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A B S T R A C T   

Evapotranspiration (ET) calculated as the residual of catchment water balance (ETWB) has often been used as a 
benchmark to evaluate satellite-based ET retrievals that use the energy-balance approach (ETEB). However, er-
rors from water balance components will accrue in ETWB, leading to considerable disparities with ETEB. In this 
study, we set out to investigate whether ETEB from multiple sources (MOD16, GLEAM, PT-JPL, and PT-hybrid) 
can capture the spatiotemporal variability of ETWB across 53 catchments in central-western Europe with a humid 
climate. Using ET retrievals from the Budyko framework that accounts for the control of energy demand on water 
supply and upscaled ET from FLUXCOM as references, we explored the causes of discrepancies between ETWB 
and ETEB at long-term, annual, and monthly scales. We found that (1) ETEB significantly diverged from ETWB at 
the mean annual scale (r = 0.35), particularly for energy-limited catchments, but Budyko-simulated ET 
considering energy limit correlated well with ETEB (r > 0.86); (2) neither ETEB nor upscaled ET can reproduce 
annual ETWB time series (r < 0.40), and the closure errors in water budgets closely follow excess precipitation 
beyond energy demand; (3) monthly ETWB exhibited better correspondences with ETEB (r = 0.73), presumably 
because of similarity in seasonal patterns. Our results demonstrate that errors from precipitation and terrestrial 
water storage anomalies introduce large uncertainties in ETWB, thereby complicating water balance validation in 
humid regions across multiple timesteps. To improve the application of ETWB for benchmarking ETEB in humid 
regions, high-quality input data should be used or – like the Budyko framework – energy constraints should be 
considered.   

1. Introduction 

As water supplies become increasingly limited, accurate quantifica-
tion of the Earth’s surface water resources has become crucial for 
balancing terrestrial water demand and water availability (D’Odorico 
et al., 2018). Terrestrial evapotranspiration (ET), the water leaving the 
Earth’s surface and entering the atmosphere, is the second largest 
component of the water cycle after precipitation and plays a vital role in 
global hydrological and energy cycles (Miralles et al., 2011). ET cannot 
be directly measured by remote sensing but can be derived from 
satellite-based land surface variables by using the energy-balance 
approach, referred to as ETEB (Glenn et al., 2007). Various ETEB 
methods with different scopes and complexities have been developed, 
such as ALEXI (Anderson et al., 2007), PT-JPL (Fisher et al., 2008), 
MOD16 (Mu et al., 2011), GLEAM (Miralles et al., 2011), and LSA-SAF 
ET (Ghilain et al., 2011). These ETEB methods rely on satellite-driven 
indicators to simulate land–atmosphere interactions and monitor 

large-scale ET variability under different weather conditions (Biggs 
et al., 2015). Nevertheless, there are substantial differences among these 
ETEB products due to varying parameters and inputs, leading to incon-
sistent ET trends at continental and catchment scales depending on the 
chosen product (Badgley et al., 2015; Hu et al., 2015; Zhu et al., 2022). 
Therefore, before ETEB estimates can be used reliably in hydrological 
and agricultural applications, they should be rigorously evaluated 
against reference observations. 

ETEB estimates are usually evaluated against eddy-covariance flux 
tower measurements at the field scale (Wang and Dickinson, 2012). 
FLUXNET is one of the flux tower networks that facilitates ET validation 
across numerous sites with a diversity of vegetation types (Michel et al., 
2016). However, the representativeness of ET measurements is limited 
by the uneven density of flux towers, which concentrate on Europe and 
US (McCabe and Wood, 2006; Pastorello et al., 2020). Other observa-
tional ET approaches such as Bowen ratio systems (Bowen, 1926), 
weighing lysimeters (Holmes, 1984), surface renewal (Kyaw Tha Paw 
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et al., 1995) and large aperture scintillometers (Meijninger et al., 2002) 
can serve as the field-level references, but are even more limited over 
space and time. Due to the lack of representativeness of these datasets, 
regional evaluation of ETEB estimates remains a challenge. 

Efforts have been made to scale ET from available in situ measure-
ments to regional references by using machine learning methods (Jung 
et al., 2009; Yao et al., 2017). For example, the Multi-Tree Ensemble 
approach was first applied to scale up in situ measured ET from the 
global FLUXNET network with remote sensing and gridded meteoro-
logical data (Jung et al., 2010). The machine learning-based upscaling 
method’s validity for generating energy flux estimates and reproducing 
ET spatial patterns is well-documented (Jung et al., 2019; Jung et al., 
2011). As a result, the upscaled ET as well as the extended FLUXCOM 
product has been commonly used as a regional proxy for FLUXNET 
observations to validate ETEB (Brust et al., 2021; Jiang and Ryu, 2016; 
Velpuri et al., 2013). The reliability of the scaled reference data highly 
depends on how comprehensively the training datasets describe global 
ecosystem behaviours (Pan et al., 2020). Although machine learning 
methods improve the representativeness of flux tower data in spatially 
heterogeneous regions, their accuracy may be low outside the 
geographic and climate range of the training data. 

An alternative method for determining regional ET is the water- 
balance approach that calculates water balance ET (ETWB) by subtract-
ing discharge from precipitation over a long period of time, when 
terrestrial water storage anomaly (TWSA) is assumed to be negligible 
(Hobbins et al., 2001). In reality, the fundamental assumption that 
TWSA can be neglected may be problematic for some basins because of 
snow melt, lake-level change, and human factors such as reservoir 
regulation and irrigation (Han et al., 2020; Rodell et al., 2018). The 
Gravity Recovery and Climate Experiment (GRACE) satellites currently 
provide a unique way to measure TWSA, but their processed water 
storage data are available at coarse spatial resolution (0.25–1◦) (Save 
et al., 2016; Wiese et al., 2016). As more GRACE data have accumulated 
and the data processing strategies have improved, recent studies have 
demonstrated the potential of GRACE data to provide water storage 
information at finer spatial scales (Scanlon et al., 2016; Senay et al., 
2016; Zhang et al., 2018). For example, Pascolini-Campbell et al. (2021) 
found that the modelled TWSA from GRACE and the GRACE Follow-On 
mission can detect agricultural water use in catchments smaller than 
10,000 km2, presumably because terrestrial water storage was validated 
to be spatially homogenous within the region. Given that it is hard to 
make a compromise between using coarse-resolution GRACE data and 
assuming TWSA as negligible, both ETWB considering GRACE-based 
TWSA (Bai and Liu, 2018; Pascolini-Campbell et al., 2020) and ETWB 
ignoring TWSA (Marshall et al., 2012; Yin et al., 2020) have been 
extensively utilised to validate ETEB in the past decades. 

Although ETWB estimates have been increasingly utilised to validate 
ETEB, these estimates have uncertainties because of errors in precipita-
tion, runoff and TWSA, which makes the use of ETWB as benchmark 
problematic. Numerous studies have revealed significant divergences 
between the magnitude of ETEB and ETWB, with imbalance errors as high 
as 25% of mean annual precipitation (Sahoo et al., 2011; Zhang et al., 
2012; Zhang et al., 2018). Moreover, closure errors of water budgets 
followed distinct climatic gradients, with humid regions exhibiting lager 
disparities than arid regions (Liu et al., 2016). With respect to consis-
tency, Bai and Liu (2018) found that independent ET products had an 
average correlation of 0.33 with ETWB for 22 catchments at the annual 
scale, whereas higher correlations (r = 0.84) were observed when 
compared with monthly flux measurements. The inconsistency between 
ETWB and ETEB was also noted by Pang et al. (2021), who indicated that 
conclusions about the performance of ETEB products based on ETWB may 
be biased. Overall, due to differences in timesteps, study region, and 
forcing data, the relationship between ETWB and ETEB in terms of the 
consistency and magnitude differed greatly across previous studies (Ma 
et al., 2021; Yin et al., 2020). A comprehensive understanding of the 
mismatch between ETWB and ETEB is crucial for accurately interpreting 

water balance validation, especially for humid regions. 
Efforts have been made to account for the disparities between ETWB 

and ETEB by resolving water cycle imbalances (Lehmann et al., 2022). 
Previous studies attempted to reduce precipitation errors by using an 
ensemble of precipitation datasets, but this did not result in effectively 
closing water budgets (Pascolini-Campbell et al., 2020; Ruhoff et al., 
2022). A widely-accepted explanation is that the disagreement of ETEB- 
ETWB is a result of errors in ETEB products, such as model structure 
constraints and forcing dataset uncertainties (Liu et al., 2016). However, 
comparisons between ETEB products and other independent ET sources 
suggest that the inconsistency of ETWB-ETEB in humid regions might be 
equally influenced by uncertainties in water balance components rather 
than solely within ETEB datasets themselves (Carter et al., 2018; Han 
et al., 2015; Zhang et al., 2012). To investigate this, Pan et al. (2017) 
incorporated ETWB using in situ TWSA as reference, and found large 
discrepancies between ETWB and in situ TWSA-based ETWB at both 
annual and monthly timesteps. Li et al. (2019) compared ETWB with 
atmospheric-inferred ET using the atmospheric water-balance approach 
and concluded that atmospheric-inferred ET outperformed ETWB as a 
benchmark in runoff-dominant catchments. Although these studies were 
conducted for a limited number of catchments in China, they confirmed 
that uncertainties involved in the calculation of ETWB also hold 
responsible for the divergence of energy- and water-balance ET esti-
mates. We contend that the non-closure issue of water budgets has not 
been sufficiently scrutinised and there is scope to investigate in more 
depth the reasons for the divergences of ETWB-ETEB across different 
timesteps. 

Central-western Europe, characterized by a humid climate and a 
dense network for precipitation and discharge monitoring, is a suitable 
test case for comparing ETWB and ETEB in humid regions. To give insight 
into the divergence of ETWB-ETEB, we employed the Budyko framework, 
a robust approach that efficiently describes the relationship between 
long-term ET and terrestrial energy- and water- balances at catchment 
scales (Budyko, 1974; Fu, 1981; Zhang et al., 2010). Unlike the water- 
balance approach that calculates ET as the residual of water balance 
equation, the Budyko framework estimates ET through hydrological 
partitioning and has been widely used for benchmarking ET estimates 
and calibrating ET algorithms (Kim et al., 2022; Koppa and Gebre-
michael, 2017; Zhang et al., 2010). Additionally, considering that ma-
chine learning-based upscaling methods perform better in areas with 
more ground truth on energy flux, such as US and Europe, we also 
incorporated upscaled ET from FLUXCOM product for interpreting 
water balance validation at annual and sub-annual scales. Our study had 
three main objectives: (1) to assess the impacts of coarse-resolution 
GRACE data on long-term and annual water balances for small-scale 
catchments; (2) to evaluate the consistency between ETWB and ETEB, 
where ETWB serves as an independent data source to be compared with 
multisource ETEB (GLEAM, MOD16, PT-JPL, and PT-hybrid); and (3) to 
investigate possible reasons for the varying divergence of ETWB-ETEB 
across different timesteps. In contrast to previous studies that treated 
ETWB as benchmark without accounting for uncertainties within the 
water balance calculation, our study aimed to enhance the under-
standing of closure errors in water budgets at different time scales and 
shed light on the limitations of ETWB in energy-limited catchments. 

2. Materials and methods 

Multiple datasets were used to comprehensively evaluate the dif-
ferences between ETWB and ETEB across 53 catchments in central- 
western Europe. Table 1 gives an overview of the gridded datasets 
plus the basin-wide ET derived from the Budyko framework. To facili-
tate intercomparison, all gridded datasets except coarse-resolution 
GRACE data were resampled to a common 5 km spatial resolution 
based on nearest-neighbor interpolation and were then aggregated to a 
monthly time step. Fig. 1 displays the workflow of water balance 
assessment in this study. We used four different ETEB models: PT-JPL, 
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PT-hybrid, MOD16, and GLEAM for water balance comparison, which 
have been available since 2003. The ET references in this study included 
upscaled ET from FLUXCOM product and ET estimates from the Budyko 
framework. 

2.1. ETEB estimates 

The PT-JPL model is based on the Priestley-Taylor algorithm that 
calculates ET as a fraction of potential evapotranspiration (PET) by 
using a series of ecophysiological constraints (Fisher et al., 2008). The 
PT-JPL method’s good accuracy has been validated in various studies 
(Ershadi et al., 2014; Fisher et al., 2020; Vinukollu et al., 2011), which 
has been employed as the primary ET estimation method for NASA’s 
ECOSTRESS mission. The PT-JPL ET estimates in our study were derived 
from MODIS reflectance data and ERA5-Land meteorological reanalysis 
data that provide relative humidity, air temperature, and surface net 
radiation (Rn) calculated as the sum of surface net solar radiation and 
surface net thermal radiation. For more details of the generation of 
gridded PT-JPL ET as well as the PT-hybrid ET at a monthly timestep, see 
Zhang et al. (2021). 

The PT-hybrid method is a modified version of the PT-JPL method, 
which uses optical shortwave infrared (SWIR)-based spectral indices and 

microwave soil moisture to parameterise the soil moisture constraint 
(fsm) for cropland and grassland, respectively. For other landscapes 
such as forest areas, fsm is calculated using the original parameterisation 
based on the relative humidity/vapour pressure deficit defined in Fisher 
et al. (2008). Additionally, the MODIS land cover product (MCD12Q1) 
at 500 m resolution was utilised to determine cropland and grassland 
landscapes. ET estimates from the PT-JPL and PT-hybrid methods have 
been validated over 31 FLUXNET sites with an average correlation co-
efficient of 0.86 (Zhang et al., 2021). 

The MODIS ET algorithm, the most widely used ET model at global 
scale, is based on a modified Penman-Monteith equation in which the 
aerodynamic resistance is calculated as a parallel resistance to convec-
tive and radiative heat transfer, and the canopy conductance for plant 
transpiration is calculated using the Leaf Area Index (Mu et al., 2007; Mu 
et al., 2011). The MOD16 ET product is derived from a series of MODIS 
datasets, including Leaf Area Index, land cover and albedo, and the 
Modern-Era Retrospective Analysis for Research and Applications 
(MERRA) meteorological reanalysis data. After calibration with Ameri-
Flux tower observations, the MOD16 provides global ET estimates at 8- 
day timesteps (Mu et al., 2011). 

The GLEAM ET method is based on a modified Priestley-Taylor al-
gorithm in which PET estimates have been converted into actual 

Table 1 
Overview of gridded datasets used in this study together with the basin-wide ET derived from the Budyko framework.  

Variable Data Time range Spatial resolution Temporal resolution Source 

ETEB PT-JPL 2003–2020 1 km Monthly Fisher et al. (2008) 
PT-JPL 
(hybrid) 

2003–2020 1 km Monthly Zhang et al. (2021) 

MOD16 2003–2020 500 m 8-day Mu et al. (2011) 
GLEAM 2003–2020 25 km Daily Martens et al. (2017)  

Precipitation ERA5-Land 2003–2020 10 km Monthly Muñoz Sabater (2019) 
WorldClim 2003–2018 5 km Monthly Fick and Hijmans (2017) 
E-OBS 2003–2020 10 km Daily Cornes et al. (2018)  

TWSA CSR-GRACE 2003–2020 25 km Monthly Save et al. (2016) 
GFZ-GRACE 2003–2020 100 km Monthly Boergens et al. (2019) 
JPL-GRACE 2003–2020 50 km Monthly Wiese et al. (2016)  

ET references FLUXCOM 2003–2015 1 km 8-day Jung et al. (2019) 
ET from the Budyko framework 2003–2020 Basin wide Long-term This study  

Fig. 1. Workflow describing the water balance assessment in this study.  
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evaporation by a stress factor based on microwave retrievals of vege-
tation optical depth and rootzone soil moisture (Miralles et al., 2011). 
The GLEAM v3b dataset adopted in our study was driven solely by 
remote sensing derived products, including data from the Clouds and 
Earth’s Radiant Energy System (CERES), AIRS (Atmospheric Infra-Red 
Sounder), SMOS (Soil Moisture and Ocean Salinity), and ESA-CCI (Eu-
ropean Space Agency—Climate Change Initiative). The GLEAM ET 
dataset has been validated as having comparable accuracy to PT-JPL 
using surface water balances from 837 globally distributed catchments 
(Miralles et al., 2016). 

2.2. ETWB estimates derived from water balance equation 

ETWB is calculated as the residual of terrestrial water balance at the 
basin scale by assuming no net groundwater flow across the boundary of 
the river basin, following: 

ETWB = P − Q − ΔS (1)  

where P is precipitation, Q is river discharge (outflow minus inflow), 
and ΔS is the change in terrestrial water storage, which includes changes 
in groundwater and surface water storage (Wan et al., 2015). The 
monthly ΔS can be calculated from GRACE-based TWSA by differencing 
the preceding and following months and dividing by 2 months (Pasco-
lini-Campbell et al., 2020). With respect to the trade-off between 
ignoring ΔS and considering GRACE-based TWSA for small-scale 
catchments, ETWB calculated as P minus Q (hereafter ETPQ) was 
included as a comparison at long-term and annual scales. 

Precipitation data were obtained from three published precipitation 
datasets including the ERA5-Land reanalysis dataset, the WorldClim 
v2.1 dataset, as well as the E-OBS dataset that is purely based on in situ 
precipitation measurements. The ERA5-Land dataset produced by the 
European Centre for Medium-Range Weather Forecasts (ECMWF) uses 
the most recent Earth system and data assimilation methods and was 
shown to be an improved atmospheric reanalysis than the former ERA- 
Interim dataset (Albergel et al., 2018; He et al., 2021). The WorldClim 

v2.1 is a global climate dataset that combines weather station data with 
satellite covariates and has been widely used in ecology, biodiversity 
and agricultural studies (Fick and Hijmans, 2017). E-OBS is a new 
ensemble version of gauge-observation dataset available for Europe- 
wide, which has been commonly used for climate monitoring and 
model validation (Cornes et al., 2018). To get a more robust estimate of 
catchment precipitation, we extracted an ensemble mean of precipita-
tion from these three data sources. Following Pascolini-Campbell et al. 
(2020), the standard deviation of the precipitation time series from all 
three sources was used to quantity P errors within the calculation of 
ETWB. 

River discharge data were collected from the Global Runoff Data 
Centre (GRDC), which is the world’s largest and mostly extensively-used 
runoff dataset (https://www.bafg.de/GRDC). GRDC also provides 
watershed boundaries for around 7000 GRDC stations, although 
watershed polygons are missing for some catchments (GRDC, 2011). We 
selected catchments distributed over Europe, based on the following 
criteria: (a) having a drainage area larger than 1,000 km2 with available 
watershed boundaries from GRDC; (b) having at least five years of 
continuous runoff data during 2003–2020; (c) having a runoff-rainfall 
coefficient less than 0.5 to exclude runoff-dominant catchments (e.g., 
mountainous catchments with high P and low ET), which is calculated as 
the ratio of long-term average runoff to precipitation. The selection 
process resulted in 53 catchments (See Fig. 2) and following Zhang et al. 
(2012), we split them into two groups: 25 large-area catchments (5000 
to 150000 km2), and 28 small-area catchments (1000 to 5000 km2). See 
Table 2 for more details on the selected catchments. As suggested by 
Sauer and Meyer (1992), in situ measurements of discharge have the 
least uncertainty in water balance components and most discharge er-
rors range from 3% to 6%. In this study, we set observational errors in Q 
as 5% of catchment discharge for long-term analysis, which is consistent 
with previous studies (Castle et al., 2016; Li et al., 2019). 

The terrestrial water storage data were retrieved from the GRACE 
satellites launched in March 2002 and the GRACE Follow-On mission 
launched in May 2018, which monitor global gravity to make monthly 

Fig. 2. Location of basins and land cover type of study region (2020).  
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anomaly estimate. The TWSA retrieved from gravity data is expected to 
capture water fluxes from both natural dynamics and human activities. 
We obtained the most recent release (RL06) of GRACE Mascon data from 
the Center for Space Research (CSR) of the University of Texas at Austin 
and the Jet Propulsion Laboratory (JPL), and the Level-3 GRACE data 
provided by the Deutsches GeoForschungsZentrum Potsdam (GFZ). 
Previous studies found that the processed GRACE data can retrieve the 
true amplitudes of water storage in a concentrated area that is smaller 
than the original spatial resolution of datasets, presumably because 
aquifers are strongly connected in space and changes in storage water 
will gradually affect the surroundings (Crow et al., 2017; Wang et al., 
2011). Consequently, in our study, ETWB with and without considering 
TWSA are included to investigate the impacts of coarse-resolution 

GRACE data on water balances for small-scale catchments. Moreover, 
an ensemble mean (a simple arithmetic mean of JPL, CSR, and GFZ) was 
validated to be effective in reducing the noise in the gravity field 
products (Sakumura et al., 2014). To minimize the uncertainties of 
TWSA, we first resampled both JPL- and GFZ- GRACE data to the reso-
lution of CSR-GRACE data at 25 km and then extracted a catchment 
average value of TWSA from the three datasets. Following Li et al. 
(2019), the total uncertainty in GRACE-based TWSA was calculated as 
the standard deviation of TWSA from three different sources. 

Table 2 
The 53 river basins that were part of the study with main characteristics. (P = mean annual precipitation; PET = mean annual potential evapotranspiration; AI = aridity 
index; Temporal availability is determined by runoff data availability from GRDC, Latitude and longitude denote the geographic location of the hydrological station 
where the runoff of the basin is measured).  

Basin Name River Lat Lon Drainage 
area 
(km2) 

Elev. 
(m) 

Temporal 
Availability 

P 
(mm) 

PET 
(mm) 

AI 

Affoldern Eder  51.17  9.09 1434  193.19 2003–2018 942 668  0.71 
Bad Dueben Vereinigte Mulde  51.59  12.58 6164  81.50 2003–2019 905 645  0.71 
Bad Liebenwerda Schwarze Elster  51.52  13.4 3078  83.91 2003–2019 749 662  0.88 
Berlin Muehlendamm Spree  52.46  13.86 9506  28.01 2003–2019 713 664  0.93 
Beroun Berounka  49.96  14.09 8296  213.41 2003–2018 735 695  0.95 
Bienenbuettel Ilmenau  53.15  10.46 1480  14.43 2003–2019 755 624  0.83 
Boguslaw Prosna  51.9  17.95 4344  87.87 2003–2020 663 631  0.95 
Bratislava Danube  48.14  17.11 131,023  128.00 2003–2017 1076 705  0.66 
Breclav-Ladna Thaya  48.81  16.85 11,931  157.38 2003–2018 740 694  0.94 
Brehy Hron  48.41  18.65 3856  195.00 2003–2017 952 719  0.76 
Breto Esla  41.87  − 5.76 14,354  691.00 2003–2011 743 962  1.30 
Carcassonne Aude  43.21  2.36 1825  155.10 2003–2012 977 989  1.01 
Chmelnica Poprad  49.29  20.73 1242  507.00 2003–2017 931 640  0.69 
Cochem Moselle  50.14  7.17 27,125  77.03 2003–2019 925 720  0.78 
Doerverden Weser  52.85  9.21 22,141  7.99 2003–2018 831 651  0.78 
Drawiny Drawa  52.89  15.98 3282  29.79 2003–2020 721 642  0.89 
Duesseldorf Rhine  51.23  6.77 147,470  24.48 2003–2019 1047 716  0.68 
Eichstaett Altmuhl  48.89  11.2 1405  382.19 2003–2019 838 724  0.86 
Fraga Cinca  41.52  0.35 9621  100.00 2003–2017 823 1043  1.27 
Frankfurt Osthafen Main  50.11  8.71 24,764  90.64 2003–2019 850 706  0.83 
Goerlitz Neisse  51.16  14.99 1617  175.63 2003–2019 894 637  0.71 
Gozdowice Oder  52.76  14.31 109,782  2.98 2003–2020 708 643  0.91 
Grolsheim Nahe  49.91  7.91 4006  85.00 2003–2016 776 716  0.92 
Hamoir Ourthe  50.44  5.53 1594  109.90 2003–2012 1019 673  0.66 
Ketzin Havel  52.48  12.85 15,472  28.40 2003–2019 704 661  0.94 
Kowanowko Welna  52.67  16.84 2764  51.24 2003–2020 649 617  0.95 
Krasnystaw Wieprz  50.99  21.18 2987  173.86 2003–2020 755 639  0.85 
Landau Isar  48.67  12.69 8807  333.65 2003–2019 1193 720  0.60 
Lenartovce Sajo  48.3  20.31 1803  150.00 2003–2017 852 729  0.86 
Letzter Heller Werra  51.41  9.71 5466  117.40 2003–2018 818 666  0.81 
Leun Neu Lahn  50.55  8.36 3579  134.99 2003–2019 834 680  0.82 
Lith Maas  51.82  5.42 28,886  5.00 2003–2018 922 682  0.74 
Lochow Liwiec  52.51  21.68 2419  94.91 2003–2020 713 609  0.85 
Moravicany Morava  49.76  16.98 1566  244.99 2003–2018 893 640  0.72 
Nitrianska Streda Nitra  48.52  18.17 2088  158.00 2003–2017 837 722  0.86 
Nowe Drezdenko Notec  52.85  13.84 16,071  24.21 2003–2020 678 624  0.92 
Peral De Arlanza Arlanza  42.08  − 4.07 2417  766.00 2003–2017 715 967  1.35 
Przedborz Pilica  51.09  19.88 2567  187.22 2003–2020 748 648  0.87 
Ptaki Pisa  53.39  21.79 3452  104.77 2003–2020 712 606  0.85 
Rockenau Ska Necker  49.44  9.01 12,620  119.71 2003–2019 976 731  0.75 
Sala Vah  48.16  17.88 10,442  109.00 2003–2017 997 677  0.68 
Schwarmstedt Leine  52.68  9.6 6418  21.00 2003–2018 826 633  0.77 
Seros Segre  41.45  0.42 12,917  85.00 2003–2017 778 1014  1.30 
Stein Kocher  49.26  9.29 1926  154.14 2003–2019 913 724  0.79 
Szczucin Vistula  50.33  21.08 23,816  159.06 2003–2020 891 650  0.73 
Teplice Becva  49.53  17.75 1261  243.11 2003–2018 909 704  0.77 
Tore Douro  41.52  − 5.41 41,924  637.00 2003–2017 584 948  1.62 
Tortosa Ebro  40.81  0.52 84,016  25.00 2003–2017 691 1002  1.45 
Trillo Tagus  40.7  − 2.59 3259  727.00 2003–2017 593 1074  1.81 
Versen Wehrdurchstich Gesamt EMS  52.74  7.24 8456  6.71 2003–2016 836 623  0.75 
Zagan Bobr  51.62  15.32 4359  91.85 2003–2020 840 644  0.77 
Zdana Hornad  48.6  21.34 4247  167.00 2003–2017 827 705  0.85 
Zruc Nad Sazavou Sazava  49.74  15.1 1492  323.13 2003–2020 831 669  0.81  
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2.3. ET references 

2.3.1. Upscaled ET 
The latest FLUXCOM data were generated by multiple machine- 

learning algorithms that established the relationships between land 
surface variables and energy fluxes (Jung et al., 2019). In situ ET mea-
surements at the FLUXNET sites with geospatial information retrieved 
from the remote sensing and surface meteorological observations were 
integrated to yield a gridded ET product. The upscaled ET dataset 
comprises two products with different configurations: (1) RS Setup: nine 
machine learning methods based solely on continuous time series of 
MODIS remote sensing data from 2001 to 2015, and (2) RS + METEO 
Setup: three machine learning techniques based on daily meteorological 
data and mean seasonal cycles of satellite data from 2001 to 2013. The 
RS setup has the advantage of not requiring climate forcing datasets as 
input, which are themselves subject to uncertainty (Jung et al., 2019). 
Therefore, we only used the RS version of the FLUXCOM ET products. 

2.3.2. The Budyko framework 
The Budyko framework is a conceptual approach that estimates 

mean annual ET as a partition of available water, which is predomi-
nantly controlled by both water supply (expressed in terms of precipi-
tation) and energy demand (often denoted by PET) (Budyko, 1974). 
Compared with other land surface models, the Budyko framework pro-
vides a simple but powerful tool to describe the response of ET to 
environmental change on multiyear scale (Bai et al., 2020). Due to the 
framework’s effectiveness to predict the catchment energy and water 
fluxes, this approach has recently seen a renaissance in hydrological 
research (Kim et al., 2022; Wang et al., 2016; Zhang et al., 2010). Based 
on the Budyko framework, Fu (1981) proposed a widely used Budyko- 
type equation, referred to as Fu’s equation, to estimate mean annual 
ET (Zhang et al., 2004). In Fu’s equation, the evaporative index is 
expressed as a function of the aridity index (AI): 

ET
P

= 1+
PET

P
− [1 + (

PET
P

)
w
]
1/w (2)  

PET = α Δ
Δ + γ

(Rn − G) (3) 

The w in Fu’s equation is an empirical parameter ranging from 1 to ∞ 
and reflects the impact of factors such as land surface characteristics and 
climate seasonality on water and energy balances. A higher w corre-
sponds to an increase in ET efficiency, which means higher ET and lower 
runoff for a given precipitation and PET. To calibrate the single 
parameter w, ET is derived from multi-year historical records of pre-
cipitation and discharge data. For the calculation of PET, Δ is the slope 
of the saturation-to-vapour pressure curve (Pa K-1), γ is the psychro-
metric constant (0.066 kPa C-1) and α is the Priestley-Taylor coefficient 
(1.26). We derived Rn from the ERA5-Land product and G (soil heat 
flux) was set as zero at monthly time steps (Fisher et al., 2008). 
Following Li et al. (2013), we applied the nonlinear least squares 
regression method to derive the best-fit w for the study region and then 
applied the calibrated w to the estimation of ETFu. 

2.4. Water balance evaluation 

In this study, ETEB estimates from multiple sources as well as an 
ensemble of them were compared with ETWB in 53 catchments in 
central-western Europe. The climate in all catchments is relatively 
humid with a mean AI of 0.90, compared with the definition of arid 
catchments with an AI > 2 (Koppa and Gebremichael, 2017). To 
distinguish the impact of climate on water balances, we further differ-
entiated eight catchments located in water-limited Budyko space (AI ≥
1) from the remaining 45 energy-limited catchments: see Fig. 4a. The 
comparison of ETEB-ETWB in eight water-limited catchments can provide 
additional insight for the divergence of energy- and water-balance ET in 

energy-limited catchments. Given all components in the water balance 
calculation are independent, the overall uncertainty for ETWB can be 
calculated as: 

σET =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σP

2 + σQ
2 + σTWSA

2
√

(4) 

We used the correlation coefficient (r), relative bias (rBias), root 
mean square error (RMSE), and the Kling-Gupta efficiency scores (KGE) 
as our evaluation metrics. The KGE ranging from -∞ to 1 is a compre-
hensive indicator for model performance in hydrology, which integrates 
correlation, bias, and relative variability into a single performance sta-
tistic (Gupta et al., 2009). A higher KGE value indicates the simulations 
are closer to reproducing observations (Knoben et al., 2019). The eval-
uation metrics were computed as follows: 

r =

∑N
i=1(Ai − A)(Bi − B)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(Ai − A)2∑N
i=1(Bi − B)2

√ (5)  

rBias =
∑N

i=1(Ai − Bi)
∑N

i=1Ai
*100% (6)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(Ai − Bi)
2

N

√

(7)  

KGE = 1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2
+ (

σA

σB
− 1)2

+(
μA

μB
− 1)2

√

(8)  

where N represents the sample size; A is the ETEB estimate; and B is the 
reference ET that comprises ETWB, ETFu, and upscaled ET; σ is the 
standard deviation of sample; μ is the mean value the sample. The 
subscript i represents different catchments in long-term assessment, 
whereas i represents the sample number of yearly and monthly data in 
annual and monthly assessment. 

3. Results 

3.1. Assessing spatial patterns of long-term average ET 

Fig. 3 shows the statistical results of the comparison between long- 
term average ETWB and ETEB estimates from the four data sources 
along with the ensemble mean of these ETEB products. Generally, the 
long-term average TWSA for all 53 catchments ranges from − 10 to 15 
mm yr− 1 (see Fig. 6b) and is much lower than the long-term average ET 
of approximately 500 to 700 mm yr− 1. Consequently, TWSA is usually 
assumed to be negligible on a long-term basis. With respect to estimating 
long-term average ET in catchments that span a limited range of climate 
regimes, all ETEB methods showed weak correlations (r < 0.48) with 
ETWB; the correlation coefficient between ETWB and the ETEB ensemble 
was 0.45. As a comparison, when regarding TWSA as negligible, the 
correlation coefficient between ETPQ and the ETEB ensemble decreased 
to 0.40, which indicates that the inclusion of TWSA slightly improves the 
consistency between energy- and water-balance ET at the mean annual 
scale. Overall, large divergences were observed between the spatial 
variability of ETWB and ETEB in all selected catchments and taking 
GRACE-based TWSA into consideration can only marginally improve 
water budgets closure at the mean annual scale. 

To explore the impact of different climates on the consistency be-
tween energy- and water-balance ET, we further conducted a compari-
son of ETWB and ETEB in energy-limited and water-limited catchments 
(Fig. 3). In energy-limited catchments, there was a weak correlation (r =
0.37) between ETWB and the ETEB ensemble, but in water-limited 
catchments, the correspondence between ETWB and the ETEB ensemble 
was significantly better (r = 0.65, p < 0.05). The agreement in terms of 
KGE was also higher in water-limited catchments (KGE = 0.56), 
compared with the analysis of ETWB and the ETEB ensemble in energy- 
limited catchments (KGE = 0.37). More importantly, the impact of 
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incorporating GRACE-based TWSA into the water balance calculation on 
closing terrestrial water budgets is noticeable in energy-limited catch-
ments, with a ΔKGE of +0.09. Among individual ETEB products, MOD16 
ET had the lowest agreement with the spatial patterns of ETWB (KGE =
0.17) in energy-limited catchments, followed by GLEAM (KGE = 0.25). 
As a comparison, the spatial distribution of ET from PT-based methods 
had slightly improved correspondence with ETWB in energy-limited 
catchments, with KGEs higher than 0.43. In water-limited catchments, 
most ETEB methods (except for PT-JPL) reasonably captured the spatial 
changes of ETWB in water-limited catchments and GLEAM yielded the 
best correlation (r = 0.83). Moreover, considering only 25 large-area 
catchments did not effectively improve the agreement between ETWB 
and the ETEB ensemble at the mean annual scale, with a lower diver-
gence (ΔRMSE = − 13 mm yr− 1) but a decreased correlation (Δr =
− 15%) than in the 28 small-area catchments. In conclusion, energy- 
limited catchments exhibited poor agreement in the spatial patterns of 
ETWB and ETEB, while significantly better correlations were found in 
water-limited catchments. 

To understand the weak correlation between ETEB and ETWB in 
energy-limited catchments, we also calculated the water-balance infer-
red ET from the Budyko framework, which takes both water and energy 
constraints into consideration and has proven to efficiently estimate 
long-term ET from precipitation partitioning. Fig. 4a presents the deri-
vation of the best-fit Budyko curve (w = 3.61) for all selected catchments 
using the nonlinear least squares regression method. We then applied 
the calibrated w to Fu’s equation and compared ETFu and ETEB in all 
selected catchments (Fig. 4b). Unlike ETWB, long-term average ETFu 
estimates coincided well with ETEB from multiple sources, exhibiting the 
highest correlation (r = 0.87) with the ETEB ensemble across all 53 

catchments. In energy-limited catchments, ETFu estimates had signifi-
cantly better agreement with ETEB from multiple sources (r > 0.86, KGE 
> 0.64), compared to the poor agreement between ETWB and ETEB in 
Fig. 3. Furthermore, both energy-limited catchments (r = 0.94) and 
water-limited catchments (r = 0.85) showed good correlation values 
between ETWB and ETEB. By contrast, the correlation coefficients be-
tween ETWB and the ETEB ensemble exhibited greater differences in 
energy-limited catchments (r = 0.36) and water-limited catchments (r =
0.65). Additionally, in water-limited catchments, there was a relatively 
poor correlation (r = 0.55) between PT-JPL ET and ETFu, and the 
MOD16 method yielded the largest discrepancy with ETFu (RMSE = 195 
mm yr− 1) (Fig. 5e). 

Since ETEB estimates had good agreement with ETFu but diverged 
significantly from ETWB, we further examined the relationship between 
the imbalance bias (Δ) and uncertainties associated with water cycle 
components to understand possible reasons behind the divergence of 
energy- and water-balance ET (Fig. 5). Our results illustrated that on a 
mean annual basis, precipitation as the largest component of water 
balances had the largest uncertainty across all catchments, with an 
average error of 81 mm yr− 1. By contrast, GRACE-based TWSA and in 
situ discharge had errors of 24 mm yr− 1 and 12 mm yr− 1, respectively. 
Given that the catchment ID was ordered based on the drainage area, 
Fig. 5 demonstrates that the catchment area did not effectively change 
the uncertainties associated with GRACE-based TWSA and closure errors 
in water budgets at the mean annual scale, which was consistent with 
the results in Fig. 3. Moreover, through a comparison between ETWB 
uncertainty and the imbalance bias, we found there were 18 catchments 
with imbalance bias exceeding the ETWB uncertainty. This suggests that 
achieving the closure of water budgets is challenging for some 

Fig. 3. Evaluation metrics for the comparison between ETWB (as well as ETPQ) and ETEB for different groups: all 53 catchments; eight water-limited catchments, 45 
energy-limited catchments; 25 large catchments; 28 small catchments. 
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Fig. 4. The Budyko curve analysis using long-term averaged annual evaporative index (ET/P) and the Aridity Index with each point corresponding to a catchment 
(a), and simulated mean annual ETFu from the Budyko framework versus ETEB for all 53 catchments (b) for the 45 energy-limited catchments (c), and for the 8 water- 
limited catchments (d). Asterisks indicate significant correlations (p < 0.05). 

Fig. 5. The error budgets and the imbalance bias calculated from the ETEB ensemble for all 53 catchments (ordered left to right from smallest to largest catchment).  
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catchments, even when using the ETEB ensemble and considering 
random errors in water balance inputs. 

3.2. Assessing interannual ET variability 

To ascertain whether TWSA can be neglected in annual water bal-
ances, we first plotted the histogram of annual TWSA for all catchments 

(Fig. 6a). The analysis showed that annual TWSA mostly ranged be-
tween − 200 and 200 mm yr− 1, which was considerably higher than the 
range of long-term TWSA averages (Fig. 6b). Consequently, TWSA is 
expected to play an important role in annual water balances. Then, we 
analysed the difference in the interannual variability of energy- and 
water-balance ET for energy-limited and water-limited catchments in 
Fig. 7. In energy-limited catchments, considering TWSA effectively 
improved the consistency between energy- and water-balance ET esti-
mates at an annual timestep, and the correlation for the ETEB ensemble 
increased from 0.07 (ETPQ) to 0.37 (ETWB). Conversely, in water-limited 
catchments, including TWSA into the water balance calculation did not 
enhance the ability of ETEB methods to reproduce ETWB time series: the 
correlation for the ETEB ensemble decreased from 0.31 (ETPQ) to 0.20 
(ETWB). More importantly, when using upscaled ET to reproduce ETWB 
time series, the upscaled ET had almost no correlation with ETPQ but 
moderate correlation with ETWB (r = 0.38) across all 53 catchments, 
which highlights the uncertainty within ETWB on an annual basis. The 
poor performance of ETEB as well as upscaled ET to capture the inter-
annual variability of ETWB time series can be partly attributed to the lack 
of statistically significant correlation coefficients in many catchments. 
For instance, significant correlation coefficients (p < 0.05) between 
ETWB and ETEB were obtained in 13 catchments for GLEAM, five 
catchments for MOD16, four catchments for PT-JPL and three catch-
ments for PT-hybrid. Consequently, these statistical results of correla-
tion analyses should be interpreted with caution. In conclusion, it is 
commonly challenging for ETEB products to capture the inter-annual 
variation of ETWB and incorporating GRACE-based TWSA can partially 
improve the consistency between ETWB and ETEB in energy-limited 
catchments on an annual basis. 

Fig. 8 displays the inter-annual variations of ETEB and ETWB for two 
energy-limited catchments and two water-limited catchments. Because 
annual ET varies greatly in magnitude across catchments, for better 
comparability we depict not the actual value of ET but the annual time 
series as ET anomalies. As shown in Fig. 8, both ETEB estimates from 
multiple sources and upscaled ET from FLUXCOM failed to capture the 
inter-annual variability of ETWB, which exhibited much greater vari-
ance. The substantial differences in the magnitude of ET variances 
highlight the difficulty of using ETEB estimates to close the water bud-
gets at the annual scale. Furthermore, irrespective of the magnitude of 
the interannual variability, the inter-annual variations in ETWB were also 
not consistent with that of ETEB in many basins. For instance, in the 
Przedborz catchment, MOD16 showed a high positive anomaly in 2010, 
whereas in the same year ETWB displayed a strong negative anomaly. 
Similarly, for the Versen catchment in 2004, ETWB was positive, whereas 
ETEB estimates from all data sources were negative. Overall, all above 
results demonstrate the inability of ETEB as well as upscaled ET to 

Fig. 6. Histogram of annual TWSA for all 53 catchments (a) and histogram of long-term TWSA for all 53 catchments (b).  

Fig. 7. Boxplot for the correlation coefficient between the interannual varia-
tion of ETWB and ETEB for the 45 energy-limited catchments and the 8 water- 
limited catchments. Inside the boxplot, the left part is the correlation analysis 
with ETPQ, and the right part is the correlation analysis with ETWB. Boxplots 
depict median, 25% to 75% range (box) and 10% to 90% range (whiskers). 
Asterisks indicate the means. 
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capture the inter-annual variability of ETWB, in terms of both magnitude 
and consistency, and the annual time series of ETWB are characterized as 
markedly high variances. 

To investigate the potential factors contributing to the extremely 
high variances of ETWB and large discrepancy between annual ETWB and 
ETEB, we firstly calculated the closure errors in water budgets (Δ = P-Q- 
ETEB) at an annual timestep. Instead of directly considering precipita-
tion, we introduced the concept of excess precipitation (P-PET), which 
represents cumulative precipitation exceeding energy demand (Wil-
liams et al., 2012). After the reduction of PET, any increment in addi-
tional precipitation exceeding energy demand would not lead to 
increased ET but could introduce extra errors in ETWB. Then, we ana-
lysed the relationship between the variations in closure errors and the 
dynamics of excess precipitation and GRACE-based TWSA. Fig. 9 dem-
onstrates that the annual variations in closure errors retrieved from the 
ETEB ensemble coincided well with excess precipitation in all 53 
catchments with a mean r of 0.71, which revealed the close relationship 
between the closure errors and the highly variable precipitation. 
GRACE-based TWSA also correlated well with the closure errors from 
the ET ensemble across all 53 catchments (mean r = 0.52), but had mean 
bias of 100 mm yr− 1 against closure errors in water budgets, indicating 
that incorporating GRACE-based TWSA did not thoroughly solve the 
closure errors at the annual scale. 

3.3. Assessing ET at a monthly timestep 

To evaluate how ET estimates compared at the monthly scale, Fig. 10 
exhibited analyses of ETWB and ETEB for energy-limited and water- 
limited catchments. In energy-limited catchments, ETEB estimates from 
all data sources had good correlations with ETWB at the monthly scale, 

with r values ranging from 0.72 to 0.78. Among individual ETEB 
methods, ET estimates from GLEAM yielded the highest correlation of 
0.78 and the lowest RMSE of 22.68 mm month− 1, followed by MOD16 (r 
= 0.74, RMSE = 25.55 mm month− 1). In terms of KGE, the agreement 
between ETWB and ETEB was slightly lower for PT-hybrid (KGE = 0.65) 
and PT-JPL (KGE = 0.62), compared to GLEAM (KGE = 0.71). As 
opposed to the findings of the analyses conducted at long-term and 
annual scales, monthly ETEB and ETWB were less correlated in water- 
limited catchments than in energy-limited catchments. In water- 
limited catchments, ETEB from GLEAM had the best agreement with 
monthly ETWB (KGE = 0.55), followed by PT-hybrid (KGE = 0.42). 
However, ETEB estimates from PT-hybrid were significantly higher than 
ETWB with a rBias of 16.05% and MOD16 also exhibited large divergence 
from ETWB with rBias of − 16.79%. 

To investigate how closely ETEB agree with ETWB, we plotted the 
monthly time series of ETWB and ETEB estimates from multiple sources 
for two energy-limited catchments and two water-limited catchments 
(Fig. 11). In general, ETEB estimates from all sources reasonably 
captured the monthly variations of ETWB, but they exhibited varying 
degrees of sensitivities to rainfall, which had sharp rises and falls. For 
example, extremely high ETWB in summer months corresponded to 
heavy rainfall events, such as the rapid increment of ETWB in 2011 for 
the Przedborz catchment (Fig. 11c) and in 2008 for the Seros catchment 
(Fig. 11d). However, ETEB estimates mostly failed to capture the abrupt 
increment in ETWB and exhibited an obvious underestimation of the 
ETWB peak in summer months. Albeit ETEB and ETWB had coherently 
similar seasonality, the intra-annual variability of ETEB was less pro-
nounced than that of ETWB, which closely followed the intra-annual 
variability of precipitation. 

The improved correlation between ETEB and ETWB on the monthly 

Fig. 8. Interannual variations of ETWB anomaly and ETEB anomaly in two energy-limited catchments (Versen Wehrdurchstich Gesamt and Przedberz) and two water- 
limited catchments (Tore and Seros). Due to the limited time span of the FLUXCOM data, the correlation statistics is calculated for the time period of 2003–2015. 
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scale may likely be caused by the consistent and coherent phase of 
seasonal cycles, compared with long-term and annual scales. To eval-
uate this, Fig. 12 shows the timing in the seasonal cycle of ETWB and 
ETEB ensemble. Statistical analysis demonstrates a strong correlation (r 
= 0.94) for the seasonality of ETWB and the ETEB ensemble across all 53 
catchments and relatively better agreement was obtained in catchments 
with stronger precipitation seasonality, e.g. Tore (Fig. 12b) and Przed-
borz catchments (Fig. 12c). We further analysed the relationship be-
tween excess precipitation and the closure errors in water budgets at the 
seasonal scale to assess the impact of extremely heavy rainfall on sub- 
annual water balances. As shown in Fig. 12, good correlations be-
tween excess precipitation and closure errors were obtained in 26 
catchments (r = 0.73), e.g. Versen and Seros catchments. By contrast, 
catchments with a marked precipitation seasonality e.g. Tore (Fig. 12b) 
and Przedborz catchments (Fig. 12c), exhibited higher correlations be-
tween ETWB and ETEB, which indicates that seasonality appears to buffer 
the impact of excess precipitation on water balances. Overall, despite 
uncertainties afflicting GRACE data in small-scale catchments, the dis-
parities between ETWB and ETEB were found to closely related to excess 
precipitation and the similarity in the seasonal patterns seems to 
improve the consistency of energy- and water-balance ET at a monthly 
timestep. 

4. Discussion 

4.1. The large discrepancy between ETEB and ETWB 

Despite the advances in observation techniques and satellite sensors, 
closing surface water budgets using multiple ETEB products remains 
challenging. Our study revealed significant discrepancies between ETWB 
and ETEB from multiple sources on the mean annual scale, when TWSA is 

small enough to be omitted. Although incorporating GRACE-based 
TWSA into the water balance calculation slightly improves water 
budget closure, substantial divergences still exist in annual estimates of 
energy- and water-balance ET. These findings align with previous water 
budget studies that were unable to close terrestrial water budgets using 
analysed ETEB products (Lehmann et al., 2022; Lorenz et al., 2014). 
Contrary to long-term and annual time scales, a better agreement was 
obtained between ETWB and ETEB on a monthly basis, but ETEB exhibited 
less pronounced intra-annual variability compared to ETWB, particularly 
in summer months with heavy rainfall (Springer et al., 2014). Overall, 
the consistent and significant discrepancies between energy- and water- 
balance ET estimates across multiple timesteps emphasize the need to 
investigate possible causes for the imbalance bias of water budgets. 

The closure errors of water budgets can be explicitly attributed to the 
uncertainties associated with ETWB, which is computed as the residual of 
water balance equation. The primary source of errors in ETWB stem from 
precipitation data quality. As precipitation is the largest component in 
terrestrial water budgets, uncertainties at the same relative level would 
contribute to larger absolute errors than in situ runoff and GRACE-based 
TWSA (Xu et al., 2022). Although the density of precipitation gauges in 
central-western Europe facilitates bias correction for precipitation 
datasets, precipitation obtained from different sources still exhibit large 
divergence at catchment scale. Fig. 5 confirms that precipitation errors 
consistently account for the largest part in ETWB errors across 53 
catchments, compared with TWSA and runoff. In an attempt to minimize 
errors and get a robust catchment precipitation, we used the ensemble 
mean of precipitation from gauge-based E-OBS dataset, ERA5-Land 
reanalysis dataset and WorldClim v2.1 dataset. Additional sources of 
precipitation data could be tested in future to further reduce errors, even 
if their availability is currently limited to national-scale products. These 
include products derived from terrestrial radar measurements or 

Fig. 9. Interannual variations of the P anomaly (left y axis) and the interannual variations of the closure errors of water budgets and TWSA (right y axis) in four 
representative catchments. For the correlation analysis, the Δ is calculated from the ETEB ensemble. 
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microwave links from cellular network provider, which have proven to 
be an additional source of rainfall information to complement tradi-
tional rainfall data (Graf et al., 2020; Sun et al., 2018). 

A second source of error in ETWB can be attributed to the coarse- 
resolution GRACE data, which has a large spatial mismatch with 
small-scale catchments (Wiese et al., 2016). Previous studies attempted 

to incorporate water storage predictions obtained from land surface 
models or microwave soil moisture into the spatial downscaling of 
GRACE data, but these two storage proxies are limited by human 
induced change in water storage (e.g. irrigation and groundwater 
extraction) and storage dynamics occurring in deeper layers of the un-
saturated zone, respectively (Crow et al., 2017; Pascolini-Campbell 

Fig. 10. Comparison of the ETWB to ETEB at the monthly scale for energy-limited catchments (left) and for water-limited catchments (right). The gray line denotes 
1:1 line. 
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et al., 2021). In our study, we used the average of three GRACE products 
resampled to the common 25 km resolution, but the limited drainage 
area will introduce leakage and attenuation uncertainties in modelled 
TWSA (Scanlon et al., 2016). We note that the catchment area, varying 
from 1,000 to 150,000 km2, did not significantly affect the closure errors 
in water budgets. This is consistent with the work of Zhang et al. (2012), 
who found similar correspondences between ETWB and ETEB in two 
groups of catchments: 107 small-area catchments (<5,000 km2) and 90 
large-area catchments (>5,000 km2). In our opinion, although the ac-
curacy of TWSA is inevitably limited by GRACE data in small-scale 
catchments, the consistent and considerable discrepancies between en-
ergy- and water-balance ET indicate that TWSA is not the key reason for 
the differences in the long-term spatial pattern of ET and the different 
amplitudes of annual ET time series. That is because terrestrial water 
storage is more stable than other water balance components and 
consequently TWSA is usually assumed to be negligible at longer time-
steps. However, for shorter temporal scales (e.g., monthly) terrestrial 
water storage becomes more variable and the uncertainty of TWSA plays 
a more important role in ETWB (Zhong et al., 2020). 

Another factor contributing to the imbalance bias of water budgets is 
the intricate nature of groundwater baseflow. The assumption of negli-
gible groundwater flow at long-term scale holds for continental drainage 
basins, in which surface drainage coincides with groundwater flow di-
vides (Rodell et al., 2004). However, in smaller catchments with a 
humid climate, lateral groundwater loss/gain can be significant, espe-
cially when heavy rainfall events and anthropogenic withdrawals occur 
(Le Moine et al., 2007). In our study, we applied a threshold of runoff- 
rainfall coefficients to exclude runoff-dominant catchments, but when 
non-negligible lateral groundwater flow occurs, the groundwater 

baseflow crossing topographic boundaries cannot be adequately 
resolved by TWSA. Hence, the difficulty of accurately quantifying 
groundwater baseflow is another plausible explanation for the unclosed 
water balances at finer spatial scales. 

Uncertainties in ETEB estimates also contribute to closure errors in 
water budgets. Although ETEB methods are expected to have good per-
formance in humid regions, their accuracy are still limited due to the 
sensitivity to chosen algorithm and the quality of input data (Ershadi 
et al., 2015; Yao et al., 2019). With respect to the model structure, the 
GLEAM product, contrary to the other products, explicitly considers the 
influence of soil water stress on ET through microwave-based mea-
surements within a simple water balance framework (Bai and Liu, 
2018). Consequently, the GLEAM product outperforms other ETEB 
sources in closing terrestrial water budgets, particularly for water- 
limited catchments. In contrast, ETEB methods such as MOD16 and PT- 
JPL use surface air humidity as a proxy for soil wetness, which proves 
problematic under dry condition (Gao et al., 2016; Yao et al., 2013). The 
PT-hybrid model, unlike the original PT-JPL method, uses a compound 
SWIR-microwave index to parameterise fsm and has a better correlation 
(Δr = 12%) with mean annual ETWB in water-limited catchments (Zhang 
et al., 2021). With respect to the forcing data quality, previous studies 
have found that the chosen net radiation data account for the largest 
part of differences in ETEB (Anderson et al., 2019; Badgley et al., 2015). 
Systematic biases in reanalysis net radiation, influenced by clouds and 
aerosols, may explain the poorer performance of PT-based methods than 
the GLEAM product in reproducing annual ETWB time series. Despite 
efforts to resolve errors in individual ETEB method through an ensemble 
mean of multi-source ETEB, significant divergences still exist between 
ETWB and the ETEB ensemble across time scales. 

Fig. 11. Time series of monthly ETWB, ETEB from multiple data sources (left y axis), and precipitation dynamics in two energy-limited catchments (Versen Wehr-
durchstich Gesamt and Przedberz) and two water-limited catchments (Tore and Seros). 
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4.2. Factors affecting the ETWB–ETEB consistency across multiple 
timesteps 

Although ETEB methods consistently exhibit large discrepancies in 
closing terrestrial water budgets, our analysis reveals varying degrees of 
consistency between ETEB and ETWB across multiple timesteps, partic-
ularly for energy-limited catchments. On a monthly basis, ETEB esti-
mates were in close correspondence with ETWB: correlations ranged 
from 0.72 to 0.78 in energy-limited catchments and from 0.44 to 0.55 in 
water-limited catchments. These statistical results are in line with those 
of Ruhoff et al. (2022), who reported similar correlation values against 
ETWB, which ranged from 0.45 to 0.60 for eight global ET products 
across fifty catchments. However, on a mean annual basis, ETEB from 
multiple sources cannot capture the spatial patterns of ETWB with an 
average r of 0.35. Moreover, substantially lower consistency were 
observed in energy-limited catchments compared with water-limited 
catchments at the mean annual scale, which is consistent with the 
finding of Carter et al. (2018) that ETEB exhibits higher long-term 
divergence from ETWB in humid regions with decreased covariability 
of ETEB and ETWB. Generally, several factors may contribute to the 
inconsistency between ETEB and ETWB; below, we discuss possible fac-
tors affecting ETEB-ETWB correlations across multiple timesteps. 

On a mean annual basis, the poor correlation between energy- and 
water-balance ET estimates in energy-limited catchments can be 
attributed to uncertainties associated with ETWB, mainly arising from 
precipitation errors. Our results revealed that ETEB models poorly 
captured the spatial changes in long-term ETWB in energy-limited 
catchments (mean r = 0.37) but yielded good correlations in water- 
limited catchments (mean r = 0.60). Similar results were reported by 
Pang et al. (2021) who found that long-term distributions of ETWB and 
ETEB exhibited an correlation of 0.55 in 22 semi-arid catchments. The 
different outcomes of ETEB-ETWB analyses can be explained by the fact 
that under different climatic conditions, the primary factor controlling 

ET is different: available water for water-limited regions; available en-
ergy for energy-limited regions (Liu et al., 2015; Yang et al., 2006). On 
the one hand, precipitation plays a dominant role in determining the 
amount of available water and further regulates the spatial variability of 
ET in water-limited regions (Zhang et al., 2004). Consequently, good 
correlations were obtained for the long-term spatial patterns of ETWB 
and ETEB in water-limited catchments. On the other hand, ETWB calcu-
lated as the residual of terrestrial water balance is directly influenced by 
precipitation errors and diverges significantly from ETEB in energy- 
limited catchments (Soni and Syed, 2021). Water supply is mostly 
abundant in energy-limited regions and the primary factor regulating ET 
is available energy rather than precipitation. Given that TWSA is 
negligible at long-term scale, precipitation errors accrue in ETWB and 
contributes to the poor correlation between energy- and water-balance 
ET estimates. In contrast, water-balance inferred ETFu from the 
Budyko framework, which incorporates both water and energy con-
straints into ET estimation, exhibits significantly better agreement with 
ETEB. Overall, the substantial differences between energy- and water- 
balance ET estimates can be attributed to the uncertainty of ETWB in 
energy-limited catchments. In such catchments, considering energy 
constraints for ET, like the Budyko framework, or resolving ETWB errors 
by using more accurate precipitation datasets has the potential to nar-
row the discrepancy between mean annual ETWB and ETEB for energy- 
limited catchments. 

For annual assessment, the inability of ETEB to capture the interan-
nual variations of ETWB can be predominantly attributed to errors in 
ETWB, which was found to closely follow the temporal variability of 
precipitation. Our results illustrated that the interannual variability of 
ETWB correlated weakly with the ETEB ensemble in all 53 catchments (r 
= 0.34). Even for large-scale catchments with drainage area larger than 
GRACE footprint, it has been observed that there is a lack of correlation 
in annual time series of ETWB and ETEB (Bai and Liu, 2018; Liu et al., 
2016). With respect to the high variances of ETWB, Pang et al. (2021) 

Fig. 12. Seasonal cycles of ETWB, the ETEB ensemble, upscaled ET from FLUXCOM, PET (left y axis), and precipitation (right y axis) in four representative catchments.  
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identified precipitation as the primary driver for the interannual vari-
ability of ETWB, accounting for 81.0% of the trend in semi-arid regions, 
followed by net radiation (42.7%) and wind speed (25.3%). Ukkola and 
Prentice (2013) also found that precipitation accounts for 54–55% of the 
interannual variations in ETWB for wet catchments and 94–95% in dry 
catchments. When precipitation is either too high or too low, ETWB 
closely follows the fluctuations in precipitation and diverges more from 
ETEB. As a result, inconsistencies were observed for the interannual 
variability of ETWB and ETEB in most catchments, which is consistent 
with Carter et al. (2018). Further analysis in Fig. 9 revealed the close 
relationship between the closure errors in water budgets and additional 
precipitation exceeding energy demand (mean r = 0.71 for all 53 
catchments). To our knowledge, precipitation beyond energy demand 
cannot contribute to the increment in ET and the transform of excess 
precipitation to runoff and TWSA has large uncertainties, which makes 
ETWB problematic to be compared with ETEB. Given that errors from 
modelled TWSA cannot totally explain the high variances of ETWB, the 
highly variable precipitation may culprit in the significant divergence 
between ETEB and ETWB at the annual scale. 

The intra-annual variations of energy- and water-balance ET 
exhibited similar seasonal patterns and yielded stronger correlations 
than at long-term and annual scales, particularly for energy-limited 
catchments. This improved correlation at the monthly scale might be 
attributable to the similar seasonal patterns, which are influenced by a 
combination of climatic characteristics, such as precipitation, solar ra-
diation, air temperature, humidity and wind speed (Christoffersen et al., 
2014). The dominant factor affecting the hydrological cycle varies 
greatly across temporal scales, with seasonality, particularly of precip-
itation, playing a more important role in affecting water balances at 
shorter time scales compared to long-term water balances controlled by 
the aridity index (Fu and Wang, 2019; Wang and Tang, 2014). The 
combined influence of climatic seasonality leads to the consistency in 
seasonal cycles of ET, contributing to good agreement between ETWB 
and ETEB at a monthly timestep. Moreover, we also found that ETEB had 
closer agreement with ETWB in catchments with stronger precipitation 
seasonality (Ruhoff et al., 2022). Conversely, in catchments with weak 
precipitation seasonality, the closure errors in water budgets closely 
correlated with excess precipitation and relatively weak consistency 
exists between ETWB and ETEB. Our finding confirms the work of Sahoo 
et al. (2011), who found that the monthly imbalance bias showed a 
seasonal cycle and can be mostly attributed to precipitation uncertainty. 
In water-limited catchments, we found that ETWB and ETEB diverged 
more, which is the exact opposite of our findings in the long-term 
average analysis. This result may be explained by the lower accuracy 
of ETEB models in water-limited regions with short vegetation canopies 
and the increased importance of human activities (e.g. irrigation) at 
shorter timesteps (Ershadi et al., 2014). Overall, the agreement in the 
seasonal patterns may contribute to the better consistency between 
energy- and water-balance ET estimates at the monthly scale compared 
to long-term and annual scales. 

4.3. Limitations of our water balance evaluation 

There are other sources of uncertainty in our water balance evalua-
tion. Firstly, errors may arise from the scale mismatch between ETEB 
products and basin-wide ETWB estimates. To facilitate comparison, we 
uniformly interpolated all gridded datasets to a common 5 km spatial 
resolution except for GARCE data. However, this spatial interpolation 
process inevitably introduces uncertainties in the comparison between 
ETWB and ETEB across temporal scales (Miralles et al., 2016). Secondly, 
in regards to the poor correlation between energy- and water-balance ET 
estimates at the mean annual scale, the limited range of multiyear ET 
(500–700 mm yr− 1) in all 53 catchments is not favorable to have a good 
correlation performance. Therefore, we utilised multiple metrics, e.g., 
KGE, to evaluate the agreement between ETEB and ETWB. Incorporating 
more catchments that span a wide range of climate regimes could make 

the correlation analysis of ETEB-ETWB more robust, because it is rela-
tively ‘easy’ to capture the large ET variation across catchments of 
widely varying characteristics (Zhu et al., 2022). Thirdly, including 
eight water-limited catchments aimed to provide inference information 
for the divergence of energy- and water-balance ET estimates in energy- 
limited catchments, whereas the limited number of samples (eight 
catchments with a mean AI of 1.39) would underrepresent water-limited 
catchments. Moreover, as for the comparison at annual scale, the limited 
length (≤18 years) and data gaps in certain datasets, such as FLUXCOM 
(unavailable after 2015) and GRACE data (11 missing months in 
2017–2018), result in non-significant correlations between annual time 
series of ETWB and those of ETEB in many catchments. 

To provide insights of the interpretation of our water balance eval-
uation, we incorporated upscaled ET from FLUXCOM and ETFu from the 
Budyko framework to find possible explanations for the divergence of 
energy- and water-balance ET. On the one hand, in comparison to the 
poor correlations between ETWB and ETEB at long-term scale, the good 
correspondence between ETEB and ETFu suggests that uncertainty asso-
ciated with ETWB is also responsible for the significant divergences be-
tween ETWB and ETEB. Upscaled ET also fails to capture the interannual 
variations of ETWB, likely due to the highly variable precipitation. The 
above findings suggest that the non-closure issue of water budgets, 
particularly in energy-limited catchments, limits the application of ETWB 
to benchmark ETEB. Similarly, Han et al. (2015) attributed the decline 
they found in ETEB-ETWB correlations to the poor accuracy of ETWB in 
wet climates. Based on the inconsistency between ETWB and 
atmospheric-inferred ETWB, Li et al. (2019) suggested using 
atmospheric-inferred ETWB instead as benchmark in runoff-dominant 
catchments. Taken together, we argue that errors from precipitation 
and TWSA data introduce large uncertainties in ETWB in humid regions, 
contributing to poor agreement with ETEB estimates at long-term and 
annual scales. On the other hand, although upscaled ET from FLUXCOM 
has been commonly used as a benchmark in carbon and water studies, 
the high accuracy of machine learning-based upscaling methods relies 
on having sufficient in situ ET observations as inputs (Jung et al., 2019; 
Miralles et al., 2016). In data-sparse regions, caution is needed when 
applying upscaled ET as reference due to the limited representativeness 
of flux towers. Moreover, machine learning models lack physical 
mechanisms and provide limited insights into the evaporation process 
(Gentine et al., 2018). Combining machine learning methods with semi- 
empirical or physical methods will not only provide useful information 
for the validation of ET estimates but also contributes to the enhance-
ment of ET models from remote sensing. With respect to the robust 
Budyko framework, it tends to perform best for large-scale catchments 
and longer time-frames (Li et al., 2022). To be applied at finer spatial 
scales, the spatial variability between catchments should be considered 
in the Budyko framework, due to the impacts of soil properties, vege-
tation and topography on water balances (Bai et al., 2020). To be applied 
at shorter timesteps, the non-steady state of water storage should be 
considered in the Budyko framework and short-term climate variability 
as well as extreme events are expected to affect water balances (Fu and 
Wang, 2019). In our study, we calibrated the best-fit w for the study 
region using historical records of precipitation and discharge and then 
applied the Fu’s equation to predict long-term ET. Given that the in-
clusion of energy constraints seems to improve the closure of terrestrial 
water budgets, further work is needed to investigate if the modified 
Budyko framework with increased model complexity or reconstructed 
TWSA that takes the impact of temperature on water balances into 
consideration has the potential to improve bias-correction of ETWB at 
shorter timesteps (Bai et al., 2022). 

5. Conclusions 

This study comprehensively evaluated the divergence of energy- and 
water-balance ET estimates across 53 catchments in central-western 
Europe. ETFu retrievals from the Budyko framework and upscaled ET 
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from FLUXCOM product were incorporated to the interpretation of 
water balance evaluation. The results revealed significant disparities 
between ETWB and ETEB estimates from multiple sources especially for 
energy-limited catchments, regardless of the inclusion of GRACE-based 
TWSA. Despite the consistent and considerable closure errors in water 
budgets, the consistency between ETEB and ETWB varies significantly 
with time scales. At the long-term scale, ETEB diverged significantly from 
the spatial patterns of both ETPQ calculated as precipitation minus runoff 
and ETWB considering GRACE-based TWSA, whereas improved agree-
ment was achieved between ETEB and water-balance inferred ETFu. On 
an annual basis, both ETEB and upscaled ET could not capture the 
interannual variability of ETWB with non-significant correlations in most 
catchments. Meanwhile, the closure errors of water budgets are highly 
variable in time and closely follow excess precipitation beyond energy 
demand. Unlike the long-term and annual time scale, monthly ETEB 
correlated well with ETWB and the intra-annual variability of ETWB and 
ETEB followed similar seasonal cycles. Although excess precipitation in 
heavy-rainfall months still influence the agreement between ETWB and 
ETEB, the similarity in seasonal patterns contribute to good performance 
in correlation analysis, particular for catchments with a marked pre-
cipitation seasonality. 

Our analyses shed light on the uncertainties inherent in the water- 
balance approach. They emphasize that using ETWB as a benchmark 
without accounting for uncertainties within the water balance calcula-
tion can result in biased conclusions about the performance of ETEB in 
humid regions. Although errors from coarse-resolution GRACE data are 
likely larger at finer spatial scales, the inclusion of GRACE-based TWSA 
partially improves the consistency of ETWB and ETEB in small-scale 
catchments, presumably because terrestrial water storage is more 
spatially homogenous than other water cycle components. On a mean 
annual basis, TWSA is small enough to be omitted and substantial di-
vergences still exist between energy- and water-balance ET, indicating 
the GRACE-based TWSA is not the primary cause for the differences in 
long-term spatial patterns of ETEB and ETPQ. Precipitation is highly 
variable in time and space and predominantly regulates the spatio- 
temporal variability of ETWB in humid regions. However, for such re-
gions, precipitation variability does not always directly affect ET and the 
quantification of the transition from excess precipitation to runoff or 
TWSA has large uncertainties. Consequently, the closure errors of water 
budgets were found to closely related to additional precipitation beyond 
energy demand. In summary, because of errors in precipitation and 
TWSA data, care must be taken when conducting water balance evalu-
ation across temporal scales, especially for humid regions where avail-
able energy is the primary factor limiting ET. In such regions, the 
robustness of ETWB needs to be improved by using enhanced-quality 
input data or - like the Budyko framework - taking energy constraints 
for the evaporation process into consideration. 
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