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Abstract

We design and analyze an H∞–observer which works at the boundary of an infinite

dimensional system with scalar disturbances. The system is a model of a UV disinfec-

tion process, which is used in water treatment and food industry.
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3.1 Introduction

In many (control) applications where (bio)chemical reactions and transport phenomena oc-

cur, measurement and control actions take place at the boundaries. While a theoretical frame-

work already exist ([1] and references therein), there is little attention to apply this theory in

practice, as far as we know.

In [2], the analysis and design of a Luenberger observer for a UV disinfection example

is explored. In this paper, we analyze a robust Luenberger-type observer for the same system

with boundary inputs and boundary outputs, see [2] for physical background,

∂x

∂t
(η, t) = α

∂2x

∂η2
(η, t) − v

∂x

∂η
(η, t) − bx(η, t), x(η, 0) = 0 (3.1)

x(0, t) = w1(t),
∂x

∂η
(1, t) = 0, y(t) = x(η1, t) + w2(t), (3.2)

on the interval η ∈ (0, 1). Furthermore, α, v, and b are positive constants and correspond-

ing to the diffusion constant, constant flow velocity and micro-organism light susceptibility
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constant, respectively. The signals u(t), w1(t), w2(t) and y(t) represent a scalar input, dis-

turbance (or error) at the inlet boundary (η = 0), disturbances or errors on the output and a

scalar output, respectively.

We design a dynamic Luenberger-type observer,

∂x̂

∂t
(η, t) = α

∂2x̂

∂η2
(η, t) − v

∂x̂

∂η
(η, t) − bx̂(η, t), x̂(η, 0) = 0 (3.3)

x̂(0, t) = 0,
∂x̂

∂η
(1, t) = K(t) ∗ (y(t) − ŷ(t)) , y(t) = x̂(η1, t), (3.4)

with K to be designed, and ∗ denotes the convolution product. As a consequence, the dy-

namics for the error ε(η, t) = x(η, t) − x̂(η, t) is written as

∂ε

∂t
(η, t) = α

∂2ε

∂η2
(η, t) − v

∂ε

∂η
(η, t) − bε(η, t), ε(η, 0) = 0 (3.5)

ε(0, t) = w1(t),
∂ε

∂η
(1, t) = K(t) ∗ (ε(η1, t) + w2(t)) . (3.6)

Please notice that the correction to possible disturbances w takes place at the boundary.

3.2 H∞–filter problem

The aim is now to design aK such that the disturbances w1 and w2 have hardly any influence

on ε(1, t). This would enable us to predict the value of x at η = 1 accurately. Since the future

of the output cannot be used, we see that K must be causal. We can write this problem as a

standard H∞–filtering problem, i.e. ,

inf
K causal

sup
w

‖ε(1)‖2

‖w‖2

with w(t) =
(
w1(t) w2(t)

)⊤
.

In [2], we already explored the exponential stability for the error dynamics (3.5)–(3.6)

with constant gain. In the talk we shall further outline the procedure of how K is designed

for the UV-disinfection example.
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