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a b s t r a c t

Bivariate spatially correlated count data appear naturally in
several domains such as ecology, economy and epidemiology.
Current methods for analysing such data lack simplicity, inter-
pretability and computational awareness. This paper introduces
Poisson cokriging, a bivariate geostatistical technique to model
and predict spatially correlated count variables. Our method
exploits classical geostatistical theory and the bivariate Poisson
distribution to propose an adaptation of cokriging when the
underlying process follows a bivariate Poisson structure. A sim-
ulation study and a real data application using counts from two
mosquito-borne diseases in Colombia showed that our model
successfully performs spatial predictions at unobserved locations
under different settings. We demonstrate the competitive conve-
nience of Poisson cokriging in filtering rates and modelling highly
variant population sizes against traditional geostatistical meth-
ods. We conclude that Poisson cokriging improves prediction
accuracy and reduces variance prediction errors in comparison
with ordinary cokriging.

© 2023 The Author(s). Published by Elsevier B.V. This is an open
access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Bivariate spatially correlated count data occur in several disciplines, such as ecology, de-
ography, economy and epidemiology. For example, public health institutions routinely collect
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incidence counts of multiple diseases to identify risk factors, estimate health outcomes and imple-
ment integrated disease surveillance systems. In particular, epidemiology often exploits bivariate
spatially-indexed count data to determine spatially varying disease-related factors and predict
disease risk at unobserved locations (Holford, 2002). The joint modelling of spatial count data is
particularly relevant in regression and prediction applications where a count variable is estimated
using another spatially correlated count variable known throughout the study region.

Models for spatially dependent count data assume that the observed magnitude is the realisation
f a random variable with a specific probability distribution, the Poisson distribution being the
ost frequent choice. There are three widely used frameworks for modelling counts: generalised

inear mixed models (GLMM), model-based geostatistics and (classical, regionalised) geostatistics
named here as simply geostatistics). GLMMs are flexible in incorporating auxiliary information
nd spatial mixed effects and in explicitly modelling most sources of uncertainty. These models,
owever, are highly parametrised and imply complex Bayesian estimation of parameters (Goovaerts,
017; Monestiez et al., 2006; Smith et al., 2020; Cressie, 1993). These characteristics make GLMM
omputationally demanding. Model-based geostatistics, as a relative of GLMM, exploits the conve-
ience of geostatistical properties such as continuous modelling of spatial dependence, change of
upport and uncertainty quantification, but, unfortunately, it also inherits the Bayesian modelling
imitations. Geostatistical applications to analyse count data are somewhat questionable as they
ssume that the underlying data distribution is typically second-order stationary and based on
Gaussian process. Methods to manage these limitations have been developed in traditional

eostatistics (Berke, 2004; Goovaerts and Jacquez, 2004), but they directly induce undesirable char-
cteristics in the semivariogram estimator and kriging predictions (Goovaerts, 2005). Nonetheless,
he geostatistical framework is a simple, robust, scalable alternative to predict spatially correlated
ariables. Alternative methods for modelling spatially dependent count data have been proposed,
ncluding the Poisson random field (Morales-Navarrete et al., 2022) and Gaussian copula spatial
egression (Masarotto and Varin, 2012). The Poisson random field offers interpretability advantages
ver traditional approaches such as the Poisson Log-Gaussian random field and Poisson Gaussian
opula, but full likelihood inference is not feasible and an optimal predictor closed form is un-
vailable. Gaussian copula spatial regression also has strong interpretability, but simpler correlation
odels and estimation procedures are required to compute the likelihood.
A geostatistical model for count data, Poisson kriging, was introduced by Monestiez et al. (2006)

o map the relative abundance of whales in the Mediterranean Sea. The model accommodates
lassical geostatistical theory for semivariogram estimation and optimal linear unbiased prediction
i.e. kriging) to an unobserved and non-stationary latent process that potentially drives the observed
ount data. Since Poisson kriging specifically deals with counts, its methodology and application
ave been mainly adopted to analyse rates that result from diving the observed counts by a sampling
ffort — for instance, dividing the number of deaths in a county by its total population. Poisson
riging accommodates the heteroscedasticity of rates derived from spatial counts, namely, the effect
f the population size spatial variations on the process variance. Over the years, methodological
xtensions have been conducted to increase its adaptability to sampling settings, the change of
upport paradigm, and non-constant mean definitions (Goovaerts, 2005, 2006a, 2017; Bellier et al.,
013, 2010; Krivoruchko et al., 2011; Oliveira, 2014). Notably, Poisson kriging has become pivotal
n disease risk applications as it adjusts for variance instability and spurious spatial predictions
nduced by population size variability (Osei and Stein, 2017).

While Poisson kriging is an ideal alternative to classical statistical methods for prediction based
n count data (Goovaerts, 2017; Oliveira, 2014), it is restricted to univariate settings. Attempts to
xtend Poisson kriging into a multivariate scenario include binomial cokriging, an adaptation of
riging to a binomially distributed response variable (Oliver et al., 1998) and Poisson cokriging as
GLMM (Smith et al., 2020). Oliver et al. (1998) found the method better suited to model spatial
isease proportions as it takes full advantage of integrating ancillary variables in the geostatistical
odelling. Strictly speaking, however, the model does not directly incorporate auxiliary information

n the prediction process. Similarly, Smith et al. (2020) proved that their model is an effective
rediction method for spatially correlated count data with an auxiliary variable. Nonetheless, the
ethod is purely spatial and is restricted to small sample sizes to overcome the computational
urden of a Bayesian GMML.
2
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This study aims to expand Poisson kriging into Poisson cokriging to predict spatially correlated
ounts in the presence of an ancillary spatially correlated auxiliary variable sharing the former’s
robability distribution. We build upon multivariate geostatistics theory for bivariate data (Wack-
rnagel, 2003a; Cressie, 1993) and the bivariate Poisson distribution proposed by Kawamura (1973)
o accommodate cokriging to spatially correlated count variables. Our ambition comprises assessing
nd adjusting for the effect population sizes have on the raw rates. First, a simulation study is
onducted to examine the sampling properties of our proposed method, Poisson cokriging. Finally,
real data application is illustrated on Zika and Chikungunya incidence counts for two regions of
olombia in 2016.

. Materials and methods

The definition of Poisson cokriging is based on traditional geostatistics. We followed the work
y Monestiez et al. (2006), later extended by Bellier et al. (2010) and adapted into disease rates
nalysis by Goovaerts (2005). We also adopted the multivariate geostatistical definitions and
rocedures focusing on bivariate interactions from Stein and Corsten (1991), Wackernagel (2003a)
nd Cressie (1993).

.1. Model

Let {rα(s), rβ (s), rαβ (s) : s ∈ D ⊂ R2
} be three dependent positive random fields describing three

istinct spatially varying disease risks at location s. As the values of the latent random fields are not
bservable, inference occurs through the mean of three random Poisson variables Xαi, Xβi, and Xαβi,

representing the number of disease cases and nαi, nβi and nαβi referring to the population sizes at
sampling locations s1, . . . , sk.

The random variables Xαi, Xβi, and Xαβi can be combined to generate two dependent Poisson
random variables (Kawamura, 1973): Yαi = Xαi + Xαβi and Yβi = Xβi + Xαβi. It follows that:

Yαi | rα(si), rαβ (si) ∼ Poisson(nαi · rα(si) + nαβi · rαβ (si))
Yβi | rβ (si), rαβ (si) ∼ Poisson(nβi · rβ (si) + nαβi · rαβ (si))

(1)

where rα(si) and rβ (si) denote the marginal disease risks, and rαβ (si) stands for the joint risk between
the observed counts Yαi and Yβi for any set of sampling locations s1, . . . , sk ∈ D. The counts Yαi
and Yβi are conditionally independent given the risks rα(si) and rβ (si) and rαβ (si). Eq. (1) can be
further simplified by assuming that population sizes nαi = nαβi and nβi = nαβi. Reducing the
ndependent marginal and joint risks can be reduced into a single term Rα(si) = rα(si) + rαβ (si)
nd Rβ (si) = rβ (si) + rαβ (si), we obtain,

Yαi | Rα(si) ∼ Poisson(nαi · Rα(si)), Rα(si) = rα(si) + rαβ (si)
Yβi | Rβ (si) ∼ Poisson(nβi · Rβ (si)), Rβ (si) = rβ (si) + rαβ (si)

(2)

Here, the counts Yαi and Yβi are Poisson distributed whose parameters are the product between
he population sizes nαi and nβi and the total risk Rα(si) and Rβ (si) at sampling sites si, respectively.
he total risks Rα(s) and Rβ (s) are positive random fields honouring order two stationarity, with
eans mα + mαβ and mβ + mαβ , variances σ 2

α + σ 2
αβ and σ 2

β + σ 2
αβ and covariance functions

R
α (|si − sj|) and CR

β (|si − sj|), correspondingly. Note that the covariance functions are isotropic, that
s, they depend only upon the distances between sites si and sj. Note also that the population sizes
αi, nβi and nαβi are identical. For clarity, we will use nαi and nβi independently but interchangeably
o develop the model’s definitions.

As stated in Monestiez et al. (2006) and Bellier et al. (2010), no further distributional assumptions

re imposed on Rα(si) and Rβ (si), except the constraints Rα(si) ≥ 0 and Rβ (si) ≥ 0.

3
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2.2. Expectation and variances of Yα and Yβ

Several properties can be derived directly from (2). It follows that:

E [Yαi | Rα(si)] = Var [Yαi | Rα(si)] = nαi · Rα(si)
= nαi · (rα(si) + rαβ (si))

E
[
(Yαi)

2
| Rα(si)

]
= nαiRα(si) + n2

αiRα(si)2

= nαi · (rα(si) + rαβ (si)) + n2
αi · (rα(si) + rαβ (si))2

(3)

nd when marginalising:

E[Yαi] = nαi · (mα + mαβ )

Var[Yαi] = nαi · (mα + mαβ ) + n2
αi · (σα + σαβ )

(4)

t is tacit that (3) and (4) also hold for Yβi. The conditional independence of observations at different
sites introduces two covariance expressions: a covariance within and between the processes Yαi |

Rα(si) and Yβi | Rβ (si). Deriving the former is trivial, and we obtain,

E
[
YαiYαj | Rα

]
= Cov[Yαi, Yαj | Rα] + E [Yαi | Rα(si)] E

[
Yαj | Rα(sj)

]
= δij(nαi · (rα(si) + rαβ (si))) + nαi · (rα(si) + rαβ (si)) nαj · (rα(sj) + rαβ (sj))

(5)

here δij is the Kronecker delta δij =

{
0 if i ̸= j
1 if i = j indicating the conditional independence

etween locations.
Eq. (5) displays the covariance expression within Yα | Rα , and naturally, it also holds for Yβ | Rβ .

he covariance between Yαi | Rα(si) and Yβi | Rβ (si) is the shared parameter nαi · rαβ (si) which
ontrols for the dependence between the two random fields (Kawamura, 1973). This expression
xists owing to the joint marginal risk rαβ (s). It results that:

E
[
YαiYβj | R

]
= Cov[Yαi, Yβj | R] + E [Yαi | Rα(si)] E

[
Yβj | Rβ (sj)

]
= δij[nαirαβ (si)] + nαi · (rα(si) + rαβ (si)) nβj · (rβ (sj) + rαβ (sj))

(6)

Eq. (6) is critical to estimate the semivariograms and Poisson cokriging equations.

.3. Estimation of the semivariograms

.3.1. Direct semivariogram
For any pair of locations si, sj ∈ D for the random variable Yα(si), the direct semivariogram γ Y

α (h)
s defined in the context of the intrinsic hypothesis (intrinsic stationary of order two). We have that

E
[
Yαi − Yαj

]
= 0

Var
[
Yαi − Yαj

]
= 2γ Y

α (h)
(7)

Under these two properties, the direct theoretical semivariogram can be written as:

γ Y
α (h) =

1
2
E
[
(Yαi − Yαj)2

]
(8)

However, (7) cannot be directly adopted for the counts Yα(si) due to the heteroscedasticity
nd non-stationarity induced by the population sizes nα and the counts themselves. Likewise,
e are primarily concerned with estimating the total risk Rα(si) rather than the counts Yα(si).
onsequently, we need to infer the relationship between the semivariograms of the counts Yα(si)
nd the total risk Rα(si). Using the sample rates Yαi

nαi
and Yαj

nαj
and (7) and (8) we see that:

E
[
Yαi

−
Yαj
]

= 0 (9)

nαi nαj

4
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1
2
E

[(
Yαi

nαi
−

Yαj

nαj

)2
]

=
1
2
(mα + mαβ )

(
1
nαi

+
1
nαj

)
− δij

mα + mαβ

nαi

+
1
2
E
[
(Rα(si) − Rα(sj))2

]
.

(10)

Let γ Y
α (h) be the non-stationary theoretical direct semivariogram of the random field Yαi

nαi
as

defined in (8) and h = ∥si − sj∥. When i ̸= j we obtain:

γR
α (h) = γ Y

α (h) −
1
2
(mα + mαβ )

(
nαi + nαj

nαinαj

)
(11)

When i = j (10), reduces to:

γR
α (0) = γ Y

α (0) −
1
2
(mα + mαβ )

(
1
nαi

+
1
nαi

)
+ δii

mα + mαβ

nαi

γR
α (0) = γ Y

α (0) − (mα + mαβ )
(

1
nαi

)
+

mα + mαβ

nαi

γR
α (0) = γ Y

α (0) = 0

(12)

For i ̸= j we also have:

Var
[
Yαi

nαi
−

Yαj

nαj
| Rα

]
=

(rα(si) + rαβ (si))
nαi

+
(rα(sj) + rαβ (sj))

nαj

⇒ E
[
Var

[
Yαi

nαi
−

Yαj

nαj
| Rα

]]
= (mα + mαβ )

(
nαi + nαj

nαinαj

) (13)

Details on how to obtain Eqs. (9), (10) and (13) can be found in Appendix A.
The direct semivariogram estimator of γR

α (h) can be inferred from (11) and (13). Let Yαi be
the sample counts and nαi the population sizes for the set of spatial locations si = 1, . . . , k. The
expression of the direct semivariogram is defined as:

γR
α (h) =

1
2
∑

(i,j)∈N(h) wij

∑
i,j

(
wij

(
Yαi

nαi
−

Yαj

nαj

)2

− (m∗

α + m∗

αβ )

)
(14)

where N(h) is the number of observation pairs separated by a distance h between i and j, wij =
nαinαj
nαi+nαj

, and m∗
α =

∑
nαirα (si)∑

nαi
and m∗

αβ =

∑
nαβirαβ (si)∑

nαβi
are the mean estimates of the marginal risks

α(si) and rαβ (si), respectively. If the joint risk rαβ (si) = 0, the direct semivariogram estimator
n Eq. (14) is identical to the semivariogram expression defined by Monestiez et al. (2006).

The definitions of the direct modified semivariogram γR
α (h) unmistakably apply to the random

ariable Yβ (si) as well.

2.3.2. Cross-semivariogram
The covariance-based cross-semivariogram γαβ (h) is defined in the context of a joint intrinsic

hypothesis for two random variables Yα(si) and Yβ (si), when evaluated for any site si, sj ∈ D. It
follows that:

E
[
Yαi − Yαj

]
= 0

E
[
Yβi − Yβj

]
= 0

Cov
[
(Yαi − Yαj)(Yβi − Yβj)

]
= 2γ Y

αβ (h)
(15)

The cross-semivariogram is thus defined as half the expectation of the product of the increments
of the two variables (Matheron, 1965; Wackernagel, 2003b):

γ Y (h) =
1
E
[(
Yαi − Yαj

)
·
(
Yβi − Yβj

)]
(16)
αβ 2

5
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Since we are interested in the sample rates Yαi
nαi

and Yβj
nβj

, (15) solves exactly as (7). Then,

E
[
Yαi

nαi
−

Yαj

nαj

]
= 0, E

[
Yβi

nβi
−

Yβj

nβj

]
= 0 (17)

It also results that:

1
2
E
[(

Yαi

nαi
−

Yαj

nαj

)(
Yβi

nβi
−

Yβj

nβj

)]
=

1
2

(
mαβ

nαi
+

mαβ

nβj

)
−

1
2

(
mαβ

nαi
δαβij +

mαβ

nβj
δαβij

)
+

1
2
E
[(
Rα(si) − Rα(sj)

)(
Rβ (si) − Rβ (si)

)]
.

(18)

Let γ Y
αβ (h) be the non-stationary theoretical cross-semivariogram of the random fields Yαi

nαi
and

Yβj
nβj

and h = ∥si − sj∥. When i ̸= j we obtain:

γR
αβ (h) = γ Y

αβ (h) −
1
2
mαβ

(
nαi + nβj

nαinβj

)
(19)

For i = j, (19) reduces to γ Y
αβ (0) = γR

αβ (0) = 0.
The expectation of the conditional covariance of the difference in the sample rates for i ̸= j

equals:

Cov
[(

Yαi

nαi
−

Yαj

nαj

)
,

(
Yβi

nβi
−

Yβj

nβj

)
| R
]

=
rαβ (si)
nαi

+
rαβ (sj)
nβj

E
[
Cov

[(
Yαi

nαi
−

Yαj

nαj

)
,

(
Yβi

nβi
−

Yβj

nβj

)
| R
]]

= mαβ

(
nαi + nβj

nαinβj

) (20)

Appendix A contains details on how to solve Eqs. (17), (18) and (20).
Finally, the cross-semivariogram estimator of γR

αβ (h) can be derived using Eqs. (18) and (20).
Let Yαi be the sample counts and nαi the observed population sizes for the set of spatial locations
si = 1, . . . , k and Yβj be the sample counts and nβj the observed population sizes for the set of
spatial locations sj = 1, . . . , k. The estimation of the cross-semivariogram for the sample rates can
be written as:

γR
αβ (h) =

1
2
∑

(i,j)∈N(h) wαβ

∑
i,j

(
wαβ

(
Yαi

nαi
−

Yαj

nαj

)(
Yβi

nβi
−

Yβj

nβj

)
− m∗

αβ

)
(21)

here wαβ =
nαinβj
nαi+nβj

is the number of observation pairs separated by a distance h between i and j

nd m∗

αβ =

∑
nαβirαβ (si)∑

nαβi
is the mean estimate of the joint risk rαβ (si).

Wackernagel (2003b) argued that cross-semivariogram, namely the covariance-based cross-
variogram (Myers, 1982) is a better choice than the variance-based cross-variogram (pseudo-cross-
variogram) in terms of interpretability, consistency and stationarity. Built on his premise, we chose
the covariance-based cross-variogram to estimate the cross-variogram between the sample rates
Yαi
nαi

and Yβj
nβj

.

.4. Prediction of the latent process

The spatial interpolation of the total risk Rα(s0) at any site s0 ∈ D is a linear predictor combining
he observed data Yαi weighted by population sizes nαi and the observed data Yβi weighted by
population sizes nβi located at observed points in the neighbourhood of site s0. The sample rates
Yαi and Yβj are defined on a set of locations k and k , respectively, in order to entail the possibility
nαi nβj α β

6



D. Payares-Garcia, F. Osei, J. Mateu et al. Spatial Statistics 57 (2023) 100769

(

A

of (partially) heterotopic data. The Poisson cokriging estimator equals:

Rα(s0)∗ =

kα∑
i=1

λαi
Yαi

nαi
+

kβ∑
i=1

λβi
Yβi

nβi
(22)

The unbiasedness constraint leads to the standard weights as in classical (bivariate) ordinary
cokriging:

kα∑
i=1

λαi = 1,
kβ∑
i=1

λβi = 0 (23)

Similarly to ordinary cokriging, we obtain the mean square error of prediction (MSEP) (see
Appendix B). Its expression is:

Var[Rα(s0)∗ − Rα(s0)] =

kα∑
i=1

λ2
αi

nαi
(mα + mαβ ) +

kα∑
i=1

λ2
βi

nβi
(mβ + mαβ ) + 2

kα∑
i=1

kβ∑
j=1

λαiλβj

nβj
mαβ

+

kα∑
i=1

kα∑
j=1

λαiλαjCR
ααij +

kβ∑
i=1

kβ∑
j=1

λβiλβjCR
ββij + 2

kα∑
i=1

kβ∑
j=1

λαiλβjCR
αβij

− 2
kα∑
i=1

λαiCR
ααi0 − 2

kβ∑
i=1

λβiCR
βαi0 + (σ 2

α + σ 2
αβ )

(24)

The unbiasedness condition in (23) implies that Var[Rα(s0)∗ −Rα(s0)] = E[(Rα(s0)∗ −Rα(s0))2].
Minimising (24) on the weights λα and λβ generates two parameters of Lagrange µα and µβ and

kα + kβ + 2) equations. We then obtain the Poisson cokriging system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λαi
nαi

(mα + mαβ ) +

kβ∑
i=1

λβi

nβi
mαβ +

kα∑
i=1

λαiCR
ααij

+
∑kβ

i=1 λβiCR
αβij + µα = CR

ααi0 for j = 1, 2, . . . , kα

λβi
nβi

(mβ + mαβ ) +

kα∑
i=1

λαi

nαi
mαβ +

kβ∑
i=1

λαiCR
ββij

+
∑kα

i=1 λαiCR
αβij + µβ = CR

βαi0 for j = 1, 2, . . . , kβ

kα∑
i=1

λαi = 1

kα∑
i=1

λβi = 0

(25)

Note that the system is expressed in terms of the covariance rather than the semivariogram. The
system can be easily rewritten by using the relationship Cij = σ 2

− γij.
Eq. (24) can be further simplified by using the Poisson cokriging equation system (details in

ppendix B). We obtain:

Var[Rα(s0)∗ − Rα(s0)] = (σ 2
α + σ 2

αβ ) −

kα∑
i=1

λαiCR
ααi0 −

kβ∑
i=1

λβiCR
βαi0 − µα (26)

Eq. (26) is the usual expression for the ordinary cokriging variance. Nonetheless, the solution of
the weights λαi and λβi and the variance value σ 2

Rα
= σ 2

α + σ 2
αβ lead to rather different kriging

variances.
7
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2.4.1. Matrix formulation
The Poisson cokriging equations can be as well written in matrix notation. This notation is

omputationally convenient to solve the equations system in (25). The Poisson cokriging equation
ystem becomes:

Cλ = c (27)

C =

⎛⎜⎜⎜⎝
Cαα Cαβ 1 0
Cβα Cββ 0 1
1T 0T 0 0
0T 1T 0 0

⎞⎟⎟⎟⎠ =

(
C T X
XT 0∗

)
, λ =

⎛⎜⎜⎝
λα

λβ

µα

µβ

⎞⎟⎟⎠ , c =

⎛⎜⎜⎝
cα0

cβ0

1
0

⎞⎟⎟⎠ ,

here
cTℓ0 = (Cℓα10, . . . , Cℓαn0) for ℓ ∈ α, β

λT
ℓ = (λℓ1, . . . , λℓn) for ℓ ∈ α, β

C ℓk =

⎛⎜⎜⎝
Cℓk11 +

Wℓk
nk1

· · · Cℓk1n

...
. . .

...

Cℓkn1 · · · Cℓknn +
Wℓk
nkn

⎞⎟⎟⎠ for ℓ, k ∈ α, β

(28)

Here Wℓk =

{
mℓ + mℓk if ℓ = k
mℓk if ℓ ̸= k is a term added to the diagonal of the coefficient matrices.

Although (27) is analogous to the ordinary cokriging system, the coefficient matrix C ℓk is more
complex due to the added term Wℓk.

Finally, the weights of the Poisson cokriging model are found by solving the matrix equation

λ = C−1c (29)

The system of equations is to be solved for each prediction location individually.

3. Simulation study

A simulation study was conducted to assess and compare the performances of Poisson cokriging
against ordinary cokriging (Wackernagel, 2003a). This simulation evaluates two main aspects in
terms of semivariogram estimation and prediction and errors: (i) the effect of the variability of the
population sizes and, (ii) the increasing correlation between the target risk variable and the auxiliary
variable.

3.1. Simulation design

Multiple datasets following the specifications of the Poisson cokriging model were simulated at
n = 400 sampling locations uniformly distributed over the regular grid D = [−10, 10] × [−10, 10]
following the linear model of coregionalisation (LMC) (Goulard and Voltz, 1992). We considered
sampling locations distributed over a random spatial configuration. We assumed that the latent
random fields Rα(s) and Rβ (s) are log-Gaussian and that, conditional on the latent process, the
counts Yαi and Yβi follow a Poisson distribution.

One thousand cross-correlated spatial random fields were generated using the LMC. Both total
risk variables Rα(s) and Rβ (s) were simulated as bivariate log-Gaussian random fields with zero
mean to ensure positive risk. The covariance matrix combines the isotropic exponential covariance
function with range 2 and sill 1 and the spherical structure with a range 5 and sill 1. No nugget
effect was added.

Based on (Kawamura, 1973) definition of the correlation between the two independent Poisson
processes ρY =

nαβ rαβ√
nαRα ·nβRβ

, we produced six sets of the risks Rα(s), Rβ (s) and rαβ (s) by varying

= 0.001, 0.2, 0.4, 0.6, 0.8, 1.0. Fig. 1 shows the simulated risks when ρ = 0.6.
Y Y

8



D. Payares-Garcia, F. Osei, J. Mateu et al. Spatial Statistics 57 (2023) 100769

a

o

d
e
t
a
P
e
t
t

i
t

3

3

t
t
c

Fig. 1. Simulation of the total risks (underlying log-Gaussian process) at each location; (a) logRα(s) and (b) logRβ (s)
nd, (c) joint marginal risk log rαβ (s) when ρY = 0.6.

Fig. 2. Simulation of the counts Yα derived from the definition of the risks Rα , Rβ and rαβ using the different distributions
f the population sizes n.

The two dependent Poisson variables Yαi and Yβi were simulated (Fig. 2) through (2). We used
the total risks Rα(s) and Rβ (s) displayed in Fig. 1, and population sizes nαi and nβi drawn from the
iscreet uniform, Poisson and, beta-binomial distributions since we are interested in evaluating the
ffect the distribution and variability of population sizes have on the semivariogram estimation and
he kriging of the risk. Our concern is to assess the robustness of the Poisson cokriging and direct
nd cross-semivariogram estimators under homoscedasticity violations. Poisson cokriging, just as
oisson kriging, is a method that accounts for the heteroscedasticity of disease rates, namely, the
ffect of the population size spatial variations on the variance (Goovaerts, 2005). This advantage
ranslates into a robust estimation of the spatial dependency and the kriged values regardless of
he underlying distribution of the population (Goovaerts, 2006b).

To generate partially heterotopic data, we randomly preserved 30% of the target variable and
100% of the auxiliary variable for every simulation. The shared locations between Rα and Rβ , i.e. the
sotopic subset of the data, allow inferring the cross-semivariogram in (21) as well as establishing
he level of correlation between the count processes.

.2. Simulation results

.2.1. Direct and cross-semivariograms estimation
The direct and cross-semivariogram were estimated using (14) and (21) assuming isotropy, and

he LMC was fitted using a weighted least-squares. We adjusted the bivariate sample semivariogram
o the theoretical structures described in Section 3.1. We estimated and adjusted the direct and

ross-semivariograms for the six correlation scenarios and fitted four population size distributions.

9
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Fig. 3. (a–b) Direct-semivariogram and (c) cross semivariogram estimation summaries when ρY = 0.6 and nα follows
Poisson distribution. Average semivariograms estimate (·) and an ‘error bar’ with one standard deviation of the

emivariogram estimates; the graph of the true semivariogram is overlaid.

We display the results for 1000 simulations when ρY = 0.6 and nα follows a Poisson distribution
Fig. 3). Results for remaining correlation and population size distribution scenarios were similar.

The direct semivariogram estimators are approximately unbiased across distances; the aver-
ge semivariogram estimates overlap with the true semivariogram values. Contrarily, the cross-
emivariogram average estimates are downward biased; however, these biases are almost negli-
ible. The sampling variability of both the direct and cross-semivariogram estimators increases as
he strength of spatial association decreases: at large distances, the estimates are more dispersed
han at short distances. These results also hold for other correlation and population size distribution
cenarios. Surprisingly, the correlation between the Poisson variables does not substantially affect
he averaged parameter estimates as the bias slightly increases downwards when the correlation
rops. The population sizes seem to not influence the semivariogram estimates. However, the
kewed beta-binomial-distributed population sizes biased the estimates upwards and downwards.
his behaviour likely occurs due to the high proportion of zero counts produced by generating the
onditional counts using the beta-binomial distribution.

.2.2. Prediction of the latent process
We predicted the total risk Rα(s0) at every prediction location s0 ∈ D = [−10, 10] × [−10,

0] using the sample counts of the target variable Yαi
nαi

and auxiliary variable Yβj
nβj

. Poisson cokriging

predicted the total risk Rα(si) at 280 locations for 1000 datasets for each simulation scenario. The
performance of our model was assessed with four different metrics: the average error, the mean
squared prediction error (MSPE), the coverage probability of prediction intervals and Pearson’s
correlation (ρR) between the predicted and actual values.

Average error =
1
M

M∑
m=1

kα∑
i=1

(R̂m
αi − Rm

αi), MSPE =
1
M

M∑
m=1

kα∑
i=1

(R̂m
αi − Rm

αi)
2

Coverage (95%) =
1
M

M∑
m=1

kα∑
i=1

1
{⏐⏐⏐⏐ R̂m

αi − Rm
αi

MSPE

⏐⏐⏐⏐ < 1.96
}

, ρR =
1
M

M∑
m=1

ρ(R̂m
α ,Rm

α )

here R̂m
αi is the predicted value of Rm

αi at prediction location si in the mth simulation. The metrics
ere computed for each simulation scenario.
Table 1 shows the assessment metrics of the Poisson cokriging predictor for every simulated

cenario. The assessment metrics improve when the correlation between the target and auxiliary
ariables increases: the average errors tend to be 0, the MSPE exhibits small values, the coverage
robabilities are closer to 100%, and a strong positive correlation between the predicted and
rue values is appreciated. As in traditional cokriging, the correlation between the target and
uxiliary variables determines the gain in predicting the former (Cressie, 1993). The distribution
10
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Table 1
Summary assessment metrics for the simulated datasets.
ρY nα distribution Average error MSPE Coverage ρR

→ 0
Uniform 0.045 1.342 0.847 0.559
Poisson 0.091 1.849 0.860 0.583
Beta-binomial −0.073 1.352 0.860 0.549

0.2
Uniform 0.010 0.803 0.946 0.685
Poisson 0.050 0.607 0.989 0.691
Beta-binomial −0.071 0.640 0.952 0.688

0.4
Uniform 0.126 0.527 0.983 0.730
Poisson 0.123 0.451 0.951 0.704
Beta-binomial −0.165 0.928 0.700 0.810

0.6
Uniform 0.042 0.465 0.966 0.788
Poisson 0.044 0.417 0.917 0.791
Beta-binomial −0.031 0.641 0.900 0.793

0.8
Uniform 0.029 0.364 0.971 0.880
Poisson 0.032 0.320 0.964 0.873
Beta-binomial −0.087 0.412 0.971 0.837

1.0
Uniform 0.057 0.2404 0.964 0.951
Poisson 0.051 0.210 0.971 0.979
Beta-binomial −0.026 0.295 0.953 0.920

of the population sizes changes noticeably in the assessment metrics. Overall, the average error
indicates that Poisson cokriging over-predicts when the population sizes follow a uniform and
Poisson distribution. Surprisingly, under-predictions are present in the simulated data with highly
skewed population sizes, i.e., the beta-binomial distribution as the average error adopts negative
values. The uniform distribution is associated with the lowest average error in most correlation
scenarios. The Poisson cokriging estimator is thus sensitive to the population sizes distribution,
mainly if the correlation ρY is high. The coverage probability of the distribution scenarios is
easonably consistent; no gross differences are observed. The Pearson correlation between the
redicted and actual risks unequivocally shows that highly skewed population sizes worsen the
redictions of Poisson cokriging. In all scenarios, the beta-binomial distribution has the lowest
Y . Large differences in correlation are only found between the beta-binomial distribution and its
ounterparts.

.2.3. Poisson cokriging evaluation
In order to evaluate the contribution of Poisson cokriging to the geostatistical analysis of spatial

ount data, we compared its prediction (and error variance) to those of ordinary cokriging (Math-
ron, 1965; Goovaerts, 1998). We will consider a specific scenario when the correlation ρY = 0.6
moderate correlation) and the population size follows a beta-binomial distribution (highly spatially
arying populations).
We assessed the methods using the assessment metrics described in the previous section, except

he coverage probability. The results are displayed in Table 2. Our model outperforms ordinary
okriging. The average error of Poisson cokriging is close to zero. The models seem to overestimate
he total risk; this is a result of the population sizes. Using Poisson cokriging reduces the MSPE by
6% as compared to ordinary kriging. This gain occurs since traditional geostatistical interpolators
oorly deal with the problem of non-stationarity induced by the population sizes (Oliveira, 2014;
ellier et al., 2010; Goovaerts and Gebreab, 2008; Goovaerts, 2017). The linear correlation between
he true total risk and the predicted values is the highest in our proposed method.

A visual inspection further corroborates Poisson cokriging’s convenience against ordinary cok-
iging. Fig. 4 presents the real total risk map in the prediction locations in contrast with the
rediction and variance errors obtained by Poisson cokriging and ordinary cokriging. Global patterns
re similar in the two interpolations, but our method better captures the spatial risk patterns
egardless of the smoothing effect produced. Poisson cokriging, as Poisson kriging, is a noise-

iltered algorithm (Goovaerts and Gebreab, 2008); the model cleans the effect of non-systematics

11
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Table 2
Summary assessment metrics to constrain Poisson cokriging and ordinary for the
selected scenario and the 1000 simulated dataset.
Model Metric

Average error MSPE ρR

Poisson cokriging −0.0423 0.648 0.780
Ordinary cokriging −0.1670 1.203 0.595

Fig. 4. Maps of the (a) true total risk log Rα , (b–c) predicted total risk and (d–e) variance of the prediction error using
rdinary cokriging and Poisson kriging when ρY = 0.6 and beta-binomial-distributed population sizes (average of 1000
imulations).

easurement errors from the observed rates, which translates into smoothed values. While the
rdinary cokriging prediction map suggests adequate spatial risk variability modelling, the predicted
alues seem noisy and artificial, particularly in areas with blended high and low risks. The kriging
ariance maps show similar spatial distributions of the prediction error for both techniques. High
riging variances are generally found in the simulated grid regions where the observed risk is the
ost heterogeneous. The variances in ordinary cokriging are appreciably higher (24%) than in our
odel. The highest variances in Fig. 4 are proportional to the heterogeneous population sizes in
uch areas.

. Application to disease risk data

In this section, we apply Poisson cokriging to disease risk data of two mosquito-borne diseases
Zika and Chikungunya) in two regions of Colombia (Antioquia and Cordoba) for 2016. For the
nalysis, public health information provided by the Public health surveillance system SIVIGILA

acronym in Spanish) was employed.

12
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Mosquito-borne diseases are prevalent in tropical and subtropical regions of the world. Colombia
as the highest incidence of diseases spread by mosquitoes as it possesses climatic, environmental,
nd socio-geographic conditions favouring their growth and development (Parselia et al., 2019). By
018, Colombia reported more than 8 million cases of mosquito-borne diseases such as Dengue,
alaria, Zika, and Chikungunya (Borchering et al., 2019), the last two introduced in the country
etween 2014 and 2015. Studies have demonstrated that Chikungunya and Zika spatial distribution
verlap in that they share common epidemiological characteristics such as vectors (i.e. the Aedes
pecies), the population at risk and environmental risk factors (Mercado-Reyes et al., 2019a; Riou
t al., 2017; Magalhaes et al., 2018). Furthermore, Zika and Chikungunya predominately co-circulate
ithin the same region and populations, and the infection from one virus can trigger or coexist with
he infection of the other virus (Mercado-Reyes et al., 2019b).

The first outbreak of the Zika virus disease in Colombia occurred in early October 2015. In
016 Zika cases rose dramatically, especially in the country’s Northwestern region, where alarming
osquito reservoir densities and poor socio-economical conditions prevail. Chikungunya circulates

n Colombia since 2014. Rates were of public concern in the first three months following its
ntroduction in Colombia, but the figures rapidly flattened in the subsequent months. Still, the rising
ases of the new emerging disease Zika, encouraged the re-occurrence of Chikungunya, particularly
n the regions with the most susceptible populations (Wichit et al., 2021; Mercado-Reyes et al.,
019b).
Poisson cokriging was adopted to predict and produce smooth maps of Zika incidence rates in

he municipalities of Antioquia and Cordoba for 2016, using the Chikungunya incidence rates at the
ame period as auxiliary information. Given that our primary ambition is to estimate the spatial
tructure of the underlying Zika incidence rates using auxiliary information, Poisson cokriging is a
uitable method. To convert the areal data into geostatistical data for this application, we have
ollapsed the municipalities from areal-level to their centroid at the point-level. Although we
ecognise the theoretical limitations of this method, it facilitates our geostatistical analysis in a
imilar fashion to classical block kriging (Olea, 1999)

.1. Zika and Chikungunya incidence rates

The target variable refers to the Zika incidence rates and the auxiliary variable to the Chikun-
unya incidence rates. The sample rates were calculated by dividing the total number of cases per
isease, namely the sum of the marginal and joint cases, over the population at risk at the period
nalysed. Fig. 5 shows the total incidence risk for the two mosquito-borne diseases.
The total risk for Zika and Chikungunya varies within the 155 municipalities that compose

he Antioquia and Cordoba districts. In most of the region, the incidence risk for both viruses is
elatively low; it oscillates between 0 and 200 cases per 10,000 population. There are, however,
ome municipalities in the northern region with higher risk values that range from the 600 to 700
ases per 10,000 population. Exceptionally, the three municipalities of Antioquia: Andes, Abejorral
nd Puerto Triunfo (orange and red polygons) present the highest incidence for both arboviruses.
hese areas tend to represent small municipalities with high Zika and Chikungunya infections.
Overall, the spatial patterns of both infectious diseases are similar. High total risks locate

rimarily in the Southern region of the study area. Moderate risk is found in the central region,
nd low-risk values replicate in most municipalities.
The municipalities’ population sizes are presented in Fig. 6. The log map demonstrates the highly

ariable character of the population in the study area. At least 90% of the municipalities have a
opulation inferior to 100,000 inhabitants corresponding to log values between 8 and 13. Solely 11
unicipalities have large populations extending from 100,000 to 2,000,000 inhabitants (log values
bove 13). Poisson cokriging is a sensible alternative to model the incidence rates computed from
he vastly different population sizes of Antioquia and Cordoba.

We calculated the correlation coefficient defined by Kawamura (1973) to assess the level of
ssociation between the counts of the two diseases. We found an average ρY = 0.49. This number
ndicates that Poisson cokriging will exploit the Chikungunya incidence rates to predict Zika
ncidence rates.
13
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Fig. 5. Maps of the total risk of (a) Zika and (b) Chikungunya incidence in Antioquia and Cordoba (Colombia) for 2016.
The legend displays the incidence rate per 10,000 population.

Fig. 6. Logarithmic map of the total Population at risk in Antioquia and Cordoba, Colombia for 2016.
14
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Fig. 7. Estimation and fitting of the Poisson cokriging (a–b) direct-semivariograms and (c) cross-semivariograms under
he LMC: Zika and Chikungunya incidence risks.

To estimate the semivariograms and krige at unsampled locations, the Zika incidence risks
ataset was randomly split into prediction (70%) and sampling locations (30%). We use the complete
nformation (100%) of the Chikungunya rates as the auxiliary variable.

.2. Direct and cross-semivariogram estimation

The direct and cross-experimental semivariograms defined in Eqs. (14) and (21) were obtained
nder the assumption of isotropy using the sampling locations of the target and auxiliary vari-
ble. An exponential semivariogram model was fitted using the linear model of coregionalisation.
he direct semivariogram and cross-semivariogram showed no nugget effect. Fig. 7 displays the
xperimental direct and cross-semivariograms and their corresponding fitting using weighted
east-squares.

Based on the semivariograms, the spatial dependency within and between the total risks
eakens at distances greater than 70 km. A significant amount of variability is appreciable in the
ata set, notably when the distances increase. Nonetheless, most point estimates suffer from biases
ue to the overdispersion in the data. Nonetheless, the fit of the semivariograms using the LMC
hows good results.
The estimated semivariogram parameters are b1 = 2.130 × 10−5, b2 = 6.42 × 10−5, b12 =

1.246 × 10−5 as the sills of the direct semivariograms of Zika and Chikungunya and the cross-
semivariogram, respectively. The three semivariograms shared an effective range of a = 25 km,
which means that the spatial auto and cross-correlation are rather on a local-level scale and
primarily involve the first-order neighbouring municipalities.

4.3. Poisson cokriging

Fig. 8 displays the spatial distribution of the true and predicted total risk for Zika for the predicted
locations (70% data). The spatial patterns, as well as the range of the risk values, are generally
preserved. It is evident the effect the Chikungunya rates have on the predicted Zika rates: predicted
values are inflated in those municipalities where high Chikungunya risk occurs. The predicted risk
is smoothed with excessively low and high figures filtered out. Nonetheless, the municipalities with
extreme risks are still identifiable. Municipalities with sparse neighbours or scarce surrounding
observations trend towards the mean.

The kriging variances associated with the risk map in Fig. 8.b are mapped in Fig. 9. The prediction
variance ranges from 10 to 50 cases per 10,000 population approximately. Low variances mainly
15
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Fig. 8. Maps of the (a) observed and (b) predicted (Poisson cokriging) total risk of Zika incidence in Antioquia and Cordoba
Colombia) for 2016. The legend displays the incidence rate per 10,000 population.

ccur along the southern region of the study area, where sampling locations abound and the
istances between centroids are short. In these cases, the information provided by neighbouring
unicipalities is rich, leading to smaller kriging variances. High variances mainly affect munic-

palities surrounded by small population sizes and low-risk values. The effect of the population
ize is negligible in the kriging variance maps as it was incorporated into the Poisson cokriging
ystem. The variance of the observed sample rates is filtered out from the variance of the total risk
istributions (Monestiez et al., 2006).

. Discussion and conclusion

We have introduced a novel geostatistical method for bivariate spatially correlated count data.
rom a methodological perspective, we have adapted classical multivariate geostatistics, appealing
or their simplicity in dealing with spatially correlated variables, and the bivariate Poisson dis-
ribution, a model to deal with bivariate correlated count data, to develop an interpretable and
ransparent method to predict spatial counts in the presence of auxiliary information. The driving
otivation emerged from disease risk applications where closely related diseases can explain

heir mutual occurrence. In particular, it is interesting to understand disease rate co-dependence
sing spatial counts. By conducting a simulation study, we have shown the robustness of Poisson
okriging under multiple scenarios and its superiority against alternative methods. An application
o real disease count data demonstrated our method’s convenience to interpolate disease rates at
nobserved locations when ancillary data are available.
The simulation results show a large increase in prediction accuracy in terms of the assessment

etrics considered in this study (Table 2). Such an increase is a direct consequence of introducing
secondary variable in the analysis. The simulation also shows how robust Poisson cokriging is
nder high variation in spatially varying population sizes. The method successfully denoises the
easurement errors and stabilises the variances by adding weighting and correction bias terms in
oth the semivariogram estimators and the cokriging equations system. In a real data application to
ika and Chikungunya incidence counts data in Colombia, we observed our model’s strength in cap-
uring and modelling the spatial dependence between counts. Moreover, the high correspondence
16
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Fig. 9. Map of the kriging variance of the total risk of Zika incidence in Antioquia and Cordoba (Colombia) for 2016. The
egend displays the incidence rate per 10,000 population.

etween the real and predicted values and low prediction kriging variances suggests that Poisson
okriging is a suitable method for bivariate spatial prediction.
Despite the advantages of Poisson cokriging as a bivariate geostatistical estimator, it unavoidably

nherits limitations from its founding theory, the bivariate Poisson distribution proposed by Kawa-
ura (1973). First, the model cannot account for a negative correlation between the target and
uxiliary variable; that is, the correlation coefficient ρY must be strictly positive. This drawback

restrains the applicability of Poisson cokriging to some specific applications. For example, in ecology,
predator–prey interactions are often negatively correlated (Cortez and Weitz, 2014): the scarcer
predators habit in an ecosystem, the higher the prey population becomes. Our model will not be
able to model and predict the prey/predator population counts of such interaction. Nonetheless,
this limitation has little impact on our disease mapping scope. Our primary concern is the positive
(or zero) correlation between two diseases, i.e., the occurrence of one disease is associated with an
increased likelihood of the other disease occurring. Specifically, we aim to address the question of
how an increase in cases of disease A in a geographical unit influences the rise of both disease A
nd disease B cases in the same and surrounding units. The answer to this question has important

implications for outbreak management, pandemic response, and disease control. We believe that our
model’s assumption of positive correlation can potentially guide the implementation of combined
control measures, early detection and rapid response strategies, and minimise the impact of co-
occurring diseases, as it might serve as an indication of causality between the two conditions.
Another latent limitation is that the correlation ρY cannot encompass every possible positive
correlation. The coefficient ρY merely comprises the correlations included in the squared root of
the ratio between the total risks, i.e. min

[√
Rα/Rβ ,

√
Rβ/Rα

]
(Holgate, 1966). Nonetheless, this

estriction does not present challenges for analysing spatial bivariate health count data, as we
efined the correlation based on the dependence between the observed data. On another note,
dvancing the model to incorporate further auxiliary variables is problematic. While (Kawamura,
17
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1973)’s theory allows for pairwise covariance and naturally adjusts to the cokriging covariance
structure, introducing additional covariates makes the cross-semivariogram weights and Poisson
cokriging equations system nearly intractable. Finally, Poisson cokriging cannot operate with count
variables whose denominators (e.g. population sizes, sampling effort) differ. This latent disadvantage
confines our method’s analysis to rates whose independent quantities are identical.

Other limitations, common in geostatistics, also challenge Poisson cokriging’s adoption in prac-
ical settings. For instance, the change of support problem. In our real data application, we
mployed Poisson cokriging to make municipality-level inferences using a centroid-based approach,
ransforming the area-level data to point-level data. This assumption oversimplifies the data latent
patial configuration as it implies that the distribution of both the population and the cases within
municipality are homogeneous. Additionally, the distance computed between such centroids
ight be artificial, leading to incorrect estimation of the semivariogram, over-smoothed maps, and
igher prediction errors (Goovaerts, 2006b). Under this scenario, our model should explicitly handle
he data change of support and account for distances that mirror the actual proximity between
ocations (i.e. population-weighed distances). Potential avenues for future research that we are
onsidering to mitigate the challenges arising from transitioning from areal to point data include
lternative geostatistical methods such as Area-to-Area kriging, Area-to-Point kriging (Goovaerts,
006b; Goovaerts and Gebreab, 2008), weighted centroids, and incorporating point-based ancillary
ata.
As future work, Poisson cokriging can be improved both methodologically and practically. One

atural methodological extension is to deal with more than one auxiliary variable. The cokriging
ethod improves predictions by exploiting multiple sources of information, that is, several covari-
tes (Wackernagel, 2003a). A potential approach includes (Mahamunulu, 1967; Kawamura, 1979;
arlis and Meligkotsidou, 2007) definitions of the multivariate Poisson distribution. Nevertheless,
ttention is needed as these lead to complex covariance structures making multivariate proba-
ility mass computationally and theoretically unmanageable. Accounting for negative correlation
s another future improvement to our model. Although in epidemiological applications, one is
ften concerned with the positive stimuli diseases exert on each other for mitigation and resource
llocation purposes, inverse relationships, while rare, might also arise. For instance, the inverse
elationship between Alzheimer’s disease and cancer (Li et al., 2014). Other research paths for
oisson cokriging include introducing the temporal dimension to comprehensive spatiotemporal
nalyses and external drift to account for shared co-founding effects between the variables. It is
orth noting that we are currently working on extending Poisson cokriging to include covariates,

n a similar fashion to kriging with external drift and kriging regression. We also believe a collocated
ersion of our method would benefit if data are completely heterotopic.
Poisson cokriging, as a frequentist method for bivariate spatial count data, is often easier to

nterpret, implement and scale than its Bayesian counterparts. Our method avoids defining prior
istributions and using iterative parameter estimation procedures, such as Markov Chain Monte
arlo (MCMC) or integrated nested Laplace approximation (INLA), which are computer intensive
nd hard to understand for most practitioners outside statistics. Poisson cokriging, similar to Poisson
riging, can be used for both interpolation and smoothing purposes (Goovaerts, 2017). In contrast
o the prevalent univariate and multivariate techniques employed for disease risk mapping, such as
onditional autoregressive (CAR) and multivariate autoregressive (MCAR) models, Poisson cokriging
ermits the estimation of risk at unobserved locations, provides a flexible modelling of the spatial
co)dependency structure, and optimal smoothing effect (Goovaerts and Gebreab, 2008). Moreover,
he simplicity of the technique allows for easily inferring the underlying spatial structure between
ariables and predicting count variables with limited observations. Our study’s findings are expected
o be of significant interest to epidemiologists, ecologists, and experts from various fields where

ount data thrives.
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In conclusion, this paper introduces a bivariate geostatistical method to predict a spatially
orrelated count variable in the presence of another variable of the exact nature. This model is
articularly beneficial in domains where the variable of interest is under-sampled relative to a
orrelated generously available covariate and when the variables involved are rates computed from
ighly varying population sizes. Furthermore, as Poisson cokriging is a geostatistical method, its
mplementation and interpretation are unambiguous, and the computational burden is modest
ompared to alternative methods. The Poisson cokriging implementation can be found at https:/
github.com/DavidPayares/PCK.

ppendix A. Direct-semivariogram and cross-semivariogram calculations

.1. Direct semivariogram

The relationships between the sample rates at two different spatial locations si and sj are needed
o infer the theoretical semivariogram. Using (3) and (7) we get the first order moment of ( Yαi

nαi
−

Yαj
nαj

):

E
[
Yαi

nαi
−

Yαj

nαj
| Rα

]
=

1
nαi

E [Yαi | Rα(si)] −
1
nαj

E
[
Yαj | Rα(sj)

]
=

1
nαi

(nαi · (rα(si) + rαβ (si))) −
1
nαj

(nαj · (rα(sj) + rαβ (sj)))

= (rα(si) + rαβ (si)) − (rα(sj) + rαβ (sj))

⇒ E
[
Yαi

nαi
−

Yαj

nαj

]
= E

[
E
[
Yαi

nαi
−

Yαj

nαj
| Rα

]]
= E

[
(rα(si) + rαβ (si)) − (rα(sj) + rαβ (sj))

]
= (mα + mαβ ) − (mα + mαβ )
= 0

and the second order moment,

E

[(
Yαi

nαi
−

Yαj

nαj

)2

| Rα

]
= E

[(
Yαi

nαi

)2

+

(
Yαj

nαj

)2

− 2
YαiYαj

nαinαj
| Rα

]
=

1
n2

αi
E
[
Y 2

αi | Rα

]
+

1
n2

αj
E
[
Y 2

αj | Rα

]
−

2
nαinαj

E
[
YαiYαj | Rα

]
=

1
n2

αi
E
[
Y 2

αi | Rα

]
+

1
n2

αj
E
[
Y 2

αj | Rα

]
−

2
nαinαj

(Cov[Yαi, Yαj | Rα]

+ E [Yαi | Rα] E
[
Yαj | Rα

]
)

=
1
n2

αi

(
nαi · (rα(si) + rαβ (si)) + n2

αi

(
rα(si) + rαβ (si)

)2)
+

1
n2

αj

(
nαj · (rα(sj) + rαβ (sj)) + n2

αj

(
rα(sj) + rαβ (sj)

)2)
−

2
nαinαj

(
δij(nαi · (rα(si) + rαβ (si))) + nαi · (rα(si)

+ r (s )) n · (r (s ) + r (s ))
)

αβ i αj α j αβ j

19

https://github.com/DavidPayares/PCK
https://github.com/DavidPayares/PCK
https://github.com/DavidPayares/PCK
https://github.com/DavidPayares/PCK
https://github.com/DavidPayares/PCK
https://github.com/DavidPayares/PCK
https://github.com/DavidPayares/PCK
https://github.com/DavidPayares/PCK
https://github.com/DavidPayares/PCK
https://github.com/DavidPayares/PCK
https://github.com/DavidPayares/PCK
https://github.com/DavidPayares/PCK
https://github.com/DavidPayares/PCK
https://github.com/DavidPayares/PCK
https://github.com/DavidPayares/PCK
https://github.com/DavidPayares/PCK
https://github.com/DavidPayares/PCK
https://github.com/DavidPayares/PCK
https://github.com/DavidPayares/PCK
https://github.com/DavidPayares/PCK
https://github.com/DavidPayares/PCK
https://github.com/DavidPayares/PCK
https://github.com/DavidPayares/PCK
https://github.com/DavidPayares/PCK
https://github.com/DavidPayares/PCK
https://github.com/DavidPayares/PCK
https://github.com/DavidPayares/PCK
https://github.com/DavidPayares/PCK
https://github.com/DavidPayares/PCK
https://github.com/DavidPayares/PCK
https://github.com/DavidPayares/PCK
https://github.com/DavidPayares/PCK
https://github.com/DavidPayares/PCK
https://github.com/DavidPayares/PCK
https://github.com/DavidPayares/PCK


D. Payares-Garcia, F. Osei, J. Mateu et al. Spatial Statistics 57 (2023) 100769
=
(rα(si) + rαβ (si))

nαi
+ (rα(si) + rαβ (si))2 +

(rα(sj) + rαβ (sj))
nαj

+ (rα(sj) + rαβ (sj))2 − 2δij
(rα(si) + rαβ (si))

nαi

− 2(rα(si) + rαβ (si))(rα(sj) + rαβ (sj))

=
(rα(si) + rαβ (si))

nαi
+

(rα(sj) + rαβ (sj))
nαj

− 2δij
(rα(si) + rαβ (si))

nαi

+
(
(rα(si) + rαβ (si)) − (rα(sj) + rαβ (sj))

)2
⇒ E

[(
Yαi

nαi
−

Yαj

nαj

)2
]

= E

[
(rα(si) + rαβ (si))

nαi
+

(rα(sj) + rαβ (sj))
nαj

− 2δij
(rα(si) + rαβ (si))

nαi

+
(
(rα(si) + rαβ (si)) − (rα(sj) + rαβ (sj))

)2 ]
=

mα + mαβ

nαi
+

mα + mαβ

nαj
− 2δij

mα + mαβ

nαi

+ E
[(

(rα(si) + rαβ (si)) − (rα(sj) + rαβ (sj))
)2]

1
2
E

[(
Yαi

nαi
−

Yαj

nαj

)2
]

=
1
2
(mα + mαβ )

(
1
nαi

+
1
nαj

)
− δij

mα + mαβ

nαi
+

1
2

E
[(

(rα(si) + rαβ (si)) − (rα(sj) + rαβ (sj))
)2]

We can re-write the equation in terms of Rα(s) as the total risk Rα(si) = rα(si) + rαβ (si):

1
2
E

[(
Yαi

nαi
−

Yαj

nαj

)2
]

=
1
2
(mα + mαβ )

(
1
nαi

+
1
nαj

)
− δij

mα + mαβ

nαi

+
1
2
E
[
(Rα(si) − Rα(sj))2

]
The expectation of the conditional variance of the difference in the squared rates when i ̸= j is,

Var
[
Yαi

nαi
−

Yαj

nαj
| Rα

]
= E

[(
Yαi

nαi
−

Yαj

nαj

)2

| Rα

]
+ E2

[
Yαi

nαi
−

Yαj

nαj
| Rα

]
=

(rα(si) + rαβ (si))
nαi

+
(rα(sj) + rαβ (sj))

nαj

+
(
(rα(si) + rαβ (si)) − (rα(sj) + rαβ (sj))

)2
−
(
(rα(si) + rαβ (si)) − (rα(sj) + rαβ (sj))

)2
=

(rα(si) + rαβ (si))
nαi

+
(rα(sj) + rαβ (sj))

nαj

⇒ E
[
Var

[
Yαi

nαi
−

Yαj

nαj
| Rα

]]
= E

[
(rα(si) + rαβ (si))

nαi
+

(rα(sj) + rαβ (sj))
nαj

]
= (mα + mαβ )

(
nαi + nαj

)

nαinαj
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A.2. Cross-semivariogram

Through (15) and (3) we get the first order moment of ( Yαi
nαi

−
Yβj
nβj

):

E
[
Yαi

nαi
−

Yαj

nαj
| R
]

= (rα(si) + rαβ (si)) − (rα(sj) + rαβ (sj))

⇒ E
[
Yαi

nαi
−

Yαj

nαj

]
= (mα + mαβ ) − (mα + mαβ )

= 0

And identically for E
[
Yβi
nβi

−
Yβj
nβj

| R
]
.

We also get that:

Cov
[(

Yαi

nαi
−

Yαj

nαj

)(
Yβi

nβi
−

Yβj

nβj

)
| R
]

= E
[(

Yαi

nαi
−

Yαj

nαj

)
,

(
Yβi

nβi
−

Yβj

nβj

)
| R
]

= E
[
YαiYβi

nαinβi
−

YαiYβj

nαinβj
−

YαjYβi

nαjnβi
+

YαjYβj

nαjnβj
| R
]

=
1

nαinβi
E
[
YαiYβi | R

]
−

1
nαinβj

E
[
YαiYβj | R

]
−

1
nαjnβi

E
[
YαjYβj | R

]
+

1
nαjnβj

E
[
YαjYβj | R

]

=
1

nαinβi

[
nαirαβ (si) + nαi · (rα(si) + rαβ (si)) · nβi · (rβ (si) + rαβ (si))

]
−

1
nαinβj

[
δαβij

(
nαirαβ (si)

)
+ nαi · (rα(si) + rαβ (si)) · nβj · (rβ (sj)

+ rαβ (sj))
]

−
1

nαjnβi

[
δαβji

(
nαjrαβ (sj)

)
+ nαj · (rα(sj) + rαβ (sj)) · nβi · (rβ (si)

+ rαβ (si))
]

+
1

nαjnβj

[
nαjrαβ (sj) + nαj · (rα(sj) + rαβ (sj)) · nβj · (rβ (sj) + rαβ (sj))

]
=

rαβ (si)
nαi

+ (rα(si) + rαβ (si))(rβ (si) + rαβ (si))

−
rαβ (si)
nβj

δαβij − (rα(si) + rαβ (si))(rβ (sj) + rαβ (sj))

−
rαβ (sj)
nβi

δαβij − (rα(sj) + rαβ (sj))(rβ (si) + rαβ (si))

+
rαβ (sj)
nβj

+ (rα(sj) + rαβ (sj))(rβ (sj) + rαβ (sj))

=
rαβ (si)
nαi

−
rαβ (si)
nβj

δαβij −
rαβ (sj)
nβi

δαβij +
rαβ (sj)
nβj

+
[(
(rα(si) + rαβ (si)) − (rα(sj) + rαβ (sj))

) (
(rβ (si) + rαβ (si)) − (rβ (sj))]
+rαβ (sj))
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a

⇒ Cov
[(

Yαi

nαi
−

Yαj

nαj

)
,

(
Yβi

nβi
−

Yβj

nβj

)]
= E

[(
Yαi

nαi
−

Yαj

nαj

)(
Yβi

nβi
−

Yβj

nβj

)]
= E

[
rαβ (si)
nαi

−
rαβ (si)
nβj

δαβij −
rαβ (sj)
nβi

δαβij +
rαβ (sj)
nβj

+
[(
(rα(si) + rαβ (si)) − (rα(sj) + rαβ (sj))

)
×
(
(rβ (si) + rαβ (si))

−(rβ (sj) + rαβ (sj))
)] ]

=
mαβ

nαi
−

mαβ

nβj
δαβij −

mαβ

nβi
δαβij +

mαβ

nαj

+ E
[ (

(rα(si) + rαβ (si)) − (rα(sj) + rαβ (sj))
) (

(rβ (si)

+ rαβ (si))

− (rβ (sj) + rαβ (sj))
)]

1
2
E
[(

Yαi

nαi
−

Yαj

nαj

)(
Yβi

nβi
−

Yβj

nβj

)]
=

1
2

(
mαβ

nαi
+

mαβ

nβj

)
−

1
2

(
mαβ

nβj
δαβij +

mαβ

nαi
δαβij

)
+

1
2
E
[ (

(rα(si) + rαβ (si)) − (rα(sj) + rαβ (sj))
)

×
(
(rβ (si) + rαβ (si))

− (rβ (sj) + rαβ (sj))
)]

We can re-write the equation in terms of Rα and Rβ as the total risks Rα(si) = rα(si) + rαβ (si)
nd Rβ (si) = rβ (si) + rαβ (si), correspondingly.

1
2
E
[(

Yαi

nαi
−

Yαj

nαj

)(
Yβi

nβi
−

Yβj

nβj

)]
=

1
2

(
mαβ

nαi
+

mαβ

nβj

)
−

1
2

(
mαβ

nβj
δαβij +

mαβ

nαi
δαβij

)
+

1
2
E
[(
Rα(si) − Rα(sj)

)(
Rβ (si) − Rβ (si)

)]
The expectation of the conditional variance of the difference in the squared rates when i ̸= j is,

Cov
[(

Yαi

nαi
−

Yαj

nαj

)
,

(
Yβi

nβi
−

Yβj

nβj

)
| R
]

= E
[(

Yαi

nαi
−

Yαj

nαj

)(
Yβi

nβi
−

Yβj

nβj

)
| R
]

− E
[
Yαi

nαi
−

Yαi

nαj
| R
]
E
[
Yβi

nβi
−

Yβi

nβj
| R
]

=
rαβ (si)
nαi

+
rαβ (sj)
nβj

+
(
(rα(si) + rαβ (si))

− (rα(sj) + rαβ (sj))
)(

(rβ (si) + rαβ (si))
− (rβ (sj) + rαβ (sj))

)
=

rαβ (si)
nαi

+
rαβ (sj)
nβj

E
[
Cov

[(
Yαi

nαi
−

Yαj

nαj

)
,

(
Yβi

nβi
−

Yβj

nβj

)
| R
]]

= E
[
rαβ (si)
nαi

+
rαβ (sj)
nβj

]
= mαβ

(
nαi + nβj

)

nαinβj
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Appendix B. Poisson cokriging variance

The best set of weights λαi and λβi should be chosen such that the predicted values at a new

ocation are unbiased and also minimise the prediction variance Var[Rα(s0)∗ −Rα(s0)]. To compute

he prediction variance, we calculate first the conditional expectation

E
[
Rα(s0)∗ − Rα(s0) | R

]
= E

⎡⎣ kα∑
i=1

λαi
Yαi

nαi
+

kβ∑
i=1

λβi
Yβi

nβi
− Rα(s0) | R

⎤⎦
=

kα∑
i=1

λαi

nαi
E [Yαi | R] +

kβ∑
i=1

λβi

nβi
E
[
Yβi | R

]
− E [Rα(s0) | R]

=

kα∑
i=1

λαi

nαi
(nαiRα(si)) +

kβ∑
i=1

λβi

nβi
(nβiRβ (si)) − Rα(s0)

=

kα∑
i=1

λαi

nαi

[
nαi · (rα(si) + rαβ (si))

]
+

kβ∑
i=1

λβi

nβi

[
nβi · (rβ (si) + rαβ (si))

]
− (rα0 + rαβ0)

⇒ E
[
Rα(s0)∗ − Rα(s0)

]
= E

[
kα∑
i=1

λαi

nαi

[
nαi · (rα(si) + rαβ (si))

]

+

kβ∑
i=1

λβi

nβi

[
nβi · (rβ (si) + rαβ (si))

]
− (rα0 + rαβ0)

]

=

kα∑
i=1

λαi E[rα(si) + rαβ (si)] +

kβ∑
i=1

λβi E[rβ (si) + rαβ (si)]

− E[rα0 + rαβ0]

= (mα + mαβ )
kα∑
i=1

λαi  
1

+(mβ + mαβ )
kβ∑
i=1

λβi  
0

−(mα + mαβ )

= (mα + mαβ ) − (mα + mαβ )

= 0

Then we compute the conditional squared expectation,

E
[
(Rα(s0)∗ − Rα(s0))2 | R

]
= E

⎡⎢⎣
⎛⎝ kα∑

i=1

λαi
Yαi

nαi
+

kβ∑
i=1

λβi
Yβi

nβi
− Rα(s0)

⎞⎠2

| R

⎤⎥⎦
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= E

[ (
kα∑
i=1

λαi
Yαi

nαi

)2

+ 2

(
kα∑
i=1

λαi
Yαi

nαi

)⎛⎝ kβ∑
i=1

λβi
Yβi

nβi

⎞⎠− 2

(
kα∑
i=1

λαi
Yαi

nαi

)
Rα(s0)

+

⎛⎝ kβ∑
i=1

λβi
Yβi

nβi

⎞⎠2

− 2

⎛⎝ kβ∑
i=1

λβi
Yβi

nβi

⎞⎠Rα(s0) + R2
α0 | R

]

= E

[
kα∑
i=1

kα∑
j=1

λαiλαj
YαiYαj

nαinαj
+ 2

kα∑
i=1

kβ∑
j=1

λαiλβj
YαiYβj

nαinβj
− 2Rα(s0)

kα∑
i=1

λαi
Yαi

nαi

+

kβ∑
i=1

kβ∑
j=1

λβiλβj
YβiYβj

nβinβj
− 2Rα(s0)

kβ∑
i=1

λβi
Yβi

nβi
+ R2

α0 | R

]

=

kα∑
i=1

kα∑
j=1

λαiλαj

nαinαj
E[YαiYαj | R] + 2

kα∑
i=1

kβ∑
j=1

λαiλβj

nαinβj
E[YαiYβj | R] − 2Rα(s0)

kα∑
i=1

λαi

nαi
E[Yαi | R]

+

kα∑
i=1

kβ∑
j=1

λβiλβj

nβinβj
E[YβiYβj | r] − 2Rα(s0)

kβ∑
i=1

λβi

nβi
E[Yβi | r] + R2

α0

=

kα∑
i=1

kα∑
j=1

λαiλαj

nαinαj

(
δij
1

(
nαi · (rα(si) + rαβ (si))

)
+ nαi · (rα(si) + rαβ (si)) nαj · (rα(sj) + rαβ (sj))

)

+ 2
kα∑
i=1

kβ∑
j=1

λαiλβj

nαinβj

(
δαβij

1

(
nαirαβ (si)

)
+ nαi · (rα(si) + rαβ (si)) nβj · (rβ (sj) + rαβ (sj))

)

+

kβ∑
i=1

kβ∑
j=1

λβiλβj

nβinβj

(
δij
1

(
nβi · (rβ (si) + rαβ (si))

)
+ nβi · (rβ (si) + rαβ (si)) nβj · (rβ (sj)

+ rαβ (sj))
)

− 2Rα(s0)
kα∑
i=1

λαi

nαi

(
nαi · (rα(si) + rαβ (si))

)
− 2Rα(s0)

kβ∑
i=1

λβi

nβi

(
nβi · (rβ (si) + rαβ (si))

)
+ Rα(s0)2

=

kα∑
i=1

λ2
αi

nαi
(rα(si) + rαβ (si)) +

kα∑
i=1

kα∑
j=1

λαiλαj(rα(si) + rαβ (si))(rα(sj) + rαβ (sj))

+ 2
kα∑
i=1

kβ∑
j=1

λαiλβj

nβj
rαβ (si)

+ 2
kα∑ kβ∑

λαiλβj(rα(si) + rαβ (si))(rβ (sj) + rαβ (sj)) +

kβ∑ λ2
βi

nβi
(rβ (si) + rαβ (si))
i=1 j=1 i=1
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+

kβ∑
i=1

λ2
βi

nβi
E[(rβ (si) + rαβ (si))] +

kβ∑
i=1

kβ∑
j=1

λβiλβj E[(rβ (si)

=

kα∑
i=1

λ2
αi

nαi
(mα + mαβ ) +

kα∑
i=1

kα∑
j=1

λαiλαj
+

kα∑
i=1

kβ∑
j=1

λβiλβj(rβ (si) + rαβ (si))(rβ (sj) + rαβ (sj)) − 2
kα∑
i=1

λαi(rα0 + rαβ0)(rα(si) + rαβ (si))

− 2
kβ∑
i=1

λβi(rα0 + rαβ0)(rβ (si) + rαβ (si)) + (rα0 + rαβ0)2

⇒ E
[
(Rα(s0)∗ − Rα(s0))2

]
= E

[
kα∑
i=1

λ2
αi

nαi
(rα(si) + rαβ (si)) +

kα∑
i=1

kα∑
j=1

λαiλαj(rα(si)

+ rαβ (si))(rα(sj) + rαβ (sj)) + 2
kα∑
i=1

kβ∑
j=1

λαiλβj

nβj
rαβ (si)

+ 2
kβ∑
i=1

kβ∑
j=1

λαiλβj(rα(si) + rαβ (si))(rβ (sj) + rαβ (sj))

+

kβ∑
i=1

λ2
βi

nβi
(rβ (si) + rαβ (si)) +

kβ∑
i=1

kβ∑
j=1

λβiλβj(rβ (si)

+ rαβ (si))(rβ (sj) + rαβ (sj))

− 2
kα∑
i=1

λαi(rα0 + rαβ0)(rα(si) + rαβ (si))

− 2
kβ∑
i=1

λβi(rα0 + rαβ0)(rβ (si) + rαβ (si)) + (rα0 + rαβ0)2
]

=

kα∑
i=1

λ2
αi

nαi
E[(rα(si) + rαβ (si))] +

kα∑
i=1

kα∑
j=1

λαiλαj E[(rα(si)

+ rαβ (si))(rα(sj) + rαβ (sj))] + 2
kα∑
i=1

kβ∑
j=1

λαiλβj

nβj
E[rαβ (si)]

+ 2
kα∑
i=1

kβ∑
j=1

λαiλβj E[(rα(si) + rαβ (si))(rβ (sj) + rαβ (sj))]

+ rαβ (si))(rβ (sj)

+ rαβ (sj))] − 2
kα∑
i=1

λαi E[(rα0 + rαβ0)(rα(si) + rαβ (si))]

− 2
kβ∑
i=1

λβi E[(rα0 + rαβ0)(rβ (si) + rαβ (si))] + E[(rα0 + rαβ0)2]

×

[
CR

ααij + (mα + mαβ )(mα + mαβ )
]

+ 2
kα∑
i=1

kβ∑
j=1

λαiλβj

nβj
mαβ + 2

kα∑
i=1

kβ∑
j=1

λαiλβj

×

[
CR

+ (m + m )(m + m )
]

αβij α αβ β αβ
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w

+

kβ∑
i=1

λ2
βi

nβi
(mβ + mαβ ) +

kβ∑
i=1

kβ∑
j=1

λβiλβj

×

[
CR

ββij + (mβ + mαβ )(mβ + mαβ )
]

E
[
(Rα(s0)∗ − Rα(s0))2

]
− 2

kα∑
i=1

λαi

[
CR

ααi0 + (mα + mαβ )(mα + mαβ )
]

− 2
kβ∑
i=1

λβi

[
CR

βαi0 + (mα + mαβ )(mβ + rαβ )
]

+ (mα + mαβ )2

+ (σ 2
α + σ 2

αβ )

=

kα∑
i=1

λ2
αi

nαi
(mα + mαβ ) +

kα∑
i=1

kα∑
j=1

λαiλαjCR
ααij + (mα + mαβ )2

+

kβ∑
i=1

λ2
βi

nβi
(mβ + mαβ )

+

kβ∑
i=1

kβ∑
j=1

λβiλβjCR
ββij + 2

kα∑
i=1

kβ∑
j=1

λαiλβj

nβj
mαβ + 2

kα∑
i=1

kβ∑
j=1

λαiλβjCR
αβij

− 2
kα∑
i=1

λαiCR
ααi0 − 2(mα + mαβ )2 − 2

kβ∑
i=1

λβiCR
βαi0 + (mα + mαβ )2

+ (σ 2
α σ 2

αβ )

=

kα∑
i=1

λ2
αi

nαi
(mα + mαβ ) +

kα∑
i=1

λ2
βi

nβi
(mβ + mαβ ) + 2

kα∑
i=1

kβ∑
j=1

λαiλβj

nβj
mαβ

+

kα∑
i=1

kα∑
j=1

λαiλαjCR
ααij +

kβ∑
i=1

kβ∑
j=1

λβiλβjCR
ββij + 2

kα∑
i=1

kβ∑
j=1

λαiλβjCR
αβij

− 2
kα∑
i=1

λαiCR
ααi0 − 2

kβ∑
i=1

λβiCR
βαi0 + (σ 2

α + σ 2
αβ )

The variance can be written in terms of expectations as

Var[Rα(s0)∗ − Rα(s0)] = E
[(

Rα(s0)∗ − Rα(s0)
)2]

− E2[Rα(s0)∗ − Rα(s0)
]

=

kα∑
i=1

λ2
αi

nαi
(mα + mαβ ) +

kα∑
i=1

λ2
βi

nβi
(mβ + mαβ ) + 2

kα∑
i=1

kβ∑
j=1

λαiλβj

nβj
mαβ

+

kα∑
i=1

kα∑
j=1

λαiλαjCR
ααij +

kβ∑
i=1

kβ∑
j=1

λβiλβjCR
ββij + 2

kα∑
i=1

kβ∑
j=1

λαiλβjCR
αβij

− 2
kα∑
i=1

λαiCR
ααi0 − 2

kβ∑
i=1

λβiCR
βαi0 + (σ 2

α + σ 2
αβ )

here CR
= CR (|s − s |) and CR

= C (|s − s |). The variance of the process R (s ) is σ 2
+σ 2 .
αβij αβ i j αβi0 αβ 0 i α 0 α αβ
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m

µ

V

w

The final step is to set up a system of equations and minimise the prediction error variance. By

inimising the above equation, the constraints on the weights generate two parameters of Lagrange

α and µβ . Then

Var[Rα(s0)∗ − Rα(s0)] =

kα∑
i=1

λ2
αi

nαi
(mα + mαβ ) +

kα∑
i=1

λ2
βi

nβi
(mβ + mαβ ) + 2

kα∑
i=1

kβ∑
j=1

λαiλβj

nβj
mαβ

+

kα∑
i=1

kα∑
j=1

λαiλαjCR
ααij +

kβ∑
i=1

kβ∑
j=1

λβiλβjCR
ββij + 2

kα∑
i=1

kβ∑
j=1

λαiλβjCR
αβij

− 2
kα∑
i=1

λαiCR
ααi0 − 2

kβ∑
i=1

λβiCR
βαi0 + (σ 2

α + σ 2
αβ ) + 2µα

[
kα∑
i=1

λαi − 1

]

+ 2µβ

⎡⎣ kβ∑
i=1

λβi

⎤⎦
Note that the two additional terms are both equal to 0 and do not contribute to the error variance

ar[Rα(s0)∗ − Rα(s0)].

To minimise Var[Rα(s0)∗ −Rα(s0)] we compute the partial derivatives of Var[Rα(s0)∗ −Rα(s0)]
ith respect to the kα + kβ weights and the two Lagrange multipliers:

∂
∂λαj

Var[Rα(s0)∗ − Rα(s0)] = 2 λαi
nαi

(mα + mαβ ) + 2
kβ∑
i=1

λβi

nβi
mαβ + 2

kα∑
i=1

λαiCR
ααij

+2
kβ∑
i=1

λβiCR
αβij

−2CR
ααi0 + 2µα

∂
∂λβj

Var[Rα(s0)∗ − Rα(s0)] = 2 λβi
nαi

(mβ + mαβ ) + 2
kα∑
i=1

λαi

nαi
mαβ + 2

kβ∑
i=1

λβiCR
ββij

+2
kα∑
i=1

λαiCR
αβij

−2CR
βαi0 + 2µβ

∂
∂µα

Var[Rα(s0)∗ − Rα(s0)] = 2
kα∑
i=1

λαi − 1

∂
∂µβ

Var[Rα(s0)∗ − Rα(s0)] = 2
kβ∑
i=1

λβi

The Poisson cokriging system in Eq. (25) is obtained by equating each of these kα + kβ + 2

equations to 0 and rearranging the individual terms.
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B

B

B

C
C
G
G

G

G

G

G

G

The Poisson cokriging variance in Eq. (24) can be simplified by making substitutions using the
agrange multipliers

Var[Rα(s0)∗ − Rα(s0)] =

kα∑
i=1

λ2
αi

nαi
(mα + mαβ ) +

kβ∑
i=1

λ2
βi

nβi
(mβ + mαβ ) + 2

kα∑
i=1

kβ∑
j=1

λαiλβj

nβj
mαβ

+

kα∑
i=1

kα∑
j=1

λαiλαjCR
ααij +

kβ∑
i=1

kβ∑
j=1

λβiλβjCR
ββij + 2

kα∑
i=1

kβ∑
j=1

λαiλβjCR
αβij

− 2
kα∑
i=1

λαiCR
ααi0 − 2

kβ∑
i=1

λβiCR
βαi0 + (σ 2

α + σ 2
αβ )

=

kα∑
i=1

λαi

(
λαi

nαi
(mα + mαβ ) +

kβ∑
i=1

λβi

nβi
mαβ +

kα∑
i=1

λαiCR
ααij +

kβ∑
i=1

λβiCR
αβij − CR

ααi0

)
  

−µα

+

kβ∑
i=1

λβi

(
λβi

nβi
(mβ + mαβ ) +

kα∑
i=1

λαi

nαi
mαβ +

kβ∑
i=1

λβiCR
ββij +

kα∑
i=1

λαiCR
αβij − CR

βαi0

)
  

−µβ

−

kα∑
i=1

λαiCR
ααi0 −

kβ∑
i=1

λβiCR
βαi0 + (σ 2

α + σ 2
αβ )

= (σ 2
α + σ 2

αβ ) −

kα∑
i=1

λαiCR
ααi0 −

kβ∑
i=1

λβiCR
βαi0 − µα

kα∑
i=1

λαi  
1

−µβ

kβ∑
i=1

λβi  
0

Var[Rα(s0)∗ − Rα(s0)] = (σ 2
α + σ 2

αβ ) −

kα∑
i=1

λαiCR
ααi0 −

kβ∑
i=1

λβiCR
βαi0 − µα
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