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Abstract

Assume that A generates a bounded C0-semigroup on the Hilbert space Z , and

define the Cayley transform ofA asAd := (A+I)(A−I)−1 . We show that there exists

a constant M > 0 such that ‖(Ad)
n‖ ≤M ln(n+ 1), n ∈ N.
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5.1 Introduction

Consider the abstract differential equation

ż(t) = Az(t), z(0) = z0 (5.1)

on the Hilbert space Z . A standard way of solving this differential equation is the Crank-

Nicolson method. In this method the differential equation (5.1) is replaced by the difference

equation

zd(n+ 1) = (I + ∆A/2)(I − ∆A/2)−1zd(n), zd(0) = z0, (5.2)

where ∆ is the time step. We denote (I + ∆A/2)(I − ∆A/2)−1 by Ad.

If Z is finite-dimensional, and thus A is a matrix, then it is easy to show that the solutions

of (5.1) are bounded if and only if the solutions of (5.2) are bounded:

sup
t≥0

‖eAt‖ =: Mc <∞
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if and only if

sup
n∈N

‖(Ad)n‖ =: Md <∞.

However, the best estimates for Md depend on Mc and the dimension of Z , see [2].

IfZ is infinite-dimensional, then under the assumption thatA andA−1 generate a bounded

C0-semigroup eAt, and eA
−1t, respectively, the following estimate has been obtained,

Md = sup
n∈N

‖(Ad)n‖ ≤ 2e · (M2
c +M2

c,−1), (5.3)

where Mc = sup
t≥0

‖eAt‖ and Mc,−1 = sup
t≥0

‖eA−1t‖, see [1], [3], and [5]. Note that this

estimate is independent of time step ∆.

However, at the moment it is unclear whether the boundedness of the semigroup gener-

ated by A implies the existence and the boundedness of the semigroup generated by A−1. So

we take another approach to study the behavior of (Ad)
n.

5.2 The growth of (Ad)
n

In [3] the following result is shown.

Theorem 5.2.1. Let A generate a bounded C0-semigroup on the Hilbert space Z , then there

exists a constant M > 0 such that ‖(Ad)n‖ ≤M ln(n+ 1) for n ∈ N.

The proof of [3] uses estimates on resolvents and contour integrals. We present a proof

which is based on techniques from system theory. More precisely, we use Lyapunov equa-

tions to obtain the estimate. If the semigroup generated by A is exponentially stable, then for

small n’s the estimate in Theorem 5.2.1 can be improved. We remark that by posing an extra,

nontrivial condition on the resolvent of A, one can prove boundedness of (Ad)
n, see [4].
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