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Chapter 1

Introduction

Geophysical fluid dynamics is a vast field of physics that deals with the study
of fluids in the natural environment, of which the atmosphere and oceans are
prime examples [173, 159]. The complexity and nonlinearity of the underly-
ing physics make it challenging to develop accurate models that can capture
the dynamic behavior of these fluids. Advances in data science and the grow-
ing availability of computational resources have opened up new avenues for
developing data-driven models that can complement traditional physics-based
models [124]. In this thesis, we focus on the development of data-driven models
for geophysical fluid dynamics, with a particular emphasis on so-called global
basis methods. These methods rely on the decomposition of spatiotemporal
data into (fixed) spatial basis functions and corresponding time series, of which
only the latter is modeled. This way, one can use techniques from time series
analysis and knowledge of stochastic processes to derive fluid models. Our goal
is to use this approach to develop models for use on coarse computational grids
that can still capture the complex and nonlinear behavior of geophysical fluid
flows while being computationally efficient and scalable.

The results presented in this thesis employ either proper orthogonal de-
composition basis modes (POD modes, also referred to as empirical orthogonal
functions, or EOFs) [13], Fourier basis functions, or spherical harmonic basis
functions to decompose the spatio-temporal data into fixed spatial profiles and
corresponding time series. The choice of basis depends on the problem un-
der consideration: a periodic domain permits the use of a Fourier basis, the
presence of boundaries confines us to the use of a POD basis, and problems
on a spherical domain are better served by a spherical harmonic basis. These
bases are used in deriving data-driven models for coarse numerical simulations
of flows relevant to geophysical fluid dynamics: the shallow water equations,
the two-dimensional Euler equations, and two-dimensional Rayleigh-Bénard
convection.

The work in this thesis rests on three subjects: geophysical fluid dynamics,
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Chapter 1. Introduction

coarse-grid data-driven modeling, and stochastic modeling. Namely, we con-
sider flows relevant to geophysical fluid dynamics and simulate these on coarse
computational grids to benefit from reduced computational costs. These simu-
lations are augmented using data, which are incorporated via stochastic forcing
with the aim of quantifying uncertainty or modeling subgrid-scale processes. In
this section, we introduce these subjects and provide the outline of this thesis.

Geophysical fluid dynamics

Geophysical fluid dynamics (GFD) concerns large-scale flows occurring in nat-
ural situations. The most prominent examples of geophysical flows are oceanic
and atmospheric flows, of which the study and numerical simulation play a
crucial role in, for example, weather prediction. A characteristic feature of
fluid flows is the presence of a large range of scales of motion [139]. In GFD,
the largest scales of motion are typically of the order of hundreds of kilometers
[173] whereas the smallest scales are of the order of millimeters [65]. This vast
range of scales suggests that a good fluid model should resolve the largest scales
down to the smallest dissipative scales. The presence of energy over decades of
length scales implies that a fully resolved numerical prediction of a fluid model
containing all scales of motion is computationally intractable. Workable mod-
els can subsequently be obtained by simplifying the underlying mathematical
model, resulting in a less complete description of the dynamics, or by reducing
the spatial and temporal resolution used in the numerical prediction, yielding
a less accurate approximation of the dynamics.

Commonly used models in GFD, such as the primitive equations (PE), ro-
tating shallow water equations (RSWE), Euler equations, and quasi-geostrophic
equations (QGE) can be derived from the three-dimensional Navier-Stokes
equations with an incompressibility condition after a sequence of simplifying
assumptions. On the geophysical scale, a fluid is subject to planetary rotation
and viscous dissipation effects in the fluid are negligible. This directly leads to
the rotating three-dimensional Euler equations. An essential feature of the geo-
physical domain is its shallowness, meaning that the horizontal length scales
are orders of magnitude larger than vertical length scales. As a result, the
characteristic vertical velocity is significantly smaller than the characteristic
horizontal velocity, allowing for the approximation of the vertical momentum
equation as the hydrostatic equation. These assumptions lead to the PE and
the RSWE. Subsequently, the QGE are derived from the RSWE by performing
a leading-order expansion around geostrophic balance, leading to a simplified
flow description in a parameter regime relevant for planetary flows. For a
detailed derivation of these equations, we refer to [173, 87, 86, 111].
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Chapter 1. Introduction

The RSWE, QGE, and two-dimensional Euler equations are models for
two-dimensional geophysical fluid flows. In fact, these models belong to a
larger class of fluid models that can be derived from a variational viewpoint,
as demonstrated in [87, 86, 111]. As a result, these models contain an in-
finite number of conservation laws (Casimirs), defined as differentiable func-
tions of the potential vorticity [113]. Specifically, the energy and enstrophy
are conserved [155], which has led to the conjecture of Kraichnan of a double
cascade in forced two-dimensional turbulence [99]. Here, energy is moved to-
wards the large scales via the inverse energy cascade, and towards the small
scales via the enstrophy cascade. This provides a fundamental difference with
three-dimensional turbulence, in which energy is moved to successively smaller
scales in the energy cascade until it is dissipated through molecular viscosity
[139]. Numerical studies have provided evidence for the existence of the double
cascade by simulating two-dimensional turbulence at unprecedented numerical
resolution [18], or using Casimir-preserving methods [36, 128].

The double cascade is best explained as the triadic interaction of spectral
modes of the vorticity. Due to the conservation of energy and enstrophy, energy
moves from the median mode to the lower wavenumber mode and enstrophy
moves from the median mode to the higher wavenumber mode [173]. Thus, the
inverse energy cascade is directed towards large scales, whereas the enstrophy
cascade is directed towards small scales. The enstrophy cascade results in the
appearance of small scales of motion as thin vorticity filaments. The presence
of small-scale features in the flow ensures that resolving all scales of motion
in a numerical simulation becomes computationally demanding. On the other
hand, the inverse energy cascade is observed as the merging of vortices, leading
to large-scale structures only limited by the size of the computational domain
and the Rossby deformation radius [102]. These large-scale structures often
contain a significant amount of the total energy and dominate the qualitative
behavior of the flow. This motivates the use of coarse computational grids, on
which the larger motions of the flow are still well-resolved. While this effectively
avoids the high computational costs required for resolving all present scales, it
introduces the need to model the unresolved smaller scales of motion and their
effect on the resolved scales.

Coarse-grid data-driven modeling

There is a significant interest in simplifying complex computational models to
achieve predictions and simulations that are accurate enough for a given prob-
lem, while also requiring significantly less time and storage resources than the
original detailed model. Deriving computational models of dimension orders
of magnitude smaller than the full underlying description forms the objective
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Chapter 1. Introduction

of reduced-order modeling (ROM) [27, 91]. For example, one might use flow
snapshots to identify coherent structures using the proper orthogonal decom-
position (POD) algorithm [114] and subsequently solve only the partial dif-
ferential equations corresponding to the dominant modes. This idea has been
successfully applied to many fluid dynamical problems. A non-exhaustive list
of examples includes lid-driven cavity flow [30], oceanic boundary layer turbu-
lence [150], and the QGE [140, 129]. Alternatively, one might choose to reduce
the dimensionality of the computational model by carrying out numerical sim-
ulations on coarse computational grids and including a model term to represent
unresolved dynamics. This is the strategy employed in large-eddy simulation
(LES) and will be used throughout this thesis.

In LES, the large scales of the turbulent flow are resolved, while the smaller
scales are modeled by a subgrid-scale model [147, 74, 92]. The underlying
premise of LES is that the largest scales of turbulence are the most impor-
tant in terms of their impact on the overall flow behavior, and therefore it is
necessary to accurately capture their dynamics in order to obtain an accurate
prediction of the flow field. Typically, the user imposes a filter width ∆ which
decomposes the prognostic variables into a large-scale filtered component and
a small-scale residual component. This reduces the computational require-
ments since only the filtered components need to be fully resolved, but at the
same time introduces a closure problem arising from the motions of unresolved
residual components. Alternatively, the filtering may be defined implicitly as
a result of applying discrete operators on coarse computational grids [11, 131].
In either case, the closure problem is often treated by including a subgrid-scale
model designed to account for the interactions between the unresolved and re-
solved scales. A common approach is to use models that a priori prescribe a
relation between the resolved and unresolved scales, based on physical or statis-
tical arguments. For instance, the much-used eddy-viscosity models rely on the
assumption that turbulent fluctuations on average dissipate energy and may
therefore be modeled as a viscous term. Examples include the Smagorinsky
model [151], the Vreman model [164], and the dynamic eddy-viscosity model
[66].

Although no overall-best LES model has been developed, an abstract sub-
grid model has been derived that has been shown to be ideal [103]. Here,
ideal means that the subgrid model exactly reproduces single-time, multi-point
statistics and minimizes the error in instantaneous dynamics. The derived
model is defined as the average evolution of the real subgrid force, which is
the difference between the filtered evolution of the governing equations and
the evolution of the filtered governing equations. In this model, the average
is taken over the distribution of all unfiltered fields that correspond to the fil-
tered field. This result implies that the model depends on the considered set
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Chapter 1. Introduction

of equations as well as on the chosen filter and discretization. Additionally,
this result suggests that one should look for a functional between the state
of the system and its expected subgrid force and use this as a subgrid model
[53]. With sufficient computational resources, such a relation can be found
empirically through the use of data.

Recent advances in data-driven LES have shown the potential of using data
to derive models for accurate coarse-grid fluid simulations. The growing avail-
ability of computational resources has made it possible to perform larger and
more accurate simulations of fluid flows, making high-resolution data accessible
from which fluid models may be acquired. Most research on data-driven turbu-
lence modeling has been carried out using machine learning. Examples include
its application to channel flow [148, 137], two-dimensional turbulence [119], and
three-dimensional forced homogeneous isotropic turbulence [170, 101]. Gener-
ally, these methods are found to perform well in terms of kinetic energy spectra
and flow statistics. However, a significant amount of data is usually required
to determine a machine-learned model and verify its stability [12]. This may
be remedied by employing techniques from data assimilation.

Data assimilation is a concept commonly used in the prediction of geophys-
ical fluid dynamics, with the aim of combining numerical model predictions
with observations, or data [104]. Data assimilation algorithms use statistical
methods to blend the observations and model predictions in a way that op-
timally balances the uncertainties inherent to both of these aspects [59, 115].
This involves estimating the state of the system at a given time, as well as
the uncertainty in that state estimate. For high-dimensional systems, these
approaches suffer from the curse of dimensionality and may lead to inadequate
results [41, 152]. To alleviate large computational costs, the full data assimila-
tion formulation can be approximated using practical ad hoc approaches built
on computational and physical considerations [17]. A conceptually straight-
forward method to incorporate data into a numerical prediction is through
continuous data assimilation (CDA) [49], where real-time observational data is
included in the computational model directly as it evolves over time. Particu-
larly, the CDA algorithm proposed in [8, 7] is relevant to the work presented
in this thesis.

The algorithm described by [8, 7] incorporates a feedback control term
into the governing equations with the goal of nudging the predicted solution
towards an observed state. Notably, convergence towards observations has
been proven for the two-dimensional Navier-Stokes equations [67, 16] and for
two-dimensional Rayleigh-Bénard convection [60, 4] for a range of nudging
strengths. Convergence towards the reference has also been proven when the
observations are subject to noise [15]. In a similar vein, the continuous-time
limit of the 3DVAR data assimilation algorithm [45] has been shown to be a
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stochastic differential equation with mean reversal towards a noisy observa-
tion [17]. These algorithms are designed for the convergence of the numerical
solution towards an observed time-dependent solution. This is contrary to
LES, where real-time observations are usually not available and instead, mod-
els are based on a priori knowledge of physics or flow statistics. One of the
points of attention in this thesis is to derive self-contained models, as used in
LES, which are based on a feedback term in the governing equations, as used
in CDA. For this purpose, we use stochastic models based on measured flow
statistics and investigate how these can be used to quantify uncertainty and
act as subgrid-scale models.

Stochastic modeling

Stochasticity has been used in geophysical applications to model uncertainty
for at least several decades [25, 134, 82, 105]. In the perspective on stochastic
weather and climate models [136], it is argued that any numerical prediction
about weather or climate will be subject to uncertainty stemming from two
sources. Firstly, the initial conditions used in numerical simulations of geo-
physical systems are usually not known perfectly. Ensemble forecasts may be
used to gauge the influence of the uncertainty, where the initial conditions per
ensemble member are slightly varied [135, 90]. Secondly, uncertainty originates
from model incompleteness. This is caused by an imperfect or lacking repre-
sentation of physical processes and by a finite truncation of the model when
it is numerically solved. We elaborate on these last two points. Even in the
conceptual case where a mathematical model can be resolved without error, it
is typically incomplete due to the complexity of real-world flows and involved
physical processes. For instance, a perfect weather prediction model would not
only need to include terms describing the flow of fluid and temperature but
also involve the influence of clouds [52] and moisture [24] on the dynamics, to
name but a few examples. These approximations and simplifications introduce
model uncertainty and are often represented as stochastic parametrizations.
A widely used approach to account for this uncertainty is the Stochastically
Perturbed Parametrization Tendencies (SPPT) scheme [25, 33]. Here, the ten-
dencies of parametrized physical processes are stochastically perturbed using
spatially and temporally correlated random fields. On the other hand, even
if a perfect geophysical fluid model were available, it would still suffer from
insufficient computational resources to resolve all relevant dynamical scales.
Thus, computationally feasible numerical simulations require the level of de-
tail in the solution to be truncated at a certain length scale, thereby inducing
uncertainty through unresolved dynamics. The work presented in this thesis
deals with ideal fluid dynamics, i.e., the models used are assumed to be perfect.
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Additionally, high-resolution numerical simulations are considered sufficiently
accurate to be treated as the ‘truth’. This eliminates some of the previously
mentioned sources of uncertainty.

Stochastic parametrizations are often employed to represent the effect of
unresolved dynamics on the resolved dynamics. This effect is regularly defined
using estimates of subgrid processes in terms of resolvable processes [136]. The
placement of the stochastic term in the governing equations is not set in stone
and is, ultimately, a choice of the modeler. For example, one can distinguish
between additive noise and multiplicative noise, both of which will reappear in
this thesis. The former is obtained by adding a stochastic term to the governing
equations, subject to scaling independent of the state of the system. This type
of noise is used, for instance, in the data assimilation algorithms previously
mentioned [15, 17] and has also been used in the context of stochastic climate
models to model nonlinear interactions of unresolved flow components using
Ornstein-Uhlenbeck (OU) processes [116]. Alternatively, one may choose to in-
clude a stochastic term with a magnitude multiplied by the value of a resolved
component of the flow, which is referred to as multiplicative noise. The SPPT
scheme is an example where multiplicative noise is employed. Additionally,
it has been shown that multiplicative noise is generally required to maintain
conservation laws under stochastic perturbations. The framework of stochastic
advection by Lie transport (SALT) [85] may be used to derive stochastic par-
tial differential equations that adhere to the same geometry as the underlying
deterministic equations, thus preserving the Casimirs of the original system.
Similarly, the method of location uncertainty (LU) [123] can be used to derive
stochastic partial differential equations that preserve the kinetic energy of the
original deterministic system. These methods are applicable to fluid dynamical
systems as well as to finite-dimensional systems of differential equations.

Finite-dimensional systems often serve as a test bed for stochastic parametriza-
tions eventually applied in geophysical fluid simulations. These systems are
computationally cheap to evaluate but at the same time mimic certain qual-
itative behavior also often observed in geophysical flows. For example, the
two-scale Lorenz ’96 system [110] was designed as a simplified representation
of the atmosphere, including variables evolving over different time scales. The
model describes the motion of slow and fast variables, where the fast vari-
ables are often treated as unresolved scales [6, 167, 47] and parametrized as
functions of the slow variables. Another example is the well-known Lorenz
’63 system [109], which is obtained by projecting the governing equations of
Rayleigh-Bénard convection on a Fourier basis and applying a finite truncation.
This low-dimensional system exhibits a strong sensitivity to perturbations in
the initial conditions and can be considered a model for chaotic behavior ob-
served in geophysical flows. In particular, different types of multiplicative noise
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may already lead to qualitatively different behavior in this system [71]. Alter-
natively, low-dimensional systems may contain conserved quantities and can
therefore be used to study the effect of stochasticity on these quantities and to
develop tailored numerical stochastic integrators that respect the conservation
laws [112, 38, 32]. All mentioned low-dimensional dynamical systems have the
benefit that the ‘truth’ is often still computationally cheap to obtain. In recent
years, this has become increasingly feasible for discretized fluid systems as well.

Recently, high-resolution numerical simulations have been used to derive
stochastic parametrizations for fluid simulations. Ideally, the subgrid terms
determined from the high-fidelity data should be self-consistent [63], meaning
that the obtained model is resolution-independent. As previously mentioned,
the type of stochasticity used still remains a choice of the modeler. In simula-
tions of two-dimensional fluid flows on coarse computational grids, there should
exist a transfer of energy and enstrophy between the resolved and the unre-
solved scales [62, 63]. According to these sources, a stochastic subgrid-scale
model should be used to represent the transfer of the above-mentioned quanti-
ties. This concept is in contrast to SALT and LU, which conserve the enstrophy
and the energy, respectively. It is worth noting that the latter two approaches
have been used predominantly for uncertainty quantification [40, 143, 144] and
data assimilation [41, 145], rather than for subgrid-scale modeling. We will
consider both uncertainty quantification and subgrid-scale modeling in this
thesis.

Thesis outline

This thesis is structured as follows. In Chapter 2, we describe how to com-
pute the perfect subgrid measurements on coarse computational grids, based
on high-resolution data. This is demonstrated for the one-dimensional shallow
water equations using two computational methods. The data is decomposed
into spatial profiles, being the proper orthogonal decomposition modes (POD
modes, also referred to as empirical orthogonal functions or EOFs), which
illustrates how the subgrid measurements are dependent on the adopted dis-
cretization method at severe coarsening. We study how the high-fidelity result
may be approximated using prescribed reduced-order corrections, and how the
quality of the correction depends on the accuracy of the adopted discretization.
Finally, we show the robustness of the correction under perturbations of the
initial condition.

Chapter 3 concerns a study of SALT applied to the two-dimensional Euler
equations on the unit square, extending the work of [40]. Here, we estimate
the subgrid data as the differences between Lagrangian trajectories measured
on a fine-grid solution and a filtered version thereof. Subsequently, the POD
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algorithm is applied to obtain fixed spatial profiles and corresponding time se-
ries. The novelty of this study is the use of time series data to derive stochastic
models. We compare three noise models: Gaussian noise, noise obtained from
estimated probability density functions, and time-correlated noise. The lat-
ter two use more information from the measurements to mimic the statistical
properties of the original time series and are found to yield a smaller spread of
the stochastic ensemble, compared to Gaussian noise.

In Chapter 4, a generalization of the approach of Chapter 2 is presented.
Instead of using exact pre-computed measurements to define a reduced-order
correction, we use high-resolution simulation measurements to tune parameters
for a dynamic forcing procedure. The resulting forcing can be applied deter-
ministically or stochastically and enters the governing equations via a feedback
term defined at the level of the basis coefficients. The forcing is used to augment
coarse numerical simulations in order to accurately represent the statistically
steady state from which the measurements were taken. This methodology is
applied to the two-dimensional Euler equations on the sphere, employing a
spherical harmonic basis to decompose the high-resolution signal into spatial
basis functions and corresponding temporal components. The result is a data-
driven deterministic or stochastic model defined independently of the adopted
discretization or numerical resolution. We show that the proposed forcing leads
to a coarse numerical simulation in which the kinetic energy spectrum of the
reference solution is reproduced, at different coarse resolutions. Additionally,
it is shown that the method leads to stable and accurate large-scale dynamics.

In Chapter 5, we apply the methodology presented in Chapter 4 to two-
dimensional Rayleigh-Bénard convection. Effects of buoyancy and wall-bounded
turbulence in the flow make this a challenging test case for computational mod-
els. We show that using a Fourier basis along the periodic direction of the
domain allows for the use of the stochastic forcing in the same manner as in
Chapter 4. Additionally, a constraint on the Fourier coefficients of the solution
is introduced to ensure that a prescribed heat flux is approximated. As before,
the model is shown to lead to stable numerical simulations and accurate kinetic
energy spectra on coarse computational grids and is further assessed using flow
statistics.

A summary of the results presented in this thesis and directions for future
research are provided in Chapter 6.

9





Chapter 2

Computational modeling for
high-fidelity coarsening of
shallow water equations based
on subgrid data

2.1 Introduction
The nonlinear nature of models in fluid dynamics causes small scale and large
scale flow features to interact with each other. This implies that one would
need to resolve the entire range of scales from the largest down to the smallest
dynamically relevant Kolmogorov scale present in the particular problem, in
order to have a good fluid-mechanical model. In geophysical fluid dynamics,
typical largest length scales are in the order of hundreds of kilometres. This
means that solving the entire range of scales down to the Kolmogorov length
scale is by far too expensive for modern-day high performance computing. Any
feasible approach will hence necessarily have to imply simplifications, either in
the completeness of the mathematical model or in the spatial and temporal
resolution with which the dynamics is approximated, or both. In this chapter
we will work out an offline/online approach in which we use explicit knowledge
of the smallest scale dynamics obtained from prior offline fully resolved simu-
lations, in order to arrive at an online computational high-fidelity coarsening.
This approach is illustrated for the shallow water equations in which we opt
for an empirical orthogonal function (EOF) representation of the correspond-
ing subgrid forcing. The accuracy and efficiency we find for this approach and

The material in this chapter was published in the journal Multiscale Modeling and Sim-
ulation, see [57].
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the rate with which the EOF representation converges in selected cases, estab-
lishes the feasibility of this computational model reduction for shallow water
models.

There is a strong interest into the coarsening of detailed computational
models in order to reach predictions and simulations that are on the one hand
of sufficient accuracy for a particular problem, while requiring considerably
less effort in terms of time and storage compared to the underlying detailed
description [74]. These problems are at the core of the field of ‘Reduced
Order Modeling’ (ROM) [27]. A prominent example is so-called large-eddy
simulation (LES) in which the spatially filtered Navier-Stokes equations form
the point of departure for large-scale models that can handle turbulent flow
at high Reynolds numbers [147]. The filtering of the nonlinear terms in the
Navier-Stokes equations introduces a closure problem and additional high-pass
smoothing associated with the spatial discretization method [72]. These as-
pects are typically addressed by the introduction of a subgrid scale model to
represent the influence of the smaller scale dynamics on the retained resolved
scales. The design of good subgrid parameterizations is challenging and LES
models based on physical arguments are often based on a crude approximation
of the actual subgrid dynamics. Moreover, artificial dissipation introduced by
the truncation error of the coarse-grid PDE may be dominant, leading to an
over-dissipative system.

In this chapter, we approach the problem of achieving accurate and effec-
tive coarsened flow models differently. Here, by introducing an explicit subgrid
scale forcing extracted from a previously conducted direct numerical simula-
tion (DNS) of the same problem, we account for the accumulated effects of the
unresolved dynamics. Using high-resolution data to find subgrid parametriza-
tions has been applied to, e.g., oceanic flows [19] and atmospheric processes
[133]. By adding a corresponding correction term to the governing equations,
an alternative representation of the small scale dynamics is obtained. This
chapter is strongly motivated by the seminal work that led to the so called
stochastic advection by Lie transport (SALT) approach and pursues the path
of introducing tailored forcing to the equations in order to account for missing
dynamics in the coarsened solution. In [85] a stochastic variational principle
was introduced to derive equations in continuum mechanics in such a way that
the geometric structure corresponding to these equations remains the same.
The SALT method has important applications in geophysical fluid dynamics,
for instance to address the fundamental problem of appropriately representing
measurement error and uncertainty due to neglected physical effects, spatial
and temporal coarsening of the dynamics, and incompleteness of the mathe-
matical model. In [85] the subgrid dynamics are computed from the difference
between fully resolved and filtered Lagrangian trajectories. Here we construct
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a coarse-grid correction from the difference between the solution of the fine
PDE and the coarse PDE at given time instances. The latter allows to take
into account not only the effect of the subgrid scales but also the numerical
error.

Analogously to [85], in this work we represent the coarse-grid correction by
means of empirical orthogonal function (EOF) analysis [114]. The subgrid term
structure is thus captured by the solution eigenvectors to the EOF problem,
henceforth called ξi. Differently from [85], no stochasticity is introduced here
into the model and the effect of the coarsening is modelled as a deterministic
forcing.

The technique of EOF analysis is well-known in atmospheric and oceanic
dynamics, and is often called proper orthogonal decomposition (POD) in the
context of fluid dynamics [156]. EOF analysis has been applied in atmospheric
sciences since the 1950s, for instance in [79], [108], with the purpose of identify-
ing coherent structures in the solution and reducing dimensionality of weather
and climate systems. Examples of applications in fluid dynamics include the
analysis of canonical problems in turbulence such as the lid-driven cavity [30],
the turbulent jet [125] and channel flow [130]. Instead of using the EOF method
to analyze flow structures, we apply it to construct a basis for the coarse-grid
correction. We illustrate the method with shallow water flow under the in-
fluence of external agitation, complementing the earlier work on the Euler
equations in periodic domains [40].

By construction the coarse-grid correction is dependent on the adopted nu-
merical method. Hence, we will investigate two different methods for solving
the shallow water equations and compare the type and size of EOF correc-
tions needed to improve a coarse simulation. Moreover, the convergence of the
corrections upon increasing the number of EOFs will be investigated. In the
SALT approach, one investigates differences only in the velocity variables, since
one introduces stochasticity in the vector fields that carry the flow properties.
Results of [86] imply that for this situation, obtaining the ξi in one dimension
and extending their domain to two dimensions corresponds to ξi obtained from
the two-dimensional translation-invariant setting.

The following is an overview of the key results discussed in this chapter:

• A subgrid data measurement procedure is presented, applicable to any
set of PDEs, here applied to the shallow water equations. These measure-
ments are extracted from an offline computation of the fine and coarse
PDE.

• Subgrid data is measured for two test cases which are both performed
using a finite difference discretization and a finite element discretization.
The test cases feature a submerged ridge as bathymetry and include
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constant external forcing (first test case) and periodic external forcing
(second test case). The subgrid data are decomposed into EOFs and
their corresponding time series.

• The level of approximation of the original dataset when applying different
numbers of EOFs is investigated for the test case with external forcing. A
coarse numerical solution with zero error is obtained when the full set of
EOFs is used. Truncating the reconstructed correction term to a subset
of the EOFs significantly reduces the error on coarse computational grids,
independent of the used numerical method.

• A significant error reduction is obtained when applying the developed
reduced-order correction method to the same test case with different
initial conditions. This indicates that the measured temporal coefficients
tolerate some level of approximation without significant loss of accuracy.

The chapter is organised as follows. In section 2.2, we will introduce the govern-
ing equations as well as the discretisation methods that will be used to simulate
the governing equations. Section 2.3 describes the measuring procedure and
the reduced-order model. In section 2.4 we investigate the convergence of the
EOF decomposition of the coarse-grid correction for two test cases: a steady
flow (subsection 2.4.1) and a periodically forced flow (subsection 2.4.2) over
a bathymetry represented by a Gaussian profile. In section 2.5 the developed
reduced-order model is applied to the test cases of section 2.4. In particular,
a range of grid resolutions is investigated as well as the behavior of the model
for a varying number of EOFs. Finally, the measured corrections are applied
to the same problem with perturbed initial conditions (subsection 2.5.3) and
accuracy in the prediction of long-time averages is investigated (subsection
2.5.4). In section 2.6 we conclude the chapter and formulate future challenges
in the outlook.

2.2 Governing equations and numerical methods
The model that is central to this work is the shallow water (SW) model. The
SW equations, also called the Saint-Venant equations, describe the behaviour
of a fluid in a shallow channel with a free surface and bottom topography. This
model can be derived by vertically integrating the incompressible free surface
Euler-Boussinesq equations over the shallow domain in the small aspect ratio
limit, as is demonstrated in [86]. The SW model is nonlinear and consists of two
coupled equations. The first equation describes the evolution of the velocity u
and the second equation is the continuity equation that describes the evolution
of the water depth η. The total depth is the difference between the free surface
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elevation ζ and the bottom topography (or bathymetry) b, hence ζ = η − b.
Additionally, we will consider external forcing and damping of the velocity. In
one spatial dimension the SW model with forcing and damping is given by

ut + 1
2(uu)x + 1

Fr2 (η − b)x = a(t) − ru,

ηt + (uη)x = 0.
(2.1)

The right-hand side of the momentum equation contains a time-dependent forc-
ing term a(t) and a damping coefficient r which induces damping proportional
to the velocity. Here Fr is the Froude number, which is defined as the ratio
between the typical velocity scale U and the fastest gravity wave

√
gH, where

H is the typical depth and g is the gravitational acceleration. For the study
of this chapter the one-dimensional model is a suitable formulation, combining
low computational cost with a truthful representation of the underlying dy-
namics. In fact, this model is directly related to the two-dimensional rotating
shallow water equations, which form a convenient model in geophysical fluid
dynamics. It is known as the simplest model that incorporates the interaction
between Rossby waves and gravity waves at geostrophic balance [173].

In the following we provide a description of the two numerical methods
that are used in this study. The two corresponding methods are based on
finite difference (FD) and a finite element (FE) discretization methods used for
solving nonlinear PDEs and are employed here (i) to investigate convergence
of the obtained numerical solutions and (ii) subgrid measurements, and (iii) to
show the application of reduced-order corrections.

The main difference between the methods is that the FD method solves
the momentum equation with first-order accuracy and the continuity equation
with second-order accuracy, whereas the FE method solves these equations
with second and first-order accuracy, respectively. The main benefit of the
FD method is its simplicity and low computational cost, while the FE method
is easily extendable to problems in more dimensions and on complex geome-
try. The approach demonstrated in this chapter is general and extendable to
different numerical methods other than those analysed here.

The time integration is the same for both discretizations and is given by
a fourth order Runge-Kutta method (RK4). The time-step is specified to
satisfy numerical stability, which yields temporal discretization errors that are
considerably smaller than the spatial discretization errors.

2.2.1 Collocated finite difference discretization (FD)

The finite difference discretization is based on a collocated arrangement of the
discrete variables (ui, ηi) approximating the exact solution (u(xi), η(xi)) at the
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grid nodes xi with i running from 0 to N , corresponding to an Arakawa A-grid
[5]. The first-order upwind method has been employed for the discretization
of the convection of momentum. This provides numerical stability of the re-
sulting discrete hyperbolic partial differential equation. The pressure term and
the continuity equation are discretized using second-order central differences.
Conservation of mass is ensured by discretizing the conservative form of the
continuity equation. The finite difference discretization is summarized as

1
2(uu)x

∣∣
xi

= (uux)xi ≈
{
ui (ui − ui−1) /∆x if ui > 0,
ui (ui+1 − ui) /∆x if ui < 0,

(η − b)x

∣∣
xi

≈ (ηi+1 − bi+1 − ηi−1 + bi−1) / (2∆x) ,

(uη)x

∣∣
xi

≈ (ui+1ηi+1 − ui−1ηi−1) / (2∆x) ,

(2.2)

with ∆x the grid size. No modification of the numerical scheme (2.2) is re-
quired at the boundary, since periodic conditions are imposed. The discretized
momentum equation has a formal order of accuracy of one, due to the chosen
discretization of the convective term. The continuity equation is second-order
accurate.

2.2.2 Compatible finite element discretization (FE)

The finite element discretization is given by a mixed compatible element method,
which can be seen as a finite element version of a finite difference discretiza-
tion based on an Arakawa C grid [5]. It has been proposed as a discretization
method for numerical weather prediction in [44, 132], as it inherits the desir-
able properties of the C-grid – such as exact steady geostrophically balanced
states for the linearized shallow water equations. A description of the method
can be found in appendix A.

A pair of compatible spaces for u and η is given, e.g., by

Vu = CGk(Ω), Vη = DGk−1(Ω), (2.3)

where CGk(Ω) denotes the kth polynomial order continuous Galerkin space
and DGk−1(Ω) the (k − 1)th polynomial order discontinuous Galerkin space.

The governing shallow water equations (2.1) are discretized such that the
divergence in the continuity equation is considered strongly, while the gradient
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in the momentum equation is imposed weakly, leading to the mixed formula-
tion

⟨w, ut⟩ −
〈
wx,

1
2u

2 + 1
Fr2 (η − b)

〉
= 0 ∀w ∈ Vu, (2.4)

ηt + Fx = 0, (2.5)

where ⟨., .⟩ denotes the L2 inner product, and the flux F in (2.5) is given by
the L2-projection of ηu into the velocity space, i.e.,

⟨w,F − ηu⟩ = 0 ∀w ∈ Vu. (2.6)

The above space discretization conserves mass locally as well as a discrete
energy globally (for details, see e.g. [121]). In this chapter, we consider the
lowest polynomial order k = 1 for this setup.

2.3 Data measurements and processing
This section describes the procedure of measuring the subgrid data and subse-
quently constructing a reduced-order correction based on these measurements.
Given a truth utruth and a coarse-grid result usim, we construct a function
f(x, t) via

utruth(x, t) − usim(x, t) = f(x, t) = f̄(x) + f ′(x, t) (2.7)

where the measurements are decomposed into a mean f̄(x), which will be
referred to as ξ0(x), and a fluctuating component f ′(x, t). The EOF decom-
position is applied to the fluctuating component f ′, which is assumed to be
stationary in the average or statistical sense. Specifically, on a numerical grid
consisting of N cells, this algorithm yields N eigenmodes ξi(x) with corre-
sponding temporal coefficients αi(t):

f ′(x, t) =
N∑

i=1
αi(t)ξi(x). (2.8)

The measuring procedure described below is such that it identifies the features
missing from a (coarse) numerical solution. The constructed f(x, t) can be in-
troduced into coarse simulations as a forcing or correction term, thus correcting
the numerical solution to match the reference truth. In the ideal setting, all
data is available and the numerical solution can be corrected so that it perfectly
recovers the truth on the coarse grid. However, this is typically not feasible
in practice due to large data storage requirements. The EOF approach allows
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for an optimal approximation of the entire data set using a finite number of
modes.

This section presents this methodology as follows. The subgrid term mea-
suring procedure is given in 2.3.1 and section 2.3.2 briefly summarizes the EOF
algorithm. Subsequently, the reduced-order correction is detailed in section
2.3.3.

2.3.1 Subgrid term measurement procedure

A simulation, which will correspond to a dataset, runs from time t = 0 to
t = T . The measuring intervals are indicated by ∆tM and are such that
NM ∆tM = T , where NM denotes the number of measuring intervals. For
consistency, the coarse-grid time step ∆t is set to be equal to ∆tM . The
measurements comprise of the difference of the evolution of the true velocity
and free surface height (utruth, ηtruth) and their corresponding coarse-grid nu-
merical solution (usim, ηsim), as in equation (2.7). The truth is calculated by
performing a numerical simulation on a very fine grid. Throughout this study
a grid consisting of 512 computational cells is considered sufficiently fine to
accurately resolve all scales of motion. This has been verified by conducting a
grid refinement study.

The numerical coarse grid solution (usim, ηsim) is the quantity that we wish
to improve. Since the coarse grid solution and the truth are defined on dif-
ferent computational grids, comparing the two solutions is done by restricting
(utruth, ηtruth) to the grid on which (usim, ηsim) is defined. This is carried out by
introducing a restriction operator R, here chosen to be equal to the injection
of fine-grid values onto coarse-grid values.

The subgrid term defined for the velocity and free surface height will be
denoted by f(x, t) = (fu(x, t), fη(x, t)). Let us assume utruth at time t0 to be
known. The subgrid correction over a time-interval [t0, t0 + ∆tM ] is estimated
by applying the following procedure.

1. Inject the truth to the coarse grid at t = t0 and set usim(x, t0) = Rutruth(x, t0)
and ηsim(x, t0) = Rηtruth(x, t0), with R a coarse-graining operator.

2. Integrate the fine and coarse grid solution from t = t0 to t = t0 + ∆tM .

3. Evaluate

fu(x, t0 + ∆tM ) = Rutruth(x, t0 + ∆tM ) − usim(x, t0 + ∆tM )

= R

(ˆ t0+∆tM

t0

ut,truth dt
)

−
ˆ t0+∆tM

t0

ut,sim dt, (2.9)
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and analogously for fη(x, t0 + ∆tM ). These measurements are done offline. In
the next subsections we describe how the measurements are processed and sub-
sequently applied online as a correction term in coarse numerical simulations.

2.3.2 Empirical Orthogonal Function Analysis

The measurements f are stored in a matrix VN ∈ RM×N , where M is the
number of coarse grid points and N is the number of measurements. The
entry (VN )ij corresponds to the subgrid difference at grid point xi at the jth

measuring instant. The time-mean from M time series is subtracted from the
matrix (VN ) ∈ RM×N to form the anomaly matrix A, whose rows have zero
mean. The time-mean is the spatial profile previously introduced as ξ0. One
would then compute the covariance matrix R = AAT and solve the eigenvalue
problem

RC = CΛ, (2.10)

where the columns of C are the eigenvectors ξi (EOFs) and the eigenvalues
(EOF variances) are on the diagonal of Λ. A drawback of this method is that
computing the covariance matrix becomes very numerically expensive as the
amount of stored data rapidly increases with the number of snapshots. This
can be dealt with by computing the SVD of the anomaly matrix [50, 158].
Subtituting A = UΣV T into the the definition of the covariance matrix yields

R = AAT = UΣΣTUT . (2.11)

Comparing equations (2.10) and (2.11), it is observed that C = U and Λ =
ΣΣT .

An insufficient number of measurements leads to statistical error in the
computation of the covariance matrix. In this study, it is assumed a sufficient
number of measurements is available for the EOF algorithm.

2.3.3 Defining a reduced-order correction for the SWE

Having introduced the measurement procedure and the EOF algorithm, we can
now define a correction term based on the decomposed measurements. This
term is included in the numerical simulation such that, if all available data is
used, the corrected coarse solution would equal the truth on the coarse grid.
We denote the EOFs for the velocity and free surface height by ξi,u and ξi,η,
respectively, with corresponding time series αi,u and αi,η. The correction based
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on n EOFs is denoted by (fn,u(x, t), fn,η(x, t)) for u and η individually, where

fn,u(x, t) = ξ0,u(x, t) +
n∑

i=1
αi,u(t)ξi,u(x),

fn,η(x, t) = ξ0,η(x, t) +
n∑

i=1
αi,η(t)ξi,η(x).

(2.12)

For an explicit Euler scheme, the reduced-order model is formulated as follows:

uk+1 = uk + ∆tL(uk, ηk) + fk+1
n,u ,

ηk+1 = ηk + ∆tD(uk, ηk) + fk+1
n,η ,

(2.13)

where k is the time level, L is the discrete differential operator of −1
2(uu)x −

1
Fr2 (η − b)x + a(t) − ru, D is the discrete divergence (uη)x and fk+1

n is the
correction measured at time k + 1 over an interval ∆t and decomposed into n
EOFs. Extension of (2.13) to RK4 is straightforward.

Finally, the temporal coefficients are obtained by projecting the governing
equations on the spatial structures. Given an inner product ⟨·, ·⟩, αi(t) can
be determined from ⟨f ′(x, t), ξi(x)⟩ when the decomposition (2.8) is used. In
matrix notation, this is given by

α = AC. (2.14)

The algorithm for computing and applying the subgrid corrections is sum-
marized as follows:

1. The difference between the reference (fine-grid) evolution and coarse-grid
evolution are measured, as per (2.9).

2. The measurements are stored in a matrix which serves as input for the
EOF algorithm.

3. An nth-order correction term is constructed by considering the time-mean
and the first n EOFs, by means of (2.12).

4. The corrections are applied to the coarse numerical solution after com-
pleting a time step, as in (2.13).

2.4 Convergence analysis of EOFs of subgrid data
In this section, we present the results of simulations using the two numerical
methods for the shallow water equations introduced in Section 2.2. A compari-
son is performed for two test cases for which the subgrid corrections on several
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coarse grids are determined. The bathymetry for both test cases is defined
by b(x) = 1 − A exp

(
−(x−0.5Lx)2

B2

)
. The latter describes a submerged ridge of

height A and width B. The values for A and B are 0.01 and 0.15, respectively.
The initial conditions are u(x, 0) = 0 and η(x, 0) = b(x).

We force the flow differently in both tests. The first case uses a constant
forcing, modeling a fixed ‘tilting’ of the entire domain. Damping is added to
keep the flow bounded. For the second case a time-periodic external forcing
is applied to emulate tidal behaviour or ‘sloshing’. The Froude number for
each test case is fixed at Fr = 0.75 to steer away from the possibility of shocks
occurring in the solution. The latter behaviour is not the focus of this chapter.

In the analysis of the results, all ξi are multiplied by the square root of the
corresponding eigenvalues and convergence of the ξi is quantified by comparing
the infinity norm of the eigenfunctions on various grids.

The reference solution is defined as the numerical solution on a grid of
512 computational cells. The corresponding coarse simulations range from 256
down to 8 grid cells. The ratio between the coarse and fine time step sizes is
fixed at 4. For all simulated coarse grids one could choose a different ∆t on
each grid to ensure stability. Since the method used here is general and applies
for any value of ∆t, for convenience and without loss of generality we have
adopted the same time step size for all grids.

2.4.1 Steady flow over a periodic ridge

The steady flow over a periodic ridge can be computed reliably at a range
of spatial resolutions, using both simulation methods. Here we analyze the
profiles of the eigenvectors ξi and the energy associated to them for different
grid coarsenings.

By introducing forcing and a counterbalance damping, which emulates tilt-
ing of the domain, the model reaches a nontrivial stationary state. In a practi-
cal setting, the damping can be thought of as a necessary term to control the
discharge rate of the fluid. From this point the measurements of the coarse-
grid correction are gathered. For a value of the forcing and damping rates (a
and r in equation (2.1)) equal to 0.5, an approximately steady state is reached
at t = 30. Measurements are then collected for one time unit, a time interval
deemed sufficiently long to generate enough data for the EOF algorithm.

Since the flow is at steady state, the time mean ξ0 in equation (2.12)
captures virtually all of the coarse-grid difference that should be added, at
each time-step, to maintain the fine solution on the coarse grid. Ideally only
the coarse-grid correction after one time-step is needed to recover a steady
solution. However, given the fact that the fine grid solution is still varying
slowly, we accumulate measurements over one time unit.
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The velocities at t = 30 for various grid sizes are shown in figure 2.1a for
the finite difference discretization and in figure 2.2a for the finite element dis-
cretization. The corresponding profiles of ξ0 are reported in figures 2.1b and
2.2b. For the FD method the dominant error is due to artificial dissipation,
associated with the first-order upwind scheme. This error is expected to in-
crease for grid coarsening, as is clearly visible in figure 2.1b. Additionally, ξ0
does not undergo a qualitative change as the grid is coarsened, only increasing
in magnitude is observed to attain its largest value where the second derivative
of the true velocity is at its highest, indicating that ξ0 captures the effect of
energy dissipation.

The measured errors for the FE method are illustrated in figure 2.2b and
show a neat difference compared to the FD results. The FE error is several
orders of magnitude smaller than the FD error and is growing in the direction
of the flow, which suggests a dispersive-type error.

The orders of convergence of the amplitude of ξ0 are found to reflect the
expected order of accuracy of the methods. This is shown in figure 2.3. Using
the FD method, ξ0 shows first-order convergence, second-order convergence is
observed for the FE method.
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Figure 2.1: Left: Steady state of the velocity u for various
spatial resolutions using the FD discretization. Right: Time-
independent profile ξ0 as obtained from the EOF algorithm for

various spatial resolutions using the FD discretization.

2.4.2 Periodic sloshing over a periodic ridge

In the second test case time-periodic forcing is applied. This ensures that the
velocity does not reach a steady state making this case suitable for analysing
the eigenfunctions ξi and their corresponding temporal coefficients αi(t). The
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Figure 2.2: Left: Steady state of the velocity u for various
spatial resolutions, using the FE discretization. Right: Time-
independent profile ξ0 as obtained from the EOF algorithm for

various spatial resolutions using the FE discretization.

Figure 2.3: Infinity norm of ξ0 for various spatial resolutions,
for the FD method and the FE method. The dashed and dotted
lines depict the slopes for first-order and second-order conver-

gence, respectively.

forcing consists is defined as follows:

a(t) = C
l∑

j=1
nj cos

(
2πt
nj

)
. (2.15)

Here nj denotes the jth mode, with corresponding period nj and l denotes
the number of used modes. The parameter C can be chosen freely and affects
the forcing amplitude. We have chosen a value of C = 1/15 along with the
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low-frequency forcing term using n = 10 and high-frequency forcing terms
using n = 2 and n = 1, respectively. The low-frequency component affects
the solution on a long time scale and is the dominant forcing term. The high-
frequency components are small disturbances affecting the solution on shorter
time scales. The dominance of low-frequency components is incorporated by
relating the amplitude of the forcing with the frequency of the forcing.

A spin-up time and a measuring time of five low-frequency forcing periods
are adopted. It has been verified by comparing different measuring spin-up
times and interval lengths that the spin-up time and measurement interval are
sufficiently long to ensure a reliable measurement acquisition. The data that
are obtained from these measurements can be regarded as a training data set.

The eigenvalues corresponding to ξi represent the fraction of energy related
to the mode i. Of particular interest is the relation between the cumulative
energy and the fraction of the available EOFs on various grids. The cumulative
energy of n EOFs is given by

Q(n) =
∑n

i=1 λi∑N
k=1 λk

, (2.16)

where N denotes the total number of EOFs available from the simulation and
λi the eigenvalues. Figures 2.4a and 2.4b Q as a function of the available
EOFs for the FD method and the FE method, respectively. The difference
between the truth and the coarse grid simulations decreases as the coarse grids
are refined. Correspondingly, the correction toward the truth simulation can
be reduced and less of the available data is required to capture the solution’s
variability.

Apart from the coarsest grid, the FD method requires the same number of
EOF modes to capture nearly all energy of the correction, i.e., with 16 EOFs 99
percent of the variability is captured on all grids with 32 or more grid cells. The
cumulative energy for the FE method show a markedly different convergence.
Almost all variability of the correction on the finest grid is contained within
the first EOF, indicating that the coarse-grid solution follows the truth very
closely on each of the coarse grids selected. The coarsest solutions each require
the same fraction of available EOFs to fully represent the reference solution on
the respective grids. A similar result was observed for the cumulative energy
of the free surface height.

In figures 2.6 the first EOF mode for both considered methods is shown.
Comparing the different methods, the modes display qualitative differences.
The strong difference between the coarsest grid and the finer grids indicates
that 8 grid points are too few to resolve the solution of the sloshing problem
with the FD method, and hence the captured correction differs strongly from
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the other computational grids. Convergence of the infinity norm for grid refine-
ment is shown in figure 2.7. The FD method displays first-order convergence
and the FE method exhibits second-order convergence. In a similar manner,
the EOFs for the free surface height were found to exhibit faster convergence
due to the second-order discretization of the continuity equation. First-order
convergence was observed for the EOFs for the free surface height.
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Figure 2.4: Cumulative energy of the subgrid velocity mea-
surements as a function of the number of EOFs for various
spatial resolutions, obtained using the FD method (a) and the

FE method (b).
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Figure 2.5: Time-independent profile ξ0 for the velocity mea-
surements at different grid resolutions using the FD method (a)

and the FE method (b).
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Figure 2.6: First EOF mode ξ1 of the velocity measurements,
for various spatial resolutions obtained using the FD method
(a) and the FE method (b). The normalized EOF modes have
been multiplied by the square root of the corresponding eigen-

values.
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Figure 2.7: Infinity norm of ξ0 (a) and ξ1 (b) for various
spatial resolutions, for the FD method and the FE method.
The dashed and dotted lines depict the slopes for first-order

and second-order convergence respectively.

2.5 Reduced-order corrections based on EOF data
In this section, we apply the reduced-order model developed in section 2.3.3 to
the coarse solutions of the previously presented test case with periodic forcing.
In sections 2.5.1 and 2.5.2, we investigate how the ability of the measured
terms to reconstruct the original data set. In these cases, we analyze two grid
coarsenings: 32 and 8 grid cells. The former resolution allows comparing the
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FD and FE method for the situation in which they show comparable accuracy,
as it was verified numerically. The latter resolution represents a challenging
case given the extreme coarsening. To disentangle the effect of the coarse-grid
correction on u and η, we present the results first for the case in which the
reduced-order model is applied to both state variables and then applied to
them separately.

In sections 2.5.3 and 2.5.4 we investigate the robustness of the model for
different initial conditions in a periodic regime. Here it is shown that general
use of such models requires estimation of the temporal coefficients of the EOFs
and how mean quantities might be improved in periodic regimes.

The L2-norm of the pointwise velocity difference with the reference solution
is adopted as the error measure, where the reference solution is injected on the
coarse grid. Both the FD and the FE discretization use nested grids for the
velocity and thus injection is performed trivially. As a measure for the error
between the fine and coarse grid solutions we define

e(t) = 1
K + 1

K∑
k=0

[
N∑

i=1
(utruth(xi, t+ k∆t) − u(xi, t+ k∆t))2

] 1
2

, (2.17)

where N and xi denote the number and positions of the coarse grid points,
respectively. Time averaging of the error is performed over a period of K∆t.
This time interval is chosen to be one time unit so that the contribution of the
high-frequency forcing component to the error remains visible.

2.5.1 Error reduction when correcting all state variables

Coarse-grid corrections are applied to both u and η. Figures 2.8a and 2.8b
show the error reduction over time using an increasing number of EOFs. The
mean error values over the time interval [60, 100] and the percentage of reduc-
tion compared to the coarse solution without correction are given in table 2.1.
Including one EOF in the correction already reduces the error by over 30 per-
cent for both methods. Using a quarter of the available data, 8 out of 32 EOFs,
reduces the error by over 80 percent for this test case. The computational cost
for an increasing number of EOFs for the FD method is given in table 2.2 and
is measured as the CPU time on a local computing cluster. Generating the
DNS data takes is the most time consuming part of the algorithm, followed by
the computation of the EOFs. No increase in computational cost is observed
when including the EOFs in the coarse-grid simulations.

Figures 2.9a and 2.9b illustrate the error reduction for both methods per-
formed on a grid with 8 computational cells. The method of correction follows
from the same principle as shown for 32 cells, but very coarse grids do not
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Figure 2.8: Error (2.17) on a grid consisting of 32 cells for an
increasing number of EOFs using the FD method (a) and the
FE method (b). Note that using 32 EOFs recovers the reference

solution and zero error is measured.

Table 2.1: Average values of (2.17) on a grid consisting of 32
cells over the time interval [60, 100] as an increasing number
of EOFs in included in the coarse-grid correction. The error
reduction percentage is calculated with respect to the situation

where no correction is applied.

FD FE
Mean error Reduction Mean error Reduction

No correction 4.156 × 10−2 3.908 × 10−2

1 ξi 2.898 × 10−2 30.2% 2.617 × 10−2 33.0%
2 ξi 2.579 × 10−2 37.9% 2.363 × 10−2 39.5%
4 ξi 2.407 × 10−2 42.1% 2.162 × 10−2 44.7%
8 ξi 6.343 × 10−3 84.7% 5.006 × 10−3 87.2%
16 ξi 4.730 × 10−3 88.6% 1.662 × 10−3 95.7%
32 ξi 2.005 × 10−13 100% 2.617 × 10−13 100%

allow for an accurate resolution of bathymetry and hence the dynamics of the
numerical solution can be vastly different than that of the DNS. The best ob-
tainable result is then achieved by accurately representing the largest scales of
the solution and doing so with low computational cost is valuable.

The mean values of the error are provided in table 2.3. It can be observed
from this table that significant error reduction is possible on this grid even
when not using all EOFs. For example, using 6 out of 8 available EOFs yields
an error reduction of over 60 percent and 80 percent for the FD method and
the FE method, respectively.
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Table 2.2: Computational cost in seconds for performing the
DNS, applying the EOF algorithm and performing coarse-grid

simulations with an increasing number of EOFs.

Cost
DNS 7.579

EOF algorithm 2.652
Coarse grid, no correction 0.1599

Coarse grid, 1 ξi 0.1522
Coarse grid, 2 ξi 0.1535
Coarse grid, 4 ξi 0.1521
Coarse grid, 8 ξi 0.1547
Coarse grid, 16 ξi 0.1519
Coarse grid, 32 ξi 0.1519
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Figure 2.9: Error (2.17) on a grid consisting of 8 cells for an
increasing number of EOFs using the FD method (a) and the
FE method (b). Note that using 8 EOFs recovers the reference

solution and zero error is measured.

2.5.2 Error reduction when correcting one of the two the state
variables

Figures 2.10a and 2.10b show the error reduction when only one of the variables
is corrected, using the FD method and the FE method, respectively. The
coarse grid consists of 32 computational cells for this comparison and coarse-
grid corrections are implemented using the full set of computed EOFs for the
considered state variable.

The reduced error in figure 2.10a shows a considerable improvement if the
u correction is analyzed. This is in agreement with the fact that the first-order
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Table 2.3: Average values of (2.17) on a grid consisting of 8
cells over the time interval [60, 100] as an increasing number
of EOFs in included in the coarse-grid correction. The error
reduction percentage is calculated with respect to the situation

where no correction is applied.

FD FE
Mean error Reduction Mean error Reduction

No correction 2.675 × 10−2 2.611 × 10−2

1 ξi 2.053 × 10−2 23.3% 2.126 × 10−2 18.6%
2 ξi 1.953 × 10−2 27.0% 1.669 × 10−2 36.1%
4 ξi 1.901 × 10−2 28.9% 1.015 × 10−2 61.1%
6 ξi 9.922 × 10−3 62.9% 3.202 × 10−3 87.7%
8 ξi 1.025 × 10−13 100% 2.104 × 10−13 100%

upwind scheme used for convection introduces the dominant source of error.
Applying a correction to the free surface height does not yield significant im-
provement, since the error in the momentum equation dominates. Conversely,
for the FE method the correction of the momentum equation does not lead
to any significant improvement, as the FE method employed here shows high
accuracy by itself. As mentioned in section 2.2, the FE method adopts first
and zeroth order polynomials in the discretization of the momentum equation
and continuity equation, respectively. Thus, it is reasonable to expect that
correcting the free surface height strongly reduces the overall error since this
is the dominant source of error. This is observed in figure 2.10b.

Table 2.4: Average values of (2.17) on a grid consisting of
32 cells over the time interval [60, 100] as either the velocity or
the free surface height are fully corrected. The error reduction
percentage is calculated with respect to the situation where no

correction is applied.

FD FE
Mean error Reduction Mean error Reduction

No correction 4.156 × 10−2 3.908 × 10−2

u corrected 6.888 × 10−3 83.4% 3.872 × 10−2 0.870%
η corrected 4.014 × 10−2 3.27% 5.089 × 10−3 87.0%

u and η corrected 2.005 × 10−13 100% 2.617 × 10−13 100%
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(a) (b)

Figure 2.10: Error (2.17) on a grid consisting of 32 cells as
either the velocity or the free surface height is fully corrected,
using the full set of EOFs for the FD method (a) and the FE
method (b). Note that correcting both the velocity and the

free surface height produces zero error.

2.5.3 Sensitivity to initial conditions

In this subsection, we investigate the accuracy of predictions under pertur-
bations of the initial conditions. The aim is to probe the robustness of the
model in actual predictions, where the initial condition is in general different
from that used in the dataset the model was trained on. By changing the
initial conditions, the evolution of the flow is changed and thus the measured
time series and EOFs constitute a correction term that no longer coincides
with the exact subgrid data. The results are presented for the finite difference
method using a reference grid of 512 computational cells and a coarse grid of
32 computational cells.

The perturbed initial conditions and the initial conditions used to generate
the reduced-order corrections are found in figure 2.11. The perturbed ICs are
obtained by sampling the DNS result at times t = 100 and t = 10 and are
referred to as perturbed IC 1 and perturbed IC 2, respectively. It can be
observed that the former slightly deviates from the original initial condition,
while the latter deviates significantly.

The measured errors for these initial conditions are given in figure 2.12. Ap-
plication of the correction term leads to a decrease of the error, which becomes
especially apparent when applying the correction to perturbed IC 1 while less
so for perturbed IC 2. This behavior is to be expected, since the correction
term was designed for one specific initial condition. However, the results pre-
sented in figure 2.12 indicate that the measured temporal coefficients tolerate
some level of approximation without a significant loss in error reduction. We
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Figure 2.11: Initial conditions used to establish the sensi-
tivity of the reduced-order correction term. Both the initial
velocities (a) and the initial free surface height profiles (b) are
obtained by sampling the numerical solution at specified times.
The initial conditions for the original data set is given in black,
the red line and yellow lines denote the perturbed initial con-

ditions.

note that a further reduction of the error may be achieved by constructing
an estimation of the temporal coefficients (2.14) for the ξi and would further
extend the applicability of the reduced-order correction terms. Examples of
such methods have been suggested in literature, such as regarding the tempo-
ral coefficients as a stochastic process [40] or state-dependent subgrid forcing
[6].
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Figure 2.12: Error (2.17) on a grid consisting of 32 cells for an
increasing number of EOFs using the FD method for perturbed

IC 1 (a) and perturbed IC 2 (b).
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2.5.4 Approximation of long-time averages

Often, in practical situations, one does not wish to reproduce the instantaneous
fields but rather long-time averages or statistics of the underlying fields. In this
subsection, we study this problem by obtaining the EOFs and corresponding
time series from a particular data set and subsequently applying the obtained
forcing to the same flow with a different initial condition.

The EOFs and corresponding time series are computed for the second test
case after the flow has reached a periodic regime due to the periodic forcing.
The EOFs are measured for 10 time units, one period of the forcing, from the
periodic state. In this regime, it has been verified that the EOFs are the same
for each periodic measuring interval, as expected. Therefore, the change in the
initial condition only affects the temporal coefficients coefficients.

To study the ability of the measured corrections to approximate mean quan-
tities of the flow, we compare the root mean square (rms) variation of the free
surface height,

rmsη(tk) =

 1
N

N∑
j=1

[
η(xj , tk) − 1

N

N∑
i=1

η(xi, tk)
]21/2

. (2.18)

We consider two initial conditions in the periodic regime. Compared to the
measuring time, the first initial condition is phase-shifted by one time unit and
the second initial condition is phase-shifted by three time units. Applying the
measured corrections to these situations yields the rms of η shown in figure 2.13.
It can be observed that including the correction terms leads to an improvement
in the prediction for both cases, but the level of improvement depends on the
chosen initial condition. This behavior is to be expected, since the correction
terms are tailored for one specific situation.

Analogous to what was shown in section 2.5.3, a further reduction of the
error is expected to take place when a model able to also account for the current
state of the solution is applied to the temporal coefficients.
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Figure 2.13: Moving time-mean of the rms of η for a different
number of EOFs and for two initial conditions in the stationary
regime. The initial conditions are phase-shifted by one time

unit (a) and by three time units (b).

2.6 Concluding remarks
In this chapter, we have compared subgrid measurements of the difference
between a highly resolved truth and a corresponding coarse representation
obtained with a finite difference and a finite element method for the one-
dimensional shallow water equations. This difference was used to obtain a
reduced-order correction on coarse grids. Special attention was given to the
definition of these measurements, such that subgrid features caused by numer-
ical error could be account for. This error draws contributions from both an
incomplete representation of the spatial derivatives as well as from inaccura-
cies with which details in the bathymetry are included. The measurements
of coarse-grid correction were decomposed into empirical orthogonal functions
(EOFs) subsequently used to define a high-fidelity reduced-order model.

The EOFs were found to reflect the associated error of the particular dis-
cretization. While the reduced order correction can be constructed such that
any numerical errors can in principle be fully eliminated for any discretization,
the actual characteristics of the corrections are highly specific to the adopted
discretization approach. Convergence of the subgrid corrections towards zero
was observed for both discretization methods and for each eigenfunction with
grid refinement. Going from coarser to finer grids, less of the available data is
required to capture a certain fraction of the variability of the subgrid measure-
ments. This procedure was applied to a steady case and a periodically forced
case, for a given bathymetry.
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The developed reduced-order correction has been defined such that the
DNS representation on coarser grids could be reconstructed exactly. Here, this
implies that the fine-grid solution on the coarse grid locations is captured fully.
Even using only a fraction of the available EOFs for each state variable yields
a significant improvement over the coarse grid solution. This procedure also
identifies the weakest point in each discretization, by showing where one can
improve the most upon using more EOFs.

The reduced-order corrections were applied to several situations that differ
from the original data set that the model was trained on. It was observed that
predictions of mean quantities were improved when including the correction
term. The level of improvement depends on the number of EOFs used in
the model and on the distance from the initial condition of the data set. In
addition, sensitivity to initial conditions was further explored and it was found
that the corrections tolerate some level of approximation. This result makes
it clear that accurately predicting the time series of each of the EOFs in the
correction term will lead to further error reduction.

The results presented in this chapter may be used in future work regard-
ing coarse-grid predictions of geophysical fluid flows. Of particular interest is
the application of the reduced-order correction for complex models such as the
(thermal) rotating shallow water equations which are characterized by a richer
dynamics than that of the sloshing case for the shallow water equations. Here
we have shown that using a subgrid model constructed by a suitable subset of
the EOFs of the actual subgrid term yields effective error reductions of coarse-
grid predictions. This held true also in the situation for which initial conditions
were not too far from those used for generating the dataset. The latter ob-
servation hints at the relevance of the modeling of the temporal coefficients
once provided with an EOF basis from data. Additionally, the numerical ex-
periments presented in this chapter can be performed using different numerical
methods to gain better understanding of the behaviour of the EOFs on coarse
grids for different numerical methods. This can in turn lead to better predic-
tions of the behavior of EOFs when DNS is not available, or when different
flow conditions are considered.
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Chapter 3

Data-driven stochastic Lie
transport modeling of the 2D
Euler equations

3.1 Introduction
A major challenge in geophysical and observational sciences is the represen-
tation and quantification of uncertainty in numerical predictions. The uncer-
tainty stems from various sources, most relevantly from incomplete inclusion
of all relevant physical mechanisms in the models and uncertainty in the initial
and boundary conditions [135]. Important models for geophysical fluid dynam-
ics, such as the two-dimensional Euler equations, quasi-geostrophic equations
or rotating shallow water equations are derived from the three-dimensional
Navier-Stokes equations. A sequence of simplifying assumptions is applied in
order to reduce the complexity of the model to a more manageable level, while
retaining main flow physics [173]. Stochastic extensions to these models have
also been derived [86]. These approximate models are nevertheless rich in dy-
namics and contain a wide range of spatial and temporal scales. Numerically
resolving the entire spectrum of scales is often not computationally feasible,
meaning that either the complexity of the model should be reduced even fur-
ther such that the resulting model is simple enough to be solvable numerically,
or the complex model is represented on a coarse computational grid and un-
resolved scales are replaced by a sub-grid model. The latter option may be
combined with stochastic forcing, which provides an effective way to represent

The material in this chapter was published in the Journal of Advances in Modeling Earth
Systems, see [56].
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unresolved scales in numerical simulations [25], [61], [116]. The use of stochas-
ticity as a means to represent the unresolved scales serves to restore some of
the missing small-scale dynamics and at the same time probes an ensemble of
solutions and hence also investigates uncertainty. In this chapter, we embrace
these ideas and develop and assess stochastic data-driven models for the two-
dimensional Euler equations on the unit square.
Data-driven stochastic models in dynamical systems have been studied actively
in recent years. For weather and climate models, stochasticity was used as a
tool to represent uncertainty in initial conditions and in the model, as shown
by [136]. A commonly used example to illustrate the data-driven stochastic
approach is the two-scale Lorenz ’96 (L96) system, introduced by [110] and
originally proposed as a simplified model of the atmosphere that incorporates
interactions between slow and fast scales. Data of the fast scales, interpreted as
unresolved sub-grid scales, may serve to construct a data-informed stochastic
model. Examples are given in [6] where sub-grid features are modeled using
different types of noise including additive, multiplicative and state-dependent
noise. This study established that stochastic parametrizations could accu-
rately account for modelling error, with a considerably improved forecasting
skill when temporal correlation was included in the noise. The correlated noise
was modeled as a one-step autoregressive model with parameters fitted from
data. Alternative ideas such as stochastic parametrization based on Markov
chains inferred from data are presented by [47], where unresolved processes are
represented as stochastic processes dependent on the state of the resolved vari-
ables and an assumed probability density. Using this approach, good agreement
was found for the probability density functions and autocorrelation functions
of resolved state variables.
Data-driven machine learning has also been adopted to represent small-scale
dynamics for a large range of parameters [64]. It was found that several con-
figurations of machine learning accurately reconstructed spatio-temporal cor-
relations of the original system. These methods are not limited to simplified
models such as the L96 system, but have also been successfully applied to more
complete geophysical models. Examples include oceanic flows as considered in
[19] and atmospheric processes as investigated in [133]. Both studies obtain
a parametrization using machine learning based on off-line computed high-
resolution model output. This machine learning approach could accurately
predict the relation between resolved and unresolved turbulent processes, al-
though a reliable generalization is principally not guaranteed. Here, we follow
another data-driven ‘offline/online’ route and express the differences between
a fully resolved model and a coarsened model in terms of a converging series of
empirical orthogonal functions (EOFs) and introduce explicit forcing to update
the coarsened model to high accuracy. This direct forcing strategy can also be
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extended to structure-preserving stochastic models as will be clarified below.
In a seminal work [85], stochastic partial differential equations are derived for
fluid dynamics by means of a variational principle. As a result, the solution of
the SPDE is compliant with the geometry of the underlying equations. This
means that conservation laws are maintained under the inclusion of stochastic
perturbations. This approach goes by the name of stochastic advection by
Lie transport (SALT). In a similar approach, stochastic fluid models can be
derived following the framework of location uncertainty (LU) [123], in which
the kinetic energy is conserved. In these approaches, spatial correlations of
observational data can be used to model the unresolved scales in a numerical
simulation. The spatial correlations can be decomposed into EOFs [114, 79].
These are coupled to noise generated from stochastic processes in a separate
modeling step. Together, these terms constitute a stochastic forcing term for
the coarse PDE, which models unresolved scales. The conservation properties
in the framework of SALT require a calculus in which the chain rule coin-
cides with those of deterministic calculus. When the stochastic integration
is of the Stratonovich type, it has been shown that integration with respect
to semimartingales preserves the conservation properties [154]. For processes
with unbounded variance one should resort to pathwise approaches. Recently,
conservation properties for SALT and LU have been established for geometric
rough paths [46].
The SALT approach finds meaningful applications within geophysical fluid dy-
namics, since these models are directly based on a variational point of view.
To illustrate the SALT approach, [40] apply it to the two-dimensional Euler
equations. In this study a fine-grid simulation is performed from which the
Lagrangian trajectories are extracted and compared to the corresponding tra-
jectories acquired after filtering the velocity field. The difference between these
trajectories is a measure of the unresolved scales to which the EOF decompo-
sition is applied to form an optimal basis for this term. Subsequently, a coarse
SPDE is constructed according to SALT where the amplitude of the EOF basis
is modeled as a decorrelated stochastic Gaussian process. It is shown that an
ensemble of stochastically forced flows captures the mean values of the true
solution over considerable time intervals. In a follow-up study [41], a particle
filter was added to the SALT two-dimensional Euler equations and data as-
similation was motivated this way. It was demonstrated that significant model
reduction is possible, reducing the number of degrees of freedom by two orders
of magnitude without losing reliability of the results. Similar studies on the
quasi-geostrophic equations have been done [39], with a focus on data assimi-
lation [42].
Stochastic forcing allows for the use of data-driven models outside of the
dataset from which the EOFs are obtained and the parametrization of the
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stochastic forcing ultimately remains a modeling choice. Global basis methods
adopting e.g. EOFs, Fourier modes or spherical harmonics can be motivated by
the nonlocality of turbulence. Such approaches for stochastic forcing based on
DNS data have been applied to, for example, barotropic flow on the sphere [62]
and to three-dimensional atmospheric flows [95]. A review of parametrizations
for atmospheric flows using stochastic models based on DNS data is provided
in [63]. In [145] a data-driven parametrization was compared to a self-similar
parametrization, using SALT in the quasi-geostrophic equations. It was found
that both parametrizations accurately predict numerical errors and possess
good uncertainty skills. The work by [2] adopts EOFs and compares several
dependent stochastic models and found that models that include the dynamics
and time-delay effects perform well.
In this chapter, we extend the work presented by [40] of stochastic forcing for
the two-dimensional Euler equations. The extension presented in this work
consists of the inclusion of additional information in the data-driven approach.
This information is readily available from the EOF procedure and is used to
define two additional types of stochastic processes. Providing a space-time
array of measurements to the algorithm yields the EOFs, which are spatial
profiles, and the amplitudes of the EOFs in order to reconstruct the input
measurements. The amplitudes of each EOF are a time series and provide the
data that are used in this chapter to calibrate stochastic processes for each of
the EOFs. In order to mimic the measurements, we generate signals that have
the same probability distribution function as the measured time series or have
similar temporal correlation. By retaining these statistical quantities in the
modeled time series, the forcing stays true to the characteristic features of the
measurements.
The following numerical experiments and findings are reported in this chapter.
We perform a direct numerical simulation (DNS) of the two-dimensional Euler
equations on the unit square, subject to impenetrable boundary conditions.
We measure the difference between trajectories of particles advected by the
fully-resolved velocity field and the corresponding filtered velocity field. The
EOFs and time series that represent the amplitudes of the EOFs are obtained
from this data. Stochastic ensembles are generated using three stochastic pro-
cesses: Gaussian noise, noise based on the underlying pdf of the EOF time
series, and noise with a temporal correlation similar to that of the EOF time
series. The process of developing the time series into stochastic processes is
explained in detail in a subsequent section of the chapter. The results pre-
sented in this chapter show that using the developed stochastic processes leads
to a reduction of the ensemble mean error and ensemble spread, compared to
using Gaussian noise. This is further explored by performing statistical tests
for ensemble solutions. The latter is done for time scales on which data may
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be assimilated, where the numerical SPDE results may serve as input [41].
The chapter is structured as follows. In section 3.2.1 we introduce the determin-
istic and stochastic governing equations and describe the numerical experiment
in detail. This is followed by a description of the data acquisition procedure in
section 3.2.2. The method used for generating random signals as a model for
the measured data is described in section 3.2.3. The results of the numerical
experiments are presented in section 3.3. In section 3.3.1 a maximal prediction
horizon is established and in section 3.3.2 an adapted reference solution de-
fined. These results aid the uncertainty quantification of ensemble predictions,
presented in 3.3.3. Predictions on much shorter timescales are further assessed
in section 3.3.4, comparing additional ensemble statistics. In section 3.3.5 we
assess the forecast quality for different lengthscales in the flow by analyzing the
results in spectral space. We conclude the chapter in section 3.4 and specify
future challenges.

3.2 SPDE formulation and stochastic models
This section presents the formulation of the stochastic Euler equations using the
SALT approach (Subsection 3.2.1), the data acquisition procedure (Subsection
3.2.2) and the derivation of the stochastic models (Subsection 3.2.3).

3.2.1 Governing equations and flow conditions

The two-dimensional Euler equations are central to this work. These equations
are determined fully by the evolution of the vorticity dynamics [173]. The
behaviour of the vorticity ω in terms of the velocity u and streamfunction ψ is
given by

∂tω + (u · ∇)ω = Q− rω, (3.1)
u = ∇⊥ψ, (3.2)

∆ψ = ω, (3.3)

which are solved on the unit square, denoted by D. The perpendicular gradient
∇⊥ is defined as (−∂y, ∂x). A forcing and a damping term are added to the
equations in order to drive the flow to a nontrivial statistically steady state.
In particular, Q(x, y) = 0.1 sin(8πx) and r = 0.01, which enforce eight spatial
gyres that are constant in time. An impenetrable boundary condition is applied
via

ψ|∂D = 0 (3.4)
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along the boundary ∂D of D. For this system a characteristic time scale is the
large eddy turnover time, here estimated to be 2.5 time units [40].
The stochastic equations associated with the Euler equations follow from the
principle of stochastic advection by Lie transport (SALT) for ideal fluid dy-
namics [85]. In this approach, SPDEs are derived from a variational principle.
In fact, a stochastically constrained functional is minimised to obtain an SPDE
which retains the geometric properties equivalent to the corresponding PDE.
The result is that quantities that are advected along an infinitesimal vector
field udt in the deterministic setting are advected along an infinitesimal vector
field ūdt +

∑
i ξi ◦ dBi

t in the stochastic setting. In this chapter, ·̄ denotes a
filtered field representative of scales that can be resolved accurately on a coarse
numerical grid. As a rough rule of thumb, the resolved scales would comprise
of structures for which ∆ ≳ kh where h denotes the uniform grid spacing and
k is a factor that quantifies the desired accuracy requirements. Typically, one
may think of k ≳ 4 for second order accurate methods [69]. The velocity fields
ξi are defined as the eigenvectors of the velocity-velocity correlation tensor
[85], Bi

t is a Wiener process. The symbol ◦ implies that the stochastic integral
should be understood in the Stratonovich sense. This means that the integral
is approximated by Riemann sum defined on the midpoints of the subintervals.
For a good introduction to this material [96] and [84] can be consulted.
Since the velocity field u is divergence-free, each velocity field ξi is divergence-
free [40] and can be expressed by a potential function ζi via ξi = ∇⊥ζi. The
advection velocity can then be written in terms of the potential as

ū(t)dt+
∑

i

ξi ◦ dBi
t = ∇⊥ψ̄(t)dt+

∑
i

∇⊥ζi ◦ dBi
t. (3.5)

Numerically, the velocity fields are projected to divergence-free fields to guar-
antee non-divergence. In this equation the filtered variables are used since the
aim of the stochastic model is to represent the components of the fine-grid
solution that are not resolvable on the coarse grid. The resulting SPDE then
reads [40]

dω̄ + ∇⊥
(
ψ̄dt+

∑
i

ζi ◦ dBi
t

)
· ∇ω̄ = (Q− rω̄)dt, (3.6)

∆ψ̄ = ω̄. (3.7)

3.2.2 Data acquisition

The numerical method for the solution of (3.6)-(3.7) and the flow parameters
are the same as those used in earlier studies [40, 41]. A full description of
the numerical implementation can be found in the former references. Here, for
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completeness, we illustrate the key aspects. A finite element method is em-
ployed to solve the system of equations (3.6) and (3.7). The Poisson equation
for the streamfunction is discretized using a continuous Galerkin scheme. The
vorticity equation (3.1), including the stochastic terms, is discretized using a
discontinuous Galerkin scheme. The space of discontinuous test functions guar-
antees numerical conservation of energy in the absence of source terms [14].
Numerical time integration is performed by applying a third-order strong sta-
bility preserving Runge-Kutta (SSPRK3) method [149]. Writing the stochastic
advection equation (3.6) in the general Stratonovich SPDE form

dω̄ = L(ω̄)dt+
m∑

i=1
Gi(ω̄) ◦ dBi

t, (3.8)

where
L(ω̄) = −∇⊥ψ̄ · ∇ω̄ + (Q− rω̄),
Gi(ω̄) = −∇⊥ζi · ∇ω̄,

(3.9)

the SPDE (3.8) is integrated in time via

ω̄(1) = ω̄n + ∆tL(ω̄n) +
m∑

i=1
Gi(ω̄n)∆Bi

n,

ω̄(2) = 3
4 ω̄n + 1

4

[
ω̄(1) + ∆tL

(
ω̄(1)

)
+

m∑
i=1

Gi
(
ω̄(1)

)
∆Bi

n

]
,

ω̄n+1 = 1
3 ω̄n + 2

3

[
ω̄(2) + ∆tL

(
ω̄(2)

)
+

m∑
i=1

Gi
(
ω̄(2)

)
∆Bi

n

]
.

(3.10)

The subscript n denotes the nth numerical time step. The stages of the Runge-
Kutta algorithm are denoted by the subscripts (1) and (2). The time step
size is given by ∆t and is chosen such that the CFL number does not exceed
1/3. Here ∆Bi

n denote random samples drawn from an assumed probability
distribution with variance ∆t. For deterministic systems, the functions Gi

equal zero.
The term ∇⊥(

∑
i ζi ◦dBi

t) in (3.6) is unknown in the coarsened description and
needs to be modelled. The latter is approximated as follows:

f(x, t)
√

∆t = (u − ū)∆t ≈
∑

i

ξi(x)∆Bi
n. (3.11)

The forcing f in (3.11) is computed as the difference of the Lagrangian trajec-
tories originating by the velocity fields u and ū projected onto the coarse grid.
As such, the forcing is a large-scale correction to ū which measures the part
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of the velocity fluctuation resolved by the coarse grid. The right hand side
incorporates these fluctuations as a stochastic forcing. The measurements are
approximated by coarse-grid resolved fields. This approximation may become
inaccurate in the case of severe coarsening, in which case a large number of
terms must be introduced in the approximation of f to properly capture the
effects of the small scales.
The process of measuring f(x, t) is as follows. A grid with 5122 computational
cells is adopted for the DNS and all subsequent stochastic results are obtained
on a coarse grid of 642 computational cells. The filtered fields are derived from
the fine-grid DNS results and are obtained by applying a Helmholtz operator
to the streamfunction. Given a streamfunction ψ, the filtered streamfunction
ψ̄ is obtained by solving

(I − c∇2)ψ̄ = ψ, (3.12)

where c = 1/642 to filter out length scales smaller than the coarse grid size.
The numerical resolutions and the filter width coincide with those adopted in
[40]. The filtered vorticity ω̄ and filtered velocity ū are recovered from applying
the relations (3.2) and (3.3) to ψ̄. Over the entire simulation interval, this filter
was found to remove approximately 12% of the kinetic energy.
The initial vorticity is prescribed, as

ω0 = sin(8πx) sin(8πy) + 0.4 cos(6πx) cos(6πy)
+ 0.3 cos(10πx) cos(4πy) + 0.02 sin(2πy) + 0.02 sin(2πx),

(3.13)

from which the system will be spun-up during an interval of 100 time units
so that a statistical equilibrium is reached. The time at which this is reached
is denoted by t = 0. The initial fields and corresponding filtered fields at the
end of the spin-up interval are found in Fig. 3.1.

The method to estimate the eddy velocity is the same as presented by [40]
and is based on measuring the trajectories of fluid parcels. A decomposition
of the true trajectories into a drift and a stochastic perturbation is assumed,
which is equivalent to the SALT equations [43]. Here, the drift is computed as
the filtered velocity field. Thus, a space-time sequence of measurements for de-
termining f from (3.11) is obtained by computing the difference of Lagrangian
trajectories of particles advected by the velocity field u and those advected by
the filtered velocity field ū. The difference is measured over a single coarse-grid
time step. The particles are released on the coarse grid points and thus a differ-
ence in traveled distance can be related to each grid point. A correction field is
subsequently obtained by dividing the difference in trajectories by the square
root of the coarse-grid time step, in a manner analogous to particle image ve-
locimetry measurement techniques in experimental fluid flow analysis [1]. The
measurements are done at each coarse-grid time step, from t = 0 (the point at
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Figure 3.1: Fine-grid fields of the vorticity (left), streamfunc-
tion (middle) and velocity magnitude (right) after the spin-
up interval. The top row shows the unfiltered fields, the bot-
tom row shows the corresponding fields after applying the filter

(3.12).

which the simulation is spun-up) until t = 365. By doing so, an array f(x, t)
of fields is constructed. This space-time array of measurements is decomposed
into empirical orthogonal functions (EOFs or EOF modes) [114, 79]. Here, a
total of 4096 EOFs are available (642 degrees of freedom), of which the first 225
are used. These EOFs account for 90% of the energy of the measurements. The
fact that only a small portion of EOFs is needed for an accurate reconstruction
of the forcing is attributed to the Helmholtz filter being a graded filter. The
latter, by construction, filters out not only small-scale dynamics but also part
of the large-scale field, which can be captured by the first 5.5% of EOF modes.
A potential concern in this general framework is that errors might become too
large in case of further coarsening.
Application of the EOF algorithm to a flow that has a definite statistically
steady state yields

f(x, t) = ξ0(x) +
N∑

i=1
ai(t)ξi(x), (3.14)

where ξ0(x) is the time-mean of the measurements, ξi(x) are normalized spa-
tial EOF modes, also referred to as ‘topos’, and ai(t) are the corresponding
coefficients with reference to the measurements, also referred to as ‘chronos’.
These are recorded as time series and may be written instead as

√
λiāi(t).
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Here,
√
λi is the standard deviation of ai(t) and carries the same dimension as

the measurements. The time series āi(t) has unit variance and is dimension-
less. The EOF modes are orthonormal with respect to the inner product, thus(
ξi, ξj

)
= δij , where

(f , g) =
ˆ

Ω
f(x)g(x) dx (3.15)

with Ω the flow domain. Due to the orthonormality, the coefficients ai(t) are
readily obtained by projecting the measured velocity fields onto the basis of
EOFs by

ai(t) = (f(x, t) − ξ0(x), ξi(x)) . (3.16)

In order to have a self-contained model which allows to obtain predictions,
e.g., beyond the time span of the dataset, or as surrogate statistical sample of
the flow, we choose to model the time traces ai(t) as independent stochastic
processes. This will be described in the next section, where also the possible
connection to the available data will be elaborated.

3.2.3 Generating random signals

We will now introduce the models for the time traces (3.16) and subsequently
describe how random signals are generated using these models. By comparing
(3.14) with (3.11) it is clear that modelling Bi

t(t) amounts to modelling ai(t).
The following models are employed:

1. The stochastic process Bi
t in (3.11) is modelled by Gaussian noise. For

its discrete increments ∆Bi in (3.10) we use ∆Bi =
√
λi

√
∆tri, where

ri ∼ N (0, 1). [84].

2. The probability density function (pdf) of āi(t) in is estimated from the
measured signals (3.16) and is subsequently used to draw uncorrelated
samples. Thus, the increments ∆Bi in (3.10) are computed as ∆Bi =√
λi

√
∆tri, where ri is randomly drawn from the estimated pdf.

3. The time series ai(t) in (3.14) is approximated by an Ornstein-Uhlenbeck
(OU) process, using the correlation time obtained from the measurements
(3.16). The constructed OU process is then used to compute ∆Bi in
(3.10).

The probability distributions of model 2 are estimated by fitting a histogram
to the values of the corresponding time series, yielding a separate distribution
for each EOF. The histograms are fully determined by the smallest and largest
measurements and the number of measurements. The number of bins is chosen
as the smallest integer larger than 3√2NM , where NM denotes the number of
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measurements, i.e., the length of the time series. This choice minimizes the
asymptotic mean squared error of the histogram as an estimator of the un-
derlying pdf [168]. Moreover, the measurements are finite due to the spatial
continuity of the numerical solution and the finite time step size, resulting in
histograms with compact support. This guarantees bounded quadratic vari-
ation and finite moments, at the discrete level. Uncorrelated samples from
these distributions are drawn using inverse transform sampling. In the latter
a random number x is drawn from a uniform distribution between 0 and 1,
which can intuitively be thought of as a probability of an event happening,
and subsequently the largest value X is found such that P (X ≤ x) holds for
the estimated distribution [51]. It is expected that the results obtained from
model 2 will converge to those obtained from model 1 when the time step size
is decreased, due to the central limit theorem.
In model 3, the noise generated using the OU process mimics the temporal
correlation of the measured time series. Denoting by Bi

t the approximation of
the time series ai(t), the OU process is defined as [139]

dBi
t = −Bi

t

dt
Ti

+
(2dt
Ti

)1/2√
λi

√
dtri, (3.17)

where ri ∼ N (0, 1). We set Ti to be the correlation time of the measured time
series. These variables are determined for each EOF separately. Here, the
correlation time is defined as the smallest time at which the autocorrelation
function of the time series is smaller than the computed 95% confidence bound.
A consistent choice for a fourth model is one that incorporates the measured
temporal correlation, whilst retaining the estimated probability distribution of
measurements. However, for this approach no tractable algorithm to generate
the stochastic processes was found.
The conservation properties of SALT hold for the proposed stochastic pro-
cesses, since these are semimartingales. Conservation of advected quantities
then follows from the results of [154]. Convergence of model 2 for decreas-
ing time step sizes is guaranteed because the histograms have finite moments.
Convergence of model 3 is established in [96] since the processes are semi-
martingales.
In the next section, we assess the proposed stochastic models by comparing
simulations on the SPDE models to findings from deterministic reference solu-
tions.
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3.3 Assessment of forecast ensembles
In this section, we provide results of forecast ensembles using the aforemen-
tioned methods to generate stochastic signals that serve to force the coars-
ened dynamics. We first identify a maximal prediction horizon for assessing
the forecast ensembles. An adapted reference solution is defined based on the
measurements, incorporating on the coarse numerical grid the measured effects
of small-scale motions. Subsequently, we show results of forecast ensembles.
Statistics are computed and compared to the filtered DNS and the adapted
reference solution to quantitatively compare the different stochastic forcing
methods. Finally, the results are compared in terms of EOF coefficients, to
distinguish between the forecast quality for different lengthscales present in the
flow.

3.3.1 Establishing a maximal prediction horizon

In order to define the maximal prediction horizon until which stochastically
forced coarse numerical solutions can reasonably be compared to the DNS re-
sults, we set up the following numerical experiment. Starting from an initial
condition on the fine grid, we generate a set of perturbed initial conditions of
which we then follow the evolution over time. The perturbations are applied
in Fourier space by shifting the phase of the Fourier coefficients, while keeping
the amplitudes the same. The phase shift is applied only to modes of wave
lengths smaller than the smallest scale resolved by the corresponding coarse
grid, leaving the resolved modes unaltered. Specifically, a value l is chosen and
all Fourier modes with wave numbers |k| = (k2

x + k2
y)1/2 ∈ [l, l+ 1) are affected

by the additional phase shift. Here kx and ky denote the wave numbers in
the x− and y−direction, respectively, and l is chosen as 64, 128 and 256. The
phase shift is set to π to satisfy the boundary conditions.
As time evolves, the initial perturbation increasingly affects the resolved scales,
up to the point where the instantaneous resolved fields will be entirely differ-
ent from each other. We define this point of no longer truthfully following
the unperturbed solution as the maximal prediction horizon Tmax, after which
no model can be expected to consistently give accurate point-wise predictions
owing to the sensitivity of the evolving solution to the initial conditions. The
value of Tmax is expected to depend on the choice of perturbed modes and
choice of simulation parameters. However, in this numerical experiment it
serves to provide an estimate of the maximal predication horizon.
The observed behaviour following the small-scale phase-shift perturbations is
illustrated in Fig. 3.2, together with the results obtained from the unper-
turbed solution. The evolution of the vorticity for the various initial conditions
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has been measured on four illustrative points in the domain, at (0.25, 0.25),
(0.25, 0.75), (0.75, 0.25) and (0.75, 0.75), of which two points are shown in the
figure. It can be seen that the evolution of the vorticity values at the measured
points in the domain is initially indistinguishable. At t = 10 slight differences
are visible and at t = 20 the measured values are markedly different. The latter
result is especially clear at the point (0.25, 0.25), in the left figure. Thus, we
conclude that subsequent stochastic realizations can not be reasonably assessed
after t = 20, which we set as the value for the maximal prediction time Tmax.

Figure 3.2: Development of the vorticity in two points of the
domain, obtained by DNS of perturbed fine-grid initial condi-
tions. On the left, the vorticity is shown at (0.25, 0.25) and
on the right at (0.75, 0.75). The results for the unperturbed
and three perturbed initial conditions are shown. The pertur-
bations are defined by phase-shifting small-scale modes of the
streamfunction field. In the results shown here, the Fourier
modes with wave numbers |k| = (k2

x + k2
y)1/2 ∈ [l, l + 1),

l = 64, 128, 256 are phase-shifted by π.

3.3.2 Defining the reference solution

In order to compare the different stochastic models one has to define a reference
solution. The choice of the latter is not unique. In this work we define two
reference solutions that are employed to measure performance of a given forcing
model. The first one is the filtered fine-grid solution, employing the filter
(3.12), and is indicative of flow scales that can be resolved on the coarse grid.
Next to the filtered fine-grid solution, we define a reference solution as the
numerical solution of (3.6)-(3.7) where the reconstructed signal (3.14), (3.16)
is used in (3.11) instead of the stochastic forcing. This provides a prescribed
deterministic forcing for the coarse numerical simulation. We call this the
adapted reference solution. We note that the structure of the closure term
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(3.11) does not account for discretization error and is itself not an exact closure
since the noise is introduced only in the advection velocity. The inclusion of
discretization error is what sets the filtered DNS and the adapted reference
solution apart. Therefore, by comparing the stochastic ensembles against the
adapted reference solution, one is able to distinguish between modeling error
from the proposed stochastic models and the discretization error.
The adapted reference solution at t = 0, 10, 20, 30 is shown in the top row
of Fig. 3.3. At the same points in time, a single realization of each of the
stochastically forced solutions is shown. The second row shows a realization
using Gaussian noise, the third row using estimated pdfs and the bottom row
using OU processes. The various realizations show no qualitative difference,
suggesting that a more detailed, quantitative comparison of the methods is
required. This is provided in the following subsections.

3.3.3 Uncertainty quantification of ensemble predictions

The evolution of the vorticity and streamfunction is used for uncertainty quan-
tification. First, the ensemble predictions are compared globally to the refer-
ence solution. In this subsection, the ensembles are compared quantitatively
only to the adapted reference solution so that accumulation of discretization
error in the coarse numerical solutions is not included in the comparison. Sub-
sequently, similar to [40] four points in the domain are picked for pointwise
uncertainty quantification. For each point one ensemble standard deviation
around the ensemble mean solution is shown and compared to the reference
solution at the same point. In these tests, the ensemble is initialized from a
single initial condition in order to isolate the effects of the stochastic processes
on the uncertainty of the numerical solution. The initial condition is obtained
by injecting the DNS vorticity field onto the coarse grid. Each SPDE is sim-
ulated up to Tmax = 20, and every ensemble is composed of 200 realizations
of the SPDE. Our interest here lies in comparing the errors and spreads for
the different types of stochastic processes used in the forcing (3.11). Different
error measures will be monitored as outlined next.
For global comparison to the reference solution, we define the pattern correla-
tion

(ω, ωref)√
(ω, ω)(ωref , ωref)

=
´
ωωref dx√´

ωω dx×
´
ωrefωref dx

, (3.18)

which can be considered a global measure of likeness between the vorticity ω
obtained from the stochastically forced numerical solution and the vorticity
ωref obtained from the reference solution. The same quantity is computed for
the streamfunction. The pointwise comparisons are acquired by measuring the
instantaneous vorticity and streamfunction at several grid points.
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Figure 3.3: Coarse-grid fields of the vorticity at various points
in time. The top row shows, from left to right, the adapted ref-
erence solution at t = 0, t = 10, t = 20 and t = 30. The
other rows show realizations of stochastically forced numerical
solutions at the aforementioned times. The second row uses
Gaussian noise, the third row uses random samples from esti-
mated distributions and the bottom row uses OU processes.

The stochastic ensembles are assessed using the ensemble mean, ensemble stan-
dard deviation and ensemble mean error. Here, we denote an ensemble of N
stochastic realizations by {Xi,j}, where i = 1, . . . , N denotes the realization
and j = 0, . . . , T denotes the time index. Then, the ensemble mean at time
instance j is defined as

⟨Xj⟩ = 1
N

N∑
i=1

Xi,j , (3.19)
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and the standard deviation, here referred to as spread, is defined as

Spread(Xi,j) =

√√√√ 1
N

N∑
i=1

(Xi,j − ⟨Xj⟩)2. (3.20)

A small spread indicates a sharp ensemble forecast and a large spread suggests
an increased uncertainty in the forecast. The reference solution Yj , j = 0, . . . , T
is computed at the same time instances as {Xi,j}. The ensemble mean error
of {Xi,j} is then defined as

ME(Xi,j , Yj) = |⟨Xj⟩ − Yj | . (3.21)

A small ensemble mean error indicates that the ensemble closely follows the
reference solution, whereas a large value implies that the ensemble and the
reference solution have deviated considerably from each other.
The correlation measure (3.18) is shown in Fig. 3.4 for the vorticity and the
streamfunction. Using estimated pdfs or OU processes show favourable results
when compared to using Gaussian noise, for both quantities. A clear difference
between the methods can be observed for the vorticity on the time scale of
Tmax. At this point, using estimated pdfs or OU processes yields a smaller
spread than using Gaussian noise, and the results of the latter show a smaller
correlation with the adapted reference solution. A significant increase in the
correlation can also be observed for the streamfunction. The results using esti-
mated pdfs or OU processes, as opposed to using Gaussian noise, exhibit both
a larger likeness with the reference solution as well as a smaller spread. Com-
pared to the ensemble obtained using Gaussian noise, at t = 20 the ensemble
standard deviation of the pattern correlation of the vorticity was found to be
reduced by 24% and 42% when using estimated pdfs and OU processes, respec-
tively. For the streamfunction, these values were correspondingly observed to
be 67% and 84%. Moreover, the results for the estimated pdfs and the OU
processes are nearly indistinguishable before t = 5.
The evolution of the vorticity in four points of the domain is shown in Fig.
3.5. The locations considered are (0.25, 0.25), (0.25, 0.75), (0.75, 0.25) and
(0.75, 0.75). In each of these plots, the colored bands present are the ensemble
standard deviations around the corresponding ensemble mean. In all mea-
sured points, forcing based on Gaussian noise produces the largest spread. It
is clearly visible that using the OU process yields the smallest ensemble spread
and using the estimated pdfs only slightly increases the spread compared to
using the OU process.
The ensemble mean error and the ensemble standard deviation are shown in
Fig. 3.6, where the ensemble mean error (3.21) is taken with respect to the
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Figure 3.4: Pattern correlation (3.18) between the forecast
ensembles and the adapted reference solution for the vorticity
(left) and the streamfunction (right). Each band is defined as
one ensemble standard deviation around the ensemble mean.
The green band is generated using Gaussian noise, the blue
band uses the estimated pdfs and the purple band uses OU
processes. The results for each method are generated for an

ensemble of 200 realizations.

adapted reference solution. It becomes evident that the mean error develops
similarly for each ensemble. The mean errors for ensembles using the estimated
pdfs and the OU process are nearly indistinguishable until t = 10, after which
some smaller differences can be observed. In contrast, using Gaussian noise
results in a much larger spread.
Fig. 3.7 shows the development of the streamfunction in the aforementioned
points of the domain. The streamfunction is a smoother function than the
vorticity, which is reflected in the smooth evolution of the former. In this fig-
ure it can also be observed that all ensembles accurately capture the adapted
reference solution, with the OU model performing slightly better. The plots in
Fig. 3.8 show the ensemble mean error and the ensemble standard deviation
for the same points in the domain. Analogously to the vorticity, we find that
the ensembles using the OU process and the estimated pdfs result in a smaller
spread than the ensemble using Gaussian noise. Furthermore, it is observed
that the ensemble mean error does not exceed the ensemble standard deviation
before t = 10 and only does so occasionally after this point in time, indicating
the reference solution is captured well by the ensembles.

In this subsection we have shown that the three considered stochastic pro-
cesses accurately follow the adapted reference solution for multiple character-
istic time units. Compared to Gaussian noise, using estimated pdfs or OU
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Figure 3.5: Vorticity measured on four
points in the domain. From left to right,
(0.25, 0.25), (0.25, 0.75), (0.75, 0.25), (0.75, 0.75). The solid
and dotted black lines show the development of adapted
reference solution and filtered DNS, respectively. The green
band is generated using Gaussian noise, the blue band uses
the estimated pdfs and the purple band uses OU processes.
The results for each method are generated from an ensemble

of 200 realizations.

Figure 3.6: Ensemble mean error with respect to the adapted
reference solution and ensemble standard deviation for the
vorticity on four points in the domain. From left to right,
(0.25, 0.25), (0.25, 0.75), (0.75, 0.25), (0.75, 0.75). The ensemble
mean error is depicted by the solid lines, the ensemble standard

deviation by the dotted lines.

processes to define the stochastic forcing yielded a smaller spread of the en-
semble forecast. Using a global measure, it is found that the latter two types of
forcing yield ensembles that better resemble the adapted reference solution. In
the next subsection, we perform additional statistical tests to assess short-time
predictions.
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Figure 3.7: Streamfunction measured on four
points in the domain. From left to right,
(0.25, 0.25), (0.25, 0.75), (0.75, 0.25), (0.75, 0.75). The solid
and dotted black lines show the development of the adapted
reference solution and filtered DNS, respectively. The green
band is generated using Gaussian noise, the blue band uses
the estimated pdfs and the purple band uses OU processes.
The results for each method are generated from an ensemble

of 200 realizations.

Figure 3.8: Ensemble mean error with respect to the adapted
reference solution and ensemble standard deviation for the
streamfunction on four points in the domain. From left to
right, (0.25, 0.25), (0.25, 0.75), (0.75, 0.25), (0.75, 0.75). The en-
semble mean error is depicted by the solid lines, the ensemble

standard deviation by the dotted lines.

3.3.4 Statistical tests for ensemble forecasts

Additional ensemble statistics are collected in order to further assess the nu-
merical results of the SPDEs. In particular, forecast ensembles are generated
for short lead times.
Two sets of initial conditions are generated to assess the stochastic models by
sampling from two reference solutions: the filtered DNS and the adapted refer-
ence solution as presented in section 3.3.1. The filtered DNS does not contain
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discretization and modelling error, whereas the adapted reference solution does.
Therefore the use of both reference methods provides insight into the effects of
these errors on the statistical quantities. Two distinct sets of initial conditions
are acquired by sampling the reference solutions at t = 0, 5, 10, . . . , 350, mea-
sured after the spin-up time. An ensemble forecast consisting of one hundred
stochastic realizations is computed for each initial condition. Every stochastic
realization is run for two time units and stored every 0.04 time units in order
to study the results for short lead times. This time interval is similar to time
intervals at which data may be assimilated [41]. Subsequently, the statistics are
computed by comparing the ensembles to the corresponding reference solution.
The statistics are provided below for both sets of initial conditions separately.
As a first quantity we compute the root mean square error (RMSE). Recall
that {Xi,j}, i = 1, . . . , N, j = 0, . . . , T denotes an ensemble of N realizations
measured at T +1 times. The RMSE between the ensemble mean of the SPDE
and the reference solution is computed from

RMSE(Xi,j , Yj) =

√√√√ 1
N

N∑
j=1

(⟨Xj⟩ − Yj)2. (3.22)

This provides a measure for the average error of the ensemble [107]. The plots
in Fig. 3.9 show the development of the RMSE and the spread (3.20) for
increasing lead time for the different stochastic processes. In the left figure the
stochastic ensembles are compared to the filtered DNS, in the right figure the
ensembles are compared to the adapted reference solution. The RMSE values in
the left graph of Fig. 3.9 show rapid growth, indicating that the ensemble mean
deviates quickly from the filtered DNS. In contrast, the RMSE values obtained
using the adapted reference solution show a significant error reduction. This
suggests that the rapid error growth in the left figure is due to the fact that the
gap between the coarse-grid SPDE and the filtered DNS contains not only the
modelling error but also the discretization error. In addition, the right plot in
Fig. 3.9 shows that using the estimated pdfs and the OU process yield similar
values of the RMSE and the spreads develop comparably as well.

The second statistical quantity that we compute are rank histograms, which
are a tool for measuring the reliability of an ensemble of forecasts [78]. A
rank histogram is obtained by plotting the number of occurrences of particular
outcomes of the rank function. Here, the rank function R keeps track of where
the reference solution appears in the list of sorted ensemble members. That is,
given a reference value Yj and a list of N sorted ensemble members {Xi,j}, R
is equal to the integer r that identifies the position of Yj in the sorted list. It
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Figure 3.9: RMSE and spread as a function of time when
comparing the stochastic ensembles to two different reference
solutions. On the left, the filtered DNS is regarded as the refer-
ence solution and on the right the coarse simulation including
the measured ξi is used. The data for each figure consists of 71

ensembles of 100 stochastic realizations each.

is defined as follows:

R (Yj , {Xi,j}) =
{
r if Yj ≥ Xr,j ,

0 otherwise.
(3.23)

If the forecast is reliable, then the reference value and the stochastic realiza-
tions are indistinguishable. This means that the underlying distributions of
the reference value and the stochastic realizations are the same, which implies
that the reference value is equally likely to be larger than any number of en-
semble members. Thus, the rank function is equally likely to take on any value
between 1 and N for reliable forecast ensembles and should therefore produce
a rank histogram which approximates a uniform distribution.
Figures 3.10 and 3.11 show the rank histograms when using the filtered DNS
and the adapted reference solution, respectively, as reference. The measure-
ments at the points (0.25, 0.25), (0.25, 0.75), (0.75, 0.25) and (0.75, 0.75) at a
lead time of 0.2 time units are used to generate the histograms. For each
ensemble forecast the point values are compared to the reference solutions,
leading to 284 ensemble outcomes that are compared to reference values. Only
the rank histograms at this particular lead time are shown here, rank his-
tograms at different lead times displayed similar results.
The rank histograms using the filtered DNS (Fig. 3.10) show clear peaks at
the edges, caused by all ensemble members either overestimating or underes-
timating the truth. This effect is least pronounced when applying Gaussian
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noise, due to the larger spread in the ensemble. The rank histograms obtained
when comparing the ensembles to the adapted reference solution (Fig. 3.11)
show peaks around the center. This is indicates that the reference solution
ranks within the middle range of the ensembles. This is a direct result of the
small mean error. The peaks at the edges are significantly reduced when using
the adapted reference solution. This is especially clear when using estimated
pdfs, which indicates that these ensembles, while showing a small spread, more
accurately capture the reference solution. Overall, the differences between the
rank histograms of the different methods are small. This indicates that reli-
ability of the ensembles does not seem to depend on the choice of stochastic
forcing.

Figure 3.10: Rank histograms using measurements at the
points (0.25, 0.25), (0.25, 0.75), (0.75, 0.25) and (0.75, 0.75) at a
lead time of t = 0.2. A total of 71 ensembles are computed
and measured at the specified points, each consisting of 100
stochastic realizations and compared to the filtered DNS at the

corresponding time.

Figure 3.11: Rank histograms using measurements at the
points (0.25, 0.25), (0.25, 0.75), (0.75, 0.25) and (0.75, 0.75) at a
lead time of t = 0.2. A total of 71 ensembles are computed
and measured at the specified points, each consisting of 100
stochastic realizations and compared to the adapted reference

solution at the corresponding time.
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The third statistical quantity that is presented here is the evolution of
the vorticity over different time spans, conditioned on the vorticity value at a
reference time. That is, the conditional probability distribution

P [ω(t+ τ) − ω(t)|ω(t) = ωref ] (3.24)

is estimated for different values of τ . This quantity describes the statistical
evolution of the vorticity over a time interval of length τ , given a fixed initial
configuration.

The conditional distributions are shown in Fig. 3.12, at lead time τ = 0.04,
and in Fig. 3.13, at lead time τ = 1 to illustrate both short-time and long-
time evolution. In both figures, the conditional distributions obtained from
the reference solutions are shown in the left panel. For comparison, contour
lines of these distributions have been overlaid in the conditional distributions
obtained from the stochastic models. The filtered DNS provides the reference
for the top row of distributions, the adapted reference solution is used in the
bottom row. In particular, the distributions of the stochastic models have been
computed from a set of initial conditions sampled along the filtered DNS and
the adapted reference solution, respectively. In these figures, a large spread in
the vertical direction indicates large uncertainty. This becomes especially clear
for the shortest lead times considered. On such short timescales, the stochastic
forcing adds considerable variance to the numerical solution. Applying Gaus-
sian noise yields the largest spread, whereas using the estimated pdfs and the
OU produce a smaller spread, in accordance with previously presented results.
At lead time τ = 1 (Fig. 3.13), the stochastic conditional distributions do
not show significant differences. To better judge the agreement between the
stochastic conditional distributions and the reference distributions, we compute
the Hellinger distance. This measure allows for a quantitative comparison be-
tween the different distributions. Given two discrete probability distributions
p = (p1, . . . , pK) and q = (q1, . . . , qK), we compute the Hellinger distance [83]

H2(p, q) = 1
2

K∑
i=1

(√pi − √
qi)2 . (3.25)

The distance H2(p, q) of (3.24) is shown in Fig. 3.14 for the filtered DNS (left
figure) and for the adapted solution (right figure). The initial conditions of
the stochastic ensemble and the reference solutions are the same, therefore the
Hellinger distance at τ = 0 is zero. As τ increases, ω(t) deviates from its refer-
ence value and accumulation of error leads to larger values of H2(p, q). Using
the filtered DNS as reference solution yields a comparable Hellinger distance
for each method. In contrast, the comparison of the stochastic ensembles to
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the adapted reference solution clearly favours the models obtained using the
estimated pdfs and OU processes over those where Gaussian noise is employed.
Despite the quantitative difference in the Hellinger distance, the qualitative be-
haviour is the same for each of the stochastic models.
An overall smaller rate of increase is observed when comparing to the adapted
reference solution with respect to the filtered DNS. The latter findings underpin
once more the benefits of using the adapted reference solution when assessing
the quality of different stochastic models.

Figure 3.12: Conditional probability (3.24) for lead time
τ = 0.04. The top row shows the distributions using the filtered
DNS as a reference, the bottom row uses the adapted reference
solution. The contour lines of the reference conditional dis-
tributions are overlaid on the distributions obtained from the

stochastic ensembles for easier qualitative comparison.
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Figure 3.13: Conditional probability (3.24) for lead time
τ = 1. The top row shows the distributions using the filtered
DNS as a reference, the bottom row uses the adapted reference
solution. The contour lines of the reference conditional dis-
tributions are overlaid on the distributions obtained from the

stochastic ensembles for easier qualitative comparison.

Figure 3.14: Hellinger distances as a function of time between
the reference solution and the stochastic ensembles of distribu-
tion (3.24). On the left, the filtered DNS is used as a reference
solution, on the right, the adapted reference solution provides

the reference.

3.3.5 Quantitative assessment of results in spectral space

To distinguish the quality of the proposed models across different lengthscales
we assess the outcomes of the models in spectral space. The EOF modes with
a large energy content and a small energy content are representative of large
lengthscales and small lengthscales, respectively. Therefore, one might discrim-
inate between the lengthscales that are present in the solution by projecting
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the latter onto the basis of EOF modes. This translates into applying the
projection established in (3.16) for the reference solutions and the stochastic
realizations and subsequently examining the obtained temporal coefficients.
We perform uncertainty quantification at different lengthscales by comparing
the EOF coefficients of the stochastic realizations to those of the reference so-
lutions, computed for specified modes. The evolution of the coefficients of four
modes, i = 1, 10, 50, 150, representative of large, intermediate and small scales,
is shown in Fig. 3.15. It is found that the stochastic models accurately follow
the adapted reference solution, but deviate somewhat from the filtered DNS
result, independently of their lengthscale. Similar to the results in previous
subsections, using the OU processes yields the smallest spread, followed by the
estimated pdfs and the Gaussian noise.

To quantify the forecast quality as a function of time, for each EOF mode

Figure 3.15: From left to right, EOF coefficients for modes
1, 10, 50, 150. The solid and dotted black lines show the de-
velopment of the adapted reference solution and filtered DNS,
respectively. The green band is generated using Gaussian noise,
the blue band uses the estimated pdfs and the purple band uses
OU processes. The results for each method are generated from

an ensemble of 200 realizations.

separately, we define the root integrated mean-squared error (RIMSE):

RIMSE(t) = 1
t

(´ t
0

1
N

∑N
i=1 (ai − aref)2 dτ

)1/2

(´ t
0 a

2
ref dτ

)1/2 . (3.26)

This quantity is a measure of the difference between the EOF coefficient ai

of each stochastic realization in the ensemble and the coefficient aref of the
reference solution, integrated over the specified time interval. The values of
the RIMSE are shown in Fig. 3.16 for the four modes considered and compared
to the adapted reference solution. The results suggest that using OU processes
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and estimated pdfs is in general favoured over using Gaussian noise, largely
independent of the lengthscale. For the higher modes, an initial rapid increase
in the RIMSE is observed regardless of the employed method. The results
obtained using Gaussian noise and OU processes show little difference for short
lead times. For increased lead times the latter shows favourable results.

Figure 3.16: From left to right, RIMSE (3.26) for modes 1,
10, 50, 150, compared to the adapted reference solution. The
results for each method are generated from an ensemble of 200

realizations.

An additional verification of the accuracy of the stochastic realizations is
provided by comparing the means and variances of the EOF time series to those
of the reference solutions. These values are shown in Fig. 3.17 for all EOF
modes. Only the results using Gaussian noise are shown to keep the figures
comprehensible. No significant differences were found for the other proposed
models. The mean values of the stochastic realizations and the adapted refer-
ence solution are found to be nearly indistinguishable, whereas slight deviations
from the mean values of the filtered DNS may be observed. The variances of
the time series are also found to be in good agreement with those of the adapted
reference solution, but differ marginally from the variances of the time series
of the filtered DNS.

3.4 Concluding remarks
In this chapter, we have assessed three stochastic models for the simulation of
the coarse-grained two-dimensional Euler equations. The closure is based on
the so-called Stochastic Advection by Lie Transport (SALT) approach. The
resulting SPDE contains a stochastic forcing term that requires to be mod-
elled to close the equations. In particular, the forcing is decomposed into a
deterministic basis (empirical orthogonal functions, or EOFs) multiplied by
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Figure 3.17: Mean values (top) and variances (bottom) of the
EOF time series over the simulated time interval. The solid and
dotted show the development of the adapted reference solution
and the filtered DNS, respectively. The green bands are gener-
ated from an ensemble of 200 realizations using Gaussian noise
and show the ensemble mean of the quantity of interest ± one

ensemble standard deviation.

stochastic temporal traces. This decomposition is, by construction, fully de-
termined from a fine-grid (DNS) dataset. However, to simulate outside the
available dataset one is required to model the time traces. In the framework of
SALT [40] the latter are regarded as Gaussian processes. Here we extend the
stochastic forcing to more general processes, sampling from the data-estimated
probability distribution functions (pdfs) and introducing correlation through
Ornstein-Uhlenbeck (OU) processes. The latter two methods use additional
data already available from the EOF time series. Between the methods no
qualitative differences in the flow realizations were observed. However, the lat-
ter methods generally show favorable results compared to the former Gaussian
method, in terms of ensemble mean and ensemble spread.
To meaningfully compare the different stochastic models we defined a maximal
prediction horizon and an adapted reference solution. The prediction horizon
sets the point in time beyond which a bundle of fine-grid solutions, starting
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from the same initial condition on the coarse grid, deviates on order 1 due to
high sensitivity to the initial conditions. This defines the time frame on which
to assess the statistical quality of the coarse-grid predictions. The adapted ref-
erence solution was defined as the coarse-grid solution using the exact measured
time series of the EOFs for the forcing. The latter allowed us to isolate the
modelling error from other sources of error not taken into account in the consid-
ered model formulation, such as discretization error. The stochastic ensembles
were compared to this reference solution using a global measure and pointwise
values. For both the global and local measures, using either estimated pdfs or
OU processes to define the forcing term yielded a smaller ensemble mean error
and a smaller spread compared to using Gaussian noise.
Stochastic prediction ensembles on timescales relevant for data assimilation
were further investigated by performing statistical tests, comparing ensembles
of stochastic realizations to the adapted reference solution and the filtered
DNS. A significantly smaller ensemble spread was found when using estimated
pdfs or OU processes, compared to using Gaussian noise. Additionally, the
observed mean ensemble error was lower for the former two methods. All three
methods showed rapid growth in ensemble error when compared to the filtered
DNS, suggesting that the filtered DNS contains not only the modelling error
but also the the discretization error and the closure error. These results were
further substantiated by rank histograms, showing that the ensembles were
biased with respect to the filtered DNS, but were overdispersive compared to
the adapted reference solution. In particular, using the estimated pdfs to de-
fine the stochastic forcing rarely resulted in the adapted reference solution not
being contained in the ensemble. Finally, conditional distributions of the vor-
ticity were computed and compared using the Hellinger distance. Here, using
estimated pdfs or OU processes resulted in a smaller distance to the reference
solution than using Gaussian noise, indicating a better statistical characteri-
zation of the vorticity dynamics.
The ensemble forecasts were assessed in spectral space to discriminate between
the different lengthscales present in the solution. The stochastic ensembles
were found to accurately capture the adapted reference solution on the con-
sidered scales. The overall prediction quality using OU processes was found
to be favourable over using Gaussian noise, independent of the lengthscale.
Additionally, the stochastic ensembles were found to accurately reproduce the
mean values and variances of the EOF time series over the entire simulation
period.
The methods presented in this chapter may be used in other flows where EOF-
based stochastic modeling is relevant. These approaches are particularly ap-
pealing since all information used in these methods is readily available from
the EOF decomposition and no additional data is required to construct the
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models. The presented techniques are purely data-driven, they require no fur-
ther assumption about the governing equations and can therefore be applied
to other geophysical fluids. The short-time results indicate that a mean error
reduction and smaller ensemble spread can be obtained using these methods,
which can complement methods employed in data assimilation. Furthermore,
the definition of the adapted reference solution motivates further research of
the SALT method using different closure models and incorporating the dis-
cretization error.
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Chapter 4

Data-driven spectral modeling
for coarsening of the 2D Euler
equations on the sphere

4.1 Introduction
Two-dimensional incompressible hydrodynamics models are fundamental for
studying physical phenomena in atmospheric and oceanic flows. Typical ex-
amples include the two-dimensional Euler equations, quasi-geostrophic equa-
tions, and (rotating) shallow water equations. A characteristic feature of these
flows is the formation of both large vorticity structures through the inverse en-
ergy cascade and small-scale vorticity filaments through the enstrophy cascade
[173]. In realistic conditions, the energy spectrum extends over several orders
of magnitude, making it computationally infeasible to fully resolve all scales
that are present in the flow. Simplifications are required, either by reducing
the complexity of the underlying mathematical model [111] or by reducing the
spatial or temporal resolution with which the dynamics are resolved [23]. In
this chapter, we will focus on high-fidelity coarsening of the two-dimensional
Euler equations on the sphere by applying an online/offline approach to ob-
tain accurate coarse-grained numerical solutions of statistically steady states.
In particular, explicit information on well-resolved dynamics is obtained from
high-resolution simulations in the offline phase, which is applied in an online
control feedback model for accurate coarse-grained simulations.
There is considerable interest in achieving accurate numerical solutions of fluid
flows at reduced computational costs [68]. This forms the main challenge of
Large Eddy Simulation (LES), which aims to provide skillful large-scale pre-
dictions of complex flows by numerically solving spatially filtered momentum
equations. Often, a model term is included to compensate for unresolved dy-
namics due to coarsening to retain a sufficiently detailed description of tur-
bulent flows at high Reynolds numbers [74, 147, 70, 138, 146]. The growing
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availability of computational resources has facilitated the use of high-resolution
direct numerical simulations (DNS) as a source of data from which coarse-grid
fluid models may be derived. Data-driven LES methods have successfully been
developed in recent years, for example, by using neural networks to compute a
variable eddy viscosity [11] to approximate a reference kinetic energy spectrum
[101] or to model subgrid-scale forces [170]. Alternatively, approaches based on
interpolation of small high-resolution patches of the spatial domain [28, 26] and
data-driven residual modeling via global basis functions [57] have also shown
computational efficiency and accuracy in coarse-grained numerical solutions.
Data assimilation provides an alternative method to achieving accurate coarse-
grained results by combining predictions with real-time observations. In con-
tinuous data assimilation (CDA), observational data is incorporated into the
prediction while the numerical model is being integrated in time [4, 31, 49].
Specifically, the difference between the numerical prediction and the corre-
sponding observation determines a nudging term that is added to the gov-
erning equations. Studies on nudging of dissipative fluid models have shown
that a range of nudging strengths may be chosen that all yield an accurate
coarse-grained representation of the true solution [7, 4]. Adaptive nudging
strengths based on energy balance have also been proposed [174] resulting in
faster convergence towards the reference compared to a simulation that ex-
ploits a constant nudging strength. Since these models rely on observational
data to achieve high-fidelity coarsened solutions, the uncertainty originating
from measurement errors has to be taken into account, as well as possible ac-
cumulation of discretization errors [73].
Models of geophysical fluid flows often employ stochasticity as a means to
model uncertainty inherent to flows [136]. Uncertainty arises predominantly
from differences in initial conditions, errors in measurements, and model incom-
pleteness. Low-dimensional models describing qualitative features of geophys-
ical fluid flows often serve as a test bed for stochastic forcing. For example,
stochastic forcing based on subgrid data in the two-scale Lorenz ’96 system
resulted in improved forecasting skill compared to deterministic parametriza-
tions [6]. Ultimately, the exact way in which stochasticity is included in nu-
merical simulations remains a modeling choice and may lead to qualitatively
different effects on the dynamics [71]. These approaches have also been ap-
plied successfully to more complete geophysical models. Examples include the
modeling of uncertainty through Casimir-preserving stochastic forcing for the
two-dimensional Euler equations [40, 56, 35] and energy-preserving stochastic
forcing in the quasi-geostrophic equations [145]. An alternative approach is
based on statistics of subgrid data that lead to a stochastic forcing and eddy
viscosity, which has been applied to the barotropic vorticity equation on the
sphere [62]. This approach was found to accurately model uncertainty and
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produce energy spectra on coarse computational grids that closely match ref-
erence high-fidelity simulations at much higher resolutions.
In this chapter, we propose an online data-driven standalone stochastic model
for coarse numerical simulations of statistically steady states of the two-dimensional
Euler equations on the sphere. Data of a statistical equilibrium is extracted
from an offline high-resolution precursor simulation in the form of statistics
of coefficients of spherical harmonic modes and is included as a stochastic
forcing term closely following the formulation of the continuous-time limit of
the 3D-Var algorithm [45] as presented in [17]. Similar to data-driven LES,
a modeling term is added to the coarsened numerical simulation based on
these a priori collected data. This term models the unresolved interactions
between the modes as a linear stochastic process for each spherical harmonic
coefficient separately and is designed to reproduce the energy spectrum of the
high-resolution simulation. Like CDA, the model term is included as a feed-
back control term. This term nudges the coarse grid solution towards a known
reference solution, chosen here as the statistically steady state. We opt for the
nudging strength to be equal to the inverse of the characteristic time scale of
the corresponding spherical harmonic mode. This choice has the benefit that
it mimics the measured temporal correlation. The nudging procedure is per-
formed via a prediction-correction scheme in which we first fully complete a
time integration step involving all true fluxes and subsequently we apply the
nudge as a correction to the predicted solution. This results in straightforward
implementation in existing computational methods and leads to a numerical
scheme of the same form as the diagonal Fourier domain Kalman filter [80, 115]
with prescribed gain. Striking features of the high-fidelity reference solution
were captured in the coarser model using this stochastic model.
The chapter is structured as follows. The two-dimensional Euler equations and
the adopted numerical method are introduced in Section 4.2. In Section 4.3 we
describe the model and focus in particular on how the model parameters are
specified. In Section 4.4, we define the reference solution and apply the model
at two coarse resolutions. The results are assessed qualitatively and by means
of statistics of Fourier coefficients. Subsequently, we show that the model is
capable of reproducing large-scale vortex dynamics of the reference solution.
Section 4.5 concludes the chapter and suggests directions for further research.

4.2 Governing equations and numerical methods
The model that will be studied in this work is given by the two-dimensional
Euler equations on the unit sphere S2. These equations arise as the two-
dimensional Navier-Stokes equations in the inviscid limit and describe vortex
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dynamics [173]. The dynamics are given in streamfunction-vorticity formula-
tion by

ω̇ = {ψ, ω} ,
∆ψ = ω.

(4.1)

Here ω is the vorticity, ψ is the streamfunction, and {·, ·} is the Poisson bracket.
The vorticity and the streamfunction are related via the Laplace operator ∆.
The vorticity relates to the fluid velocity v via ω = curl v. These equations
are part of a larger family of geophysical fluid models that can be derived from
a variational principle and inherently reflect particular conservation laws [87].
The governing equations (4.1) form a Lie-Poisson system [117] with a Hamil-
tonian H and an infinite number of conserved quantities, known as Casimirs
Ck, given by

H(ω) = −1
2

ˆ
ωψ, (4.2)

Ck(ω) =
ˆ
ωk, k = 1, 2, . . . (4.3)

where the integral is taken over the spatial domain.
A discrete system with a similar Lie-Poisson structure is obtained after so-
called geometric quantization. This structure-preserving discretization is based
on a finite truncation of the Poisson bracket, as proposed in [171, 172] and
rests on the theory of quantization [88, 21, 20]. First, an N > 1 is chosen,
which can be thought of as the numerical resolution. Subsequently, a total
of N(N+1)

2 − 1 global basis functions are determined explicitly before carrying
out a simulation. These functions serve to construct the discrete vorticity
representation W . A finite-dimensional approximation of the system (4.1) is
obtained as

Ẇ = [P,W ],
∆NP = W.

(4.4)

Here W is the vorticity matrix, P is the stream matrix and W,P ∈ su(N),
that is, skew-Hermitian, traceless N ×N matrices.

The discrete system (4.4) is interpreted as follows. A continuous vorticity
field ω on the sphere can be expanded in a spherical harmonic basis {Ylm} as
ω =

∑
l,m clmYlm. The spherical harmonic coefficients clm are used to construct

the matrix W . Namely,

W =
N−1∑
l=0

l∑
m=0

clmT
N
lm, (4.5)

Here, {TN
lm} is the so-called quantized spherical harmonic basis [37], which

provides a particular discrete approximation to the spherical harmonic basis
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{Ylm}. In fact, the quantized representation enables the structure-preserving
discretization [172, 120]. The basis element TN

lm is a sparse skew-Hermitian
traceless matrix, nonzero only on the m-th sub- and superdiagonal. We refer to
[37] for a detailed description of the quantized basis. The quantized Laplacian
∆N can be derived as a complicated expression, given in [89]. The matrix P
then follows by applying the inverse quantized Laplacian to W . The bracket
[P,W ] = PW − WP is the standard matrix commutator. In the limit of
N → ∞, the structure constants of the Lie algebra su(N) converge to those of
C∞(S2) expressed in terms of spherical harmonics. This convergence implies
that smooth functions on the sphere can be approximated by finite-dimensional
matrices by means of Eq. (4.5) [37]. The discrete system is a Lie-Poisson
system with a Hamiltonian H and N conserved quantities Ck,

H(W ) = 1
2Tr (PW ) , (4.6)

Ck(W ) = Tr
(
W k

)
, k = 1, . . . , N. (4.7)

Equations (4.4) are solved numerically using the second-order isospectral mid-
point rule [163, 127], using the parallelized implementation described in [37].
This is a Lie-Poisson integrator, conserving the N discrete Casimir functions
exactly. Given a time step size h, a time integration step proceeds as follows

Wn =
(
I − h

2 ∆−1
N W̃

)
W̃

(
I + h

2 ∆−1
N W̃

)
Wn+1 =

(
I + h

2 ∆−1
N W̃

)
W̃

(
I − h

2 ∆−1
N W̃

)
,

(4.8)

i.e., given Wn the intermediate solution W̃ is obtained first, after which Wn+1
is determined to complete a time-step.

An example of the Euler equations integrated at high resolution using (4.8)
is given in Fig. 4.1. This figure shows the vorticity fields as Hammer projections
in order to display the entire spherical domain. The flow dynamics reveal that
large-scale low-dimensional structures are present in the vorticity field at late
times [128]. This motivates the use of coarse computational grids to capture
the dynamics in the asymptotic time regime. A depiction of this is provided
in Fig. 4.1, showing late stages in the evolution of a high-resolution numerical
simulation initialized from a random vorticity field in which only large scales are
present. After a period of vorticity mixing the solution reaches a statistically
steady state, in which large-scale vorticity structures have emerged and persist.

To compare numerical solutions at different resolutions, we define a fine-
to-coarse filter. Throughout the chapter the applied filter is a spectral cut-
off filter, setting all coefficients corresponding to a wavenumber larger than a
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Figure 4.1: Snapshots of a high-resolution (N = 512) numer-
ical simulation of system (4.4). The vorticity field is initialized
as a random large-scale field (top left), after which it under-
goes a period of vorticity mixing (top right, bottom left) before
reaching a statistically steady state in which large-scale vortic-

ity structures dominate the solution (bottom right).

specified wavenumber to zero. In the following, we consistently choose a cut-
off wavenumber defined by the coarse-grid resolution, which yields a filtered
solution containing only spatial scales resolvable on the corresponding coarse
grid.

Significantly decreasing the resolution yields a qualitatively different sta-
tistically steady state, as shown in Fig. 4.2. Illustrated is a snapshot of the
fine-grid solution (N = 512), a filtered version thereof (only the components
up to N = 64 are shown), and a snapshot of a coarse-grid solution (N = 64)
using the algorithm as outlined in (4.8). These simulations are initialized using
the smooth vorticity field in Fig. 4.1. High-frequency components are visible
in the snapshot of the high-resolution numerical solution, which develop as a
result of the enstrophy cascade. By applying a spectral cut-off filter to the
fine numerical solution we obtain a smooth vorticity field. By definition of
the filter, this field can be fully resolved using the coarse resolution. Since the
filtered fine solution is an orthogonal projection onto the coarse-resolvable sub-
space of solutions, it defines the best attainable result on the coarse grid and
the result is a description of the large-scale components of the flow, influenced
by all fine-grid resolvable scales.
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Figure 4.2: Snapshots of the fine vorticity field (top left), a
filtered version thereof (top right) and a coarse vorticity field
(bottom left) after reaching a statistically steady state. The
energy spectra of the fine and coarse fields are shown in the

bottom right panel.

A clear qualitative difference exists between the filtered high-resolution vor-
ticity and the vorticity obtained at a lower resolution, which is best explained
by analyzing the energy spectra. The energy spectrum of the coarse numerical
solution deviates from the spectrum of the fine numerical solution at the small-
est resolvable scales. Nonetheless, the energy in the large scales is captured
well. Additionally, the energy decay at large wavenumbers follows the same
decay of l−1 as observed in the high-resolution result, where l is the wavenum-
ber. Despite this agreement, the instantaneous vorticity field at the coarse
resolution differs significantly from the high-resolution result. The increased
energy in high-frequency modes of the coarse numerical solution causes the
small scales to dominate the vorticity field observed in Fig. 4.2. We note that
the energy spectrum of the filtered reference solution exactly coincides with the
spectrum of the reference solution until the cut-off frequency at wavenumber
64, by definition of the filter. The discrepancy between the energy levels of the
coarse numerical solution and the filtered reference may therefore be reduced
by an appropriate forcing term. In the next section, we introduce a data-driven
forcing term that yields the desired energy level at each frequency and thus
regularizes the numerical solution.
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4.3 Data-driven spectrum-preserving forcing
In the previous section, we observed that a qualitative difference exists be-
tween the statistically steady states obtained at low and high resolutions. One
of the defining features of a statistically steady state is its kinetic energy spec-
trum. The corresponding energy spectra of the solutions reveal a considerable
difference between the energy levels of the small scales present in the flow.
The discrepancy between the spectra may be reduced by introducing an ap-
propriate forcing or correction term to the coarse numerical simulations. In a
statistically steady state, the spectrum can be fully described using the mean
and variance of the magnitude of the spectral coefficients. Therefore, the goal
of the model is to reproduce these quantities accurately and, in doing so, re-
cover the reference kinetic energy spectrum. In this section, we describe a
forcing that achieves this goal, particularly in situations where the number of
modes is kept low. For this purpose, we opt for a model that aims to match
the mean and variance of the coefficient magnitudes to reference values. This
approach is based on reference data corresponding to independently obtained
highly resolved direct numerical simulations aiming to combine computational
feasibility with accurate flow predictions.

To define the spectral forcing, we expand the vorticity matrix in the quan-
tized spherical harmonic basis

{
TN

lm

}
,

W (t) =
N−1∑
l=0

l∑
m=0

clm(t)TN
lm, (4.9)

with complex coefficients {clm}. The energy in solution components at index
l is then defined as

El(t) =
l∑

m=0
|clm(t)|2. (4.10)

The index l will also be referred to as ‘wavenumber’ following the analogy with
an expansion in spherical harmonics and plane waves [122]. The expansion
(4.9) allows us to formulate the equations of motion (4.4) in terms of the basis
coefficients clm, as

ċlm = L(c, l,m), (4.11)

where L is the spectral representation of [P,W ] and c the vector containing
all basis coefficients. In particular, the evolution of the magnitude of clm will
be expressed as Lr(c, l,m). A special feature of our approach is that the time
stepping acts on W , while the model is applied in spectral space. In the actual
algorithm, a mapping between elements of su(N) and their representation as
quantized spherical harmonic coefficients is needed for this purpose. Therefore
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the operators L and Lr are not required to be explicitly defined or evaluated
but serve only to simplify notation.

A mean-reverting forcing is introduced into the evolution of the coefficient
magnitudes, to ensure that the magnitudes tend to a specified mean value.
Forcing the magnitudes of the basis coefficients is pragmatic since these are
stationary if the solution is in a statistically steady state. Mean reversion is
realized by adding an Ornstein-Uhlenbeck (OU) process to the evolution of the
coefficient magnitude. This way, the reference spectrum can be reproduced in
a coarse numerical simulation. It has been shown [17] that the OU process
arises in the governing equations as the continuous-time limit of the 3D-var
data assimilation algorithm [45]. We thus propose

d|clm| = Lr(c, l,m)dt+ 1
τlm

(µlm − |clm|) dt+ σlmdBt
lm, (4.12)

where µlm and τlm are means and correlation times extracted from a separate
high-resolution simulation. In fact, from a sequence of solution snapshots time
series are obtained for each of the basis magnitudes |clm|, of which µlm is
the mean value and τlm is the characteristic time scale. The relaxation of
the forcing is determined by the time scale τlm. Deviations of |clm| from the
mean µlm are nudged back in order to reduce the differences. Randomness
is introduced via the term dBt

lm in which Bt
lm is a general random process,

defined for each pair l,m separately. The random process can be tailored to
fit the measurement data [56], though the common choice is to let dBt

lm be
normally distributed with a variance depending on the time step size [84]. We
choose the latter in what follows and include the variance scaling in σlm. The
value of σlm depends on the sample variance of the time series, on τlm and on
the adopted time step size and will be specified later in this section.

In the discrete setting, we apply the forcing defined by the OU process
in (4.12) as a correction after time step is completed. This alters a time-
advancement step as follows. Starting from the vorticity Wn at time level
tn, a prediction W̄n+1 of the vorticity at the next time level is obtained by
integrating Eq. (4.4) over one time step using the algorithm (4.8). This pre-
diction is then projected onto the basis of spherical harmonics to obtain the
corresponding basis coefficients {c̄n+1

lm }. Finally, a correction is applied to these
coefficients using (4.12) to obtain {cn+1

lm } which are then used to construct the
vorticity field Wn+1 at the new time level. We note that the correction is only
applied to the magnitude of the basis coefficients. The parameter definitions
in the implementation of (4.12) will now be described.

The correction procedure (4.12) will be referred to as nudging. We distin-
guish between deterministic nudging, using only the deterministic component
of the forcing, and stochastic nudging, using both the deterministic and the
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stochastic component. The former is described as

|cn+1
lm | = |c̄n+1

lm | + ∆t
τlm

(
µlm,det − |c̄n+1

lm |
)
. (4.13)

The stochastic nudge is defined as

|cn+1
lm | = |c̄n+1

lm | + ∆t
τlm

(
µlm,stoch − |c̄n+1

lm |
)

+ σlm∆Bn
lm, (4.14)

where ∆Bn
lm is drawn from a standard normal distribution for each l,m and n

independently.
The nudging procedures in Eqs. (4.13, 4.14) can be characterized as a steady-
state Kalman-Bucy filter [77] with prescribed gain ∆t/τlm. The value of τlm is
chosen to be constant, similar to steady-state filters. At each time step, the ‘ob-
servation’ consists of coefficients for each spherical harmonic mode separately.
The deterministic nudging procedure assumes the observation is a fixed value
µlm,det, whereas the stochastic approach adopts observations as distributed
samples. Here, we use N

(
µlm,stoch, σ

2
lm

)
as distribution and draw independent

samples for each l,m, n separately. Thus, the unresolved interactions between
different spherical harmonic modes are modeled as linear stochastic processes,
independent for each value of l,m. This approach has been introduced as
Fourier domain Kalman filtering [115]. For low-dimensional systems it was
analyzed in Fourier space [80, 29] and also shown to be feasible for filtering
high-dimensional systems.
In the continuous formulation (4.12) τlm can take on any positive value. In the
discrete form (4.13, 4.14), τlm can take on values in the interval [∆t,∞). For
τlm = ∆t the forcing ensures that the magnitude |clm| of the corresponding
coefficient becomes constant in the case of deterministic nudging. In the case
of stochastic nudging, this value of τlm ensures that |clm| evolves as Gaussian
noise with the specified mean and variance. In the limit of large τlm the forcing
approaches zero and the unforced dynamics is retained.
The nudging procedures in Eqs. (4.13, 4.14) are treated as first-order autore-
gressive models with drift coefficient (1 − ∆t/τlm) and mean µlm,stoch, which is
a discretization of the OU process (4.12). The value of τlm is found by fitting
the autocovariance function of the OU process to the sample autocovariance
as obtained from the reference high-resolution simulation. The value of τlm is
expected to decrease as larger wavenumbers l are considered. This increases
the contribution of the model term to the dynamics of the coefficients clm

at those wavenumbers. Therefore, with increasing spatial resolution one will
resolve finer lengthscales associated with larger l, whose contributions corre-
spond closer and closer to the direct observations. This is in accordance with
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theoretical results for filter performance [115].
The values of σlm, µlm,stoch and µlm,det are chosen so that the reference energy
spectrum is reproduced when the model is applied. Treating |clm| as a stochas-
tic variable, we observe that E(|clm|2) is the expected energy content of the
basis element TN

lm. Through the definition of the variance we find that

E(|clm|2) = var(|clm|) + E(|clm|)2 (4.15)

We define σlm so that variance of the autoregressive model coincides with the
sample variance s2

lm of the reference time series, i.e.,

σlm = slm

√
1 −

(
1 − ∆t

τlm

)2
, (4.16)

where slm is the sample standard deviation of |clm| as obtained from the high-
resolution simulation. To obtain the desired energy content, µlm,stoch is subse-
quently chosen as E(|clm|). In the case of deterministic nudging, the variance
of |clm| vanishes when τlm = ∆t. To obtain the desired energy content in this
limit, µlm,det is chosen as

√
E(|clm|2). The mean, variance, and correlation time

are estimated using standard unbiased estimators of which the mean squared
error decreases linearly with the number of used samples. It is assumed that
the mean and variance are constant in time, therefore requiring that the flow
is in a statistically steady state.

For each basis function only three parameters need to be measured: the
mean, the variance and the correlation time. This outlines the simplicity of the
model. These parameters are inferred from the data, do not require additional
tuning and are defined up to the resolution of the reference solution. Further-
more, the basis of spherical harmonics is resolution-independent. Therefore the
forcing parameters only depend on the reference data and not on the choice
of the coarse-grid resolution or time step size, implying that the model is self-
consistent [63]. This is further corroborated in a later section of the chapter
by applying the model at various low resolutions.

4.4 Numerical experiments
In this section, we apply the forcing proposed in Section 4.3 to coarse numerical
simulations. We describe the reference solution and introduce the measured
variables that constitute the model data. The forcing is applied at different
coarse computational grids using several model configurations. The model re-
sults are compared to the reference solution and the no-model coarse numerical
solution and are assessed in terms of statistical quantities of the resulting time
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series of the basis coefficients. Finally, we illustrate that application of the
model yields accurate long-time solutions on coarse computational grids.

4.4.1 Description of reference solution

The reference solution is acquired from the discretized equations described in
Section 4.2 and adopts a resolution N = 512. The initial condition is the
smooth vorticity field as shown in the left panel of Fig. 4.3, which is also
adopted in later numerical simulations using lower resolutions. This initial
condition is randomly generated and contains only large scales of motion. The
vorticity is evolved until t = 6500, shown on the right panel of Fig. 4.3, at
which a statistically steady state is reached. This was verified by averaging the
kinetic energy spectrum over several time durations. High-resolution snapshots
are collected every time unit after reaching this state. A total of 1000 snapshots
is collected to ensure that estimates of the mean, variance, and correlation times
are sufficiently accurate.
By projecting the snapshots onto the basis {TN

lm} a time series of coefficients
for each spherical harmonic mode is obtained. These coefficients are complex-
valued, however, in what follows we will only consider the time series of the
corresponding magnitudes since these are the quantities that the proposed
model acts on.
The forcing parameters are shown in Fig. 4.4, sorted per basis coefficient. Here,
we show the measured means, standard deviations, and correlation times that
are used in the model. On a grid of resolution N a total of N(N + 1)/2 − 1
basis functions TN

lm is available, which can be sorted in ascending order of l and
m. Here only the first 2079 values are shown, corresponding to all resolvable
modes for N = 64, a coarse resolution that will be investigated momentarily. A
decreasing mean value and variance are observed as the scale size is decreased.
This is seen until basis functions with l = 23 are considered, at the 275th basis
coefficient, after which the mean and variance remain roughly constant. This
corresponds to the wavenumber at which the reference energy spectrum follows
the l−1 decay. The measured correlation time τlm becomes smaller as larger
wavenumbers are considered, which indicates that the smaller scales in the flow
behave in an increasingly dynamic manner. The small values of τlm result in
a relatively larger contribution from the model term to the dynamics of the
smallest resolvable scales.

4.4.2 Coarse-grid flow simulations

In this subsection, the performance of the model is tested in coarse-grid numer-
ical simulations of the flow. In particular, the model is applied at resolutions
N = 64 and N = 32 to show that the forcing parameters are applicable at
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Figure 4.3: Left: Initial vorticity field used in the numerical
simulations performed throughout the chapter. Right: Snap-
shot of the vorticity field after reaching a statistically steady

state.

Figure 4.4: Left: measured means and standard deviations
of the absolute value of each basis coefficient of the reference
solution. Right: Estimated correlation time for each basis co-

efficient of the reference solution.

different coarse resolutions. The chosen levels of coarsening provide a signifi-
cant reduction in computational costs. At the same time, the dominant flow
patterns can be accurately resolved, as shown in Section 4.2. Four different set-
tings for the model are studied by varying the minimal wavenumber at which
the model is activated and by either enabling or disabling the stochastic model
term. The scales at which the model is applied are l ≥ 1 and l ≥ 8 for reso-
lutions N = 64 and N = 32, in order to capture the same flow complexity at
different resolutions. The choice of l ≥ 1 corresponds to applying the model
at all available scales, whereas l ≥ 8 only applies to small-scale flow features.
For each resolution, we illustrate the need for modeling by providing snapshots
of the filtered reference solution and the no-model coarse-grid solution. From
these figures, the qualitative features of the solution at different resolutions
become apparent.

We first consider the results at resolution N = 64. A qualitative com-
parison of the different numerical solutions is provided in Fig. 4.5. The top
left panel shows a snapshot of the reference solution at the statistically steady
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state, where the high-frequency components have been filtered from the so-
lution. As before, the applied filter is a spectral cut-off filter where the cut-
off wavenumber is defined by the coarse-grid resolution. Coherent large-scale
vorticity structures that are resolvable on the coarse grid are visible in this
snapshot. The merit of the forcing can be observed through the differences
between the coarse numerical simulation results. The top middle panel shows
the no-model coarse solution, which shows clear qualitative differences with the
reference result. The top right panel and the bottom row show forced coarse
numerical solutions at statistically steady states, using the different forcing
settings. Evidently, the latter snapshots reveal a smoother vorticity field and a
more accurate representation of the reference vorticity, compared to the coarse
no-model simulation. In particular, a qualitative agreement in terms of large-
scale vortex structures may be observed. In this specific case, a large connected
positive vorticity structure (in red) and two smaller negative vorticity struc-
tures (in blue) are reproduced when applying the model. Interestingly, the
proposed nudging concentrates some additional positive vorticity in the tail of
the coherent structure (in red), whereas no such behavior is observed for the
negative vorticity.

Figure 4.5: Snapshots of numerical solutions at a statisti-
cally steady state. Top left: filtered reference solution, dis-
playing only modes resolvable for N = 64. Top middle: no-
model coarse numerical solution. Top right and bottom row:
coarse numerical solution with forcing applied, using the full
model term or only the deterministic part, with varying mini-

mal wavenumber at which the forcing is applied.

The qualitative differences are reflected in the energy spectra, visualized in Fig.
4.6, showing the energy spectra using the forcing for l ≥ 1 and l ≥ 8 in the
two panels. By construction, nudging reduces the energy content in the small
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scales of the flow. Accurate energy levels are observed for both the determin-
istic and stochastic nudging procedures. These results are observed for both
choices of scales at which the forcing is applied. A good agreement in the en-
ergy at the large scales is observed for all performed simulations. Particularly,
the energy spectra demonstrate a striking agreement at the smallest resolved
scales when the model is applied. This suggests that the choice of parameters
for the deterministic and stochastic forcing is well-suited for reproducing the
energy spectra at these scales.

Figure 4.6: Average energy spectra for forced coarse solu-
tions, using N = 64, compared to the energy spectra of the
reference solution and the no-model coarse solution. The forc-
ing is applied at wavenumbers l ≥ 1 (left) and wavenumbers

l ≥ 8 (right).

A quantitative comparison of the statistics of the solutions is given in Figure
4.7. For each basis coefficient, the mean, standard deviation and estimated
correlation time are shown. The mean and the standard deviations of the time
series display similar qualitative behavior regardless of the minimal wavenum-
ber at which the forcing is applied. For these quantities, both the deterministic
nudging and the stochastic nudging lead to significant improvement compared
to the no-model results. Including the stochastic component of the forcing,
based on the high-resolution reference data, leads to an increased agreement
at the smaller scales of the flow, indicating that the inclusion of additional
variance in the forcing of the small scales leads to a truthful reproduction of
these statistical quantities.

The estimated correlation times of the large-scale modes (l ≤ 8) in Fig.
4.7 show that deterministic nudging of all modes yields an improved correla-
tion time compared to the no-model case. However, the stochastic nudging
procedure for l ≥ 1 leads to smaller correlation times compared to the coarse
no-model simulation, implying that the stochastic component of the forcing is

81



Chapter 4. Data-driven spectral modeling for coarsening of the 2D Euler
equations on the sphere

too strong. A qualitative improvement is observed when applying the model
to wavenumbers l ≥ 8, for both deterministic and stochastic nudging. These
results suggest that the evolution of large scales in the flow benefits from an
accurate statistical description of the evolution of small scales. This coincides
with a basic premise underlying large-eddy simulation.

Figure 4.7: Statistics of the basis coefficient time series of the
reference solution, no-model coarse solution, and coarse solu-
tion with the model applied for N = 64. Shown here are the
results when applying the model at wavenumbers l ≥ 1 (top
row) and l ≥ 8 (bottom row). The mean value (left) and stan-
dard deviation (middle) are shown for all wavenumbers. The
correlation time (right) is shown for the large-scale components,

with wavenumbers l ≤ 8.

The numerical experiment is repeated at a resolution N = 32 to demon-
strate that the proposed model yields forcing parameters that can be efficiently
applied at different coarse resolutions. At this resolution, large spatial struc-
tures in the flow may still be resolved with acceptable accuracy. The forcing
will be applied at wavenumbers l ≥ 1 and l ≥ 8, where the model affects all
scales of motion in the former and only the small scales in the latter.

A qualitative comparison of the statistically steady states is given in Fig.
4.8. It may be seen that the model effectively produces a smooth vorticity
field with qualitatively similar features as the reference solution. This is re-
flected by the decrease of energy in the smallest resolvable scales compared
to the no-model formulation, as shown in the energy spectra in Fig. 4.9. As
previously observed, all coarse-grid numerical simulations accurately capture
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the energy in the largest scales of motion. Applying the model also leads to a
notable agreement with the reference solution in the average energy levels of
the smallest resolvable scales.

Figure 4.8: Snapshots of numerical solutions at a statisti-
cally steady state. Top left: filtered reference solution, dis-
playing only modes resolvable for N = 32. Top middle: no-
model coarse numerical solution. Top right and bottom row:
coarse numerical solution with forcing applied, using the full
model term or only the deterministic part, with varying mini-

mal wavenumber at which the forcing is applied.

Figure 4.9: Average energy spectra for forced coarse solu-
tions, using N = 32, compared to the energy spectra of the
reference solution and the no-model coarse solution. The forc-
ing is applied at wavenumbers l ≥ 1 (left) and wavenumbers

l ≥ 8 (right).
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A comparison of the mean value, standard deviation and estimated corre-
lation times of the time series of the basis coefficients is given in Fig. 4.10.
Applying the model leads to a clear improvement in the mean and variance of
the coefficients, regardless of the choice of length scales at which the forcing is
applied. Employing the deterministic forcing at all lengthscales yields a good
agreement in the correlation times, whereas the stochastic forcing reduces the
measured correlation times and yields no improvement. The correlation times
are also found to improve when applying the deterministic model only to com-
ponents with wavenumber l ≥ 8. The stochastic forcing displays no significant
improvement when applied at these wavenumbers.

Figure 4.10: Statistics of the basis coefficient time series of
the reference solution, no-model coarse solution, and coarse so-
lution with the model applied for N = 32. Shown here are the
results when applying the model at wavenumbers l ≥ 1 (top
row) and l ≥ 8 (bottom row). The mean value (left) and stan-
dard deviation (middle) are shown for all wavenumbers. The
correlation time (right) is shown for the large-scale components,

with wavenumbers l ≤ 8.

4.4.3 Large-scale vortex dynamics at statistically steady states

The qualitative predictions of coarse-grained modeled dynamics can be ana-
lyzed by means of the vortex trajectories over long integration times. Here, the
vortex movement is tracked by locating the maximum and minimum attained
vorticity value at each solution snapshot. According to [127], high-resolution
numerical experiments indicate that the ratio between the angular momentum
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and enstrophy governs the number of large-scale vortex structures in the final
statistically steady state. This ratio is determined by the initial condition and
remains constant throughout the no-model numerical simulations since the an-
gular momentum and the enstrophy are conserved quantities in the discretized
system. Additionally, the vortex trajectories are found to be stable. Thus, the
long-term qualitative behavior of the coarse numerical solutions can be assessed
by measuring the number of large-scale vortices and their trajectories. As we
previously observed, the coarse-grained modeled vorticity fields show qualita-
tive agreement in terms of the number of vortices. Here, we demonstrate the
capability of the model to accurately yield stable long-time vortex dynamics
by tracking vortex movement over long simulation times.
The long-time vortex trajectories for various numerical realizations are shown
in Fig. 4.11. The reference trajectories are obtained from the high-resolution
simulation as used in the previous section. The model results at resolutions
N = 32 and N = 64 are obtained by applying the model to wavenumbers l ≥ 8.
The reference trajectories display stable movement along clearly defined trajec-
tories about a fixed axis. Such behavior is not observed for the coarse no-model
results, where instead the extreme values of the vorticity move in a seemingly
unorganized fashion without distinct trajectories. Applying the model to either
of the presented resolutions yields a noticeable qualitative improvement in the
measured vortex movement. In particular, we identify trajectories about the
same fixed axis as the reference trajectories but the model trajectories exhibit
perturbations. The perturbations appear stronger when stochastic nudging is
applied and when coarser grids are considered.

4.5 Concluding remarks
In this chapter, we have proposed and assessed a standalone data-driven model
for the coarsening of the Euler equations on the sphere. High-resolution sim-
ulation snapshots were used as a reference. This data was decomposed into
spherical harmonic modes and corresponding time series of coefficients were
determined. A stochastic model was introduced to compensate for shortcom-
ings introduced by severe coarsening. The model parameters were obtained
from statistics of the spherical harmonic coefficients time series. In particular,
the proposed model was designed to reproduce the kinetic energy spectrum of
the reference data in statistically steady states by adopting a nudging strategy
similar to continuous data assimilation.
The model is imposed using a prediction-correction scheme leading to a formu-
lation similar to a steady-state Fourier domain Kalman filter. We opted for a
separate nudging strength for each of the forced lengthscales, dependent on the
corresponding measured characteristic timescale, and demonstrated that this
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Figure 4.11: Trajectories of large-scale vortices for various
numerical solutions. The red and blue lines denote the trajec-
tories of the maximum and minimum vorticity values, respec-
tively. Shown are the measured trajectories of the reference
solution (top left). The coarse no-model numerical solution
and the coarse solution with the model at resolution N = 32
are displayed on the top row. Both the deterministic and the
stochastic models are applied to wavenumbers l ≥ 8 at this res-
olution. The bottom row shows the realizations at resolution
N = 64, where the model is applied to wavenumbers l ≥ 8.

approach accurately recovers the energy levels in small resolved spatial scales
and leads to stable long-time solutions. Moreover, no assumptions about the
employed resolution are used in the derivation model. This was demonstrated
by first measuring the forcing parameters and subsequently applying the model
on several coarse computational grids. The proposed stochastic and determin-
istic models were not found to differ much in terms of results. Both approaches
yielded accurate kinetic energy spectra at strong coarsening. In addition, the
deterministic model yielded accurate correlation times of the magnitudes of
the spherical harmonic basis coefficients, indicating accurate evolution of the
large-scale flow features.
The results in this chapter show that the decomposition of a high-resolution
reference signal into spatial global basis functions and temporal coefficients can
be employed efficiently to obtain resolution-independent forcing parameters to
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be used in models for coarse numerical simulations. The proposed model relies
on several simplifying assumptions which will be scrutinized in future work. In
particular, the robustness of the model in terms of stability and accuracy with
respect to varying nudging strengths will be assessed. The connection to data
assimilation algorithms and Kalman filtering theory may help to extend the
model and weaken underlying assumptions, for example by including estimated
covariance between different spherical harmonic modes in the model.
The approach presented here is general for flows in statistically stationary
states and is not restricted to the two-dimensional Euler equations or the use
of spherical harmonic modes as a global basis. Different flow settings may be
considered by adopting, for example, a Fourier basis for periodic domains or,
more generally, proper orthogonal decomposition (POD) modes when bound-
aries are present in the domain. Further work will be dedicated to extending the
proposed model to different sophisticated flow settings such as two-dimensional
Rayleigh-Bénard convection, the rotating Euler equations on the sphere, or the
quasi-geostrophic equations on the sphere.
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Chapter 5

Data-driven spectral
turbulence modeling for
Rayleigh-Bénard convection

5.1 Introduction
Turbulent flows are characterized by the distribution of kinetic energy over a
vast range of scales. The nonlinearity in the Navier-Stokes equations ensures
that large and small eddies interact with each other, resulting in a wide range
of dynamic flow features [139]. This process transfers kinetic energy from the
large energy-containing scales toward smaller scales, until the kinetic energy
is finally dissipated by viscosity at the smallest scales. The energy cascade
towards the smallest scales yields a significant challenge in computational fluid
dynamics in the turbulent regime [74, 147]. In order to accurately simulate
the flow, the fluid dynamical model should resolve the scales of turbulence
down to the Kolmogorov length scale. A direct approach would then require
very fine computational grids which is often intractable even with modern-
day computing resources. A common way to alleviate the large computational
requirements is by reducing the numerical resolution at which an approximate
solution to the flow is obtained. To compensate for the lack of refinement of the
computational approach, a model term is subsequently added to the governing
equations to represent the influence of unresolved dynamics on the resolved
components of the flow [70, 138, 146, 68].

In this chapter, we describe how prior knowledge of flow statistics obtained
from an offline fully resolved simulation may be incorporated to construct
an online high-fidelity model for coarse numerical simulations. The proposed
reduced-order model acts on the numerical solution in spectral space, employ-
ing techniques from time series modeling and data assimilation. This model is
designed to yield accurate kinetic energy spectra, despite the rather coarse flow

89



Chapter 5. Data-driven spectral turbulence modeling for Rayleigh-Bénard
convection

representation. We demonstrate the capabilities of this data-driven approach
for two-dimensional Rayleigh-Bénard convection at high Rayleigh number.

Rayleigh-Bénard convection is a fundamental problem in fluid dynamics,
describing buoyancy-driven flows heated from below and cooled from above
[93, 97, 3, 100]. In particular, thermal convection is meaningful in geophysical
processes, such as in describing convective processes in the atmosphere [81] or
the ocean [118]. The large range of scales present in turbulence is also further
affected by buoyancy effects. For example, a common phenomenon observed
in Rayleigh-Bénard convection is the formation of spatially coherent structures
in large-scale circulation [3] and, in larger spatial domains, the formation of
thermal superstructures [153]. On the other hand, a thin boundary layer ex-
ists near either of the walls which becomes turbulent and increasingly thinner
with growing temperature differences between the walls, i.e., growing Rayleigh
number [98, 175]. Properly resolving the boundary layers requires large compu-
tational grids and poses a challenge even in two-dimensional Rayleigh-Bénard
convection [175]. This stresses the conundrum of computational fluid dynam-
ics, where one strives to find a balance between simulating flows at modest
computational costs without adversely affecting the prediction of flow statis-
tics.

Simulating flows at modest computational costs while retaining a high level
of accuracy is the aim of large-eddy simulation (LES) [147, 74]. Instead of fully
resolving all length scales of the flow, a computationally less intensive approx-
imation is found by coarsening the flow description and simultaneously includ-
ing a subgrid model to accommodate the loss of explicit finer details in the
dynamics. The coarsening is accomplished by spatial filtering, which, through
the specification of the filter-width, establishes the required level of refinement
that should be included in the numerical simulations. The subgrid model then
approximates the effect the unresolved dynamics has on the resolved scales,
and serves as a closure for the filtered equations. This approximation depends
on both the adopted filter [75] and selected closure model as well as the choice
of discretization and level of coarsening [103, 11, 22].

With the increase of computational resources, direct numerical simulations
(DNS) of turbulent flows are achievable to an ever-increasing extent and may
serve to generate data from which LES models could be derived. This data-
driven LES has been an active topic of research in recent years. For example,
the decomposition of unresolved dynamics into fixed global basis functions and
corresponding time series yields an efficient approach for which only the latter
needs to be modeled. In [62] DNS data were employed of the barotropic vor-
ticity equation to model the time series of spherical harmonics as stochastic
processes with memory effects, leading to accurate kinetic energy spectra in
coarse-grid simulations. Using proper orthogonal decomposition (POD), [57]
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showed that applying corrections to coarse-grid numerical simulations may
lead to significant error reduction. Machine-learning methods have also been
successfully employed to find subgrid models [11], reporting improved results
compared to traditional eddy-viscosity models. Examples include using artifi-
cial neural networks in two-dimensional decaying turbulence [119] and convolu-
tional neural networks in three-dimensional homogeneous isotropic turbulence
[101], yielding improved energy spectra and turbulent fluctuation distributions.

Incorporating data into numerical models to improve flow predictions is
well-established in geophysical fluid dynamics, where data assimilation has
been successfully employed for several decades. The aim is to improve forecast-
ing by minimizing the differences between observed and modeled values while
accounting for uncertainties [76, 48]. In particular, continuous data assimila-
tion (CDA) aims to nudge the model solution toward an observed reference by
means of a feedback control term acting as external forcing [8, 7]. This con-
cept is also extended to linear stochastic differential equations, arising as the
continuous-time limit of the 3DVAR data assimilation algorithm [17], which
has been shown to successfully steer coarse-grained numerical solutions of the
two-dimensional Navier-Stokes equations towards an observed reference solu-
tion. Additionally, the convergence of coarse numerical solutions augmented
by CDA to an observed reference solution has been proven [60] and shown
numerically for two-dimensional Rayleigh-Bénard convection [4].

The purpose of this chapter is to combine ideas from data assimilation
with large-eddy simulation. In particular, we derive a model term based on
statistical quantities from a reference high-resolution simulation and use this as
a stand-alone model for coarse numerical simulations. Our proposed method
incorporates Ornstein-Uhlenbeck processes in the evolution of the Fourier co-
efficients of the numerical solution, steering the solution towards an a priori
measured statistically steady state. Only three parameters need to be defined
for each Fourier mode, outlining the simplicity of the model. The parameters
are inferred from data, do not depend on the adopted spatial or temporal dis-
cretization, and are defined such that the reference energy spectrum is closely
reproduced in the coarse-grid simulations. The resulting prediction-correction
scheme is of the form of the diagonal Fourier domain Kalman filter [80, 115]
with a fixed prescribed gain. This identification enables future research that
combines LES and data assimilation. The same approach has been applied in
a recent study of coarse-grid modeling of the two-dimensional Euler equations
on the sphere [55], where a decomposition of the vorticity field into spherical
harmonic basis modes was employed in the coarse-grid model.

The chapter is structured as follows. The governing equations and adopted
discretization are described in Section 5.2. The data-driven model is introduced
in Section 5.3, detailing the forcing in Section 5.3.1 and complementary heat
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flux correction in Section 5.3.2. The model performance for a variety of model
configurations is assessed in Section 5.4. Conclusions are presented in Section
5.5.

5.2 Governing equations and numerical methods
In this section, we introduce the governing equations and the simulated case
in Section 5.2.1, the employed numerical discretization in Section 5.2.2, and
illustrate the effects of severe coarsening, without any modeling correction, on
the quality of the solution in Section 5.2.3.

5.2.1 Governing equations

Rayleigh-Bénard (RB) convection is described by the incompressible Navier-
Stokes equations coupled to buoyancy effects under the Boussinesq approxima-
tion. In non-dimensional form, the equations read

∂u
∂t

+ u · ∇u =

√
Pr

Ra
∇2u − ∇p+ Tey, (5.1)

∇ · u = 0, (5.2)
∂T

∂t
+ u · ∇T = 1√

PrRa
∇2T. (5.3)

We restrict to two spatial dimensions in this work. Here, u denotes velocity,
p the pressure and T the temperature. We denote by u and v the horizontal
and vertical velocity components, respectively. Buoyancy effects are included
in the momentum equation by means of the term Tey, where ey denotes the
vertical unit vector. The dimensionless parameters that determine the flow are
the Rayleigh number Ra = gβ∆L3

y/(νκ) and the Prandtl number Pr = ν/κ.
The Rayleigh number describes the ratio between buoyancy effects and viscous
effects and is set to 1010 in order to set the focus on the challenging high-Ra
convection regime. The Prandtl number determines the ratio of characteristic
length scales of the velocity and the temperature and is set to 1. The gravi-
tational acceleration is denoted by g, the thermal expansion coefficient by β,
the temperature difference between the boundaries of the domain by ∆, the
kinematic viscosity by ν, the thermal diffusivity by κ. The computational do-
main is rectangular with horizontal length Lx and vertical length Ly, which are
chosen as 2 and 1, respectively. The domain is periodic for all variables in the
horizontal direction and wall-bounded in the vertical direction. No-slip bound-
ary conditions are imposed for the velocity at the walls. The non-dimensional
temperature is prescribed at 1 at the bottom wall and 0 at the top wall.

92



5.2. Governing equations and numerical methods

Two-dimensional RB convection is fundamentally different from three-dimensional
RB convection. The main advantage of restricting the flow to two spatial di-
mensions is that this enables direct numerical simulation (DNS) at a very large
Rayleigh number [175]. Additionally, the large-scale circulation that appears in
three-dimensional RB convection displays quasi-two-dimensional behavior and
shows strong similarities with the large-scale circulation in two-dimensional RB
convection [161].

5.2.2 Numerical methods

The adopted spatial discretization is an energy-conserving finite difference
method [165] and is parallelized as in [34]. A staggered grid arrangement
is used for the velocity, the pressure is defined at the cell centers, and the tem-
perature is defined on the same grid as the vertical velocity. The latter choice
ensures that no interpolation errors occur when computing the buoyancy term
in Eq. (5.1) [160]. A uniform grid spacing is used along the horizontal di-
rection whereas a hyperbolic tangent grid profile is adopted along the vertical
direction. The non-uniform grid realizes refinement near the walls to resolve
the boundary layer.

Time integration is performed using the fractional-step third-order Runge-
Kutta (RK3) scheme for explicit terms combined with the Crank-Nicholson
(CN) scheme for implicit terms, as presented in [160]. Every time step, from
tn to tn+1, consists of three sub-stages, of which the steps are outlined below.
The superscript j, j = 0, 1, 2, denotes the sub-stage, where j = 0 coincides
with the situation at tn. In each stage, a provisional velocity u∗ is computed
according to

u∗ − uj

∆t =
[
γjH

j + ρjH
j−1 − αjGpj + αjAj

y

(
u∗ + uj

)
2

]
. (5.4)

The parameters γ, ρ, and α are the Runge-Kutta coefficients, given by γ =
[8/15, 5/12, 3/4], ρ = [0,−17/60,−5/12], and α = γ + ρ [34, 160, 141]. More-
over, Hj is comprised of the discrete convective terms, the discrete horizontal
diffusion terms, and the source terms. Here, the only source term is the buoy-
ancy term appearing in the evolution of the vertical velocity. The discrete
gradient operator is denoted by G. The discrete vertical diffusion, given by
Ay, is treated implicitly. The implicit treatment eliminates the severe viscous
stability restriction caused by the use of a nonuniform mesh near the bound-
ary [94]. Subsequently, the Poisson equation (5.5) is solved for the pressure to
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impose the continuity constraint (5.2),

∇2ϕ = 1
αj∆t (∇ · u∗) . (5.5)

Discretely, this equation takes the form

Lϕ = 1
αj∆t (Du∗) . (5.6)

Here, L is the discrete Laplace operator ∇ · ∇ and D is the discrete divergence
operator ∇·. The velocity and pressure are subsequently updated according to

uj+1 = u∗ − αj∆t (Gϕ) (5.7)

and
pj+1 = pj + ϕ− αj∆t

2Re (Lϕ) , (5.8)

after which the velocity uj+1 is divergence-free. Time integration of the energy
equation (5.3) follows similarly. The newly obtained velocity is used to generate
the energy field T j+1 analogously to Eq. (5.4).

The convective terms are discretized using the QUICK interpolation scheme
[106]. The diffusive terms are discretized using a standard second-order finite
difference method, for both spatial directions. Similarly, the discrete gradient
G, the discrete divergence D, and the discrete Laplacian L are defined using
finite differences.

5.2.3 Altered dynamics under coarsening

The DNS is carried out on a 4096 × 2048 grid, which has been shown to be a
sufficiently high resolution for the chosen Rayleigh number [175]. The coarse-
grid numerical simulations will be performed on a 64×32 grid. This coarsening
introduces significant discretization errors and does not allow for an accurate
resolution of the smaller coherent structures present in the flow. The truncation
error of the numerical method on this coarse grid introduces artificial dissipa-
tion and additional high-pass smoothing native to the discretization method
[73]. Fig. 5.1 shows a snapshot of the DNS and the coarse-grid simulation,
both in statistically steady states, from which the huge implications of such
significant coarsening become apparent.

The temperature at the mentioned resolutions is shown in the top row
of Fig. 5.1. The coarsened temperature displays only qualitative large-scale
agreement with the DNS temperature, both yielding similar plumes of temper-
ature and similar large-scale circulation. Obviously, the persistent small-scale
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Figure 5.1: Snapshots of the DNS (4096×2048 grid, left) and
coarse no-model simulation (64×32 grid, right) in statistically
steady states. From top to bottom, we show temperature, pres-

sure, horizontal velocity, and vertical velocity.

coherent structures visible in the DNS snapshot are lost on the coarse grid.
This loss may also be observed for the pressure, depicted in the second row of
Fig. 5.1. The high-resolution and low-resolution fields exhibit clear qualitative
differences, especially considering the absence of distinct low-pressure regions
in the coarse-grid result. A better qualitative agreement between the results
at the different resolutions is observed for the velocity components, shown in
the bottom rows of Fig. 5.1. At low resolution, qualitatively the same flow
patterns can be observed as appear in the high-resolution results, albeit with
decreased magnitude.

95



Chapter 5. Data-driven spectral turbulence modeling for Rayleigh-Bénard
convection

The discrepancies between the velocity and temperature fields at the dif-
ferent resolutions clearly pose the challenge we address in this chapter. In the
next section, we therefore specify our new forcing approach which aims to rec-
tify the observed differences largely. The extent to which this new approach is
successful will be scrutinized in Section 5.4.

5.3 Spectrum-preserving forcing
In this section, we describe a data-driven forcing to augment coarsened nu-
merical simulations of statistically steady states. The high-resolution and low-
resolution snapshots presented in the previous section hinted at the need of
introducing explicit forcing to more accurately represent average flow patterns
on coarse computational grids. Here, we propose a model to reproduce the
kinetic energy spectra in coarse numerical simulations.

The model parameters are extracted from the DNS performed at a 4096×2048
computational grid, from a sequence of 8040 solution snapshots each separated
by 0.05 time units. With these numerical data we achieve sufficiently many
snapshots to reliably recover statistical properties of the flow, which is a pre-
requisite for our model development. The Fourier components of horizontal
cross-sections of the solution are computed for each snapshot, yielding time se-
ries for each streamwise wavenumber at each y-coordinate. The magnitudes of
these complex time series yield mean values, variances, and correlation times
that are used as model parameters. We next present the main steps in the
construction of this model.

5.3.1 Reconstructing the energy spectra

The momentum equation (5.1) and temperature equation (5.3) can be written
as a system of complex ODEs for the mode coefficients through projection onto
a Fourier basis. In what follows, we only describe a spectrum-preserving forc-
ing for the momentum. The same derivation is used to define a forcing for the
temperature. We note that a spectral decomposition of the velocity and tem-
perature fields is not straightforward due to the presence of boundaries along
one spatial dimension. Therefore, we restrict ourselves to one-dimensional pe-
riodic horizontal profiles to ensure that the Fourier series is well-defined. This
choice enables the model to explicitly identify wall-induced features of the
flow. Alternatively, after taking into account the nonuniform grid spacing in
the wall-normal direction the velocity field can be decomposed by applying a
sine transform in the wall-normal direction or by periodically extending the
domain and applying a Fourier transform, but these approaches are not pur-
sued in this study. For a fixed vertical coordinate yl, the profile u(x, yl, t) is
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decomposed into Fourier modes and corresponding complex coefficients ck,l,
where k denotes the wavenumber. The coefficients satisfy the system of ODEs

dck,l

dt = L (c, k, l) , k = 0, . . . , Nx/2, (5.9)

where L involves the spectral representation of of u · ∇, ∇, ∇2 and the source
term in Eq. (5.1). We have already assumed a finite truncation of the number
of Fourier modes in this formulation. The vector c is comprised of all Fourier
coefficients up to the largest resolvable wavenumber.

To arrive at a spectrum-preserving forcing, it is sufficient to consider only
the magnitude of the Fourier coefficients |ck,l|. These evolve according to a
system of ODEs

d|ck,l|
dt = Lr(c, k, l), k = 0, . . . , Nx/2, (5.10)

where Lr is introduced to simplify notation. In the model implementation,
the definition and explicit computation of L and Lr is not required. Regarding
|ck,l| as a stationary stochastic process, we observe that E

(
|ck,l|2

)
describes the

mean energy content of the kth Fourier mode at height yl. By the definition of
variance, we find that

E
(
|ck,l|2

)
= var(|ck,l|) + E (|ck,l|)2 . (5.11)

Thus, it is sufficient to obtain an accurate mean value and variance of |ck,l|
to achieve the desired energy content in the kth Fourier mode. We aim to
reproduce the mean value and variance of |ck,l| by augmenting Eq. (5.10) with
an Ornstein-Uhlenbeck (OU) process,

d|ck,l| = Lr(c, k, l)dt+ 1
τk,l

(µk,l − |ck,l|) dt+ σk,ldW t
k,l, (5.12)

where µk,l, τk,l and σk,l are statistical parameters inferred from a sequence of
snapshots of the reference solution. The desired mean value of |ck,l| is given by
µk,l, the term σk,ldW t

k,l serves to match the measured variance. Here, dW t
k,l is

a general stochastic process which can be tailored to the data [56], although
the common choice is to let it be a Gaussian process with a variance depending
on the time step size [84]. We adopt the latter and include the variance scaling
in the definition of σk,l. The forcing strength is determined by a timescale τk,l

and can be specified per k, l separately. Detailed specifications of the adopted
values of µk,l, σk,l, and τk,l follow shortly. The combination of the original
dynamics and the feedback control, including the stochastic term, arises as
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the continuous-time limit of the 3DVAR data assimilation algorithm [17]. The
model assumes that the unresolved dynamics can be accurately represented
by independent stochastic processes. Interactions in the vertical direction are
included via the fully resolved simulations which are basis to the forcing. We
will demonstrate that this model is capable of producing accurate results.

The model will be applied as a prediction-correction scheme. In the case
of the RK3 scheme adopted in this work, the following steps are performed for
each RK sub-stage. First, the provisional velocity u∗ is computed as in Eq.
(5.4). The Fourier coefficients c̃k,l are computed for this provisional velocity,
after which the model is applied in the form of a correction

|ck,l| = |c̃k,l| + αj∆t
τk,l

(µk,l − |c̃k,l|) + σk,l∆Wk,l, (5.13)

where ∆Wk,l are samples from a standard normal distribution, independently
drawn for each k and l. These are determined for each time step and kept
constant throughout the sub-stages comprising the time step. The correction
only affects the magnitudes of the Fourier coefficients, the phases of ck,l are the
same as those of c̃k,l. Velocity fields are subsequently obtained by applying the
inverse Fourier transform to the corrected coefficients ck,l. After this procedure,
the Poisson equation (5.6) is solved using the newly obtained velocity fields and
the remaining steps of the sub-stage are completed. Applying the model before
solving the Poisson equation ensures that the flow is incompressible at the end
of each RK sub-stage. The entire algorithm, with the exception of solving
the Poisson equation, may also be applied to the temperature equation. This
prediction-correction algorithm has the additional benefit that the model can
be easily implemented into already existing computational methods.

The correction (5.13) will be referred to as nudging. We distinguish be-
tween stochastic nudging, which is described by Eq. (5.13), and deterministic
nudging, for which the stochastic term in Eq. (5.13) is omitted. We define a
mean µk,l,stoch and µk,l,det for these methods, respectively, and specify these
below.

The mean µk,l is specified such that the desired energy content is reproduced
for small values of τk,l. The magnitude of the coefficients is fully determined
by the model in the limit of small τk,l and, as a result, Eq. (5.11) can be
used to derive the mean µk,l. To attain the desired energy contents when
using stochastic nudging, we require that µk,l,stoch = E (|ck,l|). In the case of
deterministic nudging with small τk,l, the magnitudes of the coefficients remain
constant at the value of µk,l,det. Thus, in this situation the variance of |ck,l| is
set to zero and we require that µk,l,det =

√
E (|ck,l|2).

Treating Eq. (5.13) as a first-order autoregressive (AR(1)) process allows
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us to specify the noise magnitude σk,l. For small values of τlm, Eq. (5.13) is
well-approximated by an AR(1) process, indicating that the model should work
well at small scales. We observe that the drift coefficient is (1−αj∆t/τk,l) and
assume that the sample variance s2

k,l is known from the high-fidelity data for
every k, l. The noise magnitude follows by matching the variance of the AR(1)
process with the sample variance, leading to the expression

σk,l = sk,l

√√√√1 −
(

1 − αj∆t
τk,l

)2

. (5.14)

In this chapter, the time scale τk,l will be defined as the autocorrelation of
the time series of |ck,l|, as measured from the high-resolution data. We note
that, with the adopted definitions of µk,l and σk,l, τk,l can take on a range of
values whilst still yielding accurate energy spectra. Robustness of the model
under variations of τk,l will be the subject of future work. In fact, τk,l can
take on any positive value larger than or equal to αj∆t. Small lengthscales are
expected to yield a small value of τk,l, resulting in an increased weight towards
the model term and an increased noise magnitude for the stochastic term in
the nudging. The model term will have a decreased weight at scales for which
a large τk,l is measured, which is often observed for large spatial scales. These
would correspondingly follow the deterministic resolved dynamics more closely.

The proposed prediction-correction method is of the same form as Fourier
domain Kalman filtering [115, 80]. The approach can be understood as a
steady-state filter with a prescribed gain αj∆t/τk,l, for each k, l separately.
By defining a prediction and an observation, the approach can be placed in
the context of data assimilation. At each sub-stage of the RK3 scheme, the
prediction is obtained by evolving the velocity fields according to the coarse-
grid discretization. The ‘observation’ then consists of velocity or temperature
fields sampled from the reference statistically stationary state. For stochastic
nudging, these are velocity or temperature fields where the magnitudes of the
Fourier coefficients are drawn from normal distributions with mean µk,l,stoch
and variance σ2

k,l. In the deterministic case, the observation consists of these
fields with Fourier coefficients of prescribed magnitudes µk,l,det.

5.3.2 Heat transport correction

The heat transport in the turbulent flow is described by the Nusselt number
and is considered the key response of the system to the imposed Rayleigh
number [3]. The definition of the Nusselt number that we adopt here is

Nu = 1 +
√
PrRa⟨vT ⟩Ω, (5.15)
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which is well-suited for use on coarse computational grids. An alternative
definition of Nu involves a gradient of temperature, which is more sensitive to
coarse-graining. In Eq. (5.15) Ω denotes the domain with area |Ω| and ⟨·⟩Ω
denotes the domain average. It is clear from definition (5.15) that vT needs
to be modeled accurately to recover skillful predictions of the heat flux. To
achieve this, we propose a constraint to be used in conjunction with the model
described in Section 5.3.1.

The volume average in (5.15) is comprised of averages of the heat flux along
horizontal cross-sections of the domain. For a fixed vertical coordinate yl, we
denote the heat flux along this cross-section by ⟨vT ⟩l. Along this cross-section,
we indicate the Fourier coefficients of the velocity and temperature with a hat
symbol ·̂ and observe that

(v̂T )0 =
∑

k

v̂∗
kT̂k, (5.16)

where the subscript k signifies the kth Fourier coefficient. The subscript 0
indicates that we consider the zeroth mode of the Fourier series, which by
definition equals the value of ⟨vT ⟩l. We assume that a mean heat flux along
the horizontal cross-section is known from the reference high-resolution data
and denote this value by Fl. Subsequently, the heat flux along the horizontal
cross-section in a coarse numerical simulation is corrected by minimizing the
error ∥Fl −

∑
k v̂

∗
kT̂k∥2 with respect to T . Here, we minimize the error by

varying the phases of the Fourier coefficients T̂k. We alter the temperature
instead of the vertical velocity so that the velocity field remains divergence-free.
Adapting the phases only ensures that the spectrum of the temperature along
the horizontal cross-section is invariant under the heat transport correction. In
total, the heat flux correction is an extension of the nudging procedure (5.13).
It enables a correction of the temperature field solely based on a statistic of
the reference solution, rather than on a dynamic equation. In doing so, the
dependence between the vertical velocity and the temperature is taken into
account in the nudging procedure. Thus, applying the heat flux correction
ensures an improved average Nusselt number estimate and is therefore expected
to improve the accuracy of the numerical solutions.

The error ∥Fl −
∑

k v̂
∗
kT̂k∥2 is minimized using a gradient descent algo-

rithm. We note that the correction may in principle yield an arbitrarily good
approximation of the reference heat flux, but this is not guaranteed to produce
physically relevant results. Instead of aiming for an exact agreement of the
mean heat flux, we apply the gradient descent algorithm until the heat flux
in the horizontal cross-section is within a 10% margin of the reference value.
This serves to demonstrate the added value of the correction. Preliminary tests
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have shown that this already improves the heat flux significantly without qual-
itatively altering the temperature field. In the next section, coarse numerical
simulations are performed both with and without the heat flux correction. The
optimization of this procedure is beyond the scope of this chapter.

5.4 Model performance
In this section, we apply the model in eight different configurations to numerical
simulations on the coarse grid. The configurations are listed in Table 5.1
and differ in the variable that is being forced, the wavelengths at which the
forcing is applied, and whether the forcing is deterministic or stochastic. These
configurations will be referred to as M0-7, inspired by the nomenclature used
in the comparison of LES models in [166]. Here, the wavenumbers at which
the forcing is applied are chosen as l ≤ 5 and l ≤ 32. The former implies
that the model only explicitly acts on the large scales of motion and the latter
implies that all resolved scales are directly affected by the model. This set of
configurations is chosen to distinguish between the effects of large-scale forcing
and small-scale forcing, deterministic forcing and stochastic forcing, and the
choice of the forced variable. The model simulations are run with a time step
size ∆t = 0.02. The minimal obtained value of τk,l is found to be larger than
αj∆t as described in Section 5.3.1. Therefore, the dynamics in cases M1-7 will
always be a combination of the discretized dynamics and the model and will,
at any wavenumber, not depend solely on the model.

Table 5.1: Model configurations used in the coarse numerical
simulations.

Model Forced variable Wavelengths Curve
Filtered DNS solid

M0 No model dashed
M1 deterministic u k ≤ 5 dash-dotted
M2 deterministic u k ≤ 32 dotted
M3 stochastic u k ≤ 5 ∗
M4 stochastic u k ≤ 32 +
M5 deterministic T k ≤ 32 ×
M6 deterministic u, T k ≤ 32 □

M7 deterministic, heat flux
correction

u, T k ≤ 32 ♢
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We first provide in Section 5.4.1 an impression of the qualitative improve-
ments obtained when applying the model. In the ensuing subsections, a de-
tailed quantitative comparison is carried out. Several quantities will be com-
pared with the filtered DNS data to gain insight into the quality of the model.
In Section 5.4.2, we first verify that the model approximates the average energy
spectra of the filtered DNS by comparing the spectra of the velocity and the
temperature near the wall and in the core of the domain. In Section 5.4.3, the
mean temperature, the mean heat flux, and the root-mean-square deviation
(rms) are measured as a function of wall-normal distance and compared to the
reference. Finally, global flow statistics such as the total kinetic energy and
the Nusselt number are examined in Section 5.4.4.

The rms, mean temperature and mean heat flux rely on averages along
horizontal cross-sections of the domain. For a fixed value of y, we adopt the
following definition

rms(f, y, t) =
[ 1

|A|

ˆ
A

(f(x, y, t) − ⟨f(x, y, t)⟩A)2 dA
]1/2

, (5.17)

where ⟨·⟩A denotes the average over the horizontal cross-section with length
|A| and f is the field of interest. The mean temperature and heat flux are
computed as the mean ⟨·⟩A of the corresponding fields. The global kinetic
energy will be computed as

KE =
ˆ

Ω

1
2
(
u2 + v2

)
dΩ (5.18)

and the Nusselt number follows from definition (5.15).
Our interest lies in the time average of the aforementioned quantities. The

quality of coarse-grid models is therefore measured by comparing averaged
quantities rather than instantaneous quantities [103, 166]. The energy spectra,
rms values and mean temperature, and heat flux will be measured after the
coarse-grid numerical simulations have reached a statistically steady state. The
global quantities of interest are illustrated using a rolling average over time.

5.4.1 Qualitative model performance

A qualitative comparison of the model configurations M0-7 is given in Fig. 5.2
to Fig. 5.5. In these figures, the snapshots of the DNS and of M0 are the same
as depicted in Fig. 5.1. A comparison of the temperature fields in statistically
steady states is provided in Fig. 5.2. Here, we observe that the configurations
M1-4 do not lead to significant qualitative changes in the temperature field
when compared to the no-model configuration M0. In these configurations,
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the temperature is not explicitly forced and suffers from artificial dissipation
inherent to the coarsening. The model configurations M5-7, in which the tem-
perature is forced directly, display more pronounced small-scale features. At
the same time, the large-scale circulation pattern is still visible in these results.
In addition, from the results of M6 and M7 we conclude that applying the heat
flux correction does not lead to qualitatively different temperature fields.

Figure 5.2: Temperature fields in statistically steady states.
Shown are the reference solution and the results obtained with
coarse numerical simulations M0-7. The color scheme is the

same as used for the temperature fields shown in Fig. 5.1.

The pressure fields of the corresponding solutions are shown in Fig. 5.3.
Here, we recall that any detail obsereved in the DNS pressure field is lost in the
coarse no-model result M0. No improvements are observed in the pressure field
when only the temperature is explicitly forced, as is done in M5. The remaining
model configurations all yield a distinct qualitative improvement in the pressure
fields. In particular, only applying a large-scale velocity correction already
qualitatively changes the pressure field. This is observed for the deterministic
and the stochastic forcing, given by M1 and M3, respectively. The addition of
forcing the velocity at small scales or simultaneously forcing the temperature
does not yield additional significant changes. A noticeable difference exists
between the deterministic and stochastic methods. As becomes clear from M3-
4, the random forcing leads to a fragmentation of the coherent structures in
the pressure field.
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Figure 5.3: Pressure fields in statistically steady states.
Shown are the reference solution and the results obtained with
coarse numerical simulations M0-7. The color scheme is the

same as used for the pressure fields shown in Fig. 5.1.

The horizontal velocity fields and vertical velocity fields are provided in
Fig. 5.4 and Fig. 5.5, respectively. We observe that all coarse numerical
solutions display agreement with the DNS in terms of large-scale coherent
structures. Nonetheless, artificial dissipation leads to an underestimate of the
velocity magnitude in cases M0 and M5. This suggests that only forcing the
temperature is not sufficient for accurately reproducing the velocity fields. The
other cases indicate that explicitly forcing the velocity leads to accurate velocity
magnitudes.
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Figure 5.4: Horizontal velocity fields in statistically steady
states. Shown are the reference solution and the results ob-
tained with coarse numerical simulations M0-7. The color
scheme is the same as used for the horizontal velocity fields

shown in Fig. 5.1.

5.4.2 Energy spectra

We now establish that the model proposed in Section 5.3.1 improves the average
energy spectra of the forced variables. The average energy spectra of the
velocity components and the temperature are shown in Fig. 5.6, displaying
the spectra along a horizontal cross-section near the wall and in the center of
the domain. Both near the wall and in the center of the domain, respectively
shown in the top and bottom row, the no-model M0 results exhibit significant
differences compared to the filtered DNS. The measured energy levels of the
velocity are too low with M0 at all resolved scales. In contrast, a significant
discrepancy in the temperature spectra is observed only for wavenumbers larger
than 10.

The discrepancies in the spectra of M0 and the reference are attributed
to artificial dissipation caused by the coarsening. In particular, the numeri-
cal dissipation affects both the velocity and the temperature spectra at higher
wavenumbers. Through the nonlinear interactions in the momentum equation
the velocity is adversely affected at all wavenumbers. This is further cor-
roborated by the results of M2 and M4, where all available lengthscales are
forced only for the velocity. In the core of the domain, where the coarsening
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Figure 5.5: Vertical velocity fields in statistically steady
states. Shown are the reference solution and the results ob-
tained with coarse numerical simulations M0-7. The color
scheme is the same as used for the vertical velocity fields shown

in Fig. 5.1.

is strongest, these results display accurate velocity spectra but yield no im-
provement in the temperature spectra, suggesting that the temperature still
suffers from artificial viscosity in these cases. Apparently, the improvements
in the velocity spectra influence the prediction of the temperature only to a
small degree.

The large-scale velocity forcing applied in M1 and M3 yields improved ve-
locity energy levels at low wavenumbers. However, the improvement gradually
vanishes at higher wavenumbers. These configurations exhibit no improvement
in the temperature spectra. The cases M2 and M4 lead to an improved agree-
ment on the velocity spectra at all wavenumbers in the center of the domain,
establishing the spectrum-reconstructing property of the model described in
Section 5.3.1. Nonetheless, all models underestimate the large-scale energy in
the center of the domain. At these scales, the measured correlation time τ is
large and therefore the model contribution is limited.

Near the wall, the horizontal velocity is accurately represented at all wavenum-
bers despite the fact that the energy of the vertical velocity deviates from the
reference for wavenumbers larger than 15. The temperature spectra for M2
and M4 near the wall show good agreement with the reference. Comparing
this to the results of M1 and M3 indicates that the prediction of near-wall
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temperature is improved by the forcing of small-scale velocity despite no ex-
plicit forcing being applied to the temperature. No improvement is observed
for these cases in the center of the domain, which we attribute to artificial
dissipation.

The velocity spectra show no significant change when only the temperature
is explicitly forced, as observed from the results of M5. This case produces
an accurate temperature spectrum in the core of the domain and yields an
improved spectrum near the wall. Additionally forcing the velocity significantly
improves the velocity spectra, as is observed for cases M6 and M7. Here, we
observe good agreement for the velocity and the temperature across all length
scales in the center of the domain. In particular, a definite improvement is
observed when comparing the temperature spectrum to those of M1-4. Near the
wall, the horizontal velocity and the temperature are both captured accurately,
while the vertical velocity still deviates for wavenumbers larger than 15. The
similarity between the spectra obtained for M6 and M7 indicates that the heat
flux correction described in Section 5.3.2 does indeed not lead to significant
changes in the spectra.

5.4.3 Flow statistics

The mean temperature and mean heat flux are displayed in Fig. 5.7 as a
function of the wall-normal distance. All models except M5 efficiently mitigate
the small mean temperature discrepancy between M0 and the reference.

The mean heat flux of the no-model M0 case is consistently too low, which is
a direct result of underestimating the vertical velocity. Applying the large-scale
velocity forcing as done in cases M1 and M3 yields an improved heat flux. In
particular, the measured heat flux near the wall shows good agreement with the
reference. The mean heat flux is consistently overestimated when the velocity is
forced at all wavenumbers, which is the case for M2, M4, and M6. Comparison
of the results of M6 with M7 establishes that the heat flux correction described
in Section 5.3.2 ensures a better prediction of the mean heat flux. Finally, only
imposing the temperature spectrum deteriorates the measured heat flux, as
shown by the results of M5.

These observations in combination with the energy spectra of the previous
subsection expose the simplifying model assumptions discussed in Section 5.3.1.
Despite accurate energy spectra of all variables, the M6 model does not yield
an accurate heat flux. This indeed suggests that the energy spectra alone do
not provide sufficiently strict modeling criteria for obtaining accurate coarse-
grid numerical simulations, and instead benefit from additional cross-variable
constraints such as the imposed heat flux.
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Figure 5.6: Time-averaged energy spectra measured along
horizontal cross-sections of the domain for the horizontal veloc-
ity (left column), vertical velocity (middle column), and tem-
perature (right column). The cross-sections are taken near the
bottom wall (top row) and the core of the domain (bottom row).
The cross-sections are taken at y = 8.5 × 10−4, y = 5.5 × 10−1

for the horizontal velocity and at y = 5.0×10−4, y = 5.0×10−1

for the vertical velocity and the temperature. The solid lines
show the average spectra of the filtered DNS, the model results

are displayed using the symbols in Table 5.1.

The rms of the velocity components are shown in the left and middle panels
of Fig. 5.8 as a function of the wall-normal distance. A strong reduction of
the turbulent intensity of the velocity is observed for the no-model M0 results.
Similar to previous observations for case M5, only forcing the temperature
does not lead to improvements in the rms of the velocity. All other model
configurations lead to a comparable improvement in the rms of the horizontal
velocity. A slight difference between the stochastically forced and deterministi-
cally forced solutions may be distinguished in the rms profiles of the horizontal
velocity, visible in the results of M3-4. Comparable results are observed for the
rms of the vertical velocity, where all models except M0 and M5 display good
agreement with the reference.

The average temperature fluctuations are shown in the right panel of Fig.
5.8. We observe that all model configurations except M0 and M5 predict the
wall-normal distance of the peak of the fluctuations accurately. However, the
model overestimates the maximal predicted rms by 7.5% to 18%.
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Figure 5.7: Comparison of the time-averaged temperature
(left) and time-averaged heat flux (right) measured along hori-
zontal cross-sections of the domain and displayed as a function
of the wall-normal distance. The solid line shows the mean val-
ues of the filtered DNS, the model results are displayed using

the symbols in Table 5.1.

Figure 5.8: Root mean square (rms) of the horizontal veloc-
ity (left), vertical velocity (middle), and temperature (right),
measured along horizontal cross-sections of the domain and dis-
played as a function of the wall-normal distance. The solid line
shows the rms values of the filtered DNS, the model results are

displayed using the symbols in Table 5.1.

5.4.4 Total kinetic energy and heat flux

A comparison of the rolling mean of the total kinetic energy (KE) is shown
in Fig. 5.9. The improvement obtained by M1-4, M6, and M7 is evident. At
t = 400, the mean of the KE for M1 is approximately 31% of the reference KE.
Only forcing the temperature, shown by M5, deteriorates the total energy and
yields roughly 27% of the reference value. The other models contain between
72% and 77% of the reference value. It is reasonable to assume that this
discrepancy is predominantly caused by the model underestimating the energy
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in large scales in the center of the domain, as was discussed in Section 5.4.2.

Figure 5.9: Comparison of the rolling mean of the kinetic
energy (KE) over time. The solid line shows the KE of the
filtered DNS, and the model results are displayed using the

symbols in Table 5.1.

A quantification of the total heat flux in the domain is provided by com-
paring the time-averaged Nusselt number, shown in Fig. 5.10. Note that the
reference value Nu = 95 is shown with 5% error margins. The no-model coarse-
grid simulation leads to an underestimated heat flux resulting from the reduced
velocity magnitude induced by artificial dissipation. The temperature forcing
in case M5 was previously shown to not yield any improvements in the mean
temperature or the velocity and does therefore not improve the Nusselt number
estimate. A correction of the large-scale velocity features in configurations M1
and M3 leads to a very accurate Nusselt number estimate. Nonetheless, an
accurate description of the velocity does not guarantee an accurate heat flux.
This is underpinned by the results of M2, M4, and M6, which all exhibit an
accurate representation of large and small velocity features, but consistently
overestimate the Nusselt number. Finally, we observe that this adverse effect
is efficiently mitigated by the heat flux correction, as becomes evident from the
resulting Nusselt number estimate of M7.

5.5 Concluding remarks
In this chapter, we have proposed a data-driven model for coarse numerical
fluid simulations and assessed its performance when applied to two-dimensional
Rayleigh-Bénard convection. Statistical information of Fourier coefficients of
a reference direct numerical simulation was used to infer model parameters,
which constituted a forcing term for reproducing the reference energy spectra.
The model parameters are defined such that the model weighs strongly towards
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Figure 5.10: Comparison of the rolling mean of the Nusselt
number over time. The solid line at Nu = 95 shows the the-
oretically predicted value, with 5% error margins given by the
dashed lines. The model results are displayed using the sym-

bols in Table 5.1.

the small scales. Various model configurations were applied to gain insight
into the model performance, generally leading to improved results compared
to using no model.

Applying the model at all wavelengths resulted in significant improvement
of the spectra both near the walls and near the center of the domain, which
established that the model had its desired effect on the numerical solution. Ad-
ditionally, the application of the model was found to yield improved estimates
of flow statistics. In particular, the average turbulent fluctuations and average
temperature improved significantly compared to the no-model case. The total
kinetic energy was found to improve upon using the model but highlighted that
the large-scale features might benefit from less assumptive approaches. Finally,
the measured total heat flux was accurately captured for several model con-
figurations, although accurately reconstructing energy spectra was shown not
to be a sufficient criterion for this purpose. The latter problem was efficiently
alleviated by including a constraint on the average heat flux in the model.

Future work will be dedicated to expanding the proposed model by consult-
ing Kalman filtering theory. Specifically, the interactions between the Fourier
modes can be explicitly represented by including covariance estimates in the
model. This would additionally serve to verify at which frequencies the Fourier
modes evolve independently, which is expected to result in a better under-
standing of the modeling of small-scale flow features. Alternatively, spatially
coherent structures can be included in the model by applying proper orthogo-
nal decomposition to the reference data, as demonstrated in [58]. Although no
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assumptions are made about the numerical method or adopted coarse resolu-
tion in the formulation of the model, further numerical experiments adopting a
different resolution or discretization may be carried out to assess the robustness
of the model.
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Chapter 6

Conclusions and outlook

The goal of this thesis was the study and development of data-driven stochastic
models for numerical simulations of geophysical fluid flows on coarse compu-
tational grids. This was achieved by decomposing spatiotemporal data into
fixed spatial basis functions and corresponding time series. The latter were
modeled as stochastic processes or served to define stochastic forcing, yielding
systematic approaches to quantify uncertainty and model subgrid-scale effects
on resolved dynamics. Here, we summarize our main findings and specify chal-
lenges and directions for future research.

Chapter 2 dealt with exact error measurements and consequent reduced-
order corrections for coarsened numerical simulations. A numerical study was
carried out for the one-dimensional shallow water equations, governed by the
evolution of momentum and free surface height. A finite difference (FD)
method and a finite element (FE) method were employed, representative of
much-used numerical methods. We presented a measurement procedure that
exactly captured the subgrid-scale processes on coarse computational grids over
one time step, by using high-resolution numerical data. These measurements
consisted of the effects of unresolved dynamics and discretization error on the
resolved scales of motion and yielded, for the specified initial conditions, data
with which the high-resolution numerical solution could be perfectly recon-
structed. The proper orthogonal decomposition (POD) algorithm was subse-
quently applied to the subgrid-scale data to obtain a reduced-order correction.
The POD modes (also referred to as empirical orthogonal functions or EOFs)
differed for the methods investigated, due to the coarse-grid measurements
being strongly dependent on the adopted discretization.

Application of the reduced-order correction showed that a significant error
reduction can already be achieved by using a small number of modes in the
correction term, which was demonstrated on two coarse computational grids.
Additionally, the error reduction was found to depend strongly on the corrected
variable. Namely, correcting only the velocity in the FD method and only the
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free surface height in the FE method led to considerable error reduction. This
corresponds to correcting the variables that dominated the discretization er-
rors in the adopted methods. On the contrary, only correcting the free surface
height in the FD method and the velocity in the FE method yielded at most
a small improvement in the quality of the numerical solution. The chapter
concluded with a test of the reduced-order correction applied in numerical
simulations with perturbed initial conditions. While the measurements and
corresponding correction terms were defined for one specific initial condition,
such perfect estimation of forcing parameters is usually not available in numer-
ical simulations of fluid flows. By perturbing the initial conditions, two new
test cases were defined where the previously obtained measurements could be
considered as an approximation of the true measurements. This may be re-
garded as a more realistic modeling setting than the earlier results presented
in this chapter. In the cases with perturbed initial conditions, the prescribed
correction was still found to yield a substantial error reduction. This result
suggested that the quality of coarse-grid numerical simulations can already be
considerably improved by using a small number of POD modes and that the
time series modeling tolerates some level of approximation without a significant
loss of accuracy.

Chapter 3 concerned a study of uncertainty quantification for the two-
dimensional Euler equations on the unit square. An extension of the work of
[40] was presented, where stochastic advection by Lie transport (SALT) [85]
was employed to quantify uncertainty. In SALT, a stochastic forcing term is
added to the advection velocity and, as a result, Casimir functions remain
constant under the stochastic perturbations. A high-resolution numerical sim-
ulation was used to compute Lagrangian trajectories, which were compared to
trajectories based on a filtered version of this solution. The difference between
the Lagrangian trajectories defined a space-time array of measurements and
acted as input for the POD algorithm. When executing the POD algorithm
using the singular value decomposition (SVD), one simultaneously obtains the
spatial profiles (POD modes), their captured energy (the eigenvalues), and
the corresponding time series. Thus, the time series data can readily be used
to derive a stochastic forcing without a significant increase in computational
costs. The novelty of this work consisted of the derivation and application of
two data-driven types of stochastic processes per POD mode, which lead to
smaller ensemble spreads without loss of accuracy. The resulting stochastic
forcing used either uncorrelated noise with an underlying distribution as the
empirical probability density function (pdf) of the time series data or noise with
a correlation time equal to that of the time series. This way, the generated
signals mimicked the statistical properties of the measurements. The complete
stochastic forcing term consisted of 225 POD modes accounting for 90% of the
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variability of the measurements, out of a total of 4096 modes, each multiplied
by noise generated from an independent stochastic process as described above.

A new reference solution was computed in order to assess the quality of
the stochastic models. This reference was obtained by adding the exact mea-
surements as a deterministic forcing term to the advection velocity, thereby
eliminating the effects of discretization error in the comparison between the
models and the reference. The main finding was that using the estimated pdfs
or the time-correlated noise yielded stochastic ensembles with a smaller spread
than when Gaussian noise was used. At the same time, the ensemble mean er-
ror of the newly proposed methods was generally found to be smaller than when
Gaussian noise was employed for the stochastic forcing. These results suggest
that a strict uncertainty quantification, in terms of ensemble spread, may be
obtained without loss of accuracy and without an increase in computational
costs by generating random signals that adhere to the statistical properties of
the original measurements and using these signals to define a stochastic forcing
term.

In Chapter 4, we turned our attention to data-driven stochastic subgrid-
scale modeling. For this purpose, we introduced a forcing that could be used
deterministically or stochastically, with forcing parameters that depended only
on the available reference data. The forcing entered the governing equations
at the level of the spectral coefficients of the numerical solution as a mean-
reverting stochastic process. The quality of the model was assessed for the
two-dimensional Euler equations on the sphere. The presented approach can
be regarded as an extension of the work of Chapter 2. Instead of having a
prescribed forcing specified for a single initial condition, the proposed method
dynamically estimates a forcing term based on the current state of the dynam-
ical system. The forcing acted on the coefficients of the spherical harmonic
basis functions, which are determined up to the resolution of the reference
data. Therefore, the forcing relied solely on the availability of high-resolution
data and required no assumptions about the adopted discretization or resolu-
tion. All necessary data came in the form of the time series of spherical har-
monic coefficients of the reference solution. Similar to data-driven large-eddy
simulation, a priori collected data served to generate the forcing parameters.
Subsequently, the forcing followed from a data assimilation method, where a
deterministic mean-reverting term and stochastic term are included in the gov-
erning equations. The choice of parameters was such that the reference kinetic
energy spectrum was reproduced in coarse numerical solutions and that the
model weighed heavily toward small scales.

The proposed model was applied to the two-dimensional Euler equations
on the sphere. Two low resolutions were considered to demonstrate that the
forcing parameters were independent of the adopted resolution. On both coarse
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computational grids, applying the model yielded a good agreement of the en-
ergy spectra, particularly at small spatial scales. This was a direct result
of a striking agreement between the reference means and variances of the
spectral coefficients and the corresponding values attained when applying the
model. The measured correlation times of large-scale modes in the coarse sim-
ulations improved when only the deterministic component of the forcing was
included, whereas no structural improvement was observed when also including
the stochastic component. Finally, long-time simulation results showed that
the model was capable of producing stable and accurate large-scale dynamics,
indicating that the method is potentially useful for the study of the long-time
behavior of the Euler equations.

Chapter 5 discussed data-driven subgrid-scale modeling of two-dimensional
Rayleigh-Bénard convection. The model proposed in Chapter 4 was employed
at the level of the Fourier coefficients of the numerical solution over horizontal
cross-sections of the domain, thereby leading to a forcing that could be ap-
plied deterministically or stochastically. Physical effects in Rayleigh-Bénard
convection, such as buoyancy effects and boundary layer formation near the
walls, pose challenges for numerically resolving the flow. Nonetheless, the
model was generally found to produce satisfactory results in terms of kinetic
energy spectra and flow statistics. Several model configurations were studied
by varying the variable being forced, the wavenumbers at which the model was
applied, and whether the stochastic forcing term was included. In addition,
a heat flux correction was introduced that could be used in conjunction with
the spectrum-recovering model. Imposing this correction on the phases of the
Fourier coefficients of the temperature field led to a flow constraint that re-
spected the incompressibility of the velocity field and did not alter the energy
spectra of the numerical solution, yielding an additional physical constraint for
the model that did not adversely affect the solution.

Application of the model resulted in a significant improvement of measured
flow statistics compared to the coarse-grid no-model setting. In fact, the model
largely provided an accurate reconstruction of the energy spectra for the forced
variables, both near the walls and in the center of the domain. This established
that the method had its desired effect on the flow simulation. Additionally, im-
provements of the mean temperature profile and the root mean square profiles
of the velocity components and the temperature were obtained when applying
the model. The average heat flux in the domain showed improvement upon
model application but was not guaranteed to follow the reference value closely
without the inclusion of the heat flux constraint.
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Outlook

The studies presented in this thesis were undertaken to explore the use of
data-driven stochastic forcing in the context of uncertainty quantification and
subgrid-scale modeling for fluid flows on coarse computational grids. We be-
lieve that the development of subgrid-scale data measurement procedures, algo-
rithms for the efficient use of data in stochastic forcing, and a general method
for data-driven stochastic forcing of fluid flows has contributed to tackling
these challenges in computational fluid dynamics. Nonetheless, further work is
required to investigate robustness, generalizability, and weaknesses of the ap-
proaches presented in this thesis. Below, we provide ideas for future research
to address these points.

Machine learning of proper orthogonal decomposition basis coefficients. The
measurement and subsequent decomposition of subgrid-scale processes pre-
sented in Chapter 2 can be applied in machine learning of turbulence closure
models. The measurements represent the effect of coarsening on the dynamics,
which can be compensated by a machine-learned closure model. Through the
use of the singular value decomposition (SVD), any finite truncation of the
proper orthogonal decomposition (POD) is the optimal truncation of the mea-
surements at the specified number of degrees of freedom. Therefore, one can
already obtain a reasonably accurate representation of the expected subgrid-
scale processes for a given system state, using only a reduced number of POD
modes. Machine learning techniques have shown to be capable of empirically
finding the expected sub-grid scale contributions in numerical flow simulations
[11, 101, 162]. We anticipate that applying machine learning techniques to esti-
mate the coefficients of the POD modes of subgrid-scale contributions will also
lead to satisfying results for this purpose. The benefit of estimating these co-
efficients is that the finite truncation of the number of modes can significantly
reduce the number of degrees of freedom, even when compared to the number
of degrees of freedom in a coarse-grid fluid problem. This reduces the com-
plexity of the minimization problem underlying the machine learning algorithm
and might lead to a reduced training time without a significant loss of accuracy.

Robustness of the proposed data-driven subgrid-scale model. The proposed
data-driven model for coarse grid simulations used in Chapters 4 and 5 should
be investigated more closely to study its robustness. Despite the satisfactory
results obtained for the Euler equations on the sphere and two-dimensional
Rayleigh-Bénard convection, the nudging strength and wavenumbers at which
the model is applied remain a modeling choice. The aim of the model is to re-
construct reference kinetic energy spectra. The adopted definitions of the mean
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and variance in the mean-reverting forcing ensure that this goal is achieved for
sufficiently large nudging strengths. Furthermore, literature on continuous data
assimilation has shown that a range of nudging strengths leads to convergence
towards the observed reference solution [67]. Naturally, this warrants further
research on the ‘best’ nudging strength. In the ideal case, the nudging strength
should be determined systematically. For example, one can draw inspiration
from ensemble Kalman filters [59], where the extent to which the correction is
applied depends on measured covariances in the data and on model uncertainty.
Alternatively, the nudging strength can be variable and defined such that mea-
sured reference inter-scale energy or enstrophy transfers are reproduced [157]
or such that global quantities of interest are reproduced [54]. Complementary
to this is the assessment of the model in the case of a limited amount of data.
Sparse and noisy data affect the estimates of the forcing parameters and the
effect on the model performance is worthwhile to investigate.

The proposed data-driven subgrid-scale model as a general method for coars-
ened computational fluid dynamics. The data-driven model presented in Chap-
ters 4 and 5 requires no assumptions about the underlying governing equations
or adopted discretization method. In fact, it only requires several statistics of
the time series of basis coefficients, measured in a statistically steady state.
The choice of basis functions has been shown to be flexible. For example, the
forcing in Chapter 5 acted on the level of Fourier coefficients of the numerical
solution, and similar results were obtained when POD modes were chosen as
the basis for the solution [58]. In addition, current research efforts are dedicated
to applying the model to other geophysical flow problems. Recent application
of the model to the quasi-geostrophic equations on the sphere has shown that
it leads to the formation of zonal jets, otherwise unattainable at coarse com-
putational grids. Having obtained good results in a variety of flow settings, we
can label the model approach as a general method for coarse numerical simu-
lations of fluid flows. Its success encourages further work in the intersection of
data assimilation and data-driven large-eddy simulation. In fact, application
to a larger class of dynamical systems, outside of fluid dynamics, may also be
considered since no assumptions are made about the underlying equations.

Subgrid-scale modeling from a geometric mechanical viewpoint. Many com-
monly used models in geophysical fluid dynamics (GFD) possess conservation
laws that follow from the rich mathematical structure underlying the governing
equations. In these models, this structure manifests in an infinite number of
conserved quantities referred to as Casimirs. In this thesis, this particular as-
pect has been prominent in the use of stochastic advection by Lie transport in
Chapter 3, which respects these conservation laws, and reappeared in Chapter
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4 in the use of a Casimir-preserving numerical integrator for the Euler equa-
tions on the sphere. However, this feature of GFD models was not taken into
account in the development of the data-driven subgrid-scale model presented
in Chapter 4. For example, one could decompose the designed forcing into
an energy-preserving component and a Casimir-preserving component and in-
terpret their respective influence on the numerical solution from a geometric
mechanical point of view. Approaching the subgrid-scale modeling challenge
from this viewpoint might be beneficial for systematically and rigorously deriv-
ing subgrid-scale models for a large class of geophysical fluid systems. The use
of structure-preserving integrators in such studies is beneficial since it allows
for distinguishing the roles of energy preservation and Casimir preservation
in geophysical fluid flows and subgrid-scale modeling. In addition, this may
lead to an improved physical understanding of why structure preservation is
desired.
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Appendix A

Description of the compatible
finite element method

We present the FE approach in a number of steps. Given the divergence-
conforming space

H(div,Ω) = {v ∈
(
L2(Ω)

)d|∇ · v ∈ L2(Ω)}, (A.1)

where Ω denotes the (periodic) domain and d its dimension, the function spaces
Vu for the velocity field and Vη for total depth field are set up to satisfy

H(div; Ω)

π1

��

∇· // L2(Ω)

π2

��
Vu(Ω) ∇· // Vη(Ω)

for bounded projections π1, π2 such that the diagram commutes. In the one-
dimensional case, the divergence reduces to the single derivative ∂x, and a pair
of compatible spaces for u and η is given, e.g., by

Vu = CGk(Ω), Vη = DGk−1(Ω), (A.2)

where CGk(Ω) denotes the kth polynomial order continuous Galerkin space
and DGk−1(Ω) the (k − 1)th polynomial order discontinuous Galerkin space.

The governing shallow water equations (2.1) can now be discretized such
that the divergence in the continuity equation is considered strongly, while the
gradient in the momentum equation is imposed weakly, leading to the mixed

121



Appendix A. Description of the compatible finite element method

formulation

⟨w, ut⟩ −
〈
wx,

1
2u

2 + 1
Fr2 (η − b)

〉
= 0 ∀w ∈ Vu, (A.3)

ηt + Fx = 0, (A.4)

where ⟨., .⟩ denotes the L2 inner product, and the flux F in (A.4) is given by
the L2-projection of ηu into the velocity space, i.e.,

⟨w,F − ηu⟩ = 0 ∀w ∈ Vu. (A.5)

In this so-called compatible framework, the continuity equation is formulated
in strong form, as the derivative in x maps the flux F into Vη. Further, no
surface integral is required for the spatial derivative’s weak formulation in the
momentum equation, since wx ∈ Vη is well-defined everywhere. The above
space discretization conserves mass locally as well as a discrete energy globally
(for details, see e.g. [121]). Finally, we also incorporate transport stabiliza-
tion for η without compromising on the latter two conservation properties, by
modifying equations (A.3) - (A.4) according to [169]

⟨w, ut⟩ + ⟨Px, w⟩ −
ˆ

Γ
[[P ]]

{
w

η

}
η̃ = 0 ∀w ∈ Vu, (A.6)

⟨ϕ, ηt⟩ − ⟨ϕx, F ⟩ +
ˆ

Γ
[[ϕ]]

{
F

η

}
η̃ dS = 0 ∀ϕ ∈ Vη, (A.7)

where in a similar fashion to F , P is given by an L2-projection of the form〈
ϕ, P −

(1
2u

2 + 1
Fr2 (η − b)

)〉
= 0 ∀ϕ ∈ Vη. (A.8)

The integrals are over all cell boundaries (which in 1D reduces to evaluations
at single points), and [[.]] and {.} denote difference and average values, re-
spectively. Finally, η̃ denotes the upwind value along the given cell boundary.
Note that in the adopted Runge-Kutta scheme, the projections F and P need
to be evaluated separately before each evaluation of the dynamic contribution.
In Chapter 2, we consider the lowest polynomial order k = 1 for the mixed
compatible setup. The scheme and varying resolution mesh hierarchies are im-
plemented using the automated finite element toolkit Firedrake, see [142, 126]1,
which in turn relies on PETSc, see [9, 10].

1For further details, visit http://firedrakeproject.org
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Summary

This thesis deals with data-driven stochastic modeling of coarsened compu-
tational geophysical fluid dynamics. Geophysical fluid dynamics concerns the
study of fluid flows in large-scale geophysical systems, such as the Earth’s at-
mosphere or oceans. Physical phenomena in these flows consist of motions
described by a vast range of scales. Fully resolving all these scales in a nu-
merical simulation requires tremendous computational resources, making ac-
curate high-resolution numerical simulations computationally expensive and
time-consuming. As a result, coarse numerical simulations can be used, which
employ lower resolutions to accommodate for the large computational costs.
However, the use of coarse computational grids introduces uncertainty and er-
ror to the numerical solution. Uncertainty is introduced via the loss of small-
scale flow features on coarse grids. That is, the small-scale flow features often
cannot be determined with absolute certainty for a given large-scale flow con-
figuration. Errors arise in the coarsening process due to poorly resolved spatial
derivatives, generally leading to a deterioration of the numerical solution. To
address these challenges, stochastic modeling can serve both to compensate
for the errors due to coarsening and to quantify the inherent uncertainty. The
aim of the work presented in this thesis is to study stochastic modeling for
coarsened flows when data of the fully resolved system is available.
In this thesis, the models enter the governing equations as a space- and time-
dependent forcing term. This term is decomposed into fixed spatial basis func-
tions and corresponding time series, of which only the latter are modeled based
on high-resolution numerical data. Including a forcing term of this form imme-
diately leads to modeling choices such as where the forcing enters the governing
equations, what the spatial basis functions are, how the time series are mod-
eled, and which high-resolution data is used. The work presented in this thesis
explores these aspects of modeling. More specifically, we first investigate how
to measure coarsening effects exactly. These measurements are inserted into
a coarse numerical simulation as a reduced-order correction with prescribed
time series to get an exact agreement with a pre-computed reference solution.
The quality of the reconstruction depends strongly on the employed discretiza-
tion method. Subsequently, Stochastic Advection by Lie Transport is used to
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quantify uncertainty due to unresolved small-scale processes in coarse numeri-
cal simulations. Here, the time series are modeled as stochastic processes with
statistics matching those of the measurements. Stochastic processes with sim-
ilar temporal correlation as the measurements were found to lead to a reduced
ensemble spread without a loss of accuracy when compared to uncorrelated
noise, indicating a closer adherence of the former to the reference solution.
Finally, a data-driven subgrid-scale model is proposed. The model is derived
from a data assimilation algorithm and acts on the spectral coefficients of the
solution with the aim of reconstructing a reference kinetic energy spectrum.
This method is found to perform well in terms of flow statistics for two different
fluid dynamical systems.



Samenvatting

Dit proefschrift behandelt datagedreven stochastisch modelleren van grove
computationele geofysische vloeistofdynamica. Geofysische vloeistofdynam-
ica betreft het onderzoek naar vloeistofstromen in grootschalige geofysische
systemen, zoals de atmosfeer of oceanen. Fysische verschijnselen in deze stro-
mingen bestaan uit bewegingen omschreven door een grote hoeveelheid tijd- en
ruimteschalen. Het vergt een enorme hoeveelheid rekenkracht om deze schalen
tot in het kleinste detail op te lossen, waardoor voldoende nauwkeurige simu-
laties duur en tijdrovend zijn. Als gevolg hiervan kunnen grove rekenroosters
worden gebruikt, waarin een lagere resolutie gehanteerd wordt en zodoende
minder rekenkracht vereist is. Echter, het gebruik van grove rekenroosters
veroorzaakt onzekerheid en fouten in de numerieke oplossing. Onzekerheid
ontstaat door het verlies van kleinschalige stroombewegingen op grove roost-
ers, wat wil zeggen dat de kleinschalige bewegingen meestentijds niet met volle
zekerheid kunnen worden bepaald aan de hand van de grootschalige stroombe-
wegingen. Fouten ontstaan door het gebruik van grove roosters wegens slecht
opgeloste ruimte-afgeleides, wat doorgaans tot een verslechtering van de nu-
merieke oplossing leidt. Stochastische modellen kunnen gebruikt worden om
deze problemen te verhelpen: deze dienen zowel om te compenseren voor fouten
veroorzaakt door gebruik van grove roosters als om de inherente onzekerheid te
kwantificeren. Het doel van het werk wat in dit proefschrift gepresenteerd is,
is het bestuderen van stochastisch modelleren voor grove vloeistofstromingen
wanneer metingen van het volledig opgeloste systeem beschikbaar zijn.
In dit proefschrift worden de stochastische modellen ingevoerd in de onderliggende
vergelijkingen als een ruimte- en tijdsafhankelijke forceringsterm. Deze term
wordt ontbonden in vaste ruimtelijke basisfuncties en bijbehorende tijdreek-
sen. Alleen deze tijdreeksen worden gemodelleerd aan de hand van beschikbare
nauwkeurige metingen. Het invoegen van een dergelijke forceringsterm leidt di-
rect tot allerlei modelleringskeuzes zoals waar de forcering in de onderliggende
vergelijkingen moet worden geplaatst, wat de ruimtelijke basisfuncties zijn,
hoe de tijdreeksen gemodelleerd moeten worden en welke metingen gebruikt
moeten worden. Deze aspecten van modelleren worden in dit proefschrift on-
derzocht. Allereerst wordt onderzocht hoe de effecten van het gebruik van
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grove roosters exact kunnen worden gemeten. Deze metingen worden vervol-
gens toegepast in een grove simulatie als een zogeheten ‘reduced-order’ correctie
met voorgeschreven tijdreeksen, zodanig dat een exacte overeenkomst met de
berekende referentie-oplossing behaald wordt. De kwaliteit van deze recon-
structie is sterk afhankelijk van de gebruikte numerieke methode. Vervolgens
wordt stochastische advectie door Lie transport gebruikt om de onzekerheid
wegens onopgeloste kleinschalige bewegingen in grove simulaties te kwantifi-
ceren. Hier zijn de tijdreeksen gemodelleerd als stochastische processen met
vergelijkbare statistische eigenschappen als de metingen. Stochastische pro-
cessen met vergelijkbare tijdscorrelatie als de metingen bleken te leiden tot
een verminderde spreiding in het voorspellingsensemble zonder een verlies van
nauwkeurigheid wanneer deze vergeleken werden met processen zonder tijd-
scorrelatie, wat suggereert dat de voorgaande dichter bij de referentie-oplossing
ligt. Ten slotte wordt een model voor processen van subgrid-schaal voorgesteld.
Dit model is afgeleid van een algoritme voor data-assimilatie en werkt op de
spectrale coefficienten van de numerieke oplossing met als doel een gemeten
energiespectrum te reconstrueren. Deze methode is toegepast op twee verschil-
lende vloeistofdynamicaproblemen en levert goede resultaten op in termen van
statistische grootheden.


