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Abstract

We study the tail behavior of maxi≤N sups>0 (Wi (s) + WA(s) − βs) as N → ∞, with (Wi , i ≤ N )
.i.d. Brownian motions and WA an independent Brownian motion. This random variable can be seen
s the maximum of N mutually dependent Brownian queues, which in turn can be interpreted as the
acklog in a Brownian fork-join queue. In previous work, we have shown that this random variable
enters around σ 2

2β
log N . Here, we analyze the rare event that this random variable reaches the value

( σ 2

2β
+ a) log N , with a > 0. It turns out that its probability behaves roughly as a power law with N ,

here the exponent depends on a. However, there are three regimes, around a critical point a⋆; namely,
< a < a⋆, a = a⋆, and a > a⋆. The latter regime exhibits a form of asymptotic independence,

while the first regime reveals highly irregular behavior with a clear dependence structure among the N
suprema, with a nontrivial transition at a = a⋆.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Keywords: Brownian queues; Fork-join queues; Extreme-value theory; Tail asymptotics

1. Introduction

Fork-join queues are a useful modeling tool for congestion in complex networks, such as
ssembly systems, communication networks, and supply chains. Such networks can be large
nd assembly is only possible upon availability of all parts. Thus, the bottleneck of the system
s caused by the slowest production line in the system. This setting motivates us to investigate
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such delays in a stylized version of a large fork-join queueing system. In this setting, a key
quantity of interest is the behavior of the longest queue. We assume that arrival and service
processes are Brownian, as it is a standard result in queueing theory that queueing systems
in heavy-traffic can be approximated by reflected Brownian motions. Furthermore, when the
arrival and service processes are deterministic with some white noise perturbation, it is also a
natural choice to model this with Brownian motions. We analyze the steady-state behavior of
this system. Hence, we can model the backlog in queue i by Qβ

i,A = sups>0(Wi (s)+WA(s)−βs),
here WA is a Brownian motion term with standard deviation σA that represents the fluctuations

n the arrival process, Wi is a Brownian motion term with standard deviation σ that represents
he fluctuations in the service process, and β > 0 represents the drift of the queue. Furthermore,
e assume that (Wi , i ≤ N ) are i.i.d. Brownian motions, and for all i , Wi and WA are mutually

ndependent. These are natural choices as well, because these assumptions indicate that servers’
ork speeds are mutually independent, and independent with respect to the interarrival times.
Because the bottleneck in the system is the slowest production line, we are interested in

he longest queue length, and we investigate the random variable Q̄β

N = maxi≤N Qβ

i,A. We see
hat this random variable is a maximum of N dependent random variables, due to the common
rrival process WA. As we try to model systems with many servers, we are typically interested
n the behavior of this random variable as N → ∞. In [16], it is shown that Q̄β

N is in the
omain of attraction of the normal distribution:

P
(

Q̄β

N >
σ 2

2β
log N + x

√
log N

)
N→∞
−→ P

(
σσA
√

2β
X > x

)
, (1)

ith X d
= N (0, 1). This means that Q̄β

N centers around σ 2

2β
log N and deviates with order

log N .
This convergence result provides a prediction of the typical delay. However, one might also

be interested in the question how likely it is that the delay will be much longer, as delays may
cause large costs. Obviously, the probability P (Q̄β

N > yN )
N→∞
−→ 0, when yN −

σ 2

2β
log N grows

o infinity at a rate faster than
√

log N , but the question is how fast this probability converges
o 0. In this study, we focus on the probability

P
(

Q̄β

N >

(
σ 2

2β
+ a

)
log N

)
,

ith a > 0. As we show later on, the exact behavior of this tail probability depends on the
hoice of a, where we can distinguish three regimes: 0 < a < a⋆, a = a⋆, and a > a⋆,
ith a⋆ an explicitly identified constant in (0, ∞). The logarithmic asymptotics for these three

egimes are given in Theorem 1, while sharper asymptotics for the cases a > a⋆, a = a⋆, and
< a < a⋆ are given in Theorems 2, 3, and 4, respectively. It easily follows from the proofs

hat when yN is of larger order than log N , the convergence behavior of P (Q̄β

N > yN ) is the
ame as for the case a > a⋆, cf. Corollary 2.

Our work is related to the literature on extreme values of Gaussian processes. In this paper,
e examine exceedance probabilities of the order ( σ 2

2β
+ a) log N with a > 0. More work has

een done on joint suprema of Brownian motions. For instance, [11] gives the solution of the
aplace transform of joint first passage times in terms of the solution of a partial differential
quation, where the Brownian motions are dependent. Further, [6] analyze the tail asymptotics
f the all-time suprema of two dependent Brownian motions. The joint suprema of a finite
umber of Brownian motions is also studied [5], where the authors give tail asymptotics of
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the joint suprema of independent Gaussian processes over a finite time interval. These are just
three examples — more results may be found in [15,20].

Our work also relates to the literature on fork-join queues. Exact results on fork-join queues
ith two service stations can be found in [2,7,9,23]. Approximations for systems with an

rbitrary but fixed number of servers can be found in [3,10,17]. In [22] a heavy-traffic analysis
or fork-join queues is derived; see also [18,19]. More recent work in this direction may be
ound in [12–14,21]. Our work adds to the existing literature, as we analyze the largest of

N queues as N → ∞. Literature on such extreme-value results is rare. More specifically, we
erive a large deviation principle for the longest of N dependent Brownian queues as N → ∞,
o obtain this, we use and extend the results obtained in [6], in which the case N = 2 is
nvestigated.

This paper is organized as follows. In Section 2, we present our main results, which contain
n interesting phase transition in the way a large supremum occurs depending on the value
f a. We explain the reason behind this phase transition in detail. The rest of the paper is
evoted to proofs. In Section 3, we give a proof of Theorem 1, which focuses on logarithmic
symptotics. In Section 4, we present some auxiliary lemmas. In Sections 5.1, 5.2, and 5.3, we
rovide the proofs of Theorems 2, 3, and 4, respectively, which deal with asymptotic estimates
hat are sharper than Theorem 1.

. Main results

In this section, we present our main results and also provide some intuition. We first
ntroduce some additional notation.

efinition 1. The sequence (Wi , i ≤ N ) is a sequence of i.i.d. Brownian motions with standard
eviation σ , {WA(t), t ≥ 0} is a Brownian motion with standard deviation σA, {Wi (t), t ≥ 0}

nd {WA(t), t ≥ 0} are mutually independent for all i , the steady-state queue length in front of
erver i is given by

Qβ

i,A := sup
s>0

(Wi (s) + WA(s) − βs), (2)

nd the maximum queue length equals

Q̄β

N := max
i≤N

Qβ

i,A. (3)

ext, we write the supremum of a Brownian motion {Wi (t) + WA(t) − βt, t ≥ 0} over an
nterval (u, v) as

Qβ

i,A(u, v) := sup
u<s<v

(Wi (s) + WA(s) − βs), (4)

nd the maximum of N of these identically distributed random variables as

Q̄β

N (u, v) := max
i≤N

Qβ

i,A(u, v). (5)

urthermore, we write Qβ

i,A(u) = Qβ

i,A(u, ∞) and Q̄β

N (u) = Q̄β

N (u, ∞).

We give additional shorthand notation that we use later on.

efinition 2.

fN (a) :=

(
σ 2

+ a
)

log N , (6)

2β
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λ(a) := 1 − σ/
√

2aβ + σ 2, (7)

TN (a, k) := fN (a)/β + k
√

log N , (8)

TN (a) := TN (a, 0). (9)

inally, we define

γ (a) :=

⎧⎪⎪⎨⎪⎪⎩
2aβ + 2σ 2

− 2σ
√

2aβ + σ 2

σ 2
A

if 0 < a < a⋆,

2aβ − σ 2
A

σ 2 + σ 2
A

if a ≥ a⋆,

(10)

ith

a⋆
:=

σ 4
A

σ 22β
+

σ 2
A

β
.

The function γ (a) appears in the limit of the logarithmic asymptotics of P (Q̄β

N > fN (a)).
s can be seen from (10), from a = a⋆ onwards, the function γ (a) is linear. Moreover, we

ee that γ (a) is continuous everywhere, also for a = a⋆. In Fig. 1, we plot −γ (a) for certain
hoices of the parameters σ, σA, β, and a⋆.

Fig. 1. σ = 1, σA = 1, β = 1, a⋆
= 3/2.

Throughout this paper, we analyze the fork-join queueing system as defined in Definitions 1
nd 2. Our first result, Theorem 1, provides the logarithmic asymptotics of the tail probability
f the maximum steady-state queue length P (Q̄β

N > fN (a)).

heorem 1. For the model given in Definition 1 with the additional notation given in
efinition 2, and a > 0, we have that

log(P (Q̄β

N > fN (a)))
log N

N→∞
−→ −γ (a). (11)

We give the proof of Theorem 1 in Section 3. To provide some intuition, the form of the
unction γ (a) suggests there are at least two regimes: the case where 0 < a < a⋆, and the
ase where a ≥ a⋆. These two cases reveal interesting information on the tail behavior of the

¯ β
maximum queue length QN .
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Case a > a⋆. First, we give some intuitive explanation for the case a > a⋆. The maximum
steady-state queue length is the maximum of N dependent exponentially distributed random
variables. We can use the memoryless property of the exponential distribution to get some
heuristic insights into the behavior of the maximum steady-state queue length. Define τ :=

inf{t > 0 : maxi≤N Wi (t)+WA(t)−βt ≥ fN (a⋆)} and let i⋆
∈ { j ≤ N : W j (τ )+WA(τ )−βτ =

axi≤N Wi (τ ) + WA(τ ) − βτ }. Then, we get

P (Q̄β

N > fN (a))

= P
(

max
i≤N

sup
s>0

(Wi (s) + WA(s) − βs) > fN (a)
)

= P
(

max
i≤N

sup
s>0

(Wi (s) + WA(s) − βs) > fN (a)
⏐⏐ τ < ∞

)
P (τ < ∞)

≥ P
(

sup
s>τ

(Wi⋆ (s) + WA(s) − βs) > fN (a)
⏐⏐ τ < ∞

)
P (τ < ∞).

(12)

ow, due to the fact that Brownian motions have independent increments, we can write
ups>τ (Wi⋆ (s) + WA(s) − βs) d

= Wi⋆ (τ ) + WA(τ ) − βτ + sups>0(Ŵi⋆ (s) + ŴA(s) − βs), with
Ŵi⋆ (t), t ≥ 0} and {ŴA(t), t ≥ 0} independent copies of {Wi⋆ (t), t ≥ 0} and {WA(t), t ≥ 0},
espectively. Thus, the lower bound in (12) simplifies to

P
(

max
i≤N

sup
s>0

(Wi (s) + WA(s) − βs) > fN (a⋆)
)

× P
(

sup
s>0

(Wi⋆ (s) + WA(s) − βs) > (a − a⋆) log N
)

.

herefore, when we compare this lower bound with the convergence result given in (11), we
et that

P
(

Q̄β

N > fN (a)
)

= P
(

max
i≤N

sup
s>0

(Wi (s) + WA(s) − βs) > fN (a)
)

≥ P
(

max
i≤N

sup
s>0

(Wi (s) + WA(s) − βs) > fN (a⋆)
)

× P
(

sup
s>0

(Wi (s) + WA(s) − βs) > (a − a⋆) log N
)

= P
(

max
i≤N

sup
s>0

(Wi (s) + WA(s) − βs) > fN (a⋆)
)

exp
(

−
2β(a − a⋆)
σ 2 + σ 2

A
log N

)
≈ N−γ (a⋆) exp

(
−

2β(a − a⋆)
σ 2 + σ 2

A
log N

)
= N−γ (a),

(13)

ith the “≈” sign indicating that we use the logarithmic asymptotics from (11) to approximate
P (maxi≤N sups>0 (Wi (s) + WA(s) − βs) > fN (a⋆)) with N−γ (a⋆), while ignoring lower-order
terms. Thus, we see that when we use the result from (11) for a = a⋆, then this lower bound
is sharp in the logarithmic sense for a > a⋆. Furthermore, this derivation heuristically explains
that the function γ (a) is linear for a ≥ a⋆.
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The second intuitive observation is that for a ≥ a⋆, N−γ (a)
= NP (Qβ

i,A > fN (a)).
bviously, since a ≥ 0, the union bound gives that

P (Q̄β

N > fN (a)) ≤ NP (Qβ

i,A > fN (a)) = N
−

2aβ−σ2
A

σ2+σ2
A . (14)

he fact that the union bound is sharp when a ≥ a⋆ indicates that for a ≥ a⋆, the N queues
are almost asymptotically independent; i.e.,

P
(

max
i≤N

sup
s>0

(Wi (s) + WA(s) − βs) > fN (a)
)

≈ P
(

max
i≤N

sup
s>0

(
Wi (s) + WA,i (s) − βs

)
> fN (a)

)
,

with the “≈” sign again indicating that we use the logarithmic asymptotics from (11), but we
ignore lower-order terms. Here, the arrival processes (WA,i , i ≤ N ) are independent Brownian
motions, and {WA,i (t), t ≥ 0} and {Wi (t), t ≥ 0} are mutually independent. In Section 5.2, we
see that the boundary case a = a⋆ does show some dependent behavior, but this dependence
structure cannot be deduced from the logarithmic asymptotics.

Case 0 < a < a⋆. Finally, the case 0 < a < a⋆ is more involved. The function γ (a) involves
in a nonlinear fashion. As we observe in Eq. (14), due to the fact that the exponent of the

tail probability of an exponentially distributed random variable is linear in a, we expect that
the logarithmic asymptotics are also linear in a. Thus, the structure of γ (a) shows that the
dependent part WA influences the tail asymptotics, and we have that

lim inf
N→∞

P
(

#{ j ≤ N : sup
s>0

(W j (s) + WA(s) − βs) > fN (a)} > 1
⏐⏐⏐⏐Q̄β

N > fN (a)
)

> 0.

The reason that we see this is that in order to get that the maximum steady-state queue
length Q̄β

N reaches the level fN (a), the arrival process {WA(t) − λ(a)βt, t ≥ 0} must reach a
igh level around λ(a) fN (a), which is a rare event; see Eq. (39). Furthermore, one of the N
ervice processes needs to reach a level around (1 − λ(a)) fN (a); however, this is not a rare
vent. Even more, the event that a finite number of service processes reaches a level around
1 − λ(a)) fN (a) has a non-zero probability; see Eq. (40).

The function γ (a) has more characteristics that can be explained from the limit in (1). For
xample, γ (0) = 0, which is to be expected as we know from (1) and (6) that for x = 0

P (Q̄β

N > fN (0))
N→∞
−→

1
2
.

e further have that (log N )γ (x/
√

log N )
N→∞
−→

x2β2

σ 2σ 2
A

. It thus follows that for N large,

N−γ (x/
√

log N )
≈ N

−
x2β2

σ2σ2
A log N

= exp
(

−
x2β2

σ 2σ 2
A

)
,

which is the exponent of the limiting distribution given in (1).
To prove the logarithmic asymptotics in Theorem 1, it suffices to look at random variables

of the type maxi≤N (Wi (TN ) + WA(TN ) − βTN ) instead of the random variable Q̄β

N =

axi≤N sups>0(Wi (s)+ WA(s)−βs), where the appropriate choice of TN is TN (a); see Eq. (9).
We show this in more detail in the proof of Lemma 1. For a > a⋆, the logarithmic asymptotics
104
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are relatively straightforward to derive because we see a notion of asymptotic independence,
as explained above. In the proof of Lemma 1, we show that when 0 < a ≤ a⋆,

log(P (Q̄β

N > fN (a))) ≈ log(P (max
i≤N

Wi (TN (a)) − (1 − λ(a))βTN (a) > (1 − λ(a)) fN (a)))

+ log(P (WA(TN (a)) − λ(a)βTN (a) > λ(a) fN (a))), (15)

hen N is large, and we show that the term log(P (maxi≤N Wi (TN (a)) − (1 − λ(a))βTN (a) >

1 − λ(a)) fN (a))) becomes negligible as N → ∞.
We now turn to precise asymptotics, which are stated in Theorems 2, 3, and 4 for the cases

> a⋆, a = a⋆, and 0 < a < a⋆, respectively. The proofs of these theorems can be found in
ections Section 5.1, 5.2, and 5.3.

heorem 2. For the model given in Definition 1 with the additional notation given in
efinition 2, and a > a⋆, we have that

N γ (a)P (Q̄β

N > fN (a))
N→∞
−→ 1. (16)

The theorem shows that for a > a⋆, the tail probability of the steady-state maximum queue
ength has the same asymptotic behavior as the one for independently and identically distributed
rrival processes for each queue.

heorem 3. For the model given in Definition 1 with the additional notation given in
efinition 2, and a = a⋆, we have that

N γ (a⋆)P (Q̄β

N > fN (a⋆))
N→∞
−→

1
2
. (17)

To give a heuristic explanation of why we have a transition point at a = a⋆, we argue as
follows. Because the all-time supremum of a Brownian motion is exponentially distributed it
is easy to see that for a = a⋆,

sup
s>0

(WA(s) − λ(a⋆)βs) d
= sup

s>0
(Wi (s) − (1 − λ(a⋆))βs) d

= sup
s>0

(Wi (s) + WA(s) − βs),

here λ(a) is given in Eq. (7). Similarly, after a straightforward calculation, we observe that
or 0 < a < a⋆,

sup
s>0

(WA(s) − λ(a)βs) ≥st. sup
s>0

(Wi (s) − (1 − λ(a))βs),

nd for a > a⋆,

sup
s>0

(WA(s) − λ(a)βs) ≤st. sup
s>0

(Wi (s) − (1 − λ(a))βs),

ith X ≥st. Y meaning that P (X ≥ x) ≥ P (Y ≥ x) for all x . For 0 < a < a⋆, large values
f Q̄β

N are predominantly caused by fluctuations of {WA(t) − λ(a)βt, t ≥ 0}; we show this
igorously in Section 5.3. In contrast, for a > a⋆, fluctuations are caused by a combination of
he arrival process and one of the service processes, and therefore we see a notion of asymptotic
ndependence.

To explain in more detail why we have a constant 1/2 at the boundary case a = a⋆, we first
et Q̂β

i,A be an independent copy of Qβ

i,A. Furthermore, observe that since the all-time supremum
f a Brownian motion with negative drift is exponentially distributed, P (sups>0(WA(s) −

(a⋆)βs) > λ(a⋆) f (a⋆)) = N−γ (a⋆). Moreover, if the event sup (W (s) − λ(a⋆)βs)
N s>0 A
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> λ(a⋆) fN (a⋆) happens, it most likely occurs at time TN (a⋆). By using the union bound and
that all suprema follow the same distribution, we may therefore write

P (Q̄β

N (TN (a⋆)) > fN (a⋆)|WA
(
TN (a⋆)

)
− λ(a⋆)βTN (a⋆) = λ(a⋆) fN (a⋆))

= P
(

max
i≤N

(
Wi
(
TN (a⋆)

)
− (1 − λ(a⋆))βTN (a⋆) + Q̂β

i,A

)
> (1 − λ(a⋆)) fN (a⋆)

)
≈ NP

(
Wi
(
TN (a⋆)

)
− (1 − λ(a⋆))βTN (a⋆) + Q̂β

i,A > (1 − λ(a⋆)) fN (a⋆)
)

= NP

(
sup

s>TN (a⋆)
(Wi (s) − (1 − λ(a⋆))βs) > (1 − λ(a⋆)) fN (a⋆)

)
N→∞
−→

1
2
.

The reason that we see a factor 1/2 emerging in the limit follows from the fact that we take
the supremum over the set (TN (a⋆), ∞). As the all-time suprema of Brownian motions are
exponentially distributed, it is easy to see that

NP
(

sup
s>0

(Wi (s) − (1 − λ(a⋆))βs) > (1 − λ(a⋆)) fN (a⋆)
)

N→∞
−→ 1.

ypical hitting times of this supremum are of the form TN (a⋆) + k
√

log N , with k ∈ R. We
will see in the proofs that the density of these hitting times will deviate symmetrically around
TN (a⋆); see Lemma 4. This heuristically explains that when we take the supremum over the
set (TN (a⋆), ∞), we obtain the limit of 1/2. If we condition on maxi≤N sups>0(Wi (s) − (1 −

(a⋆))βs) = (1 − λ(a⋆)) fN (a⋆), we obtain the same expression after using the same heuristic
rgument.

Our final result is an improvement of the logarithmic asymptotics for the case 0 < a < a⋆.

heorem 4. For the model given in Definition 1 with the additional notation given in
efinition 2, and 0 < a < a⋆, we have that

lim inf
N→∞

N γ (a)(log N )
λ(a)

1−λ(a)
σ2

2σ2
A P (Q̄β

N > fN (a)) > 0, (18)

nd

lim sup
N→∞

N γ (a)(log N )
λ(a)

1−λ(a)
σ2

2σ2
A P (Q̄β

N > fN (a)) < ∞. (19)

emark 1. We can prove lower and upper bounds that are sharper than logarithmic. However,
e do not specify these bounds, but from the proof of Theorem 4 it becomes clear that

lim inf
N→∞

N γ (a)(log N )
λ(a)

1−λ(a)
σ2

2σ2
A P (Q̄β

N > fN (a))

≥

∫
∞

−∞

β2
(
σ
(
σ −

√
2aβ + σ 2

)
+ 2aβ

)
exp

(
−

β4k2
(
σ−

√
2aβ+σ 2

)2

σ 2
A(2aβ+σ 2)

2

)
√

πσA
(
2aβ + σ 2

)3/2

×

⎛⎜⎜⎝1 − exp

⎛⎜⎜⎝−

exp
(

−
β4k2

(2aβ+σ 2)
2

)
2
√

π

⎞⎟⎟⎠
⎞⎟⎟⎠ dk,
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and

lim sup
N→∞

N γ (a)(log N )
λ(a)

1−λ(a)
σ2

2σ2
A P (Q̄β

N > fN (a))

≤

∫
∞

−∞

⎛⎜⎜⎝
σA exp

(
−

β4k2
(
σ−

√
2aβ+σ 2

)2

σ 2
A(2aβ+σ 2)

2

)
2
√

π
(√

2aβ + σ 2 − σ
)

+

σA
(
σ 2

+ σ 2
A

)
exp

(
−

2β4k2
(
σ 2
(√

2aβ+σ 2−σ
)
+aβ

(√
2aβ+σ 2−2σ

))
σ 2

A(2aβ+σ 2)
5/2

)
2
√

πσ
(
σ
(
σ −

√
2aβ + σ 2

)
+ σ 2

A

)
⎞⎟⎟⎠

×
β2e

−
β4k2

(2aβ+σ2)
2

√
π
(
2aβ + σ 2

)dk + 1.

We give a proof of Theorem 4 in Section 5.3. As already suggested in Theorem 1, for the
ase 0 < a < a⋆ we observe more irregular behavior, which manifests itself already in the
alues of γ (a). In Theorem 4, we observe that the second term is not a constant, as was the

ase for the values a > a⋆ and a = a⋆, but is (log N )
λ(a)

1−λ(a)
σ2

2σ2
A . To obtain heuristic insights, we

rgue that

P
(

sup
s>0

(WA(s) − λ(a)βs) > λ(a) fN (a) + rN

)
= exp

(
−

2λ(a)β
σ 2

A
(λ(a) fN (a) + rN )

)
= N−γ (a)(log N )

−
λ(a)

1−λ(a)
σ2

2σ2
A ,

(20)

ith rN =
σ
√

2aβ+σ 2

4β
log log N . Furthermore, we have for all k that

P
(

max
i≤N

Wi
(
TN (a, k)

)
− (1 − λ(a))βTN (a, k) > (1 − λ(a)) fN (a) − rN

)
= Θ(1), (21)

here zN = Θ(1) means that lim infN→∞ zN > 0 and lim supN→∞ zN < ∞. Combining these
wo results together with the definition of Q̄β

N in (3), we see that

P
(

Q̄β

N > fN (a)
)

≥ P
(

sup
s>0

(WA(s) − λ(a)βs) > λ(a) fN (a) + rN ,

max
i≤N

Wi (τ (N )) − (1 − λ(a))βτ (N ) > (1 − λ(a)) fN (a) − rN

)
,

(22)

here τ (N )
= inf{t ≥ 0 : WA(t) − λ(a)βt > λ(a) fN (a) + rN }. We show later on that τ (N ),

onditioned on being finite, is of the form T (a, K ), with T (a, ·) defined in (8) and K being
N N

107



D. Schol, M. Vlasiou and B. Zwart Stochastic Processes and their Applications 164 (2023) 99–138

a

o
c
a

3

m
m
c

L
a

a random variable. Because

P
(

sup
s>0

(WA(s) − λ(a)βs) > λ(a) fN (a) + rN ,

max
i≤N

Wi (τ (N )) − (1 − λ(a))βτ (N ) > (1 − λ(a)) fN (a) − rN

)
= P

(
sup
s>0

(WA(s) − λ(a)βs) > λ(a) fN (a) + rN

)
× P

(
max
i≤N

Wi (τ (N )) − (1 − λ(a))βτ (N ) > (1 − λ(a)) fN (a) − rN

⏐⏐⏐⏐τ (N ) < ∞

)
,

(23)

we retrieve (18) after combining the results from (20)–(23). Thus, it turns out that for 0 <

< a⋆, rN plays a key role. As explained in Section 5.2, in the case 0 < a < a⋆,
{WA(t) − λ(a)βt, t ≥ 0} dominates, which explains why the tail asymptotics of the maximum
queue length Q̄β

N are the same as the tail asymptotics of sups>0(WA(s) − λ(a)βs), and the
behavior of maxi≤N Wi

(
TN (a, k)

)
− (1 − λ(a))βTN (a, k) is typical.

The main approach of proving the lower and upper bounds in (18) and (19), as well as
the limits in (16) and (17), is by analyzing lower and upper bounds on the tail probability
of the steady-state maximum queue length P (Q̄β

N > fN (a)). These bounds are derived by
utilizing the union bound, Bonferroni’s inequality, and a careful construction of hitting times.
These hitting times are needed to estimate the time when the supremum most likely hits the
desired level and to adequately separate the independent part Wi and the dependent part WA

from each other. We also rely on some existing asymptotic estimates in the literature from
extreme-value theory, and on [6], which investigates the case N = 2. Finally, we develop a
number of auxiliary technical estimates related to the asymptotic behavior of convolutions of
normally and exponentially distributed random variables.

These techniques, when put together, are effective in the case a = a⋆ and a > a⋆ in order to
btain exact asymptotics. In the case 0 < a < a⋆, we are able to improve upon Theorem 1 and
haracterize the asymptotic behavior of P (Q̄β

N > fN (a)) up to a constant. To derive precise
symptotics in this case seems beyond the scope of the techniques developed in this paper.

. Proof of the logarithmic asymptotics

In this section, we give a proof of Theorem 1, establishing logarithmic asymptotics for the
aximum queue length. Our approach is to derive logarithmic lower and upper bounds of the
aximum queue length by formalizing the heuristic idea given in (15), and show that they

oincide. These bounds are presented in Lemmas 1 and 2.

emma 1. For the model given in Definition 1 with the additional notation given in Definition 2,
nd a > 0, we have that

lim inf
N→∞

log(P (Q̄β

N > fN (a)))
log N

≥ −γ (a). (24)
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Proof. Recall that λ(a) = 1−σ/
√

2aβ + σ 2 and TN (a) = fN (a)/β. By choosing s = fN (a)/β
nd splitting −βs into two terms, observe that

P
(

max
i≤N

sup
s>0

(Wi (s) + WA(s) − βs) > fN (a)
)

≥ P
(

max
i≤N

Wi
(
TN (a)

)
− (1 − λ(a))βTN (a) > (1 − λ(a)) fN (a),

WA
(
TN (a)

)
− λ(a)βTN (a) > λ(a) fN (a)

)
(25)

= P
(

max
i≤N

Wi
(
TN (a)

)
> 2(1 − λ(a)) fN (a)

)
P
(
WA

(
TN (a)

)
> 2λ(a) fN (a)

)
. (26)

he expression in (26) is due to the fact that for all i , {Wi (t), t ≥ 0} and {WA(t), t ≥ 0} are
ndependent. We now analyze the two probabilities in (26) separately. Since {Wi (t), t ≥ 0} and
W j (t), t ≥ 0} are i.i.d. for all i and j , for the first probability in (26) we get from Bonferroni’s
nequality that

P
(

max
i≤N

Wi
(
TN (a)

)
> 2(1 − λ(a)) fN (a)

)
≥ NP

(
Wi
(
TN (a)

)
> 2(1 − λ(a)) fN (a)

)
−

(
N
2

)
P
(
Wi
(
TN (a)

)
> 2(1 − λ(a)) fN (a)

)2
.

(27)

urthermore, it is easy to see that

P
(

sup
s>0

(Wi (s) − (1 − λ(a))βs) > (1 − λ(a)) fN (a)
)

=
1
N

(28)

nd that

P
(
Wi
(
TN (a)

)
> 2(1 − λ(a)) fN (a)

)
≤ P

(
sup
s>0

(Wi (s) − (1 − λ(a))βs) > (1 − λ(a)) fN (a)
)

,

nd therefore we bound the second term on the right-hand side of (27) as(
N
2

)
P
(
Wi
(
TN (a)

)
> 2(1 − λ(a)) fN (a)

)2

≤
N 2

2
P
(

sup
s>0

(Wi (s) − (1 − λ(a))βs) > (1 − λ(a)) fN (a)
)

× P
(
Wi
(
TN (a)

)
> 2(1 − λ(a)) fN (a)

)
=

N
2
P
(
Wi
(
TN (a)

)
> 2(1 − λ(a)) fN (a)

)
.

hus, the lower bound given in (27) can be further bounded by

P
(

max
i≤N

Wi
(
TN (a)

)
> 2(1 − λ(a)) fN (a)

)
≥

N
2
P
(
Wi
(
TN (a)

)
> 2(1 − λ(a)) fN (a)

)
.
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As we aim to derive logarithmic asymptotics, we see that

log
(

N
2
P
(
Wi
(
TN (a)

)
> 2(1 − λ(a)) fN (a)

))
∼ log N + log

(
P
(
Wi
(
TN (a)

)
> 2(1 − λ(a)) fN (a)

))
,

as N → ∞, with f (x) ∼ g(x) as x → ∞ meaning that limx→∞ f (x)/g(x) = 1. In
addition, recall that for a normally distributed random variable X with standard deviation σ ,
og(P (X > x)) ∼ −x2/(2σ 2), as x → ∞. Thus, we get that

log
(
P
(
Wi
(
TN (a)

)
> 2(1 − λ(a)) fN (a)

))
∼ −

(2(1 − λ(a)) fN (a))2

2σ 2TN (a)
= − log N ,

s N → ∞, following the definitions of λ(a), fN (a), and TN (a). Concluding,

lim inf
N→∞

log
(
P
(
maxi≤N Wi

(
TN (a)

)
− (1 − λ(a))βTN (a) > (1 − λ(a)) fN (a)

))
log N

≥ 0. (29)

For the second probability in (26), the logarithmic asymptotics can be easily computed since
WA

(
fN (a)

)
is normally distributed. We obtain that

log
(
P
(
WA

(
TN (a)

)
> 2λ(a) fN (a)

))
log N

N→∞
−→ −

2aβ + 2σ 2
− 2σ

√
2aβ + σ 2

σ 2
A

. (30)

hus, after combining these two results in (29) and (30) with (26), we have that,

lim inf
N→∞

log
(
P
(
maxi≤N sups>0 (Wi (s) + WA(s) − βs) > fN (a)

))
log N

≥ −
2aβ + 2σ 2

− 2σ
√

2aβ + σ 2

σ 2
A

,

(31)

rrespective of the choice of a. Now, observe that for a > 0,

2aβ + 2σ 2
− 2σ

√
2aβ + σ 2

σ 2
A

≥
2aβ − σ 2

A

σ 2 + σ 2
A

,

with equality for a = a⋆. This means that only for 0 < a ≤ a⋆, the lower bound in (31) is
sharp enough. For a > a⋆, we apply the inequality in (13) to obtain for all c > 0 that

P
(

max
i≤N

sup
s>0

(Wi (s) + WA(s) − βs) > fN (a⋆
+ c)

)
≥ P

(
max
i≤N

sup
s>0

(Wi (s) + WA(s) − βs) > fN (a⋆)
)

exp
(

−
2βc log N
σ 2 + σ 2

A

)
.

(32)

ombining this result with the inequality in (31), we get that for all c > 0,

lim inf
N→∞

log
(
P
(
maxi≤N sups>0 (Wi (s) + WA(s) − βs) > fN (a⋆

+ c)
))

log N

≥ −γ (a⋆) −
2βc

σ 2 + σ 2
A

= −γ (a⋆
+ c).

ombining the lower bounds in (31) and (32) gives the lower bound in (24). □
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Lemma 2. For the model given in Definition 1 with the additional notation given in Definition 2,
and a > 0, we have that

lim sup
N→∞

log(P (Q̄β

N > fN (a)))
log N

≤ −γ (a). (33)

roof. We have by the union bound in (14) that

lim sup
N→∞

log(P (Q̄β

N > fN (a)))
log N

≤ −
2aβ − σ 2

A

σ 2 + σ 2
A

. (34)

This upper bound implies the upper bound given in (33) for a ≥ a⋆. Turning to the case 0 <

< a⋆, we can bound the tail probability of the maximum queue length by using subadditivity,
the union bound, and by integrating over possible values of sups>0(WA(s) − λ(a)βs), and we

btain that

P
(

Q̄β

N > fN (a)
)

(35)

≤ P
(

max
i≤N

sup
s>0

(Wi (s) − (1 − λ(a))βs) + sup
s>0

(WA(s) − λ(a)βs) > fN (a)
)

≤

∫ λ(a)( σ2
2β

+a)

0

2λ(a)β
σ 2

A
N log NP

(
sup
s>0

(Wi (s) − (1 − λ(a))βs) > fN (a) − y log N
)

× exp
(

−
2λ(a)βy log N

σ 2
A

)
dy + P

(
sup
s>0

(WA(s) − λ(a)βs) > λ(a) fN (a)
)

(36)

=

∫ λ(a)( σ2
2β

+a)

0

2λ(a)β
σ 2

A
N log N

× exp
(

−
2(1 − λ(a))β

σ 2 ( fN (a) − y log N ) −
2λ(a)βy log N

σ 2
A

)
dy

+ P
(

sup
s>0

(WA(s) − λ(a)βs) > λ(a) fN (a)
)

. (37)

ecause the function exp(− 2(1−λ(a))β
σ 2 ( fN (a)− y log N )− 2λ(a)βy log N

σ 2
A

) with y ∈ [0, λ(a)( σ 2

2β
+a)]

s maximized when y = λ(a)( σ 2

2β
+ a) and equals N

−
2aβ+2σ2

−2σ

√
2aβ+σ2

σ2
A

−1
, we get that

lim sup
N→∞

log

(∫ λ(a)( σ2
2β

+a)
0

2λ(a)β
σ 2

A
log N × N exp

(
−

2(1−λ(a))β
σ 2 ( fN (a) − y log N ) −

2λ(a)βy log N
σ 2

A

)
dy

)
log N

= 1 + lim sup
N→∞

log

(∫ λ(a)( σ2
2β

+a)
0 exp

(
−

2(1−λ(a))β
σ 2 ( fN (a) − y log N ) −

2λ(a)βy log N
σ 2

A

)
dy

)
log N

≤ −
2aβ + 2σ 2

− 2σ
√

2aβ + σ 2

σ 2
A

. (38)

ow that we have found an upper bound for the integral in (37), we are left with the expression
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P (sups>0 (WA(s) − λ(a)βs) > λ(a) fN (a)) in (37). For this expression, it holds that

P
(

sup
s>0

(WA(s) − λ(a)βs) > λ(a) fN (a)
)

= N
−

2aβ+2σ2
−2σ

√
2aβ+σ2

σ2
A .

ombining the upper bounds in (34) and (37) gives the logarithmic upper bound on the
aximum queue length in (33). □

. Useful lemmas

In the previous section, we gave a proof of the logarithmic asymptotics for the maximum
ueue length Q̄β

N . In order to be able to prove sharper results on the tail asymptotics, we
eed some auxiliary results; the goal of this section is to derive these. We begin by giving an
verview of the results in this section.

First, observe that for a Brownian motion {W (t), t ≥ 0}, we have that

sup
s>T

(W (s) − βs) d
= W (T ) − βT + sup

s>0
(Ŵ (s) − βs),

here {Ŵ (t), t ≥ 0} is an independent copy of {W (t), t ≥ 0}. From this, it follows that if we
ake the supremum of a Brownian motion starting at a positive time, this is in distribution the
ame as adding a normally distributed random variable to an exponentially distributed random
ariable. The tail asymptotics of this convolution equal the tail asymptotics of the normally
istributed part, the exponentially distributed part, or a more complicated mixture of the two,
epending on the starting time T , the standard deviation of W (s) and the drift β. In Lemma 3,
hese three cases are studied in more detail.

Second, our main strategy to investigate the tail asymptotics involves the use of hitting times.
bserve that we have a maximum of N mutually dependent random variables. Based on the

esults in Section 3, we are able to make an educated guess where the supremum is attained.
ollowing the proof of Lemma 1, we see that for TN (a) given in (9),

P
(

max
i≤N

sup
s>0

(Wi (s) + WA(s) − βs) > fN (a)
)

≈ P
(

max
i≤N

(Wi (TN (a)) + WA(TN (a)) − βTN (a)) > fN (a)
)

,

n the sense that the left-hand and the right-hand side have the same logarithmic asymptotics.
o the hitting time, conditioned on being finite, is approximately equal to TN (a). Next, observe

hat for 0 < a ≤ a⋆,

P
(

sup
s>0

(WA(s) − λ(a)βs) > λ(a) fN (a)
)

= exp
(

−
2λ(a)β

σ 2
A

λ(a) fN (a)
)

= N−γ (a), (39)

nd

P
(

max
i≤N

sup
s>0

(Wi (s) − (1 − λ(a))βs) > (1 − λ(a)) fN (a)
)

= 1 −

(
1 − exp

(
−

2(1 − λ(a))β
σ 2 (1 − λ(a)) fN (a)

))N

= Θ(1).
(40)

ince the expectation of the hitting time, conditioned on being finite, of a level x , equals this
alue x divided by the drift (see [4, Eq. (2.0.1) & (2.0.2)(1), p. 301]), it is easy to see that
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in both (39) and (40) the conditional expectation of the hitting time equals TN (a). Thus, this
euristically explains why the processes {WA(t)−λ(a)βt, t ≥ 0} and {Wi (t)− (1−λ(a))βt, t ≥

0} are important. In Definition 3, we define the hitting-time densities of these processes and
in Lemma 4 we show that after proper scaling these densities converge to the densities of
normally distributed random variables, corrected with a constant.

Finally, we need to analyze limits of the type

lim
N→∞

∫
∞

−∞

P

(
sup

s>τ (N )
X i (s) > yN

⏐⏐⏐⏐τ (N )
= t

)
fτ (N ) (t)dt, (41)

where τ (N ) is a hitting time and fτ (N ) its density, with fτ (N ) (t) = 0 for t < 0. In Lemma 5, we
how that under certain assumptions, we can interchange the integral and the limit, when the
ntegrand is a product of two functions, as is the case in (41). The proof of this interchange is
imilar to the proof of the dominated convergence theorem.

emma 3 (Convolution of Normal and Exponential Distributions). Let X d
= N (0, 1) and

E d
= Exp(1) be independent random variables. Let (ηN , N ≥ 1), (xN , N ≥ 1) be sequences

ith ηN > 0, xN
N→∞
−→ ∞, and xN /ηN

N→∞
−→ ∞. Furthermore, let µ > 0 and c ∈ R. Then

1. if
xN −µη2

N√
2ηN

N→∞
−→ c,

P
(

ηN X +
1
µ

E > xN

)
∼

ηN e
−

x2
N

2η2
N

√
2πxN

+
1
2

e
1
2 µ
(
µη2

N −2xN

)
(1 + erf(c)), (42)

as N → ∞, with

erf(c) =
2

√
π

∫ c

0
exp(−t2)dt.

2. if
xN −µη2

N√
2ηN

N→∞
−→ ∞,

P
(

ηN X +
1
µ

E > xN

)
∼

ηN e
−

x2
N

2η2
N

√
2πxN

+ e
1
2 µ
(
µη2

N −2xN

)
, (43)

as N → ∞,
3. and if

xN −µη2
N√

2ηN

N→∞
−→ −∞,

P
(

ηN X +
1
µ

E > xN

)
∼

ηN e
−

x2
N

2η2
N

√
2πxN

−
1

√
2π

e
1
2 µ
(
µη2

N −2xN

)
ηN e

−

(
xN −µη2

N

)2

2η2
N

xN − µη2
N

, (44)

as N → ∞.

Proof. We have

P
(

ηN X +
1
µ

E > xN

)
= P (ηN X > xN ) +

∫ xN /ηN

−∞

P
(

1
µ

E > xN − ηN z
)

e−
z2
2

√
2π

dz.

(45)
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Using the fact that 1 + erf(−z) ∼
e−z2
√

π z , as z → ∞, the first term on the right-hand side of (45)
satisfies

P (ηN X > xN ) ∼
ηN e

−
x2

N
2η2

N
√

2πxN
,

s N → ∞. Furthermore,∫ xN /ηN

−∞

P
(

1
µ

E > xN − ηN z
)

e−
z2
2

√
2π

dz =
1
2

e
1
2 µ
(
µη2

N −2xN

) (
erf
(

xN − µη2
N

√
2ηN

)
+ 1

)
.

he lemma follows by using that erf(z) → 1, as z → ∞, and once more that 1+erf(−z) ∼
e−z2
√

π z ,
s z → ∞; see [1, 7.1.13, 7.1.16 & 7.1.23]. □

For the remainder of this paper, we use τ to indicate stochastic hitting times.

Definition 3. For a > 0, r ∈ R, and i ∈ {1, 2, . . . , N }, we define the random variable τ
a,−r
i,N by

τ
a,−r
i,N := inf{t ≥ 0 : Wi (t) − (1 − λ(a))βt > (1 − λ(a)) fN (a) − r},

nd the function f
τ

a,−r
i,N

as its density, with f
τ

a,−r
i,N

(t) = 0 for t < 0.
Similarly, we define the random variable τ̃

a,r
A,N by

τ̃
a,r
A,N := inf{t ≥ 0 : WA(t) − λ(a)βt > λ(a) fN (a) + r},

and the function fτ̃a,r
A,N

as its density, with fτ̃a,r
A,N

(t) = 0 for t < 0.

emma 4 (Convergence of Hitting-time Density). For the density function f
τ

a,−r
i,N

given in
efinition 3 and TN (a, k) given in Eq. (8), we have that

N
√

log N f
τ

a,−r
i,N

(
TN (a, k)

) N→∞
−→

β2

√
π
(
2aβ + σ 2

)
× exp

⎛⎝β
(

8a2β2r − β3k2σ
√

2aβ + σ 2 + 8aβrσ 2
+ 2rσ 4

)
σ
(
2aβ + σ 2

)5/2

⎞⎠
=

β2

√
π
(
2aβ + σ 2

) exp

(
−β4k2(

2aβ + σ 2
)2

)

× exp
(

2(1 − λ(a))βr
σ 2

)
.

(46)

roof. The density f
τ

a,−r
i,N

(t) satisfies

f
τ

a,−r
i,N

(t) =
(1 − λ(a)) fN (a) − r

√
2πσ t3/2

exp
(

−
((1 − λ(a)) fN (a) − r + (1 − λ(a))βt)2

2σ 2t

)
, (47)

or t > 0, and 0 otherwise; see [4, Eq. (2.0.2), p. 301]. Due to the fact that TN (a, k) =

fN (a)/β + k
√

log N , for all k ∈ R, there exists Nk , such that for N > Nk , TN (a, k) > 0.
ollowing the notation given in Definition 2, we have that the prefactor of the density of the
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t
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hitting time in the point TN (a, k) equals

(1 − λ(a)) fN (a) − r
√

2πσ TN (a, k)3/2
=

σ√
2aβ+σ 2

( σ 2

2β
+ a) log N − r

√
2πσ (( σ 2

2β2 +
a
β

) log N + k
√

log N )3/2

∼

σ√
2aβ+σ 2

( σ 2

2β
+ a) log N

√
2πσ (( σ 2

2β2 +
a
β

) log N )3/2
,

as N → ∞. When we simplify this last term further, we get
σ√

2aβ+σ 2
( σ 2

2β
+ a)

√
2πσ (( σ 2

2β2 +
a
β

))3/2
√

log N
=

1√
2aβ+σ 2

√
2π 1

β

√
σ 2

2β2 +
a
β

√
log N

=
1

√
2π 1

β

√
2aβ + σ 2

√
σ 2

2β2 +
a
β

√
log N

.

Because we can write
√

σ 2

2β2 +
a
β

=
1

√
2β

√
2aβ + σ 2, we get

1
√

2π 1
β

√
2aβ + σ 2

√
σ 2

2β2 +
a
β

√
log N

=
β2

√
π (2aβ + σ 2)

√
log N

.

o, we can conclude that
√

log N times the first term of the density f
τ

a,−r
i,N

(t) in (47) converges

o β2
√

π (2aβ+σ 2)
, as N → ∞, which is the prefactor of the limit in (46). So, in order to prove the

imit in (46), we are left with proving that

N exp
(

−
((1 − λ(a)) fN (a) − r + (1 − λ(a))βTN (a, k))2

2σ 2TN (a, k)

)
N→∞
−→ exp

⎛⎝β
(

8a2β2r − β3k2σ
√

2aβ + σ 2 + 8aβrσ 2
+ 2rσ 4

)
σ
(
2aβ + σ 2

)5/2

⎞⎠ .

(48)

The numerator of the exponent on the left-hand side of (48) equals

((1 − λ(a)) fN (a) − r + (1 − λ(a))βTN (a, k))2.

Because of the form of fN (a) and TN (a, k) as given in Definition 2, we can write

((1 − λ(a)) fN (a) − r + (1 − λ(a))βTN (a, k))2

= c1(log N )2
+ c2(log N )3/2

+ c3 log N + c4
√

log N + r2,
(49)

ith c1, c2, c3, c4 constant in N . In order to determine the value of c1 we should gather all the
terms in

(1 − λ(a)) fN (a) − r + (1 − λ(a))βTN (a, k)

that scale as log N . We have

(1 − λ(a)) fN (a) − r + (1 − λ(a))βTN (a, k)

=
σ√

2

(
σ 2

+ a
)

log N − r +
σ√

2
β

(
σ 2

2 +
a
)

log N

2aβ + σ 2β 2aβ + σ 2β β
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T

N

O

T

T

+
σ√

2aβ + σ 2
βk
√

log N

=
2σ√

2aβ + σ 2

(
σ 2

2β
+ a

)
log N + o(log N ).

herefore,

c1 =

(
2σ√

2aβ + σ 2

(
σ 2

2β
+ a

))2

=
4σ 2

2aβ + σ 2

(
σ 2

2β
+ a

)2

=
2σ 2

β

(
σ 2

2β
+ a

)
.

ow, to determine the value of c2 in (49), we have

(1 − λ(a)) fN (a) − r + (1 − λ(a))βTN (a, k)

=
σ√

2aβ + σ 2

(
σ 2

2β
+ a

)
log N − r +

σ√
2aβ + σ 2

β

(
σ 2

2β2 +
a
β

)
log N

+
σ√

2aβ + σ 2
βk
√

log N

=
2σ√

2aβ + σ 2

(
σ 2

2β
+ a

)
log N +

σ√
2aβ + σ 2

βk
√

log N − r.

Therefore, c2 equals

c2 = 2
2σ√

2aβ + σ 2

(
σ 2

2β
+ a

)
σ√

2aβ + σ 2
βk = 4

σ 2

2aβ + σ 2

(
σ 2

2β
+ a

)
βk = 2σ 2k.

bserve that

c1(log N )2
+ c2(log N )3/2

= 2σ 2TN (a, k) log N .

hus, the exponent on the left-hand side of (48) can be rewritten as

−
((1 − λ(a)) fN (a) − r + (1 − λ(a))βTN (a, k))2

2σ 2TN (a, k)
= − log N + O(1),

and we can conclude that

N exp
(

−
((1 − λ(a)) fN (a) − r + (1 − λ(a))βTN (a, k))2

2σ 2TN (a, k)

)
= N exp(− log N + O(1)) = O(1).

The only term in (49) that is still of importance, is the term c3. We have

− ((1 − λ(a)) fN (a) − r + (1 − λ(a))βTN (a, k))2

= −

(
2σ√

2aβ + σ 2

(
σ 2

2β
+ a

)
log N +

σ√
2aβ + σ 2

βk
√

log N − r
)2

.

he terms that scale as log N are as follows:

c3 log N = −

(
−2r

2σ√
2aβ + σ 2

(
σ 2

2β
+ a

)
+

σ 2

2aβ + σ 2 β2k2
)

log N .
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Thus,

−

(
−2r 2σ√

2aβ+σ 2
( σ 2

2β
+ a) +

σ 2

2aβ+σ 2 β2k2
)

log N

2σ 2TN (a, k)

=

−

(
−2r 2σ√

2aβ+σ 2
( σ 2

2β
+ a) +

σ 2

2aβ+σ 2 β2k2
)

log N

2σ 2(( σ 2

2β2 +
a
β

) log N + k
√

log N )
.

his expression converges to

−

(
−2r 2σ√

2aβ+σ 2
( σ 2

2β
+ a) +

σ 2

2aβ+σ 2 β2k2
)

2σ 2( σ 2

2β2 +
a
β

)

=

β
(

8a2β2r − β3k2σ
√

2aβ + σ 2 + 8aβrσ 2
+ 2rσ 4

)
σ
(
2aβ + σ 2

)5/2 ,

s N → ∞, which is exactly the exponent in the limit of (48). Putting everything together, the
imit in (46) follows. □

orollary 1. For the density function f
τ

a,−r
i,N

given in Definition 3 and TN (a, k) given in Eq. (8)
e have that

lim
N→∞

∫
∞

−∞

N
√

log N f
τ

a,−r
i,N

(
TN (a, k)

)
dk =

∫
∞

−∞

lim
N→∞

N
√

log N f
τ

a,−r
i,N

(
TN (a, k)

)
dk. (50)

roof. Observe that for N large enough such that (1 − λ(a)) fN (a) − r > 0,∫
∞

−∞

N
√

log N f
τ

a,−r
i,N

(
TN (a, k)

)
dk

= NP
(

sup
s>0

(Wi (s) − (1 − λ(a))βs) > (1 − λ(a)) fN (a) − r
)

= exp
(

2(1 − λ(a))βr
σ 2

)
,

ue to the fact that sups>0(Wi (s) − (1 − λ(a))βs) is exponentially distributed with parameter
(1 − λ(a))β/σ 2. Additionally,

∫
∞

−∞

β2 exp

(
β
(

8a2β2r−β3k2σ
√

2aβ+σ 2+8aβrσ 2
+2rσ 4

)
σ(2aβ+σ 2)

5/2

)
√

π
(
2aβ + σ 2

) dk

=

∫
∞

−∞

β2 exp
(
−

β4k2

(2aβ+σ 2)2

)
√

π
(
2aβ + σ 2

) exp
(

2(1 − λ(a))βr
σ 2

)
dk.
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The first term in this integral is the density of a normally distributed random variable. Therefore,
we get that∫

∞

−∞

β2 exp
(
−

β4k2

(2aβ+σ 2)2

)
√

π
(
2aβ + σ 2

) exp
(

2(1 − λ(a))βr
σ 2

)
dk = exp

(
2(1 − λ(a))βr

σ 2

)
. □

Lemma 5 (Convergence of Integrals of Sequences of Functions). Assume we have sequences
f positive integrable functions vN (x) and wN (x) that satisfy the following:

• vN (x)
N→∞
−→ v(x),

•
∫

∞

−∞
vN (x)dx

N→∞
−→

∫
∞

−∞
v(x)dx,

• wN (x)
N→∞
−→ w(x),

• There exists a constant c > 0 such that wN (x) < c for all x and N.

hen ∫
∞

−∞

vN (x)wN (x)dx
N→∞
−→

∫
∞

−∞

v(x)w(x)dx . (51)

roof. First, by using Fatou’s lemma, we obtain that

lim inf
N→∞

∫
∞

−∞

vN (x)wN (x)dx ≥

∫
∞

−∞

v(x)w(x)dx .

urthermore, observe that vN (x)c − vN (x)wN (x) > 0 for all x and N . Now, from Fatou’s
emma, it follows that

lim inf
N→∞

∫
∞

−∞

vN (x)c − vN (x)wN (x)dx ≥

∫
∞

−∞

v(x)c − v(x)w(x)dx .

ecause
∫

∞

−∞
vN (x)cdx

N→∞
−→

∫
∞

−∞
v(x)cdx , we get that

lim sup
N→∞

∫
∞

−∞

vN (x)wN (x)dx ≤

∫
∞

−∞

v(x)w(x)dx .

he lemma follows. □

In Definition 4, we give shorthand notation of some probability measures that we use later
n.

efinition 4.

P (N )
i, j := P

(
min(Qβ

i,A(τ a⋆,0
i,N )1(τ a⋆,0

i,N < ∞), Qβ

j,A(τ a⋆,0
j,N )1(τ a⋆,0

j,N < ∞)) > fN (a)
)

, (52)

Q(N )
i, j (k, l) := P (min(Qβ

i,A(τ a⋆,0
i,N ), Qβ

j,A(τ a⋆,0
j,N )) > fN (a)|τ a⋆,0

i,N = TN (a⋆, k), τ a⋆,0
j,N = TN (a⋆, l)),

(53)

P(k<l) (A) := P (A|τ
a⋆,0
i,N = TN (a⋆, k) < τ

a⋆,0
j,N = TN (a⋆, l)), (54)

nd

P(N ) (A) := P (A|τ
a,−r

= T (a, k)). (55)
i,a,−r,k i,N N
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5. Proofs of the sharper asymptotics

In this section, we prove sharper asymptotics of the tail behavior of P (Q̄β

N > fN (a)). Recall
the definition of τ

a,−r
i,N and τ̃

a,r
A,N given in Definition 3, and observe that

P (Q̄β

N > fN (a)) = P (max
i≤N

Qβ

i,A(τ a,−r
i,N ∧ τ̃

a,r
A,N )1(τ a,−r

i,N ∧ τ̃
a,r
A,N < ∞) > fN (a)). (56)

This equation is valid, because for 0 < t < τ
a,−r
i,N ∧ τ̃

a,r
A,N , we see that Wi (t) − (1 − λ(a))βt <

(1 −λ(a)) fN (a) − r and WA(t) −λ(a)βt < λ(a) fN (a) + r . Thus, Wi (t) + WA(t) −βt < fN (a).
Now, using (56), we obtain lower and upper bounds of the form

max
(
P
(
max
i≤N

Qβ

i,A(τ a,−r
i,N )1(τ a,−r

i,N < ∞) > fN (a)
)
,P
(
Q̄β

N (τ̃ a,r
A,N )1(τ̃ a,r

A,N < ∞) > fN (a)
))

≤ P (Q̄β

N > fN (a))

≤ P
(
max
i≤N

Qβ

i,A(τ a,−r
i,N )1(τ a,−r

i,N < ∞) > fN (a)
)
+ P

(
Q̄β

N (τ̃ a,r
A,N )1(τ̃ a,r

A,N < ∞) > fN (a)
)
,

(57)

which we can exploit. Other important inequalities that we use are the union bound and
Bonferroni’s inequality. In the case of identically distributed random variables X i , these bounds
simplify to

NP (X i > x) −

(
N
2

)
P (min(X i , X j ) > x) ≤ P (max

i≤N
X i > x) ≤ NP (X i > x),

which is the case for our problem. Dębicki et al. [6] have derived the tail asymptotics
of min(Qβ

i,A, Qβ

j,A). In Lemma 7, we show how we use [6, Thm. 2.3] on the tails of
min(Qβ

i,A, Qβ

j,A) together with Bonferroni’s inequality such that these are applicable in our
proof of the case a > a⋆.

Now that we can write upper and lower bounds in which hitting times play a role, we
condition on the hitting times and get sequences of the form as given in (41).

By using Lemma 5, we obtain that

lim
N→∞

∫
∞

−∞

P

(
sup

s>τ (N )
X i (s) > yN

⏐⏐⏐τ (N )
= t

)
fτ (N ) (t)dt

=

∫
∞

−∞

lim
N→∞

P

(
sup

s>τ (N )
X i (s) > yN

⏐⏐⏐τ (N )
= t

)
fτ (N ) (t)dt.

To obtain limits of the form as given in (41), we use Lemmas 3 and 4.

5.1. The case a > a⋆

In this section, we prove Theorem 2 on exact asymptotics of the maximum queue length
when a > a⋆. As is stated in (16), P (Q̄β

N > fN (a)) ∼ N−γ (a), as N → ∞, when a > a⋆.
Since the union bound in (14) gives us that N γ (a)P (Q̄β

N > fN (a)) ≤ 1, we only need to show
that

lim inf N γ (a)P (Q̄β
> fN (a)) ≥ 1.
N→∞
N
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In order to prove the lim inf, we first observe that Q̄β

N > maxi≤N Qβ

i,A(τ a⋆,0
i,N )1(τ a⋆,0

i,N < ∞), and
e know by using Bonferroni’s inequality that

P (max
i≤N

Qβ

i,A(τ a⋆,0
i,N )1(τ a⋆,0

i,N < ∞) > fN (a))

≥ NP
(

Qβ

1,A(τ a⋆,0
1,N )1(τ a⋆,0

1,N < ∞) > fN (a)
)

−

(
N
2

)
P
(

min(Qβ

1,A(τ a⋆,0
1,N )1(τ a⋆,0

1,N < ∞), Qβ

2,A(τ a⋆,0
2,N )1(τ a⋆,0

2,N < ∞)) > fN (a)
)

,

(58)

here τ
a⋆,0
i,N and τ

a⋆,0
j,N are hitting times defined in Lemma 4. In Lemma 7, we show that the

rst term is leading, and the second order term is of smaller order. In order to prove this, we
rst give a convenient upper bound for

P(k<l)
(

min(Qβ

i,A(τ a⋆,0
i,N ), Qβ

j,A(τ a⋆,0
j,N )) > fN (a)

)
n Lemma 6, with P(k<l) (A) given in Eq. (54) in Definition 4.

For the remainder of this paper, let {Ŵ (t), t ≥ 0} be an independent copy of the Brownian
otion {W (t), t ≥ 0}, and Q̂β

i,A(s, t) an independent copy of Qβ

i,A(s, t).

emma 6. Let a > a⋆ and P(k<l) (A) be given in Eq. (54). Furthermore, τ
a⋆,0
i,N is given in

efinition 3 and Q̂β

i,A is an independent copy of Qβ

i,A. Then for all δ > 0 there exists an
Nδ > 0 such that for all N ≥ Nδ

P(k<l)
(

min(Qβ

i,A(τ a⋆,0
i,N ), Qβ

j,A(τ a⋆,0
j,N )) > fN (a)

)
≤ 4P(k<l)

(
(1 + δ)WA(τ a⋆,0

i,N ) + min(Q̂β

i,A, Q̂β

j,A)

> fN (a) − (1 − λ(a⋆)) fN (a⋆) + λ(a⋆)βτ
a⋆,0
i,N

)
.

roof. First, we have that

P(k<l)
(

min(Qβ

i,A(τ a⋆,0
i,N ), Qβ

j,A(τ a⋆,0
j,N )) > fN (a)

)
≤ P(k<l)

(
Qβ

i,A(τ a⋆,0
i,N , τ

a⋆,0
j,N ) > fN (a)

)
+ P(k<l)

(
min(Qβ

i,A(τ a⋆,0
j,N ), Qβ

j,A(τ a⋆,0
j,N )) > fN (a)

)
,

(59)

ecause

min(Qβ

i,A(τ a⋆,0
i,N ), Qβ

j,A(τ a⋆,0
j,N )) < max(Qβ

i,A(τ a⋆,0
i,N , τ

a⋆,0
j,N ), min(Qβ

i,A(τ a⋆,0
j,N ), Qβ

j,A(τ a⋆,0
j,N )))

hen τ
a⋆,0
i,N < τ

a⋆,0
j,N < ∞. Now, recall from Definition 3 that

Qβ

i,A(τ a⋆,0
i,N , τ

a⋆,0
j,N )

= sup
τ

a⋆,0
i,N <s<τ

a⋆,0
j,N

(Wi (s) + WA(s) − βs)

d
= (1 − λ(a⋆)) fN (a⋆) + WA(τ a⋆,0

i,N ) − λ(a⋆)βτ
a⋆,0
i,N + Q̂β

i,A(0, τ
a⋆,0
j,N − τ

a⋆,0
i,N ).
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Thus, for the first term on the right-hand side of (59) we have

P(k<l)
(

Qβ

i,A(τ a⋆,0
i,N , τ

a⋆,0
j,N ) > fN (a)

)
= P(k<l)

(
WA(τ a⋆,0

i,N ) + Q̂β

i,A(0, τ
a⋆,0
j,N − τ

a⋆,0
i,N )

> fN (a) − (1 − λ(a⋆)) fN (a⋆) + λ(a⋆)βτ
a⋆,0
i,N

)
≤ P(k<l)

(
WA(τ a⋆,0

i,N ) +

⏐⏐⏐Ŵi (τ
a⋆,0
j,N − τ

a⋆,0
i,N ) + ŴA(τ a⋆,0

j,N − τ
a⋆,0
i,N )

⏐⏐⏐
> fN (a) − (1 − λ(a⋆)) fN (a⋆) + λ(a⋆)βτ

a⋆,0
i,N

)
. (60)

or any x and y, it holds that x + |y| = max(x + y, x − y). Therefore, by the union bound,
e can bound the probability in (60) as

P(k<l)
(

WA(τ a⋆,0
i,N ) +

⏐⏐⏐Ŵi (τ
a⋆,0
j,N − τ

a⋆,0
i,N ) + ŴA(τ a⋆,0

j,N − τ
a⋆,0
i,N )

⏐⏐⏐
> fN (a) − (1 − λ(a⋆)) fN (a⋆) + λ(a⋆)βτ

a⋆,0
i,N

)
(61)

≤ 2P(k<l)
(

WA(τ a⋆,0
i,N ) + Ŵi (τ

a⋆,0
j,N − τ

a⋆,0
i,N ) + ŴA(τ a⋆,0

j,N − τ
a⋆,0
i,N )

> fN (a) − (1 − λ(a⋆)) fN (a⋆) + λ(a⋆)βτ
a⋆,0
i,N

)
(62)

≤ 2P(k<l)
(

(1 + δ)WA(τ a⋆,0
i,N ) > fN (a) − (1 − λ(a⋆)) fN (a⋆) + λ(a⋆)βτ

a⋆,0
i,N

)
(63)

≤ 2P(k<l)
(

(1 + δ)WA(τ a⋆,0
i,N ) + min(Q̂β

i,A, Q̂β

j,A)

> fN (a) − (1 − λ(a⋆)) fN (a⋆) + λ(a⋆)βτ
a⋆,0
i,N

)
, (64)

or δ > 0 and N > Nδ . The upper bound in (63) holds for N > Nδ with Nδ large enough,
ince under the measure P(k<l) given in (54), τ

a⋆,0
i,N = fN (a⋆)/β+k

√
log N ∼

(
σ 2

2β2 +
a⋆

β

)
log N

as N → ∞, and τ
a⋆,0
j,N − τ

a⋆,0
i,N = (l − k)

√
log N = O(

√
log N ). The upper bound in (64) holds

ecause we add a positive random variable. For the second term on the right-hand side of (59),
rst observe that P (min(X, Y ) > z) = P (X > z, Y > z). Second, under the assumption that
a⋆,0
i,N < τ

a⋆,0
j,N < ∞, we can write

Qβ

i,A(τ a⋆,0
j,N ) d

= (1 − λ(a⋆)) fN (a⋆) + Ŵi (τ
a⋆,0
j,N − τ

a⋆,0
i,N )

− (1 − λ(a⋆))β(τ a⋆,0
j,N − τ

a⋆,0
i,N ) + WA(τ a⋆,0

j,N ) − λ(a⋆)βτ
a⋆,0
j,N + Q̂β

i,A.

Thus, by applying similar techniques as for the analysis of the first term in (59), we obtain that

P(k<l)
(

min(Qβ

i,A(τ a⋆,0
j,N ), Qβ

j,A(τ a⋆,0
j,N )) > fN (a)

)
= P(k<l)

(
WA(τ a⋆,0

j,N ) + Ŵi (τ
a⋆,0
j,N − τ

a⋆,0
i,N ) − (1 − λ(a⋆))β(τ a⋆,0

j,N − τ
a⋆,0
i,N ) + Q̂β

i,A

> fN (a) − (1 − λ(a⋆)) fN (a⋆) + λ(a⋆)βτ
a⋆,0
j,N ,

WA(τ a⋆,0
j,N ) + Q̂β

j,A > fN (a) − (1 − λ(a⋆)) fN (a⋆) + λ(a⋆)βτ
a⋆,0
j,N

)
.
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This joint probability satisfies the following bound:

P(k<l)
(

WA(τ a⋆,0
j,N ) + Ŵi (τ

a⋆,0
j,N − τ

a⋆,0
i,N ) − (1 − λ(a⋆))β(τ a⋆,0

j,N − τ
a⋆,0
i,N ) + Q̂β

i,A

> fN (a) − (1 − λ(a⋆)) fN (a⋆) + λ(a⋆)βτ
a⋆,0
j,N ,

WA(τ a⋆,0
j,N ) + Q̂β

j,A > fN (a) − (1 − λ(a⋆)) fN (a⋆) + λ(a⋆)βτ
a⋆,0
j,N

)
≤ P(k<l)

(
WA(τ a⋆,0

j,N ) + Ŵi (τ
a⋆,0
j,N − τ

a⋆,0
i,N ) + Q̂β

i,A

> fN (a) − (1 − λ(a⋆)) fN (a⋆) + λ(a⋆)βτ
a⋆,0
j,N ,

WA(τ a⋆,0
j,N ) + Q̂β

j,A > fN (a) − (1 − λ(a⋆)) fN (a⋆) + λ(a⋆)βτ
a⋆,0
j,N

)
.

We can bound this further and get

P(k<l)
(

WA(τ a⋆,0
j,N ) + Ŵi (τ

a⋆,0
j,N − τ

a⋆,0
i,N ) + Q̂β

i,A > fN (a) − (1 − λ(a⋆)) fN (a⋆)

+ λ(a⋆)βτ
a⋆,0
j,N ,

WA(τ a⋆,0
j,N ) + Q̂β

j,A > fN (a) − (1 − λ(a⋆)) fN (a⋆) + λ(a⋆)βτ
a⋆,0
j,N

)
≤ P(k<l)

(
WA(τ a⋆,0

j,N ) + max(Ŵi (τ
a⋆,0
j,N − τ

a⋆,0
i,N ), 0) + min(Q̂β

i,A, Q̂β

j,A)

> fN (a) − (1 − λ(a⋆)) fN (a⋆) + λ(a⋆)βτ
a⋆,0
j,N

)
≤ 2P(k<l)

(
(1 + δ)WA(τ a⋆,0

i,N ) + min(Q̂β

i,A, Q̂β

j,A)

> fN (a) − (1 − λ(a⋆)) fN (a⋆) + λ(a⋆)βτ
a⋆,0
i,N

)
,

for δ > 0 and N > Nδ . Combining this bound with the bound in (64) completes the proof of
the lemma. □

Lemma 7. For the model given in Definition 1 with the additional notation given in Definition 2,
and a > a⋆, we have that

lim inf
N→∞

N γ (a)P (Q̄β

N > fN (a)) ≥ 1.

The general idea of the proof of Lemma 7 is to make rigorous that the lower bound on the
maximum queue length Q̄β

N given in (58) is approximately the same as
NP (Qβ

i,A(τ a⋆,0
i,N )1(τ a⋆,0

i,N < ∞) > fN (a)) when N is large. Thus the last term in (58) is
asymptotically negligible. We use the result from Lemma 6 to establish this. Observe now
that, following Definition 3,

Qβ

i,A(τ a⋆,0
i,N ) d

= Wi (τ
a⋆,0
i,N ) + WA(τ a⋆,0

i,N ) − βτ
a⋆,0
i,N + Q̂β

i,A

= (1 − λ(a⋆)) fN (a⋆) + WA(τ a⋆,0
i,N ) − λ(a⋆)βτ

a⋆,0
i,N + Q̂β

i,A.
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Furthermore, observe that due to Eq. (28), P (τ a⋆,0
i,N < ∞) = 1/N . From this, it follows that

NP (Qβ

i,A(τ a⋆,0
i,N )1(τ a⋆,0

i,N < ∞) > fN (a)) = P (Qβ

i,A(τ a⋆,0
i,N ) > fN (a)|τ a⋆,0

i,N < ∞).

herefore, in order to prove a sharp lower bound on the tail asymptotics of the maximum queue
ength, we prove by using Fatou’s lemma that

lim inf
N→∞

N γ (a)P (WA(τ a⋆,0
i,N ) − λ(a⋆)βτ

a⋆,0
i,N + Q̂β

i,A

> fN (a) − (1 − λ(a⋆)) fN (a⋆)|τ a⋆,0
i,N < ∞) ≥ 1.

n order to prove this, we show that Q̂β

i,A is most likely to hit a level gN (a, x, k) (to be specified
ater), and WA(τ a⋆,0

i,N ) − λ(a⋆)βτ
a⋆,0
i,N is most likely to hit the level fN (a) − (1 − λ(a⋆)) fN (a⋆) −

gN (a, x, k).
We now turn to a formal proof of Lemma 7.

roof. Following Eq. (52) in Definition 4, we can simplify the inequality in (58) to

P (max
i≤N

Qβ

i,A(τ a⋆,0
i,N )1(τ a⋆,0

i,N < ∞) > fN (a)) ≥ N P (N )
i,i −

(
N
2

)
P (N )

i, j . (65)

ow, before we analyze (65) in more detail, observe that we can express P (τ a⋆,0
i,N < ∞, τ

a⋆,0
j,N <

∞) as

P (τ a⋆,0
i,N < ∞, τ

a⋆,0
j,N < ∞) =

∫
∞

−∞

∫
∞

−∞

f
τ

a⋆,0
i,N

(
TN (a⋆, k)

)
f
τ

a⋆,0
j,N

(
TN (a⋆, l)

)
log Ndkdl

=
1

N 2 .

hen, by using Eq. (53) in Definition 4, we get that

N P (N )
i,i =N

∫
∞

−∞

f
τ

a⋆,0
i,N

(
TN (a⋆, k)

)√
log N Q(N )

i,i (k, k)dk

=

∫
∞

−∞

∫
∞

−∞

f
τ

a⋆,0
i,N

(
TN (a⋆, k)

)
f
τ

a⋆,0
j,N

(
TN (a⋆, l)

)
N 2 log N Q(N )

i,i (k, k)dkdl.

lso, observe that
(N

2

)
< N 2/2, and that

N 2

2
P (N )

i, j =
N 2

2

∫
∞

−∞

∫
∞

−∞

f
τ

a⋆,0
i,N

(
TN (a⋆, k)

)
f
τ

a⋆,0
j,N

(
TN (a⋆, l)

)
log N Q(N )

i, j (k, l)dkdl.

n conclusion, we can write the inequality in (65) as

P (max
i≤N

Qβ
i,A(τ a⋆,0

i,N )1(τ a⋆,0
i,N < ∞) > fN (a)) (66)

≥

∫
∞

−∞

∫
∞

−∞

f
τ

a⋆,0
i,N

(
TN (a⋆, k)

)
f
τ

a⋆,0
j,N

(
TN (a⋆, l)

)
N 2 log N

(
Q(N )

i,i (k, k) −
Q(N )

i, j (k, l)

2

)
dkdl

(67)

=

∫
∞

−∞

∫ l

−∞

f
τ

a⋆,0
i,N

(
TN (a⋆, k)

)
f
τ

a⋆,0
j,N

(
TN (a⋆, l)

)
N 2 log N

(
Q(N )

i,i (k, k) −
Q(N )

i, j (k, l)

2

)
dkdl

+

∫
∞
∫

∞

f
τ

a⋆,0
(
TN (a⋆, k)

)
f
τ

a⋆,0
(
TN (a⋆, l)

)
N 2 log N

(
Q(N )

i,i (k, k) −
Q(N )

i, j (k, l)

2

)
dkdl.
−∞ l i,N j,N
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Since we want to prove a sharp lower bound on the tail asymptotics of the maximum queue
ength Q̄β

N we can use the expression in (67). We want to prove the convergence of a lower
ound of this integral by using Fatou’s lemma. Therefore, we focus on the integrand first
nd prove convergence for the integrand as N → ∞. Assume that k ≤ l, and observe that

Q(N )
i,i (k, k) − Q(N )

i, j (k, l)/2 > 0. Thus,

Q(N )
i,i (k, k) −

1
2

Q(N )
i, j (k, l) =

(
Q(N )

i,i (k, k) −
Q(N )

i, j (k, l)

2

)+

.

he density of WA
(
TN (a⋆, k)

)
equals

exp
(
−x2/(2σ 2

ATN (a⋆, k))
)

√
2πσA

√
TN (a⋆, k)

.

e write a = a⋆
+ ϵ, with ϵ > 0. Let

gN (a, x, k) = fN (a) − (1 − λ(a⋆)) fN (a⋆) + λ(a⋆)βTN (a⋆, k)

−
σ 2

A

(
σ 2

+ σ 2
A

)
βσ 2 log N − x

√
log N .

bserve that

gN (a, x, k) +
σ 2

A

(
σ 2

+ σ 2
A

)
βσ 2 log N + x

√
log N = fN (a) − (1 − λ(a⋆)) fN (a⋆)

+ λ(a⋆)βTN (a⋆, k).

urthermore,

N γ (a) Q(N )
i,i (k, k) =N γ (a)P

(
WA

(
TN (a⋆, k)

)
+ Q̂β

i,A > gN (a, x, k) +
σ 2

A
(
σ 2

+ σ 2
A
)

βσ 2 log N + x
√

log N
)

=

∫
∞

−∞

N γ (a)P (Q̂β
i,A > gN (a, x, k))

√
log N exp

⎛⎜⎝−

(
σ2

A(σ2
+σ2

A)
βσ2 log N+x

√
log N

)2

2σ 2
A TN (a⋆,k)

⎞⎟⎠
√

2πσA
√

TN (a⋆, k)
dx .

e can simplify this expression further and get with a similar analysis as given in the proof
f Lemma 4, that

N γ (a)P (Q̂β

i,A > gN (a, x, k))

√
log N exp

⎛⎜⎜⎝−

(
σ2

A

(
σ2

+σ2
A

)
βσ2 log N+x

√
log N

)2

2σ 2
ATN (a⋆,k)

⎞⎟⎟⎠
√

2πσA
√

TN (a⋆, k)

= N γ (a) exp
(

−
2β

σ 2 + σ 2
A

gN (a, x, k)
)
√

log N exp

⎛⎜⎜⎝−

(
σ2

A

(
σ2

+σ2
A

)
βσ2 log N+x

√
log N

)2

2σ 2
ATN (a⋆,k)

⎞⎟⎟⎠
√

2πσA
√

TN (a⋆, k)

N→∞
−→

βσ
√

πσA
(
σ 2 + σ 2

A

) exp

(
−

β2σ 2
(
x
(
σ 2

+ σ 2
A

)
− 2βkσ 2

A

)2

σ 2
A

(
σ 2 + σ 2

A

)4

)
.
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A

f

F
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Furthermore, following Lemma 4, we have that

f
τ

a⋆,0
i,N

(
TN (a⋆, k)

)
f
τ

a⋆,0
j,N

(
TN (a⋆, l)

)
N 2 log N

N→∞
−→

β2 exp
(

−
β4k2

(2a⋆β+σ 2)
2

)
√

π
(
2a⋆β + σ 2

)
×

β2 exp
(

−
β4l2

(2a⋆β+σ 2)
2

)
√

π
(
2a⋆β + σ 2

) .

lso, following Lemma 6, we have that

Q(N )
i, j (k, l) ≤ 4P

(
(1 + δ)WA

(
TN (a⋆, k)

)
+ min(Q̂β

i,A, Q̂β

j,A)

> fN (a) − (1 − λ(a⋆)) fN (a⋆) + λ(a⋆)βTN (a⋆, k)
)

,

or all δ > 0 for N > Nδ . Let 0 < δ <
βσ 4ϵ

2σ 2
A

(
σ 2+σ 2

A

)2 and let

hN (a, x, k) = fN (a) − (1 − λ(a⋆)) fN (a⋆) + λ(a⋆)βTN (a⋆, k)

− (1 + δ)

(
σ 2

A

(
σ 2

+ σ 2
A

)
βσ 2 log N + x

√
log N

)
.

rom Dębicki et al. [6, Thm. 2.3], we know that

P
(

min(Q̂β

i,A, Q̂β

j,A) > x
)

exp
(

2β

σ 2/2 + σ 2
A

x
)

x→∞
−→ 0. (68)

We have that

N γ (a) exp

(
−

2β

σ 2/2 + σ 2
A

hN (a, x, k)

) √log N exp

⎛⎜⎜⎝−

(
σ2

A

(
σ2

+σ2
A

)
βσ2 log N+x

√
log N

)2

2σ 2
ATN (a⋆,k)

⎞⎟⎟⎠
√

2πσA
√

TN (a⋆, k)
N→∞
−→ 0.

Thus, when k ≤ l, then

lim inf
N→∞

N γ (a) f
τ

a⋆,0
i,N

(
TN (a⋆, k)

)
f
τ

a⋆,0
j,N

(
TN (a⋆, l)

)
N 2 log N

(
Q(N )

i,i (k, k) −
Q(N )

i, j (k, l)

2

)+

≥

β2 exp
(

−
β4k2

(2a⋆β+σ 2)
2

)
√

π
(
2a⋆β + σ 2

) β2 exp
(

−
β4l2

(2a⋆β+σ 2)
2

)
√

π
(
2a⋆β + σ 2

) βσ exp

(
−

β2σ 2
(

x
(
σ 2

+σ 2
A

)
−2βkσ 2

A

)2

σ 2
A

(
σ 2+σ 2

A

)4

)
√

πσA
(
σ 2 + σ 2

A

) .

he case k > l can be treated analogously. Finally, we have

∫
∞
∫

∞
∫

∞
β2 exp

(
−

β4k2

(2a⋆β+σ 2)
2

)
√ (

⋆ 2
) β2 exp

(
−

β4l2

(2a⋆β+σ 2)
2

)
√ (

⋆ 2
)

−∞ −∞ −∞ π 2a β + σ π 2a β + σ
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w

L
a

P

×

βσ exp

(
−

β2σ 2
(

x
(
σ 2

+σ 2
A

)
−2βkσ 2

A

)2

σ 2
A

(
σ 2+σ 2

A

)4

)
√

πσA
(
σ 2 + σ 2

A

) dxdkdl = 1,

ecause this is an integral over the whole domain of a product of three densities of normally
istributed random variables. By applying Fatou’s lemma, Lemma 7 follows. □

orollary 2. Let (yN , N ≥ 1) be a sequence such that lim infN→∞ yN / log N = ∞, then the
ail probability of the steady-state maximum queue length satisfies

P (Q̄β

N > yN ) ∼ NP (Qβ

i,A > yN ),

s N → ∞.

roof. By using the union bound, we have that P (Q̄β

N > yN ) ≤ NP (Qβ

i,A > yN ).
urthermore, by using Bonferroni’s inequality, we obtain that P (Q̄β

N > yN ) ≥ NP (Qβ

i,A >

yN ) − N 2/2P (Qβ

i,A > yN , Qβ

j,A > yN ). Now, using the limit in (68), we see that

lim sup
N→∞

N 2/2P (Qβ

i,A > yN , Qβ

j,A > yN )

NP (Qβ

i,A > yN )
≤ lim sup

N→∞

1
2

N exp
(

−
2β

σ 2/2+σ 2
A

yN

)
exp

(
−

2β

σ 2+σ 2
A

yN

) = 0.

The corollary follows. □

5.2. The case a = a⋆

In Section 3, we showed that we have at least two regimes, namely 0 < a < a⋆, and a ≥ a⋆.
It turns out, that when we investigate sharper asymptotics, the case a = a⋆ deserves special
attention. In the present section, we establish that in the case a = a⋆, P (Q̄β

N > fN (a⋆)) ∼
1
2 N−γ (a⋆), thus the prefactor is 1/2 instead of 1 as in the case a > a⋆. To make the heuristics
iven in Section 2 rigorous, we proceed by deriving asymptotic lower and upper bounds, in
wo separate lemmas. As in Section 5.1, we prove that the lim inf converges to the desired
imit. We do this in Lemma 8. The proof of this Lemma is similar to the proof of Lemma 7.
owever, the simple union bound NP (Qβ

i,A > fN (a⋆)) ∼ N−γ (a⋆) is not tight for a = a⋆. Thus,
e also need to prove that the lim sup is tight. We provide this proof in Lemma 9.

emma 8. For the model given in Definition 1 with the additional notation given in Definition 2,
nd a = a⋆, we have that

lim inf
N→∞

N γ (a⋆)P (Q̄β

N > fN (a⋆)) ≥
1
2
.

roof. First, we have the lower bound

P (Q̄β

N > fN (a⋆)) ≥ P (max
i≤N

Qβ

i,A(τ a⋆,r
i,N )1(τ a⋆,r

i,N < ∞) > fN (a⋆)).

As in (65) we can bound this further by Bonferroni’s inequality to

NP
(

Qβ (τ a⋆,r )1(τ a⋆,r
< ∞) > f (a⋆)

)

i,A i,N i,N N

126



D. Schol, M. Vlasiou and B. Zwart Stochastic Processes and their Applications 164 (2023) 99–138

T

S
t

F

B
β

−

(
N
2

)
P
(

min(Qβ

i,A(τ a⋆,r
i,N )1(τ a⋆,r

i,N < ∞), Qβ

j,A(τ a⋆,r
j,N )1(τ a⋆,r

j,N < ∞)) > fN (a⋆)
)

≥

(
N −

N 2

2
P
(
τ

a⋆,r
j,N < ∞

))
P
(

Qβ

i,A(τ a⋆,r
i,N )1(τ a⋆,r

i,N < ∞) > fN (a⋆)
)

. (69)

he last step is true because

P
(

min(Qβ

i,A(τ a⋆,r
i,N )1(τ a⋆,r

i,N < ∞), Qβ

j,A(τ a⋆,r
j,N )1(τ a⋆,r

j,N < ∞)) > fN (a⋆)
)

= P
(

Qβ

i,A(τ a⋆,r
i,N )1(τ a⋆,r

i,N < ∞) > fN (a⋆), Qβ

j,A(τ a⋆,r
j,N )1(τ a⋆,r

j,N < ∞) > fN (a⋆)
)

≤ P
(

Qβ

i,A(τ a⋆,r
i,N )1(τ a⋆,r

i,N < ∞) > fN (a⋆), τ a⋆,r
j,N < ∞

)
= P

(
Qβ

i,A(τ a⋆,r
i,N )1(τ a⋆,r

i,N < ∞) > fN (a⋆)
)
P (τ a⋆,r

j,N < ∞).

ince P (τ a⋆,r
j,N < ∞) = exp(−2(1 − λ(a⋆))βr/σ 2)/N , we can simplify the expression in (69)

o ⎛⎝1 −

exp
(
−

2(1−λ(a⋆))βr
σ 2

)
2

⎞⎠ NP
(

Qβ

i,A(τ a⋆,r
i,N )1(τ a⋆,r

i,N < ∞) > fN (a⋆)
)

. (70)

ollowing the same strategy as in the proof of Lemma 7, we have that

gN (a⋆, x, k) = fN (a⋆) − (1 − λ(a⋆)) fN (a⋆) + λ(a⋆)βTN (a⋆, k)

−
σ 2

A

(
σ 2

+ σ 2
A

)
βσ 2 log N − x

√
log N =

(
−x +

σ 2
Aβk

σ 2 + σ 2
A

)√
log N .

Now, for x < σ 2
Aβk/(σ 2

+ σ 2
A), it follows that

N γ (a⋆)P (Q̂β
i,A > gN (a⋆, x, k) − r )

√
log N exp

⎛⎜⎝−

(
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A(σ2
+σ2

A)
βσ2 log N+x

√
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)2

2σ 2
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⎞⎟⎠
√

2πσA
√

TN (a⋆, k)
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×

√
log N exp

⎛⎜⎝−

(
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A(σ2
+σ2

A)
βσ2 log N+x

√
log N
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2σ 2
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−
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σ 2+σ 2
A
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−x +

σ 2
Aβk

σ 2+σ 2
A

)√
log N − r

)⎞⎟⎠
√

2πσA
√

TN (a⋆, k)
.(71)

y using the definition of TN (a⋆, k) in (8), we see that
√

log N/(
√

2πσA
√

TN (a⋆, k))
N→∞
−→

σ/(
√

πσA(σ 2
+ σ 2

A)). Furthermore, γ (a⋆) log N plus the exponent on the right-hand side of
(71) equals

γ (a⋆) log N −

(
σ 2

A

(
σ 2

+σ 2
A

)
βσ 2 log N + x

√
log N

)2

2σ 2
ATN (a⋆, k)

−
2β

2 2

((
−x +

σ 2
Aβk

2 2

)√
log N − r

)

σ + σA σ + σA
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+ σ 2
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)
− 2βkσ 2

A

)2

σ 2
A

(
σ 2 + σ 2

A

)4 +
2βr

σ 2 + σ 2
A
,

ith a similar proof as in the proof of Lemma 4. Thus,

N γ (a⋆)P (Q̂β

i,A > gN (a⋆, x, k) − r )
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(
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−
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A

)
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A

)2
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A

(
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A

)4

)
exp

(
2βr

σ 2 + σ 2
A

)
,

hen x < σ 2
Aβk/(σ 2

+ σ 2
A). When x > σ 2

Aβk/(σ 2
+ σ 2

A), we see that gN (a⋆, x, k) =

−x + σ 2
Aβk/(σ 2

+ σ 2
A))
√

log N
N→∞
−→ −∞, thus P (Q̂β

i,A > gN (a⋆, x, k) − r )
N→∞
−→ 1. In

his case, we get that

N γ (a⋆)P (Q̂β

i,A > gN (a⋆, x, k) − r )

√
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√

log N
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⎞⎠
N→∞
−→ 0,

for x > σ 2
Aβk/(σ 2

+ σ 2
A).

Thus, by combining this result with the result from Lemma 4, for x < σ 2
Aβk/(σ 2

+ σ 2
A),

f
τ

a⋆,r
i,N

(
TN (a⋆, k)

)
N
√

log N N γ (a⋆)P
(
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i,A > gN (a⋆, x, k) − r
)

×

√
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⎛⎜⎜⎝−

(
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A

(
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×

βσ exp

(
−
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(
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)
√
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σ 2 + σ 2

A
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(
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)
=: L1(x, k).

he function L1(x, k) satisfies

L1(x, k) =
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√

πσA
(
σ 2 + σ 2

A

) exp
(

2βr
σ 2 + σ 2

A

)

=
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−
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−

β2σ 2
(

x
(
σ 2

+σ 2
A

)
−2σ 2

Aβk
)2

σ 2
A

(
σ 2+σ 2

A

)4

)
√
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=
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−
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−
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√
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(
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A

) . (72)

hus, L1(x, k) can be written as a product of two densities of normally distributed random
ariables. When we consider the last term in (72) as a function of x , we get that the function

βσ exp

(
−

β2σ 2
(

x−2σ 2
Aβk/(σ 2

+σ 2
A)
)2

σ 2
A

(
σ 2+σ 2

A

)2

)
√

πσA
(
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A

)
is the density of a normally distributed random variable with mean 2σ 2
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+ σ 2

A) and
tandard deviation σA(σ 2

+ σ 2
A)/(

√
2βσ ). From this, it follows that

∫ σ 2
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+σ 2
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−∞
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−
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A/(σ 2

+σ 2
A)
)2

σ 2
A(σ 2+σ 2
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)
√
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= P
(

σA(σ 2
+ σ 2
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√
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X1 +

2σ 2
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σ 2 + σ 2
A

≤
σ 2
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σ 2 + σ 2

A

)
= P

(
σA(σ 2

+ σ 2
A)

√ X1 ≤ −
σ 2
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2 2

)
,

2βσ σ + σA
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with X1 standard normally distributed. Furthermore, when we consider the first term in (72)
as a function of k, we get that the function

β2σ 2 exp

(
−

β4k2σ 4(
σ 2+σ 2

A

)4

)
√

π (σ 2 + σ 2
A)2

s the density of a normally distributed random variable with mean 0 and standard deviation
σ 2

+ σ 2
A)2/(

√
2β2σ 2). Therefore, we can conclude that the integral∫

∞

−∞

∫ σ 2
Aβk/(σ 2

+σ 2
A)

−∞

L1(x, k)dxdk

=

∫
∞

−∞

P
(

σA(σ 2
+ σ 2
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√

2βσ
X1 ≤ −

σ 2
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σ 2 + σ 2
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(
−

β4k2σ 4(
σ 2+σ 2

A
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)
√
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(
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)2 dk

= P
(

σA(σ 2
+ σ 2
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√

2βσ
X1 ≤ −

σ 2
Aβ

σ 2 + σ 2
A

(σ 2
+ σ 2

A)2

√
2β2σ 2

X2

)
=

1
2
,

with X2 standard normally distributed, and X1 and X2 mutually independent. Now, by applying
atou’s lemma, we have that

lim inf
N→∞

N γ (a⋆) NP
(

Qβ

i,A(τ a⋆,r
i,N )1(τ a⋆,r

i,N < ∞) > fN (a⋆)
)

≥

∫
∞

−∞

∫ σ 2
Aβk/(σ 2

+σ 2
A)

−∞

L1(x, k)dxdk

=
1
2
.

Thus, by applying this result to the expression in (70), we get that

lim inf
N→∞

N γ (a⋆)P (Q̄β

N > fN (a⋆)) ≥
1
2

⎛⎝1 −

exp
(
−

2(1−λ(a⋆))βr
σ 2

)
2

⎞⎠ r→∞
−→

1
2
. □

emma 9. For the model given in Definition 1 with the additional notation given in Definition 2,
nd a = a⋆, we have that

lim sup
N→∞

N γ (a⋆)P (Q̄β

N > fN (a⋆)) ≤
1
2
.

Proof. Let τ̃
a⋆,r
A,N = inf{t : WA(t) − λ(a⋆)βt > λ(a⋆) fN (a⋆) + r}. Following Eq. (56) and the

upper bound in (57), we have that

P (Q̄β

N > fN (a⋆)) ≤ P (Q̄β

N (τ̃ a⋆,r
A,N )1(τ̃ a⋆,r

A,N < ∞) > fN (a⋆))

+ P (max
i≤N

Qβ

i,A(τ a⋆,−r
i,N )1(τ a⋆,−r

i,N < ∞) > fN (a⋆)). (73)
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Now, observe that we can bound the first term on the right-hand side of (73) as

P (Q̄β

N (τ̃ a⋆,r
A,N )1(τ̃ a⋆,r

A,N < ∞) > fN (a⋆)) ≤ P (τ̃ a⋆,r
A,N < ∞) = N−γ (a⋆) exp

(
−

2λ(a⋆)βr
σ 2

A

)
.

(74)

urthermore, by using Eq. (55) in Definition 4, we can bound the second term on the right-hand
ide of (73) as

N γ (a⋆)P (max
i≤N

Qβ

i,A(τ a⋆,−r
i,N )1(τ a⋆,−r

i,N < ∞) > fN (a⋆))
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=
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∞
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(TN (a⋆, k))
√

log Ndk. (75)

ow, we examine the parts of the integrand of this integral, and we apply Lemma 5. First, note
hat, following Definition 3,

P(N )
i,a⋆,−r,k (Qβ

i,A(τ a⋆,−r
i,N ) > fN (a⋆)) = P(N )
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e can analyze this probability using Lemma 3 by taking xN
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√
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√
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.

he first term on the right-hand side of (42) in Lemma 3 satisfies
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,

as N → ∞, and the second term satisfies

1
2

e
1
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(
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(
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s N → ∞. So, we can conclude that
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i,A(τ a⋆,−r
i,N ) > fN (a⋆)) ∼

1
2

exp
(

−
2βr

σ 2 + σ 2
A

)
×

(
1 + erf

(
−

β2σσAk
(σ 2 + σ 2

A)2

))
N−γ (a⋆),
131



D. Schol, M. Vlasiou and B. Zwart Stochastic Processes and their Applications 164 (2023) 99–138

T

W

T

as N → ∞. Second, following Lemma 4, the density of the hitting time τ
a⋆,−r
i,N appears in the

integrand in (75), and satisfies
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hus, for the integrand in (75) we have that
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hen we integrate this result we get
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Now, we argue that the fourth condition of Lemma 5 holds, more specifically that
N γ (a⋆)P(N )
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hus, the fourth condition of Lemma 5 holds. Furthermore, we have that
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hich means that the second condition of Lemma 5 also holds. Now, we can use Lemma 5 to
onclude that the upper bound in (75) is asymptotically bounded;
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ow, after combining the bounds in (74) and (76),
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.3. The case 0 < a < a⋆

In Theorem 1, we have shown that γ (a) =
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. Therefore, we expect highly
dependent behavior for the tail asymptotics of the maximum queue length, as this indicates that
the union upper bound P (Q̄β
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A,N )1(τ̃ a,rN

A,N < ∞) > fN (a))

=

∫
∞

−∞

P
(

max
i≤N

Wi
(
TN (a, k)

)
− (1 − λ(a))βTN (a, k) > (1 − λ(a)) fN (a) − rN

)
× f

τ̃
a,rN
A,N

(
TN (a, k)

)√
log Ndk. (77)

s in the proof of Lemma 9, we analyze the components of the integrand of (77) separately.
y following a similar derivation as in Lemma 4, we see that the hitting-time density

f a,rN
(
TN (a, k)

)
in (77), with τ̃

a,rN defined in Definition 3 and the hitting-time density given

τ̃A,N A,N
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M

T
(
t

T

in [4, Eq. (2.0.2), p. 301], satisfies

N γ (a)(log N )
λ(a)

1−λ(a)
σ2

2σ2
A f

τ̃
a,rN
A,N

(
TN (a, k)

)√
log N

= N γ (a)(log N )
λ(a)

1−λ(a)
σ2

2σ2
A

λ(a) fN (a) + rN
√

2πσATN (a, k)3/2

× exp
(

−
(λ(a) fN (a) + rN + λ(a)βTN (a, k))2

2σ 2
ATN (a, k)

)√
log N

N→∞
−→

β2
(√

2aβ + σ 2 − σ
)

exp

(
−

β4k2
(√

2aβ+σ 2−σ
)2

σ 2
A(2aβ+σ 2)

2

)
√

πσA
(
2aβ + σ 2

) .

(78)

oreover, it is proven in [8, Ex. 1.1.7, p. 11] that for

bN =
√

2 log N −
log(4π log N )

2
√

2 log N
,

we have that

bN

(
maxi≤N Wi (d log N )

σ
√

d log N
− bN

)
d

−→ G,

as N → ∞, with G ∼ Gumbel. From this, it follows that the term P (maxi≤N Wi
(
TN (a, k)

)
−

(1 − λ(a))βTN (a, k) > (1 − λ(a)) fN (a) − rN ) in (77) satisfies

P
(

max
i≤N

Wi
(
TN (a, k)

)
− (1 − λ(a))βTN (a, k) > (1 − λ(a)) fN (a) − rN

)

N→∞
−→ 1 − exp

⎛⎜⎜⎝−

exp
(

−
β4k2

(2aβ+σ 2)
2

)
2
√

π

⎞⎟⎟⎠ .

(79)

hus, the product of the limits in (78) and (79) gives the tail asymptotics of the integrand in
77). Now, by applying Fatou’s lemma, we obtain a sharper than logarithmic lower bound on
he asymptotics for the maximum queue length, and is given in (18).

In order to prove (19), we use the upper bound given in (57) and observe that

P (Q̄β

N > fN (a)) ≤P (Q̄β

N (τ̃ a,rN
A,N )1(τ̃ a,rN

A,N < ∞) > fN (a)) (80)

+ P (max
i≤N

Qβ

i,A(τ a,−rN
i,N )1(τ a,−rN

i,N < ∞) > fN (a)). (81)

We can bound the expression in (80) as follows:

P (Q̄β

N (τ̃ a,rN
A,N )1(τ̃ a,rN

A,N < ∞) > fN (a)) ≤ P (τ̃ a,rN
A,N < ∞) = N−γ (a)(log N )

−
λ(a)

1−λ(a)
σ2

2σ2
A . (82)

herefore,

lim sup N γ (a)(log N )
λ(a)

1−λ(a)
σ2

2σ2
A P (Q̄β

N (τ̃ a,rN
A,N )1(τ̃ a,rN

A,N < ∞) > fN (a)) ≤ 1.

N→∞
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Hence, because of the bounds given in (80) and (81), to prove that (19) holds, it is left to show
that

lim sup
N→∞

N γ (a)(log N )
λ(a)

1−λ(a)
σ2

2σ2
A P (max

i≤N
Qβ

i,A(τ a,−rN
i,N )1(τ a,−rN

i,N < ∞) > fN (a)) < ∞.

o prove this, observe that, by using the union bound and by conditioning on the hitting time
a,−rN
i,N the expression in (81) satisfies

P (max
i≤N

Qβ

i,A(τ a,−rN
i,N )1(τ a,−rN

i,N < ∞) > fN (a))

≤ NP (Qβ

i,A(τ a,−rN
i,N )1(τ a,−rN

i,N < ∞) > fN (a))

=

∫
∞

−∞

NP(N )
i,a,−rN ,k (Qβ

i,A(τ a,−rN
i,N ) > fN (a)) f

τ
a,−rN
i,N

(
TN (a, k)

)√
log Ndk. (83)

ow, we can use Lemma 5 to show convergence of the integral in (83). By following a similar
nalysis as in Lemma 4 and by using the expression of the hitting-time density given in [4,
q. (2.0.2), p. 301], we have that

N
1√

log N

√
log N f

τ
a,−rN
i,N

(
TN (a, k)

)
= N

(1 − λ(a)) fN (a) − rN
√

2πσ TN (a, k)3/2
exp

(
−

((1 − λ(a)) fN (a) − rN + (1 − λ(a))βTN (a, k))2

2σ 2TN (a, k)

)

N→∞
−→

β2 exp
(

−
β4k2

(2aβ+σ 2)
2

)
√

π
(
2aβ + σ 2

) .

urthermore,

∫
∞

−∞

β2e
−

β4k2

(2aβ+σ2)
2

√
π
(
2aβ + σ 2

)dk =

∫
∞

−∞

N√
log N

√
log N f

τ
a,−rN
i,N

(
TN (a, k)

)
dk = 1. (84)

hus, the first and second condition in Lemma 5 hold. To complete the proof, we now only
eed to analyze

P(N )
i,a,−rN ,k (Qβ

i,A(τ a,−rN
i,N ) > fN (a)) = P(N )

i,a,−rN ,k (WA(τ a,−rN
i,N )+Q̂β

i,A > λ(a) fN (a)+rN +λ(a)βτ
a,−rN
i,N ),

(85)

hich is a component in the integrand in (83). We show that this expression satisfies the
hird and fourth condition of Lemma 5 by proving pointwise convergence and by proving
hat this probability is uniformly bounded by a constant. To do this, first observe that the
andom variable in (85) has the form of the sum of a normally distributed random variable
nd an exponentially distributed random variable. Hence we can follow the framework of
emma 3 in order to analyze this probability. We take xN = 2λ(a) fN (a)+λ(a)βk

√
log N +rN ,

ηN = σA
√

TN (a, k), and µ = 2β/(σ 2
+ σ 2

A). Now, the expression in (85) can be written in the
form of Eq. (45). Furthermore, observe that

xN − µη2
N

√
2ηN

=

2λ(a) fN (a) + λ(a)βk
√

log N + rN −
2β

σ 2+σ 2
A
σ 2

ATN (a, k)
√

2
√

σ 2T (a, k)

N→∞
−→ −∞.
A N

135



D. Schol, M. Vlasiou and B. Zwart Stochastic Processes and their Applications 164 (2023) 99–138

F

−

T

a
t

Thus, for 0 < a < a⋆, we are in the third situation of Lemma 3. Following the same analysis
as in the proof of Lemma 4, we see that the first term in (44) satisfies

ηN e
−

x2
N

2η2
N

√
2πxN

∼

σA exp

(
−

β4k2
(
σ−

√
2aβ+σ 2

)2

σ 2
A(2aβ+σ 2)

2

)
2
√

π
(√

2aβ + σ 2 − σ
) (log N )

−
λ(a)

1−λ(a)
σ2

2σ2
A N−γ (a) 1√

log N
,

as N → ∞. Furthermore, we have for all t > 0 that

P (WA(t) − λ(a)βt > x) ≤ P (WA(x/(λ(a)β)) > 2x) .

rom this, it follows that the first part in (45) satisfies

P (ηN X > xN )

= P
(

WA(τ a,−rN
i,N ) > λ(a) fN (a) + rN + λ(a)βτ

a,−rN
i,N

⏐⏐⏐⏐τ a,−rN
i,N = TN (a, k)

)
≤ P

(
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i,N ) > λ(a) fN (a) + rN + λ(a)βτ
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i,N
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√
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σ2

2σ2
A N−γ (a) 1√
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,

as N → ∞. So there exists an ϵ > 0 and an Nϵ such that for N > Nϵ and all k >

fN (a)/(β
√

log N ),

(log N )
λ(a)
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√
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(86)

he second term in (44) satisfies

−
1

√
2π

e
1
2 µ
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µη2
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,

(87)

s N → ∞. In this case, first observe that in Eq. (45) the exact expression of the convolution
erm equals∫ xN /ηN

P
(

1
E > xN − ηN z

)
e−

z2
2

√ dz =
1
(

erf
(

xN − µη2
N

√

)
+ 1

)
e

1
2 µ
(
µη2

N −2xN

)
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−∞ µ 2π 2 2ηN
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Second, observe that this can be further rewritten into

1
2

(
erf
(

xN − µη2
N

√
2ηN

)
+ 1
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e

1
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))
.

hus, the expression that we are investigating is a product of a tail probability of a Gaussian
andom variable and an exponential function. With an analogous derivation as for the first term
n (44), due to the expression in (87) we can bound for all t > 0

(log N )
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2σ2
A N γ (a)

√
log NP

(
WA(t) >

2β

σ 2 + σ 2
A
σ 2

At − λ(a) fN (a) − rN − λ(a)βt
)

× exp
(

1
2

2β

σ 2 + σ 2
A

(
2β

σ 2 + σ 2
A
σ 2

At − 2λ(a) fN (a) − 2λ(a)βt − 2rN

))
. (88)

Hence, due to the upper bounds for (86) and (88), we have that the third and fourth condition
f Lemma 5 are satisfied. Thus, in the end, we know that
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) ,
nd we apply Lemma 5 to conclude that (19) holds. □
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