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Abstract

The approximation properties of infinitely wide shallow neural networks heavily depend on the choice
of the activation function. To understand this influence, we study embeddings between Barron spaces
with different activation functions. These embeddings are proven by providing push-forward maps
on the measures µ used to represent functions f . An activation function of particular interest is the
rectified power unit (RePU) given by RePUs(x) = max(0, x)s. For many commonly used activation
functions, the well-known Taylor remainder theorem can be used to construct a push-forward map,
which allows us to prove the embedding of the associated Barron space into a Barron space with a
RePU as activation function. Moreover, the Barron spaces associated with the RePUs have a hierar-
chical structure similar to the Sobolev spaces Hm.
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1 Introduction

For a given function σ : R → R, called the activation function, and a set X ⊆ Rd, we consider the set of
functions that can be written using an integral representation as

f(x) =

∫
Ω

σ(⟨x|w⟩+ b)dµ(w, b), x ∈ X (1.1)

where µ is a radon measure on Ω ⊆ Rd+1. In machine learning, this represents an infinitely wide shallow
neural network.

The choice of activation function is a crucial aspect in the design and training of neural networks, as
it directly affects their expressive power, convergence rate, and generalization performance. The search
for new activation functions that can better capture the underlying structure and patterns of the data,
while avoiding common issues such as vanishing gradients and overfitting, is ongoing. The most popular
choices for the activation function are the sigmoidal functions1 and the ReLU(x) := max(0, x). Although
these activation functions work in many instances, they are not the best for all instances. For example,
[Siegel and Xu, 2021] showed that in certain instances taking a higher-order version of the ReLU given by
RePUs(x) := max(0, x)s yields improved approximation properties compared to using ReLU. Similarly,
[Hendrycks and Gimpel, 2020;Ramachandran et al., 2023;Misra, 2020] showed that taking smoothed
versions of ReLU like GeLU, Swish or Mish as activation functions also accomplished this. To understand
what these changes to the activation function do and why they lead to better approximation properties,

1Sigmoidal functions are monotonic increasing functions which go to constants at plus and minus infinity.
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1 INTRODUCTION

we want to study how the function spaces associated with neural networks change when the activation
function is changed.

Changing the activation function means that the natural norm of the associated vector space gets changed
too. The natural norm of the space for deep neural networks is unknown. For shallow neural networks,
the Barron norm gives the natural norm for an infinitely wide neural network with activation function σ.
For sigmoidal activation functions, this is given by

∥f∥Bσ = inf

∫
Ω

(1 + ∥w∥ℓ1 + |b|)d|µ|(w, b) (1.2)

where the infimum is taken over all measures µ such that (1.1) holds for all x ∈ X . A vector space
with this norm is called a Barron space (associated with the activation function σ)[E and Wojtowytsch,
2022b]. Hence, to understand what effect a change to the activation function has, we should determine
what effect this change has on the underlying Barron space.

1.1 Related work

The Barron spaces were introduced with the motivation to create a “reasonably simple and transparent
framework for machine learning”[Page 2 of E and Wojtowytsch, 2022b]. Initially, they were introduced
only for the ReLU and sigmoidal activation functions. In [Bartolucci et al., 2023], Barron spaces were
shown to be reproducing kernel Banach spaces (RKBS), a Banach space analogue to reproducing kernel
Hilbert spaces (RKHS). This was used to determine what form the Barron norm should have for the
rectified power unit (RePU), but can easily be extended to determine what a natural norm would be for
any activation function. It was proven that Barron functions have bounded point evaluations [Bartolucci
et al., 2023; Spek et al., 2023], Barron functions can be approximated in Lp with rate O(m−1/p)[E.
and Wojtowytsch, 2022a], Barron spaces have a representer theorem[Parhi and Nowak, 2021] and more.
Some of these results hold for particular activation functions (mostly ReLU), whereas others hold for
more general classes of activation functions.

In order to extend results for the Barron space with ReLU as the activation function to more general
activation functions, a relation between ReLU and a large class of activation functions was established
in [Li et al., 2020]. They determined that any activation function ϕ that satisfies∫

R

∣∣D2ϕ(x)
∣∣(1 + |x|)dx <∞ (1.3)

can be approximated up to arbitrary precision in L∞ by a finite linear combination of ReLUs. This
covers, among others, the sigmoidal activation functions. Their result does not apply directly to the
infinite width setting of the Barron spaces, but their strategy allows for an extension to the infinite width
setting.

In [Caragea et al., 2020], the relations between the Barron spaces and the related spectral Barron spaces
were discussed. For s ∈ N the spectral Barron spaces have norm

∥f∥BF,s
= inf

∫
Rd
(1 + ∥ξ∥ℓ1)

s
∣∣∣f̂e(ξ)∣∣∣dξ (1.4)

where the infimum is taken over all extensions fe ∈ L1(Rd) of f . They can be seen as Barron spaces with
a cosine as the activation function. It was shown that these spaces are closely related to but distinct
from the Barron spaces with ReLU as the activation function. In particular, s ≥ 2 needs to hold to have
an embedding into the Barron space with ReLU as the activation function.

In [Siegel and Xu, 2020], it was shown that functions f ∈ BF ,s+1 can be approximated in Hs with
rate O(m−0.5) when using activation functions σ ∈W s,∞

loc , with which a finite linear combination can be
formed that decays sufficiently fast. Their work does not provide an embedding between the respective
spaces.

In practice, there are many more activation functions being used. ReLU6 and leaky ReLU (LReLU) are
linear combinations of ReLUs [A. G. Howard et al., 2017;Maas, 2013]. Tanh is a convolution of ArcTan
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1 INTRODUCTION

with a specific kernel. SoftPlus and ReLU are derivatives of Sigmoid and squared ReLU respectively
[Glorot et al., 2011]. HardSwish, SILU/Swish-1, GeLU and the growing cosine unit are ReLU6, Sigmoid,
Gaussian normal CDF function, and cosine respectively multiplied by their input [A. Howard et al.,
2019;Ramachandran et al., 2023;Hendrycks and Gimpel, 2020;Noel et al., 2021]. What these and other
changes to the activation do to the associated Barron space is unknown.

1.2 Our contribution

In this work, we show that many of these changes to the activation function lead to an embedding between
the respective Barron spaces. The main idea is that we explicitly construct a push-forward map Θ for
two given activation functions σ and ϕ so that

f(x) =

∫
Ω

σ(⟨x|w⟩+ b)dµ(w, b) =

∫
Ω

ϕ(⟨x|w⟩+ b)dΘ#µ(w, b), x ∈ X . (1.5)

When we find a map Θ, we can use it to show that the Barron norm ∥f∥Bϕ is finite and determine
the constant of embedding by using the relation Θ induces between Θ#µ and µ. For example, for two
Lipschitz continuous activation functions σ and ϕ we need Θ to be such that

∥f∥Bϕ ≤
∫
Ω

1 + ∥w∥ℓ1 + |b|d|Θ#µ|(w, b) ≲
∫
Ω

1 + ∥w∥ℓ1 + |b|d|µ|(w, b) (1.6)

for all µ satisfying (1.1) to get an embedding. The embeddings can be grouped into those in which one of
the two activation functions is the RePUs for some s ∈ N and those in which neither activation function
is a RePUs. The former is discussed in Section 2, whilst the latter is discussed in Section 3. Additionally,
in Section 4 we show how the push-forward strategy can be used to provide embeddings from non-Barron
spaces into Barron spaces by proving the embedding of the spectral Barron spaces into the Barron spaces
with RePU activation. The proven embeddings are summarized in Theorem 1.

Theorem 1. Let s ∈ N. If ψ and ϕ are Lipschitz activation functions such that

ϕ(x) =

∫
R2

ψ(xw + b)dγ(w, b) (1.7)

for all x ∈ R and for some measure γ ∈ M(R2) satisfying∫
R2

(1 + |w|+ |b|)d|γ|(w, b) <∞, (1.8)

then

1. Bϕ ↪→ Bψ,

2. Bψ ↪→ BRePU1 whenever ψ ∈ C1(R) with D2ψ ∈ L1(R),

3. Bψ ↪→ BRePUs whenever ψ ∈ Cs(R) with Ds+1ψ ∈ L1(R) and Ω is bounded,

4. BRePUs ↪→ BRePUt for t ∈ N with t ≤ s.

Moreover, BF ,s+1 ↪→ BRePUs .

Observe that the form of the integral in (1.7) is similar to that of the integrals in (1.6). This means we
can interpret the embedding in point 1) of Theorem 1 as follows: If we have a shallow neural network with
ϕ as activation function representing the function f , then we can replace each neuron in the hidden layer
by a (possibly infinite) number of neurons with ψ as activation function. γ describes how the weights
and biases of the neurons in the network should be adjusted. After the replacement, the network will
still represent f . This interpretation is visualized in Figure 1.
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1 INTRODUCTION

Embedding

Figure 1: Each circle represents a neuron, and arrows represent connections between neurons. On the
left, a network with ϕ as activation function representing f is shown. The activation function ϕ can be
represented using a shallow neural network with 3 neurons in the hidden layer and activation function ψ.
On the right, a network with ψ as activation function representing f is shown. The network representing
ϕ is used to construct the network on the right from that on the top left. Colors have been added to
track which neuron on the right corresponds to which on the top left.

1.3 Notation

We use the following notation conventions throughout this paper.

Denote with N the natural numbers without zero. The weak derivative of a function f is denoted by Df
and the (classical) derivative by ∂f . When f is multivariate, we use multi-indices to denote the partial
derivatives. Radon measures are regular signed Borel measures with bounded total variation. The space
of Radon measures M(Ω) on a locally compact Hausdorff space Ω is the continuous dual of the continuous
functions vanishing at infinity, C0(Ω)

∗ = M(Ω). The total variation measure of a measure µ ∈ M(Ω) is
denoted by |µ|. The Dirac measure is given by

δw(A) =

{
1 w ∈ A

0 w ̸∈ A
(1.9)

for Borel sets A ⊆ Ω. For a map Θ defined by

Θ : X → Y, x 7→ Θ(x), (1.10)

we call the measure ν := Θ#µ the push-forward of µ along the map Θ such that∫
Y

f(y)dν(y) =

∫
X

f(Θ(x))dµ(x), (1.11)

for all ν-measurable functions f . A normed vector space A embeds into another normed vector space B
if and only if A ⊆ B and ∥f∥B ≲ ∥f∥A for all f ∈ A, where ≲ means that the inequality holds up to a
constant C > 0 independent of f . If f ∈ L1(Rd), then

f̂(ξ) =
1

(2π)d

∫
Rd
e−i⟨x|ξ⟩f(x)dξ, ξ ∈ Rd (1.12)

denotes the Fourier transform of f . As is common, we also use f̂ if the Fourier transform exists in a
generalized way.
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2 EMBEDDINGS BETWEEN BARRON SPACES INVOLVING RePU

2 Embeddings between Barron spaces involving RePU

In this section, we start by defining the Barron spaces in Section 2.1. We proceed by showing that Barron
spaces with an activation function for which the weak derivative is in L1(R) embed into the Barron space
with ReLU as activation function. After assuming Ω is bounded, we extend this to: Barron spaces with
an activation function σ ∈ Cs(R) for which Ds+1σ ∈ L1(R) embed in a Barron spaces with a RePUs.
Next to that, we show that the Barron spaces with RePU as the activation function have a hierarchical
structure. The former two we do in Section 2.2 and the latter in Section 2.3.

2.1 Barron spaces

The definition of the Barron spaces that we will be using is an adaption of Definition A.2 of [E and
Wojtowytsch, 2021]. We use signed Radon measures instead of probability measures and have defined a
natural norm for when the activation function is a RePU.

Fix d ∈ N. Let X = [−1, 1]d and Ω ⊆ Rd+1. When we write (w, b) ∈ Ω, we mean that w ∈ Rd and
b ∈ R. We use the ℓ1 norm for (w, b) ∈ Ω and the ℓ∞ norm for x ∈ X so that ∥(w, b)∥ℓ1 = ∥w∥ℓ1 + |b|
and |⟨x|w⟩| ≤ ∥w∥ℓ1 . We call σ : R → R an activation function when it is Lipschitz continuous or
σ(x) = RePUs(x) := max(0, x)s for some s ∈ N. Consider functions f : X → R given by

f(x) =

∫
Ω

σ(⟨x|w⟩+ b)dµ(w, b), x ∈ X . (2.1)

Since several distinct measures µ can describe the same function f , we group them into

Gσ,f =

{
µ ∈ M(Ω)

∣∣∣∣ ∀x ∈ X : f(x) =

∫
Ω

σ(⟨x|w⟩+ b)dµ(w, b)

}
. (2.2)

The Barron norm is given by

∥f∥Bσ = inf
µ∈Gσ,f

∫
Ω

(1 + ∥w∥ℓ1 + |b|)d|µ|(w, b), (2.3)

unless σ = RePUs for some s ∈ N in which case

∥f∥Bσ = inf
µ∈Gσ,f

∫
Ω

(∥w∥ℓ1 + |b|)sd|µ|(w, b). (2.4)

The Barron space for a given activation function σ is given by

Bσ =

{
f : X → R

∣∣∣∣ ∥f∥Bσ <∞
}
. (2.5)

2.2 Absolutely continuous activation functions

To show that the Barron spaces with an activation function σ ∈ Cs(R) for which Ds+1σ ∈ L1(R) embed
into a Barron space with a RePU as activation function, we first prove some technical lemmas concerning
RePUs, which are important for the proofs of the embeddings. These lemmas will be reused in Section 4.

Recall that the rectified power unit is given by

RePUs(x) = max(0, x)s (2.6)

for s ∈ N. The embeddings proven in this section rely on the tie between RePUs and the Taylor remainder
theorem to construct the push-forward map. The integral form of the Taylor remainder theorem states
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2 EMBEDDINGS BETWEEN BARRON SPACES INVOLVING RePU

that a function ϕ ∈ Cs(R) of which ∂sϕ is absolutely continuous on the closed interval [a, b], can be
written as

ϕ(x) =

s∑
k=0

∂kϕ(y)

k!
(x− y)k︸ ︷︷ ︸

series

+

∫ x

y

Ds+1ϕ(t)

s!
(x− t)sdt︸ ︷︷ ︸

remainder

(2.7)

for all x, y ∈ [a, b]. This well-known theorem follows straightforwardly from several applications of
integration by parts. For fixed y, both the series and remainder parts can be written in the form of (1.1)
using a suitably chosen measure. To prove this, we use the following two lemmas. The first lemma deals
with the series part. This lemma is similar to Theorem 2 in [Chen et al., 2022]. However, the proof
for the full statement in [Chen et al., 2022] is contained in a currently unpublished paper. Hence, for
completeness, we have provided this proof.

Lemma 2.1. Let s, d ∈ N. There exist p :=
(
s+d
d

)
pairs (wi, bi) ∈ Rd+1 with i ∈ {1, . . . , p} such that the

set of polynomials Θs :=

{
(⟨x|w1⟩+ b1)

s, (⟨x|w2⟩+ b2)
s, . . . , (⟨x|wp⟩+ bp)

s

}
forms a basis for the space

of polynomials in d variables with degree at most s.

Proof. There are p multi-indices with total degree at most s. Let the sequence {αn}pn=1 be the set
with these multi-indices in inverse lexicographical order. The statement holds if we can choose the pairs
(wi, bi) ∈ Rd+1 such that there exists an invertible matrix W which satisfies

WX = Ps (2.8)

where X =
(
xα1 , . . . , xαp

)⊺
and Ps =

(
(⟨x|w1⟩ + b1)

s, . . . , (⟨x|wp⟩ + bp)
s

)⊺

. We will construct W and

use the theory of generalized Vandermonde matrices to show that it is invertible [Gantmacher, 2009].

Observe that for (w, b) ∈ Ω and x ∈ X we have by simple combinatorics that

(⟨x|w⟩+ b)s = (⟨(x, 1)|(w, b)⟩)s

=
∑
|β|=s

(
s

β

)
(w, b)β(x, 1)β

=
∑
|γ|≤s

(
s

|γ|

)(
|γ|
γ

)
wγbs−|γ|xγ

=

p∑
n=1

(
s

|αn|

)(
|αn|
αn

)
wαnbs−|αn|xαn ,

(2.9)

where β and γ are multi-indices of length d + 1 and length d respectively. This shows that a matrix

W with elements of the form Wij =
(
s

|αj |
)(|αj |

αj

)
w
αj
i b

s−|αj |
i satisfies (2.8). What remains is choosing each

(wi, bi) such that W is invertible.

If W̃ is a matrix with elements w
αj
i b

s−|αj |
i and D a diagonal matrix with entries Djj =

(
s

|αj |
)(|αj |

αj

)
, then

det(W ) = det(D)det(W̃ ). (2.10)

Clearly, det(D) > 0. If we take bi = 1, 1 < w1,1 < w2,1 < . . . wp,1 < ∞, and wi,k = w
1+(k−1)

√
prime(k)

i,1 ,

where prime(k) is the kth prime number, for all i ∈ {1, . . . p}, then each element of W̃ is of the form

W̃ij = w
|αj |+

∑d
k=1(k−1)

√
prime(k)αj,k

i,1 . (2.11)

The bases are fixed columnwise, but strictly increasing rowwise. The exponents are fixed rowwise, but

distinct columnwise. Let ˜̃W be W̃ with its columns reordered such that the exponents are in increasing

order. By construction, ˜̃W is a generalized Vandermonde matrix. These matrices have a non-zero
determinant [page 99 of Gantmacher, 2009]. Reordering the columns at most switches the sign of the
determinant. Hence, W̃ is invertible and thus W is too. Q.E.D.
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2 EMBEDDINGS BETWEEN BARRON SPACES INVOLVING RePU

Using this lemma, we are now able to prove the following equality.

Lemma 2.2. Let p : Rd → R be a polynomial of degree less or equal to s ∈ N. Then there exists a
measure ν ∈ M(Rd+1) such that

p(x) =

∫
Rd+1

RePUs(⟨x|w⟩+ b)dν(w, b), x ∈ Rd. (2.12)

Proof. We can use Lemma 2.1 to write the polynomial p as a linear combination of the basis functions
in Θs,

p(x) =

p∑
i=1

κi(⟨x|wi⟩+ bi)
s (2.13)

where κi ∈ R. Combined with the identity

zs = RePUs(z) + (−1)s−1 RePUs(−z) (2.14)

for all z ∈ R, we can conclude that the measure ν = ν1 + ν2 defined using

ν1 =

p∑
i=1

κiδ(wi,bi)

ν2 =

p∑
i=1

(−1)s−1κiδ(−wi,−bi)

(2.15)

satisfies (2.12). Q.E.D.

There are several things to note regarding (the proofs of) Lemma 2.1 and Lemma 2.2. First, we chose wi

with ∥wi∥ℓ1 ≤ d|wi,1|(d−1)
√

prime(d)
and wi,1 > 1. This upper bound scales exponentially with dimension.

Different choices for wp,k are available, like choosing wi,k = w

(k−1)
√

prime(k)

d
√

prime(d)

i,1 with wi,1 sufficiently small
gives ∥wi∥ℓ1 ≤ 2d. Second, both proofs are proven for d ∈ N, whereas activation functions are univariate
functions. We will use the higher dimensional case when discussing the spectral Barron spaces in Section 4.
Last, an argument for deeper neural networks is that neural network with ReLU as its activation function
require several layers to approximate these higher order monomials well [e.g. DeVore et al., 2021]. Our
results suggest that instead of increasing the number of layers, we could increase the order of the RePUs.

Lemma 2.2 can be used to write the (x − t)s in the remainder part of (2.7) as a linear combination of
RePUs’s. However, this does not allow us to write the remainder part using a single measure ν ∈ M(R2)
for all x ∈ R, because the integral bounds depend on x. In the second lemma, we deal with this by
extending the domain of integration.

Lemma 2.3. Let s ∈ N and c > 0. When f ∈ L1([−c, c]), we have∫ z

0

f(u)(z − u)sdu =

∫ c

0

f(u)RePUs(z − u) + (−1)s−1f(−u)RePUs(−z − u)du (2.16)

for all z ∈ [−c, c].

Proof. Depending on the sign of z we can write the left-hand side equivalently as∫ z

0

(z − u)sf(u)du =

{
(−1)s−1

∫ c
0
(−z − u)s Step(−z − u)f(−u)du −c ≤ z ≤ 0∫ c

0
(z − u)s Step(z − u)f(u)du 0 ≤ z ≤ c

(2.17)

where Step is the Heaviside step function. Note that the term (−1)s−1 restores the sign for even s. Since
both representations are zero in the domain of the other, we can add them to obtain∫ z

0

(z − u)sf(u)du =

∫ c

0

(z − u)s Step(z − u)f(u) + (−1)s−1(−z − u)s Step(−z − u)f(−u)du. (2.18)
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2 EMBEDDINGS BETWEEN BARRON SPACES INVOLVING RePU

Observe that
(z − u)s Step(z − u) = RePUs(z − u),

(−z − u)s Step(−z − u) = RePUs(−z − u).
(2.19)

Substitution of (2.19) into (2.18) gives (2.16). Q.E.D.

From Lemma 2.3 and Lemma 2.2 it follows that both the series part and the remainder part of a function
satisfying the Taylor remainder theorem can be written in terms of RePUs. Hence, it may seem logical
that an embedding of Bϕ into BRePUs exists if ϕ satisfies the requirements for the Taylor remainder
theorem. Without additional assumptions, this does not hold for all s ∈ N. This is due to the different
exponent in the norm for RePUs for s > 1 compared to the exponent in the Barron norm for ϕ. We
discuss this later in this section in more detail. For s = 1, this suggested embedding exists without
additional assumptions. This is shown in the following proposition.

Proposition 2.1. If ψ ∈ C1(R) such that D2ψ ∈ L1(R), then we have Bψ ↪→ BReLU with

∥f∥BReLU
≤ γ(ϕ)∥f∥Bψ (2.20)

for all f ∈ Bψ, where

γ(ϕ) := inf
y∈R

(
|ψ(y)|+ 2|∂ψ(y)|+ 2(1 + |y|)

∫
R

∣∣D2ψ(z)
∣∣dz). (2.21)

Proof. From the triangle inequality, it follows immediately that

|⟨x|w⟩+ b− y| ≤ ∥w∥ℓ1 + |b|+ |y| := θw,b,y (2.22)

for all (x, y, w, b) ∈ [−1, 1]d×R×Rd×R. From the Taylor remainder theorem, it follows that for given
(w, b) ∈ Rd+1 and y ∈ R

ϕ(⟨x|w⟩+ b) = ϕ(y) + ∂1ϕ(y)(⟨x|w⟩+ b) +

∫ ⟨x|w⟩+b

y

D2ϕ(t)(⟨x|w⟩+ b)− t)dt (2.23)

for all x ∈ X . After the change of coordinate v = t− y, this becomes

ϕ(⟨x|w⟩+ b) = ϕ(y) + ∂1ϕ(y)(⟨x|w⟩+ b) +

∫ ⟨x|w⟩+b−y

0

D2ϕ(v + y)(⟨x|w⟩+ b)− v − y)dv. (2.24)

From Lemma 2.3, it follows that (2.24) is equivalent to

ϕ(⟨x|w⟩+ b) = ϕ(y) + ∂1ϕ(y)(⟨x|w⟩+ b) +

∫ θw,b,y

0

D2ϕ(v + y)ReLU(⟨x|w⟩+ b− v − y)

+D2ϕ(−v + y)ReLU(⟨x|−w⟩ − b− v + y)dv

(2.25)

for all x ∈ X . After the change of coordinate θw,b,yu = v and using (2.14), this becomes

ϕ(⟨x|w⟩+ b) = ϕ(y)ReLU(1) + ∂1ϕ(y)

(
ReLU(⟨x|w⟩+ b)− ReLU(⟨x|−w⟩ − b)

)
+

∫ 1

0

θw,b,yD
2ϕ(θw,b,yu+ y)ReLU(⟨x|w⟩+ b− θw,b,yu− y)

+

∫ 1

0

θw,b,yD
2ϕ(−θw,b,yu+ y)ReLU(⟨x|−w⟩ − b− θw,b,yu+ y)du.

(2.26)

Let µ ∈ Gϕ,f for f ∈ Bϕ. Observe that using (2.26) as a substitution we get

f(x) =

∫
Rd+1

ϕ(⟨x|w⟩+ b)dµ(w, b) =

∫
Rd+1

ReLU(⟨x|w⟩+ b)dν(w, b), (2.27)
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2 EMBEDDINGS BETWEEN BARRON SPACES INVOLVING RePU

where the measure ν =
∑5
i=1 νi is the sum of measures formed from the measures

ν1 = ϕ(y)µ(Ω)δ(0,1)

ν2 = ∂1ϕ(y)µ

ν3 = −∂1ϕ(y)Θ0
#µ

ν4(A) =

∫
A

∫ 1

0

θw,b,yD
2ϕ(θw,b,yu+ y)dΘ1

#(µ⊗ λ)((w, b), u)

ν5(A) =

∫
A

∫ 1

0

θw,b,yD
2ϕ(−θw,b,yu+ y)dΘ2

#(µ⊗ λ)((w, b), u)

(2.28)

for the Borel sets A ⊆ Ω and using the push-forward maps

Θ0 : Rd+ → Rd+1, (w, b) → (−w,−b)
Θ1 : Rd+1 × [0, 1] → Rd+1, ((w, b), u) → (w, b− θw,b,yu− y)

Θ2 : Rd+1 × [0, 1] → Rd+1, ((w, b), u) → (−w,−b− θw,b,yu+ y)

(2.29)

where λ is the Lebesgue measure on [0, 1]. Hence, ν ∈ GReLU,f . Furthermore, for each νi we have∫
Rd+1

(∥w∥ℓ1 + |b|)d|ν1|(w, b) ≤ |ϕ(y)||µ|(Ω) ≤ |ϕ(y)|
∫
Rd+1

(1 + ∥w∥ℓ1 + |b|)d|µ|(w, b) (2.30)∫
Rd+1

(∥w∥ℓ1 + |b|)d|ν2|(w, b) ≤ |∂ϕ(y)||µ|(Ω) ≤ |∂ϕ(y)|
∫
Rd+1

(1 + ∥w∥ℓ1 + |b|)d|µ|(w, b) (2.31)∫
Rd+1

(∥w∥ℓ1 + |b|)d|ν3|(w, b) ≤ |∂ϕ(y)|
∣∣Θ0

#µ
∣∣(Ω) ≤ |∂ϕ(y)|

∫
Rd+1

(1 + ∥w∥ℓ1 + |b|)d|µ|(w, b) (2.32)

and∫
Rd+1

(∥w∥ℓ1 + |b|)d(|ν4|+ |ν5|)(w, b)

≤
∫
Rd+2

∫ 1

−1

θw,b,y
∣∣D2ϕ(θw,b,yu+ y)

∣∣(1 + ∥w∥ℓ1 + |b|+ θw,b,y|u|+ |y|)dud|µ|(w, b)

≤ sup
(w,b)∈Rd+1

∫ 1

−1

θw,b,y
∣∣D2ϕ(θw,b,yu+ y)

∣∣(1 + |u|)(1 + |y|)du
∫
Rd+1

(1 + ∥w∥ℓ1 + |b|)d|µ|(w, b)

≤ 2(1 + |y|) sup
(w,b)∈Rd+1

∫ θw,b,y+y

−θw,b,y+y

∣∣D2ϕ(z)
∣∣dz ∫

Rd+1

(1 + ∥w∥ℓ1 + |b|)d|µ|(w, b)

= 2(1 + |y|)
∫
R

∣∣D2ϕ(z)
∣∣dz ∫

Rd+1

(1 + ∥w∥ℓ1 + |b|)d|µ|(w, b)

(2.33)
where we used the change of coordinates z = θw,b,yu+ y. This means that by the triangle inequality

∥f∥BReLU
≤

∫
Rd+1

(∥w∥ℓ1 + |b|)d|ν|(w, b)

≤
5∑
i=1

∫
Rd+1

(∥w∥ℓ1 + |b|)d|νi|(w, b)

=

(
|ϕ(y)|+ 2

∣∣∂1ϕ(y)∣∣+ 2(1 + |y|)
∫
R

∣∣D2ϕ(z)
∣∣dz)∫

Rd+1

(1 + ∥w∥ℓ1 + |b|)d|µ|(w, b).

(2.34)

Taking the infimum over π ∈ Gϕ,f and y ∈ R gives (2.20). Q.E.D.

Observe that (2.21) is very similar to the definition of γ used in Theorem 1 of [Li et al., 2020],

γ(ϕ) = inf
y∈R

(
|ϕ(y)|+ (|y|+ 2)|∂ϕ|+

∫
R

∣∣D2ϕ(t)
∣∣(1 + |t|)dt

)
. (2.35)

The change to our version of γ means that is sufficient for the function D2ϕ(x) to go like (1 + |x|)−(1+ϵ)

instead of like (1 + |x|)−(2+ϵ) for some ϵ > 0 and for large values of x. Hence, Proposition 2.1 is satisfied
for more activation functions than Theorem 1 of [Li et al., 2020].
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2 EMBEDDINGS BETWEEN BARRON SPACES INVOLVING RePU

Proposition 2.1 does not cover piecewise smooth activation functions, of which there are many. A slight
alteration to Proposition 2.1 allows us to also cover activation functions that are smooth everywhere
except at the origin. This can be found in Appendix A.1.

The right-hand side of (2.34) can be bounded so that

∥f∥BReLU
≲

(
∥ϕ∥C1(R) +

∥∥D2ϕ
∥∥
L1(R)

)∫
Ω

(1 + ∥w∥ℓ1 + |b|)d|µ|(w, b) (2.36)

When we repeat the steps of the proof of Proposition 2.1 for some s > 1, we get a bound of the form

∥f∥BRePUs
≲

(
∥ϕ∥Cs(R) +

∥∥Ds+1ϕ
∥∥
L1(R)

)∫
Ω

(1 + ∥w∥ℓ1 + |b|)sd|µ|(w, b) (2.37)

for all µ ∈ Gϕ,f for f ∈ Bϕ. If we want an embedding, then we need to get rid of the exponent s in the
integral on the right-hand side or we need to introduce the exponent in the norm of Bϕ. In the following
proposition we show the former by showing an embedding holds under the assumption that Ω is bounded.
In Section 5 we briefly discuss different exponents in the Barron norm.

Proposition 2.2. Let s ∈ N and Ω bounded. If ϕ ∈ Cs(R) such that Ds+1ϕ ∈ L1(R), then Bϕ ↪→ BRePUs .

Proof. Let µ ∈ Gϕ,f for f ∈ Bϕ, and recall that from the Taylor remainder theorem it follows that for
given (w, b) ∈ Ω

ϕ(⟨x|w⟩+ b) =

s∑
k=0

∂kϕ(0)

k!
(⟨x|w⟩+ b)k +

∫ ⟨x|w⟩+b

0

Ds+1ϕ(t)

s!
(⟨x|w⟩+ b− t)sdt (2.38)

for all x ∈ X .

For the series part, there exists a measure νseries ∈ M(R2) according to Lemma 2.2 such that∫
R2

RePUs(ωz + β)dνseries(ω, β) =

s∑
k=0

∂ϕk(0)

k!
zk (2.39)

for all z ∈ R and ∫
R2

(∥ω∥ℓ1 + |β|)sd|νseries|(ω, β) ≲ ∥ϕ∥Cs(R). (2.40)

Observe that∫
Ω

s∑
k=0

∂kϕ(0)

k!
(⟨x|w⟩+ b)kdµ(w, b) =

∫
Ω

∫
R2

RePUs(ω(⟨x|w⟩+ b) + β)dνseries(ω, β)dµ(w, b)

=

∫
Ω

∫
R2

RePUs(⟨x|ωw⟩+ωb+ β)dνseries(ωβ)dµ(w, b)

=

∫
Ω

RePUs(⟨x|w⟩+ b)dγseries(w, b)

(2.41)

where γseries := Θ#(νseries ⊗ µ) is the push-forward along the map

Θ : Ω× R2 → Ω, ((w, b), (ω, β)) 7→ (ωw,ωb+ β). (2.42)

Furthermore,∫
Ω

(∥w∥ℓ1 + |b|)sd|γseries|(w, b) ≤
∫
Ω

∫
R2

(∥ωw∥+ |ωb+ β|)sd|νseries|(ω, β)d|µ|(w, b)

≤
∫
Ω

∫
R2

(|ω|∥w∥+ |ω||b|+ |β|)sd|νseries|(ω, β)d|µ|(w, b)

≤
∫
R2

(|ω|+ |β|)sd|νseries|(ω, β)
∫
Ω

(1 + ∥w∥ℓ1 + |b|)sd|µ|(w, b)

≲ ∥ϕ∥Cs(R)
∫
Ω

(1 + ∥w∥ℓ1 + |b|)d|µ|(w, b).

(2.43)
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2 EMBEDDINGS BETWEEN BARRON SPACES INVOLVING RePU

For the remainder part, observe that

|⟨x|w⟩+ b| ≤ ∥w∥+ |b| := θw,b (2.44)

for all x ∈ X and (w, b) ∈ Ω. We can write that according to Lemma 2.3 as∫ ⟨x|w⟩+b

0

Ds+1ϕ(u)(⟨x|w⟩+ b− u)sdu =

∫ θw,b

0

Ds+1ϕ(u)RePUs(⟨x|w⟩+ b− u)

+ (−1)s−1Ds+1ϕ(−u)RePUs(⟨x|−w⟩ − b− u)du.

(2.45)

After the change of coordinates u = θw,bt, we get∫ ⟨x|w⟩+b

0

Ds+1ϕ(u)(⟨x|w⟩+ b− u)sdu =

∫ 1

0

Ds+1ϕ(θw,bt)RePUs(⟨x|w⟩+ b− θw,bt)

+ (−1)s−1Ds+1ϕ(−θw,bt)RePUs(⟨x|−w⟩ − b− θw,bt)θw,bdt.
(2.46)

Observe that∫
Ω

∫ ⟨x|w⟩+b

0

Ds+1ϕ(u)(⟨x|w⟩+ b− u)sdudµ(w, b) =

∫
Ω

RePUs(⟨x|w⟩+ b)dγrem(w, b), (2.47)

where the measure γrem = γ1 + γ2 is the sum of measures formed from the measures

γ1(A) =

∫
A

∫ 1

0

θw,bD
s+1ϕ(θw,bu)dΘ

1
#(µ⊗ λ)((w, b), u)

γ2(A) =

∫
A

∫ 1

0

θw,bD
s+1ϕ(−θw,bu)dΘ2

#(µ⊗ λ)((w, b), u)

(2.48)

for Borel sets A ⊆ Ω and using the push-forward maps

Θ1 : Rd+1 × [0, 1] → Rd+1, ((w, b), u) 7→ (w, b− θw,bu)

Θ2 : Rd+1 × [0, 1] → Rd+1, ((w, b), u) 7→ (−w,−b− θw,bu),
(2.49)

where λ is the Lebesgue measure on [0, 1]. Furthermore,∫
Ω

(∥w∥ℓ1 + |b|)sd|γrem|(w, b) ≤
∫
Ω

∫ 1

−1

θw,b
∣∣Ds+1ϕ(θw,bt)

∣∣(∥w∥ℓ1 + |b− θw,bt|)sdtd|µ|(w, b)

≤
∫
Ω

∫ 1

−1

θw,b
∣∣Ds+1ϕ(θw,bt)

∣∣(∥w∥ℓ1 + |b|+ θw,b|t|)sdtd|µ|(w, b)

=

∫
Ω

∫ 1

−1

θw,b
∣∣Ds+1ϕ(θw,bt)

∣∣(1 + |t|)s(∥w∥ℓ1 + |b|)sdt|µ|(w, b)

≲
∫
Ω

∫ θw,b

−θw,b

∣∣Ds+1ϕ(u)
∣∣(∥w∥ℓ1 + |b|)sdu|µ|(w, b)

≤
∥∥Ds+1ϕ

∥∥
L1(R)

∫
Ω

(1 + ∥w∥ℓ1 + |b|)sd|µ|(w, b)

≲
∥∥Ds+1ϕ

∥∥
L1(R)

∫
Ω

(1 + ∥w∥ℓ1 + |b|)d|µ|(w, b).

(2.50)

Hence, we get by combining the remainder part with the series that γrem+γseries ∈ GRePUs,f with bound

∥f∥BRePUs
≲ (∥ϕ∥Cs(R) +

∥∥Ds+1ϕ
∥∥
L1(R))∥f∥Bϕ (2.51)

where we took the infimum over µ ∈ Gϕ,f . Q.E.D.

2.3 Hierarchy in the RePU

In Proposition 2.2 we have shown an embedding into BRePUs using a smoothness criterion. For the
continuous functions it is well-known that they have a hierarchical structure, i.e. Cs ↪→ Ct for all s, t ∈ N
such that t ≤ s. The following proposition shows that BRePUs has a similar hierarchy. It is a generalization
of 1) from Lemma 7.1 of [Caragea et al., 2020].
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3 EMBEDDINGS BETWEEN BARRON SPACES FOR LIPSCHITZ ACTIVATION FUNCTIONS

Proposition 2.3. For s, t ∈ N with t ≤ s we have BRePUs ↪→ BRePUt .

Proof. Let c > 0. A relation between RePUt and RePUt+1 is given by

RePUt+1(y) = (t+ 1)

∫ c

0

RePUt(y − u)du (2.52)

for all y ∈ R with ∥y∥ ≤ c. We will use this relation to prove that

BRePUt+1
↪→ BRePUt . (2.53)

The proposition follows from (2.53).

Let µ ∈ GRePUt+1,f for f ∈ BRePUt+1
. Observe that

f(x) =

∫
Rd+1

RePUt+1(⟨x|w⟩+ b)dµ(w, b)

=

∫
Rd+1

(t+ 1)

∫ θw,b

0

RePUt(⟨x|w⟩+ b− u)dudµ(w, b) (2.52)

=

∫
Rd+1

∫ 1

0

(t+ 1)θw,bRePUt(⟨x|w⟩+ b− θw,bv)dvdµ(w, b) u = θw,bv

=

∫
Rd+1

RePUt(⟨x|w⟩+ b)dν(w, b),

(2.54)

where θw,b := ∥w∥ℓ1 + |b|, λ is the Lebesgue measure on [0, 1] and the measure

ν(A) = (t+ 1)

∫
A

∫ 1

0

θw,bdΘ#(µ⊗ λ)((w, b), v) (2.55)

for the Borel sets A ⊆ Ω is the push forward of µ⊗ λ along the map

Θ : Rd+1 × [0, 1] → Rd+1, ((w, b), v) 7→ (w, b− θw,bv). (2.56)

Hence, ν ∈ GRePUt,f . Furthermore,

∥f∥BRePUt
≤

∫
Rd+1

(∥w∥ℓ1 + |b|)td|ν|(w, b)

≤
∫
Rd+1

∫ 1

0

(t+ 1)θw,b(∥w∥ℓ1 + |b− θw,bv|)tdvd|µ|(w, b)

≤
∫
Rd+1

∫ 1

0

(t+ 1)θw,b(∥w∥ℓ1 + |b|+ θw,b|v|)tdvd|µ|(w, b)

=

∫
Rd+1

∫ 1

0

(t+ 1)(∥w∥ℓ1 + |b|)t+1(1 + v)tdvd|µ|(w, b)

= (t+ 1)
2t+1 − 1

t+ 1

∫
Rd+1

(∥w∥ℓ1 + |b|)t+1d|µ|(w, b)

= (2t+1 − 1)

∫
Rd+1

(∥w∥ℓ1 + |b|)t+1d|µ|(w, b).

(2.57)

Taking the infimum over µ ∈ GRePUt+1,f gives

∥f∥BRePUt
≤ (2t+1 − 1)∥f∥BRePUt+1

. (2.58)

Q.E.D.

3 Embeddings between Barron spaces for Lipschitz activation
functions

In the previous sections, we dealt with the relations between two Barron spaces when one of the Barron
spaces had RePUs as the activation function. In this section, we take a broader perspective and look
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at the relations between Barron spaces with Lipschitz activation functions. In particular, we provide
embeddings when the activation functions can be written as a linear combination of scaled and shifted
versions of another activation function and as a convolution with another activation function in Section 3.1
and when one of the two activation functions is the derivative of the other in Section 3.2.

3.1 Activation functions related by linear combinations and convolutions

Let ϕ be a Lipschitz activation function. Since the values for the weights and biases are not restricted a
priori, we expect that a Barron space with activation function

ψ(x) = c0ϕ(c1x+ c2) (3.1)

for some c0, c1 ̸= 0 and c2 ∈ R is similar to that with ϕ. At the same time, we expect that a Barron space
with

ψ(x) = ϕ(x)− ϕ(x− c3) (3.2)

for c3 ̸= 0 embeds in that with ϕ. Both of these and more are covered by the following proposition.

Proposition 3.1. If ψ and ϕ are Lipschitz activation functions such that

ϕ(x) =

∫
R2

ψ(ωx+ β)dγ(ω, β) (3.3)

for some measure γ ∈ M(R2) satisfying∫
R2

(1 + |ω|+ |β|)d|γ|(ω, β) <∞, (3.4)

then Bϕ ↪→ Bψ.

Proof. Let µ ∈ Gϕ,f for some f ∈ Bϕ. This means that

f(x) =

∫
Rd+1

ϕ(⟨x|w⟩+ b)dµ(w, b)

=

∫
Rd+1

∫
R2

ψ(ω(⟨x|w⟩+ b) + β)dγ(ω, β)dµ(w, b)

=

∫
Rd+1×R2

ψ(⟨x|ωw⟩+ωb+ β)d(γ ⊗ µ)((ω, β), (w, b))

=

∫
Rd+1

ψ(⟨x|w⟩+ b)dν(w, b)

(3.5)

where the measure ν := Θ#(γ ⊗ µ) is the push forward along the map

Θ : Ω× R2 → Ω, (ω, β), (w, b)) → (ωw,ωb+ β). (3.6)

Hence, ν ∈ Gψ,f . Furthermore,

∥f∥Bψ ≤
∫
Rd+1

(1 + ∥w∥ℓ1 + |b|)d|ν|(w, b)

≤
∫
Rd+1

∫
R2

(1 + ∥ωw∥+ |ωb+ β|)d|γ|(ω, β)d|µ|(w, b)

≤
∫
Rd+1

∫
R2

(1 + |ω|∥w∥ℓ1 + |ω||b|+ |β|)d|γ|(ω, β)d|µ|(w, b)

≤
∫
Rd+1

∫
R2

(1 + |ω|+ |β|)(1 + ∥w∥ℓ1 + |b|)d|γ|(ω, β)d|µ|(w, b)

=

∫
R2

(1 + |ω|+ |β|)d|γ|(ω, β)
∫
Rd+1

(1 + ∥w∥ℓ1 + |b|)d|µ|(w, b).

(3.7)
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Taking the infimum over µ ∈ Gψ,f gives

∥f∥Bψ ≤
∫
R2

(1 + |ω|+ |β|)d|γ|(ω, β)∥f∥Bϕ . (3.8)

Q.E.D.

Informally, Proposition 3.1 says that if ϕ is an element of the Barron space with ψ as the activation
function for d = 1, then the embedding of Bϕ into Bψ holds. This not only covers the aforementioned
cases in (3.1) and (3.2) but also when ϕ is a convolution of ψ with some kernel η or when ϕ can be written
as a series expansion in ψ.

Corollary 3.1. If η : R → R satisfies ∫
R
|η(z)|(1 + |z|)dz ≤ C (3.9)

and ϕ is a Lipschitz activation function, then Bϕ∗η ↪→ Bϕ with

∥f∥Bϕ ≤ C∥f∥Bϕ∗η (3.10)

for all f ∈ Bϕ∗η.

Corollary 3.2. Let ϕ and ψ be two Lipschitz activation functions linked by

ϕ(x) =

∞∑
k=1

g(k)ψ(h(k)x) (3.11)

with
∞∑
k=1

|g(k)|(1 + |h(k)|) ≤ C, (3.12)

then Bϕ ↪→ Bψ with
∥f∥Bψ ≤ C∥f∥Bϕ (3.13)

for all f ∈ Bϕ.

Note that Corollary 3.1 is particularly convenient if one knows the Fourier transforms of the relevant
activation functions ϕ and ψ. In that case, it is sufficient to check whether the kernel η defined using its
Fourier transform

η̂ :=
ϕ̂

ψ̂
(3.14)

satisfies the growth condition. This allows one for example to show that

Btanh ↪→ Barctan. (3.15)

3.2 Activation functions related by a derivative

Something that Proposition 3.1 does not cover, is when one activation function is the derivative of another.
An example of this is

SoftP lus(x) = log(1 + ex) (3.16)

and

logi(x) =
1

1 + e−x
(3.17)

related by
∂SoftP lus(x) = logi(x). (3.18)

In this case, only an inclusion has been found and not an embedding.
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Proposition 3.2. If ζ is a continuously differentiable activation function with Lip(ζ) < ∞, then Bζ ⊆
B∂ζ .

Proof. Let µ ∈ G∂ζ,f for f ∈ B∂ζ . Consider the sequence of measures {vh}h>0 given by

νh =
1

h

(
Θh#µ− µ

)
(3.19)

along the map
Θh : Rd+1 → Rd+1, (w, b) 7→ (w, b+ h). (3.20)

Observe that for

fh(x) =

∫
Rd+1

ζ(⟨x|w⟩+ b)dνh(w, b) (3.21)

we have

∥fh∥Bζ ≤
1

h

∫
Rd+1

(1 + ∥w∥ℓ1 + |b|)d
∣∣Θh#µ− µ

∣∣(w, b)
≤ 1

h

∫
Rd+1

(1 + ∥w∥ℓ1 + |b|)d
(∣∣Θh#µ∣∣+ |µ|

)
(w, b)

=
1

h

∫
Rd+1

2(1 + ∥w∥ℓ1) + |b+ h|+ |b|d|µ|(w, b)

≤ 1

h

∫
Rd+1

2(1 + ∥w∥ℓ1 + |b|) + |h|d|µ|(w, b)

≤ 2 + h

h

∫
Rd+1

1 + ∥w∥ℓ1 + |b|d|µ|(w, b)

<∞

(3.22)

for all h > 0. Hence, fh ∈ Bζ . The sequence {fh}h>0 satisfies

lim
h→0

fh(x) = lim
h→0

∫
Rd+1

ζ(⟨x|w⟩+ b)dνh(w, b)

= lim
h→0

∫
Rd+1

ζ(⟨x|w⟩+ b+ h)− ζ(⟨x|w⟩+ b)

h
dµ(w, b)

=

∫
Rd+1

lim
h→0

ζ(⟨x|w⟩+ b+ h)− ζ(⟨x|w⟩+ b)

h
dµ(w, b) Dominated conv. th.

=

∫
Rd+1

∂ζ(⟨x|w⟩+ b)dµ(w, b)

= f(x),

(3.23)

where we are allowed to use the dominated convergence theorem since∣∣∣∣ζ(⟨x|w⟩+ b+ h)− ζ(⟨x|w⟩+ b)

h

∣∣∣∣ ≤ Lip(ζ) <∞. (3.24)

Since the Barron space Bζ is complete and fh → f , we have that f ∈ Bζ . Q.E.D.

4 Embeddings for spectral Barron spaces

We have shown that embeddings between different Barron spaces can be proven by constructing suitable
the push-forwards. This strategy can also be used to show embeddings between a Barron space and a non-
Barron space. We will demonstrate this in this section by showing the embedding of the spectral Barron
spaces into the Barron spaces with a RePUs as activation function. This embedding is a generalization
of 3) from Lemma 7.1 of [Caragea et al., 2020].
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4 EMBEDDINGS FOR SPECTRAL BARRON SPACES

We recall that the spectral Barron spaces are given by

GF
s,f =

{
f ∈ L1([−1, 1]d)

∣∣∣∣ ∃fe ∈ L1(Rd) : fe|X = f

}
∥f∥BF,s

= inf
fe∈GF

s,f

∫
Rd
(1 + ∥ξ∥ℓ1)

s
∣∣∣f̂e(ξ)∣∣∣dξ

BF ,s =

{
f : L1([−1, 1]d)

∣∣∣∣ ∥f∥BF,s
<∞

} (4.1)

for s ∈ N, and have been called Spectral spaces and Auxiliary spaces as well. From Lemma 2.7 of
[Voigtlaender, 2022] it follows that for each s ∈ N all the functions f ∈ BF ,s+1 satisfy the conditions for
the multivariate Taylor remainder theorem, i.e.

f(x) =
∑
|α|≤s

∂αf(0)

α!
xα +

∑
|α|=s+1

s+ 1

α!
xα

∫ 1

0

(1− t)sDαf(tx)dt, (4.2)

holds, where we have used the multi-index notation for α. Similar to the univariate case, we can use to
Lemma 2.2 to construct a suitable push-forward map for the series part. However, unlike the univariate
case, there is no analogue to Lemma 2.3 to help us construct a push-forward map for the remainder part.
Fortunately, we can construct one by using the spectral nature of f ∈ BF ,s+1.

Proposition 4.1. For all s ∈ N it holds that BF ,s+1 ↪→ BRePUs .

Proof. Let fe ∈ GF
s,f for f ∈ BF ,s+1. Recall that

f(x) =

∫
Rd

ei⟨x|ξ⟩f̂e(ξ)dξ (4.3)

for all x ∈ X . The integral form of the Taylor remainder theorem for the exponential map z 7→ eiz around
the origin up to order s is given by

eiz =

s∑
k=0

ik

k!
zk +

∫ z

0

is+1eit

s!
(z − t)sdt. (4.4)

Substituting (4.4) into the right-hand side of (4.3) gives∫
Rd

ei⟨x|ξ⟩f̂e(ξ)dξ =

∫
Rd

s∑
k=0

ik

k!
⟨x|ξ⟩k f̂e(ξ)dξ +

∫
Rd

∫ ⟨x|ξ⟩

0

is+1eit

s!
(⟨x|ξ⟩ − t)sdtf̂e(ξ)dξ. (4.5)

For the series part, we observe that by the Fourier derivation identity∫
Rd

s∑
k=0

ik

k!
⟨x|ξ⟩k f̂e(ξ)dξ =

∑
|α|≤s

∂αf(0)

α!
xα. (4.6)

For the remainder part, we observe that |⟨x|ξ⟩| ≤ ∥ξ∥ℓ1 , thus by Lemma 2.3∫ ⟨x|ξ⟩

0

is+1eit

s!
(x−t)sdt = is+1

s!

∫ ∥ξ∥ℓ1

0

(
eitRePUs(⟨x|ξ⟩−t)+(−1)s−1e−itRePUs(−⟨x|ξ⟩−t)

)
dt. (4.7)

After doing the change of coordinates u = ∥ξ∥ℓ1t and substituting the resultant expression together with
(4.6) into the right-hand side of (4.5), we get

f(x) =
∑
|α|≤s

∂αf(0)

α!
xα +

∫
Rd

∫ 1

0

is+1∥ξ∥s+1
ℓ1 f̂e(ξ)

s!

(
ei∥ξ∥ℓ1uRePUs

(〈
x

∣∣∣∣ ξ

∥ξ∥ℓ1

〉
− u

)

+ e−i∥ξ∥ℓ1uRePUs

(〈
x

∣∣∣∣ −ξ
∥ξ∥ℓ1

〉
− u

))
dudξ.

(4.8)
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We can remove the second RePUs term by observing that∫
Rd

∫ 1

0

is+1∥ξ∥s+1
ℓ1 f̂e(ξ)

s!
e−i∥ξ∥ℓ1uRePUs

(〈
x

∣∣∣∣ −ξ
∥ξ∥ℓ1

〉
− u

)
dudξ

= −
∫
Rd

∫ 1

0

is+1∥ξ∥s+1
ℓ1 f̂e(−ξ)
s!

e−i∥ξ∥ℓ1uRePUs

(〈
x

∣∣∣∣ ξ

∥ξ∥ℓ1

〉
− u

)
dudξ,

(4.9)

where we used the coordinate map ξ 7→ −ξ. Substituting (4.9) into (4.8) gives

f(x) =
∑
|α|≤s

∂αf(0)

α!
xα+

∫
Rd

∫ 1

0

is+1∥ξ∥s+1
ℓ1

s!

(
f̂e(ξ)e

i∥ξ∥ℓ1u−f̂e(−ξ)e−i∥ξ∥ℓ1u
)
RePUs

(〈
x

∣∣∣∣ ξ

∥ξ∥ℓ1

〉
−u

)
dudξ.

(4.10)
From Lemma 2.2 it follows that there exists a measure µseries ∈ M(Ω) such that∑

|α|≤s

∂αf(0)

α!
xα =

∫
Ω

RePUs(⟨x|w⟩+ b)dµseries(w, b). (4.11)

Simultaneously, we observe that

f(x) =

∫
Ω

RePUs(⟨x|w⟩+ b)dµ(w, b), (4.12)

where the measure µ := µseries + µrem is the sum of the measure µseries and the measure µrem given by

dµrem(ξ, u) =

∫ 1

0

Re

(
is+1∥ξ∥s+1

ℓ1

s!

(
f̂e(ξ)e

i∥ξ∥ℓ1u − f̂e(−ξ)e−i∥ξ∥ℓ1u
))

dΘ#(λRd ⊗ λ[0,1])(ξ, u) (4.13)

defined using the push-forward map

Θ : Rd × [0, 1] → §d × [0, 1], (ξ, u) 7→ (
ξ

∥ξ∥ℓ1
, u) (4.14)

with λRd and λ[0,1] the Lebesgue measures on Rd and [0, 1] respectively. Hence, µ ∈ GRePUs,f . Further-
more,

∥f∥BRePUs
≤

∫
Ω

(∥w∥ℓ1 + |b|)sd|µ|(w, b)

≤
∫
Ω

(∥w∥ℓ1 + |b|)sd|µseries|(w, b) +
∫
Ω

(∥w∥ℓ1 + |b|)sd|µrem|(w, b)

≲ ∥fe∥Cs0 (Rd) + ∥µrem∥M(Ω)

≲
∥∥∥f̂e∥∥∥

L1(Rd,(1+∥·∥)s+1)
,

(4.15)

where we used Lemma 2.7 of [Voigtlaender, 2022] to bound ∥fe∥Cs0(Rd). Taking the infimum over fe ∈ GF
s,f

gives
∥f∥BRePUs

≲ ∥f∥BF,s+1
. (4.16)

Q.E.D.

5 Discussion and conclusion

In this paper, we have studied the effect of changing the activation function on the Barron spaces. This
has been done by determining embeddings between two Barron spaces with different activation functions.

We have shown that the Barron spaces with RePUs have a hierarchical structure, i.e. if t ≤ s for t, s ∈ N,
then the Barron space with RePUs embeds into that with RePUt. This structure is similar to well-known
Sobolev spaces Hs and the continuous function spaces Cs. In [E and Wojtowytsch, 2022b], four PDEs
with explicit formulas for their solutions are studied. These formulas can be derived using the Green’s
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function associated with the PDE. They discuss several challenges when using Barron functions for the
initial conditions and/or boundary conditions. When using Sobolev spaces, many of these challenges
are overcome by assuming higher regularity. Some remaining challenges can potentially be solved by
assuming higher s for the Barron spaces with RePUs.

The embeddings, for which we assume that neither is a RePUs, cover many of the changes that are made
to existing activation function in order to find new ones to use. Examples of such changes are scaling
and shifting (compare logi with tanh), taking a linear combination (compare leaky ReLU with ReLU)
and taking a derivative (compare SoftP lus with logi).

Although our results cover many activation functions, we have only provided affirmative statements, i.e.
we provided statements that show a suitable push-forward map Θ exists and we provided no statements
that show no such map can exist. Consider as an example the sawtooth wave function SawToothA,p with
amplitude A and period p as activation function. This function has been used to show the relevance
of depth in neural networks with ReLU as the activation function [Telgarsky, 2015]. It has a series
representation in terms of sin given by

SawToothA,p(x) = A

(
1

2
− 1

π

∞∑
k=0

(−1)k
sin(2πkpx)

k

)
. (5.1)

For every µ ∈ GSawToothA,p,f for f ∈ BSawToothA,p we can find a measure ν ∈ M(Rd+1) such that∫
Rd+1

SawToothA,p(⟨x|w⟩+ b)dµ(w, b) =

∫
Rd+1

sin(⟨x|w⟩+ b)dν(w, b). (5.2)

The right-hand side of (5.2) is a well-defined integral, but∫
Rd+1

(1 + ∥w∥ℓ1 + |b|)d|ν|(w, b) (5.3)

does not converge. Our results do not rule out the existence of an embedding of BSawToothA,p into Bsin,
yet they provide support that such an embedding may not exist at all.

Our results are also limited to RePUs or Lipschitz activation functions. This restriction makes sure that,
given an activation function σ, a function f ∈ Bσ of the form (1.1) is well-defined for all µ ∈ Gσ. An
activation function like

σ(x) = |x|2 (5.4)

is not covered by this [Sarao Mannelli et al., 2020]. This activation function is asymptotically quadratic
and is thus not Lipschitz. To cover activation functions like this the Barron spaces can be adapted by
redefining the Barron norm for continuous non-homogeneous functions as

∥f∥Bσ = inf
µ∈Gσ,f

∫
Ω

(1 + ∥w∥ℓ1 + |b|)pd|µ|(w, b) (5.5)

with

p = argmin

{
q ∈ N

∣∣∣∣ ∀x ∈ X , (w, b) ∈ Ω :
|σ(⟨x|w⟩+ b)|

(1 + ∥w∥ℓ1 + |b|)q
<∞

}
. (5.6)

When σ is Lipschitz continuous, p = 1. Hence, this recovers the Barron norm in that case. Note that
results like Proposition 2.1 are still preserved, since for all p ∈ N we have

inf
µ∈Gσ,f

∫
Ω

(1 + ∥w∥ℓ1 + |b|)pd|µ|(w, b) ≥ inf
µ∈Gσ,f

∫
Ω

(1 + ∥w∥ℓ1 + |b|)d|µ|(w, b). (5.7)
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Appendices

Proposition 2.1 does not cover piece-wise smooth activation functions. This is an alteration to some of
these.

Proposition .1. If ϕ is continuous and smooth everywhere except at the origin and

γ̃(ϕ) =

(
|ϕ(0)|+

∣∣∂1ϕ+(0)∣∣+ ∣∣∂1ϕ−(0)∣∣+ 2

∫ ∞

0

∣∣∂2ϕ+(z)∣∣dz + 2

∫ 0

−∞

∣∣∂2ϕ−(z)∣∣dz) <∞, (.8)

then Bϕ ↪→ BReLU with
∥f∥BReLU

≤ γ̃(ϕ)∥f∥Bϕ (.9)

for all f ∈ Bϕ.

Proof. From the assumptions on ϕ, it follows that it can be written as

ϕ(x) =

{
ϕ+(x) x ≥ 0

ϕ−(x) x < 0
(.10)

with ϕ± := ϕ|R± smooth and ϕ(0) = ϕ−(0) = ϕ+(0). ϕ± are smooth, whence they have a Taylor
expansion given by

ϕ±(x) = ϕ(0) + ∂ϕ±(0)x+

∫ x

0

∂2ϕ±(t)(x− t)dt (.11)

for x ∈ R±. Observe that we can write (.11) equivalently, given C > 0, as

ϕ±(x) = ϕ(0)± ∂ϕ±(0)ReLU(±x) +
∫ C

0

∂2ϕ±(±t)ReLU(±x− t)dt. (.12)

for all x ∈ R± with ∥x∥ ≤ C by using Lemma 2.3. Note that we have two ReLU terms instead of four
ReLU terms as implied by Lemma 2.3. These two ReLU terms dropped due to the sign of x. Denote the
versions of (.12) by ϕ̃±. We can extend construction ϕ̃± to [−C,C], which we will give us

ϕ̃±(x) =

{
ϕ±(x) x ∈ R±

ϕ(0) x ∈ R∓ (.13)

for all x ∈ [−C,C]. This implies that

ϕ(x) = ϕ̃+(x) + ϕ̃−(x)− ϕ(0) (.14)

for all x ∈ [−C,C], and provides us with the expression we need to construct the necessary push-forwards.

Let µ ∈ Gϕ,f for f ∈ Bϕ. Observe that

f(x) =

∫
Rd+1

ϕ(⟨x|w⟩+ b)dµ(w, b) =

∫
Rd+1

ReLU(⟨x|w⟩+ b)dν(w, b), (.15)

where the measure ν =
∑5
i=1 νi is the sum of measures formed from the measures

ν1 = ϕ(0)µ(Ω)δ(0,1) (.16)
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ν2 = ∂1ϕ(0)+µ (.17)

ν3 = −∂1ϕ(0)−Θ0
#µ (.18)

ν4(A) =

∫
A

∫ 1

0

θw,bD
2ϕ+(θw,bu)dΘ

1
#(µ⊗ λ)((w, b), u) (.19)

ν5(A) =

∫
A

∫ 1

0

θw,bD
2ϕ−(−θw,bu)dΘ2

#(µ⊗ λ)((w, b), u) (.20)

(.21)

for the Borel sets A ⊆ Ω using the push-forward maps

Θ0 : Rd+ → Rd+1, (w, b) → (−w,−b)
Θ1 : Rd+1 × [0, 1] → Rd+1, ((w, b), u) → (w, b− θw,bu− y)

Θ2 : Rd+1 × [0, 1] → Rd+1, ((w, b), u) → (−w,−b− θw,bu+ y)

(.22)

where λ is the Lebesgue measure on [0, 1]. Hence, ρ ∈ GReLU,f . Furthermore,

∥f∥BReLU
≤

∫
Rd+1

(∥w∥ℓ1 + |b|)d|ν|(w, b)

≤
5∑
i=1

∫
Rd+1

(∥w∥ℓ1 + |b|)d|νi|(w, b)

≤ (|ϕ(0)|+
∣∣∂1ϕ+(0)∣∣+ ∣∣∂1ϕ−(0)∣∣)∫

Rd+1

(1 + ∥w∥ℓ1 + |b|)d|µ|(w, b)

+

∫
Rd+2

∫ 1

0

θw,b
∣∣∂2ϕ+(θw,bu)∣∣(1 + ∥w∥ℓ1 + |b|+ θw,b|u|)dud|µ|(w, b)

+

∫
Rd+1

∫ 0

−1

θw,b
∣∣∂2ϕ−(θw,bu)∣∣(1 + ∥w∥ℓ1 + |b|+ θw,b|u|)dud|µ|(w, b)

≤
(
|ϕ(0)|+

∣∣∂1ϕ+(0)∣∣+ ∣∣∂1ϕ−(0)∣∣) ∫
Rd+2

(1 + ∥w∥ℓ1 + |b|)d|µ|(w, b)

+ sup
(w,b)∈Rd+1

∫ 1

0

θw,b
∣∣∂2ϕ+(θw,bu)∣∣(1 + |u|)du

∫
Rd+2

(1 + ∥w∥ℓ1 + |b|)d|µ|(w, b)

+ sup
(w,b)∈Rd+1

∫ 0

−1

θw,b
∣∣∂2ϕ−(θw,bu)∣∣(1 + |u|)du

∫
Rd+2

(1 + ∥w∥ℓ1 + |b|)d|µ|(w, b)

≤
(
|ϕ(0)|+

∣∣∂1ϕ+(0)∣∣+ ∣∣∂1ϕ−(0)∣∣) ∫
Rd+2

(1 + ∥w∥ℓ1 + |b|)d|µ|(w, b)

+ 2 sup
(w,b)∈Rd+1

∫ θw,b

0

∣∣∂2ϕ+(z)∣∣dz ∫
Rd+2

(1 + ∥w∥ℓ1 + |b|)d|µ|(w, b)

+ 2 sup
(w,b)∈Rd+1

∫ 0

−θw,b

∣∣∂2ϕ−(z∣∣dz ∫
Rd+2

(1 + ∥w∥ℓ1 + |b|)d|µ|(w, b)

=

(
|ϕ(0)|+

∣∣∂1ϕ+(0)∣∣+ ∣∣∂1ϕ−(0)∣∣
+ 2

∫ ∞

0

∣∣∂2ϕ+(z)∣∣dz + 2

∫ 0

−∞

∣∣∂2ϕ−(z∣∣dz)∫
Rd+2

(1 + ∥w∥ℓ1 + |b|)d|µ|(w, b)

Taking the infimum over µ ∈ Gϕ,f gives (.9). Q.E.D.
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