise. Hence, adding
the voxel matrices together creates contact regions. Here 1-values coincide between both
meshes, creating cells with the value 2. These represent contact regions.

8. Some connection cases are too large. Hence, they require splitting and padding to create
standardized grid sizes.

A.5 Exemplary clustering results of product manufacturing
information for branding

A K-means algorithm clustered the data and optimized for k clusters using the silhouette
coefficient; see the exemplary Tables A.2 and A.3.

Cluster Sil. coef. freq. freq. [%]
0 0.48 622 12
1 0.57 1055 20
2 0.65 3536 68

Table A.2: Performance of clustering through K-
means (three clusters) after a PCA dimensionality
reduction (two dimensions). The silhouette mean is
0.62.

Cluster Sil. coef. freq. freq. [%]
0 0.31 1275 24
1 0.42 1109 21
2 0.32 140 3
3 0.26 763 15
4 0.33 367 7
5 0.49 603 12
6 0.35 647 12
7 0.44 309 6

Table A.3: Performance of clustering through K-
means (eight clusters) after a PCA dimensionality
reduction (seven dimensions). The silhouette mean
is 0.38.

Fig. A.9 on the left-hand side presents the result of DR through PCA to two dimensions
and k-means finding three clusters.

Here, the silhouette mean was 0.62. However, to determine eight clusters over seven PCA
dimensions created more ambiguous results, as the silhouette mean was 0.38. Although the
clustering quality for seven dimensions might be lower, this does not necessarily imply that the
informational content for MMML would also be lower. Moreover, Fig. A.9 on the right-hand
presents the results of using EM with 15 clusters on two PCA dimensions.

A.6 Frequencies of geometry occupying voxels

Fig. A.10 shows geometrical information summed over all voxel grids. The top graph plots
the number of voxels with a certain frequency of geometries measured over the entire dataset.
Most voxels contain around 50 times geometry. Relative to the approximately 6000 CCs, this
is about 1% of the time. The bottom graph shows a similar graph but filtered for the edges of
the grid with a thickness of lrib = 3. The total number of voxels on these edges is 10656, about
1% of the grid’s total. It clearly shows the little information towards the outside of the grid.
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A.7 The summary of the validation of the methodologies

The following lists in Appendix concludes the validation of the methodologies with their pros
and cons:

• Joining technology prediction
+ Quick predictions
+ Decision tree (random forest) needs a few key features
+ Models’ decisions are interpretable by designers
– Reliant on data preprocessing
– Heavy simplification of the task required
– Application for early product design
– Difficult to adjust for new trends

• Algorithmic fitting
+ Quick predictions
– Prediction of number of joining locations requires detailed geometry
+ Distribution of joining locations is meaningful for small joining scenarios
– Application for early product design
– Current implementation does not improve the RBR benchmark
– Implementation in 3D space is difficult
– Implementation for curve-shaped joining elements is significantly more complex

than that for point-based joining elements
– Currently relies on a sequence of two methodologies that are both promising but

not convincing

• Grid-based drawing
+ Very promising results
+ Classification task is more robust than regression
+ Considers successful designs
+ Can predict both point-based and curve-based joining locations with the same

model
– High development effort; models are difficult to train
– High computational cost; data samples must be small and have a low resolution
– Multimodal models implementing nongeometric data seem to neglect branded

labels
– Prone to data leakage and variance problems

• Spatial Aggregation
+ Quick results
+ Effectively finds shareable joining locations
– High development effort in data preparation
– Effectiveness depends on the size of the dataset
– Needs to run on strategic moments
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• Element densification
+ Quick results
– Effectiveness depends heavily on the dataset due to geometric constraints
– Needs to run on strategic moments
– High development effort in data preparation
– Results are complex to interpret
– Potentially a strong design reuse prediction algorithm
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Fig. A.7: Creation of 2D dataset samples from 3D meshes.
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Fig. A.8: Process to generate connection cases. Taken from Perez-Ramirez [412].

Fig. A.9: Exemplary clustering results through K-means (three clusters) and Expectation-Maximization (16
clusters) after a PCA dimensionality reduction (two dimensions).
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Fig. A.10: Analysis of informational content in voxel grids to determine edge for branding. The top graphs show
frequencies of the number of geometry occupying voxels have.
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