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ABSTRACT
Origin–destination (OD) visualizations can help to understand
movement data. Unfortunately, they are often cluttered due to
the quadratic growth of the data and complex depictions of the
multiple dimensions in the data. Many domain experts have
designed visualizations to reduce visual complexity and display
multiple data variables. However, OD visualizations have not been
well classified, which makes it hard to employ such methods for
reducing the visual complexity systematically. In this article, we
propose a novel classification scheme for static OD visualizations
that considers five aspects: the granularity of flows, the dimen-
sionality in and of the display space, the semantics of the display
space, the representation of nodes and flows, and the ways of
relating two visualizations. We evaluate the proposed classifica-
tion scheme using published visualization examples and show
that it is effective and expressive.
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1. Introduction

Movement is a spatio-temporal phenomenon of objects changing locations and attrib-
utes over time. It is often conceptualized as origin–destination (OD) movement with
explicit start and end points. In OD movement, positions and attributes of the moving
objects start to change when they leave their origins and continue to change until
they reach their destinations. There are many examples of OD movement in physical
and human geography, including migration of humans and animals (Tobler 1981,
Lawler et al. 2013), public transport (Wood et al. 2011), shipping of goods (Minard
1864), and online data exchange (Iqbal et al. 2014). An understanding of OD move-
ment benefits decision making and knowledge discovery in many fields, such as
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historical research (Van Lottum et al. 2011), urban planning (Nagel and Pietsch 2016),
and environmental protection (Lawler et al. 2013).

OD data, such as data on OD movements, usually provide information on the ori-
gin, destination, and process of the movement, which we call flow in this manuscript.
Such data usually have three components: a spatial component, a temporal compo-
nent, and one or more attribute components, which can contain both qualitative and
quantitative descriptions. OD data are often structured as OD matrices (Andrienko
et al. 2017a) because they minimize data size in many situations by representing ori-
gins and destinations as columns and rows and flows as matrix entries. In an OD
matrix, the number of nodes that a potential flow can connect grows quadratically
(Mocnik 2015). This emphasizes the need to cope with the resulting complexity in OD
visualizations to make them easy to read. Visual complexity is defined as the amount
of detail or intricacy of line in the picture (Snodgrass and Vanderwart 1980), which
impairs the readability of the visualization.

Domain experts have proposed several ways to reduce visual complexity in OD vis-
ualizations to improve their readability (Ellis and Dix 2007), including reorganizing
data, optimizing visual symbols, and reducing unwanted overlapping or intersecting.
Designers can also aggregate origins, destinations, and flows to reduce the number of
flow symbols (Andrienko and Andrienko 2008, Guo 2009). The layout of OD visualizations
can be optimized by shifting the positions of origin and destination symbols or by
reshaping flow symbols (Phan et al. 2005, Cui et al. 2008), and OD data can be explored
from multiple aspects by creating multiple views (van den Elzen and van Wijk 2014).
Three-dimensional visualizations have an extra dimension, and thus fewer intersections
or overlaps than two-dimensional visualizations (Cox and Eick 1995, Munzner et al. 1996).
Several preliminary usability tests have shown that three-dimensional OD visualizations
are advantageous in certain conditions (Zhang et al. 2016, Yang et al. 2018); however,
the design space of three-dimensional OD visualizations has not been explored in detail.
Moreover, few studies have explored how OD visualization can be viewed in three-
dimensional space (Collins and Carpendale 2007). To fill this gap, we have proposed a
scheme that classifies OD visualizations that considers spatial dimensionality.

In the first part of this paper, we summarize relevant published work on OD visual-
ization, methods for reducing visual complexity, and classifications proposed by
domain experts (Section 2). After a brief discussion of OD data (Section 3), we discuss
four key aspects of OD visualization design and propose a novel classification scheme
based on these aspects (Section 4). Then, we evaluate the proposed scheme by classi-
fying 40 published OD visualizations (Section 5). Finally, we discuss the strengths and
weaknesses of the scheme and future work (Section 6).

2. Related work

OD data can be visualized in a host of ways by focusing on different aspects of the
data. Most OD visualizations are cluttered and different designs have different solu-
tions for this. In this section, we summarize OD visualization designs, solutions to vis-
ual complexity, and classifications of OD visualizations.
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2.1. Visualization of OD data

Flow maps have linear symbols representing the flows between origins and destina-
tions. The first known flow map was designed by Harness in 1837 (Harness 1838,
Robinson 1955). Later, Minard also created many flow maps, including the highly
praised map of Napoleon’s Russian Campaign in 1812 (Minard 1869, Tufte 1983). In
Minard’s map, every stop (city) of the troops can be considered as the destination (ori-
gin) of the last (next) trip. Tobler (1987) created the first flow maps using a computer
and since then, more and more flow maps have been created using computers (Klein
et al. 2014, Jenny et al. 2018, Romat et al. 2018). Others have combined flow maps
with other types of visualizations to display the many facets of OD data (Boyandin
2013). Flow maps are prevalent (Kraak 2014) because they successfully encode many
data components with flow symbols and visualize directed and undirected movement
efficiently (Dent 1999), allowing the intuitive understanding of OD movement. OD
data can also be visualized in many other types of thematic map. These maps do in
many cases not have line symbols indicating flow between origin and destination;
instead, flow is represented by other visual variables (Bertin 1967). Another way is to
plot graphics, such as pie charts on a map to visualize flow attributes. Thematic maps,
in particular flow maps provide cartographic context, which often makes it easy to
perceive movement in relation to geographic features.

As an alternative to maps, OD data can be visualized by other diagrams, such as
bar charts, pie charts, and network visualizations with a large variety of layouts. Flows
from one origin to many destinations, or from many origins to one destination, can be
visualized in a bar chart, pie chart, or treemap (Shneiderman 1992). Color and size can
be used to visualize OD matrix entries and turn a table of numeric flow data into an
OD visualization (Wilkinson and Friendly 2009, Bach et al. 2014). Furthermore, a time-
line can be used that allows the user to see data at a specific point in time
(Rosenberg and Grafton 2013). In these visualizations, flow data do not need to be
represented with linear symbols. There are different techniques for visualizing flow
with lines. Node-link diagrams use node symbols to visualize origins and destinations,
and linear symbols to visualize flows (Battista et al. 1994). Node symbols can be
arranged in different layouts, such as linear, parallel, circular, and radial. Examples of
these layouts include arc diagrams (Wattenberg 2002), alluvial diagrams (Holtz 2018),
Circos (Krzywinski et al. 2009), and hive plots (Krzywinski et al. 2012). The visualizations
discussed so far are mainly two-dimensional. Three-dimensional visualizations will be
discussed next.

Three-dimensional OD visualizations are often designed to reduce visual complexity
(Tobler 1987). In some circumstances, a three-dimensional OD visualization may facili-
tate insight more easily than a two-dimensional OD visualization. The third dimension
in a three-dimensional OD visualization can encode any of the OD components. For
example, the third dimension can display the elevation to convey topography, thus
the third dimension encodes spatial components (Buschmann et al. 2016). The third
dimension can also encode time components, for example in a space–time cube
(H€agerstrand 1970, Kraak 2008). When encoding attribute components, the third
dimension can display both qualitative and quantitative attributes (Itoh et al. 2013). In
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some cases, the third dimension only displays connections between nodes (Schich
et al. 2014) and thus does not encode all three data components.

Multiple OD visualizations can be linked to explore multifaceted OD data. Some
designs show multiple OD visualizations of the same dataset, such as a map showing
the locations of origins and destinations, and a heatmap showing the total number of
flows (Guo et al. 2006). In some designs, several separate OD visualizations are inte-
grated into a compound OD visualization. For example, a necklace map (Speckmann
and Verbeek 2010) consists of a circular layout network and a map with the same
color-coding of the node symbols, which visualizes quantitative attributes of nodes
and flows in a geographic context, making it easy to estimate and compare symbol
size correctly. In Flowstrates (Boyandin 2013), a heatmap and two maps are connected
via link symbols. In some OD visualizations, diagrams are plotted onto other diagrams.
For example, the mosaic diagram designed by Andrienko and Andrienko (2008) plots
heatmaps onto a gridded map. Inspired by the idea of nesting diagrams, Wood et al.
(2010) designed the ‘OD map’.

The OD visualizations mentioned above have various features, and two distinct features
can be distinguished: geographic context and line symbols. Flow maps use line symbols
plotted on maps to show changes in geographic location and flow attributes over time.
Therefore, they are intuitive for visualizing the progress of the movement. However, flow
maps encounter visual clutter with too many line symbols. Other thematic maps, such as
pie chart maps, visualize flow attributes under geographic context without using line sym-
bols, which may reduce visual clutter. Compared to flow maps, network visualizations
with various layouts are more flexible in arranging node symbols and have an advantage
in revealing patterns of relations among nodes. Other diagrams do not use line symbols
and do not provide geographic context, but they may facilitate visualization with the abil-
ity to visualize the time component or attribute component of OD data.

These different OD visualizations help users explore OD data. However, large
amounts of data can lead to complexity, which needs to be addressed to improve the
clarity of the visualization.

2.2. Visual complexity reduction

When too much data is displayed on a size-limited canvas, it is difficult to make sense
of the data because of visual complexity. Visual complexity is problematic for most vis-
ualizations, particularly OD visualizations where the number of flows grows quadrati-
cally with the number of nodes. To reduce visual complexity, many researchers are
looking for ways that vary from filtering OD data to optimizing the symbols and lay-
out. Aggregating nodes and flows reduces the amount of OD data by reducing flow
symbols, and several algorithms concentrate on different OD data components
(Andrienko and Andrienko 2008, van den Elzen and van Wijk 2014). Displacement of
node symbols and deformation of flow symbols can reduce the intersection and over-
lap of symbols. For example, layout adjustment methods (Verbeek et al. 2011), edge-
bundling algorithms (Cui et al. 2008, Lambert et al. 2010), and interactive triangular
irregular networks (TIN) modification (Dakowicz and Gold 2005) change patterns in the
visualization. A compound OD visualization offers multiple views, consisting of

4 Y. GU ET AL.



different types of visualization from the same data. This reduces potential overlaps
when the layers are overlayed (Yang et al. 2017). To compare various OD visualizations
and recommend appropriate designs for a particular dataset, the different OD visual-
izations need to be summarized and classified.

2.3. Classifications of OD visualizations

Several schemes have been proposed to classify OD visualizations. Boyandin (2013)
proposed a classification for OD data representation techniques that considers layout,
node, flow, direction, and magnitude. He extended this classification to the temporal
component of OD data, where he made suggestions for OD visualization design.
Although Boyandin’s classification includes the space–time cube where time is repre-
sented by the third dimension, it focuses on two-dimensional visualizations and does
not consider three-dimensional visualizations and compound visualizations in detail.
Dubel et al. (2015) proposed a classification of visualization techniques based on
dimensionality, referring to the presentation of attribute space and reference space.
Although this classification was not developed for OD visualization, it still helps to
understand the difference between dimensionalities of the display. Dubel’s classifica-
tion is suitable for two-dimensional and three-dimensional visualizations but lacks the
discussion on the spatial semantics of the display. Sch€ottler et al. (2021) also proposed
a classification for geospatial networks that considers geographic representation, net-
work representation, composition, and interactivity. In Sch€ottler’s classification, the
‘composition’ describes how network and geographical information are integrated
visually, which is similar to ‘relating two visualizations’ in our classification scheme
(see Section 4.6). Sch€ottler’s classification contains ‘node representation’ and ‘link rep-
resentation’ to specify whether nodes and links are explicit, aggregated, or abstract.
However, since her classification does not distinguish between origins and destina-
tions, it cannot be used to specify how to represent origins, destinations, and flows.
Sch€ottler collected several three-dimensional examples, but she does not discuss the
use of the third dimension in her classification. In this paper we propose a classifica-
tion that includes the spatial semantics of the third dimension, going beyond what
has been offered by Boyandin, Dubel et al., and Sch€ottler et al.

3. OD data

Before we introduce a classification of OD visualizations, it is necessary to build up a
conceptual understanding of OD data.

3.1. OD data components

OD data describes OD movements, which refer to flows and nodes (including origins
and destinations). Both flows and nodes usually expose three data components: a spa-
tial component, a temporal component, and potentially one or more attribute compo-
nents (Figure 1b). The attribute component can include qualitative and quantitative
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attributes or just the pure relatedness of the origin and destination. The OD data can
be recorded in different formats, for example, as text, lists, or matrices.

3.2. OD matrix and three reading levels

Origin–destination matrices are a straightforward way of representing OD data. The
columns and rows represent origins and destinations, and the entries represent flows.
The OD matrix consists of entries, and the number of entries needed to answer par-
ticular questions determines their reading level. There are several definitions of read-
ing levels. Bertin proposed three reading levels: elementary, intermediate, and overall
(Bertin 1967; Figure 1c), and Koussoulakou and Kraak (1992) expanded this to nine
basic questions to include temporal data components. Andrienko and Andrienko
(2006) proposed an elementary level and a synoptic level by combining Bertin’s inter-
mediate and overall levels into the synoptic level. We will, in the following, refer to
three reading levels for OD data: one for the OD matrix as a set of entries (elementary
level), one for the rows and columns (intermediate level), and one for the entire matrix
(overall level). These correspond to one-to-one, one-to-many, and many-to-many flow
visualizations. As we will see later, these three reading levels can be used to classify
visualizations of OD data. With an understanding of OD data, we are now able to
explain our classification of OD visualizations.

4. Aspects for a classification scheme of OD visualizations

Both OD data and OD visualizations refer to many different types of phenomena of
physical or social reality. Such visualizations range from ones that employ point and

Figure 1. The OD matrix: (a) An example of an OD data matrix, with regional migration data in
2018, Iceland (Iceland 2023). The numbers represent migrating people. (b) OD data components:
connection (true or false); spatial (description of trajectory); time (duration); attribute (qualitative
and/or quantitative). (c) OD matrix reading levels (highlighted cells): elementary (cell to cell), inter-
mediate (cell to row or column); overall (all to all). Schematic diagrams on the top show examples
of three reading levels. The matrix at the bottom shows the lower right section from the OD
matrix in (a).
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linear symbols, to more complex combinations of symbols and even combinations of
maps and other types of visualizations. Yet, all these OD visualizations share a com-
mon idea, which is expressed by the OD data themselves and underlies the interpret-
ation of the visualizations. In this section, we develop a classification scheme to
describe how the various OD visualizations encode this common idea visually.

4.1. Overview and terminology

Each OD visualization needs to visually reflect the main conceptual elements: OD data
consist of nodes (origins and destinations) as well flows between them. That is, it
needs to visually encode these elements in some way, the resulting symbols of which
we refer to as node symbols (or, origin and destination symbols) and flow symbols.
How many of such symbols are included in the visualization and how they encode the
information varies, however, among the various visualizations. In particular, there is no
one-to-one correspondence between the origins, destinations, and flows, and their
corresponding symbols. A node might, for instance, be represented twice in the visual-
ization: by an origin and by a destination symbol. How the main conceptual elements
of OD data are represented in the visualization is thus a more complex question.

The classification scheme proposed in this article aims to capture how the visual
symbols in the canvas encode origin and destination nodes, as well as their corre-
sponding flows (Table 1). The first aspect of this classification, the granularity of
flows, indicates whether the flow represents individual movement between origin and
destination or aggregated movement. The granularity of the flows to be used in the
visualization influences the strategy for choosing corresponding visualization methods.

The second aspect of this classification, the dimensionality in and of the display
space, refers to the dimension of the display space as well as to the dimension of the

Table 1. The classification scheme and the structure of the section.
Aspects Variables Features Sub-sections

Granularity of flows Individual flow; grouped
flow

4.2

Dimensionality in and of
the display space

Dimensionality of node
and flow symbols

0D; 1D; 2D; 3D 4.3.1

Dimensionality of the
display space

2D; 3D 4.3.2

Semantics of the display Space-related semantics;
time-related semantics;
attribute-related
semantics; hybrid
semantics

4.4.1

Representation of nodes
and flows

Representation of nodes Ungrouped; O/D-grouped;
OD-grouped; OD-joint

4.5.1

Representation of flows Linking; attaching;
intersecting

4.5.2

Direction of flow symbols Undirected flow; directed
flow

4.5.3

Ways of relating two
visualizations

Relating two visualizations
by identifying nodes

4.6.1

Relating two visualizations
by nesting

4.6.2
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node and flow symbols included. As the concept of the display space refers here to
the space that contains the node and flow symbols (and which is then usually dis-
played on or projected1 to a piece of paper or monitor), the dimension of the symbols
is always smaller than the one of the display space.

The third aspect of the classification concerns the semantics of the display space.
While the display space is usually represented spatially, like when being printed on a
piece of paper or displayed on a monitor, it can be equipped with different types of
interpretations (cf., Ogden and Richards 1925). These interpretations can refer to spa-
tial or temporal information about the OD movement, to thematic information related
to the movement, or even to a combination thereof. When node symbols are included
in a map, for instance, this indicates the display space to resemble physical space. It is
endowed with a spatial meaning in the sense that each location in the display space
refers to some location in physical space, such as a coordinate on Earth. In that case,
we speak of a space-related semantics to indicate that an interpretation pattern
related to (physical) space is employed in the display space. In a similar way, the dis-
play space can be equipped with a time-related semantics if it is meant to resemble
temporal information related to the OD movement, or an attribute-related semantics if
it is meant to resemble some (thematic) attribute space.2

After classifying the semantics of the display space, the fourth aspect focuses on
the representation of the nodes and flows in the display space, and thus on the
way the node and flow symbols need to be interpreted. First, this concerns how often
each origin and destination node is represented in the display space with the idea to
create several contexts, consisting of several node symbols that afford to be related
by corresponding flow symbols. In case of a map containing country borders with cor-
responding pie charts—each pie chart could indicate OD movements from that par-
ticular country to other ones—each such pie chart constitutes such a context but the
several pie charts contained in different countries remain mutually unrelated in terms
of flow symbols. Secondly, this concerns the way flows are represented through the
semantics of the display space, or by adding additional symbols to it. Thirdly, this
relates to whether movements are represented as undirected or directed flows.

The fifth aspect of the classification scheme concerns the mechanism of relating
multiple OD visualizations in case of a compound visualization. Such relations can
be introduced by either spatially relating these visualizations in the display space, or
by inducing such a relation through the systematic use of the visual variables of the
symbols already included in these visualizations. As should become obvious from this
overview, each aspect builds on the previous one, and their joint consideration can be
used to systematically describe the display space and its semantics, how the symbols
included refer to the actual OD movement, and how such visualizations can even be
mutually related. Table 1 shows an overview of this classification scheme, and also the
structure of this section.

4.2. Granularity of flows

The granularity of flows varies from individual flows to grouped flows. Individual flows
refer to particular objects moving between certain pairs of origins and destinations,
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such as trains, planes, or ships. Visualizing an individual flow, for example, a train mov-
ing between two stations can be achieved by using a liner flow symbol on a flow
map or an entity in the OD matrix. However, when the number of moving objects
increases, the complexity of flow maps and the size of the OD matrix also increase.
Moreover, movements are not always limited to fixed nodes, like trains traveling
between stations. For example, the movements of taxis or birds can be arbitrary, as
they can start at any time and any place. Visualizing massive arbitrary movements
with line symbols can lead to intersections and overlaps on the canvas (Andrienko
et al. 2017b). Thus, there are reasons to visualize grouped flows, which involve aggre-
gating individual lines.

Grouped flows are aggregations of individual flows along space or time or both.
For example, in the visualization of migration (as shown in Figure 1), the flows are
aggregated by regions and time intervals (years). Grouped flows ignore details about
individual moving objects and instead focus on showing patterns of movement.
Visualizing grouped flows instead of individual flows may reduce visual complexity.

4.3. Dimensionality in and of the display space

Node symbols, flow symbols, and the display space can be described in terms of their
dimensionality.

4.3.1. Dimensionality of the node and flow symbols
In an OD visualization, nodes and flows can be visualized as node symbols or flow
symbols. The dimensionality of these symbols can be zero, one, two, or three-dimen-
sional—referred to as point symbols, linear symbols, areal symbols, or volume symbols,
respectively.

Nodes can be visualized as point symbols, such as dots or labels, which are zero-
dimensional. Linear node symbols, such as vertical lines positioned on a horizontal
map, with line heights encoding quantities, are one-dimensional. Areal node symbols,
such as polygons on maps and rectangles in treemaps are two-dimensional. Node
symbols that have volumes, such as globes and cubes, are three-dimensional.
Correspondingly, flow symbols can also be classified according to their dimensions.

An example of a zero-dimensional flow symbol is a label that represents the flow
magnitude. One-dimensional flow symbols are linear symbols, such as paths on a map
that connect origins and destinations. Two-dimensional flow symbols are areal sym-
bols, such as segments in a pie chart or rectangles in a treemap. Three-dimensional
flow symbols have volume, such as tubes that represent flows in a three-dimensional
visualization. In addition to the dimensionality of symbols, the dimensionality of the
display space is also essential for OD visualization design.

4.3.2. Dimensionality of the display space
The dimensionality of the display space varies from zero to three-dimensional. In this
article, we focus on two and three-dimensional space. The two-dimensional display
space uses two axes to display flow symbols and node symbols, similar to most charts
(x-axis and y-axis) and maps (latitude and longitude). The three-dimensional display
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space uses three axes to display symbols, such as the space–time cube. While a
two-dimensional symbol can be shown in a three-dimensional display space, a three-
dimensional symbol cannot be shown in a two-dimensional display space.

Dimensions of the display space have different meanings depending on the spatial
semantics of the display.

4.4. Semantics of the display space

The display can be either two-dimensional or three-dimensional, and these dimensions
can be interpreted according to four types of spatial semantics: space-related, time-
related, attribute-related, and hybrid semantics. These correspond to three compo-
nents of OD data.

4.4.1. Utilizing the various dimensions of the display space
Space-related semantics concern the representation of the physical world. The display
space is either a model of the three-dimensional physical world or a projection of the
physical world—either a one-dimensional or a two-dimensional projection. In maps,
both dimensions employ a semantic, for example, the one of geographical coordinates
in case of maps.

Time-related semantics and theme-related semantics allow spatial dimensions to
encode temporal components and attribute components. In many cases, different
semantics are applied to different dimensions, in case of which we speak of hybrid
semantics. In the following, we elaborate on three-dimensional OD visualization, whose
dimensions use space-related semantics or hybrid semantics.

4.4.2. Combining cartographic representations with the third dimension: an
example of a hybrid case
In the following example, we use space-related semantics along two dimensions for
three-dimensional OD visualizations to keep the cartographic context. Three-dimen-
sional OD visualizations may have advantages because they provide an extra dimen-
sion for semantics. Figure 2 shows four possibilities for the semantics of the third
dimension.

Figure 2a shows the third dimension with space-related semantics. The height of
the third dimension may represent the altitude or depth of moving objects. When
space-related semantics are applied to all three dimensions, visualization can be seen
as a model of the physical world. Figure 2b illustrates the application of time-related
semantics to the third dimension and is related to the space–time cube. One temporal
dimension and two spatial dimensions can jointly reveal spatio-temporal patterns of
OD movements. When attribute-related semantics are applied to the third dimension,
it can encode qualitative or quantitative attributes (Figure 2c), which helps to reduce
overlap between symbols on the plane. In addition, the third dimension may not
encode data, but simply provide space for the representation of connections between
nodes (Figure 2d). Drawing arcs ‘in the air’ to indicate connections can avoid intersects
to some degree. The data encoded in the third dimension show flow between an ori-
gin and a destination.
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It is possible to apply more than one type of semantics to the third dimension. A
space–time cube can be visualized together with a three-dimensional model of the
topography. More conditions of hybrid semantics in the third dimension can be
designed.

4.5. Representation of nodes and flows

The dimensionality and semantics of the display space provide the basis for under-
standing how to interpret the node and flow symbols contained in the display space.
In the following, we discuss the various ways these symbols can be arranged in the
display space.

4.5.1. Representation of nodes
In many OD visualizations, the same node is represented several times, like when rep-
resenting origin and destination nodes with different symbols, or when indicating the
destination nodes by the slices of a pie chart that is attached to a corresponding spa-
tial unit. In the latter case, each such slice acts as a destination symbol, and the sev-
eral slices are grouped into one pie chart per origin. This is interesting insofar as a
flow can only be visually indicated between the spatial unit and the destination nodes
of the respective slice. In this setting, however, it is not possible to visually indicate a
flow from one spatial unit to another, for example by an arrow, or between the differ-
ent slices. The semantics with which the display space is equipped only allow flows to
be visually indicated between certain origin and destination symbols. Arbitrary pairs of
node symbols, however, do not necessarily possess this affordance, even if a flow
exists between the corresponding nodes themselves.

Figure 2. Appling different semantics to the third dimension, two flows (from A to B, and from A
to C) are visualized with example data. (a) Application of space-related semantics to the third
dimension. Lines are imitations of plane trajectories. (b) Application of time-related semantics to
the third dimension. It is an example of space-time cube. (c) Application of attribute-related
semantics to the third dimension, where the third dimension represents the attribute component.
(d) Application of attribute-related semantics to the third dimension, where the third dimension
represents connection.
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The OD-joint and Ungrouped cases. The representation of the nodes in the display
space can be categorized based on this observation (Figure 3). At one extreme is the
case where each node is represented only once in the display space (regardless of
whether it is used as the origin or destination). In this case, each pair of node symbols
affords to indicate flows between them (OD-joint3). An example is a node-link diagram
(Figure 3e). At the other extreme, all pairs of origin and destination nodes are separ-
ately represented in the display space (ungrouped). This is, for instance, the case with
a table where each row refers to a combination of origin and destination node and
where flows can visually only be indicated in the display space within such a row (cf.,
Figure 3a). At the same time, this means that each origin node and each destination
node must potentially be included several times in the representation. Conceptually,
the OD-joint case can be transformed into the Ungrouped one by duplicating the
node symbols such that there exists a copy of these for each possible flow.
Conversely, the Ungrouped case can be transformed into the OD-joint one by unifying
the corresponding node symbols that refer to the same node.

The O/D-grouped and OD-grouped cases. Several cases exist between these
extremes. For example, there are cases where each origin node is represented only
once in the display space, but each destination node is multiple times. If each origin is
only represented once and if for each origin symbol, there is potentially a destination
symbol to which a flow can be visually indicated, but the destination symbol does not
have this affordance with respect to other origin symbols than the one in question,
then the various destination symbols are in a sense grouped to the origin symbols (O-
grouped). This is, for instance, the case for the pie charts placed on the map (cf.,

Figure 3. Representation of nodes. The five columns show five categories of node representations.
The first row indicates how can the five categories are conceptually transformed. The second row
are sketches of four flows between two nodes. The third row shows the context of each category.
The last row shows examples of each category.
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Figure 3b). Of course, the same situation exists with reversed roles of origin and des-
tination (D-grouped; cf., Figure 3c). These two cases result from unifying origin and
destination symbols, respectively. When interpreting the rows of an OD matrix as ori-
gin symbols and the columns as destination symbols, the OD matrix can be under-
stood as a combination of the two previous cases (cf., Figure 3d). This is because a
flow from an origin symbol (i.e., a row) to each destination symbol (i.e., each column)
can be visually indicated by placing numbers at the corresponding positions, and this
is also the case with reversed roles of origin and destination (OD-grouped). At the
same time, each origin and destination node is represented only once, which is in
contrast to the O-grouped and the D-grouped cases, and origin and destination sym-
bols are disjunct, which is in contrast to the OD-joint case.

It should be noted that these different cases utilize the display space to different
degrees. In the ‘OD-joint’ case, for instance, the semantics of the node and flow sym-
bols leaves space for an interpretation of the display space in terms of geographical
space (or some other interpretation), while this is not the case in the OD-grouped case.
In the O-grouped case, however, only the spatial units can be interpreted geographic-
ally, while the location of the slices within a pie chart does not allow for such a geo-
graphical interpretation. Instead, they constitute an interpretational context of its own.

4.5.2. Representation of flows
As is interesting to note, the number of contexts multiplied by the number of origin
symbols and destination symbols is constant for each of the cases outlined in the pre-
vious section, apart from in the OD-joint case (see Figure 3). While this may seem cir-
cumstantial, it is critical to how flows can be represented visually. In the OD-joint case,
arrows or similar mostly linear symbols are often employed to link origins to destina-
tions. There is a great risk that these symbols clutter because they are all interpreted
in the same context, which makes them incidentally overlap in many cases. In the OD-
grouped case, a larger number of node symbols is used and systematically arranged
to avoid such cluttering. The clutter is reduced at the cost of duplicating node sym-
bols. In the O/D-grouped cases and to an even higher degree in the ungrouped case,
the complexity is further reduced by a larger number of coexisting contexts, which
independently co-exist in the display space.

How these flows can be visually conveyed depends on the configuration of node
symbols and which possibilities that offer to indicate relations between these symbols.
Besides the use of symbols to indicate a relation between distant symbols (linking),
topological relations may be used to indicate such relation in case the corresponding
nodes are used in a non-geographical context (cf., Egenhofer Relations; Egenhofer and
Franzosa 1991). Among these are node symbols that are intentionally arranged in spa-
tial proximity (attaching; e.g., slices of a pie chart) or even indicate a relation by an
intentionally overlap or containment (intersecting; e.g., rows and columns of an OD
matrix). An overview of these means can be found in Figure 4.

4.5.3. Direction of flow symbols
Flow symbols can be either directed or undirected (Figure 5). In the case of directed
flow symbols, two opposing flows can be represented between a pair of nodes.
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Several techniques can be used to visualize the direction of flows, such as arrow sym-
bols, gradient symbols, or animation.

4.6. Relating two visualizations

Everything mentioned so far applies to single visualizations. However, multiple visual-
izations can be related to each other to accomplish more complex tasks. There are
two ways to combine two visualizations: identification of nodes or nesting.

Figure 4. Representation of flows: linking, attaching, and intersecting. In linking, the relation
between the origin symbols and the destination symbols is disjoint. In attaching, the relation
between the origin symbols and the destination symbols is adjacent or touching. In intersecting,
the relation between the origin symbols and the destination symbols is overlap or containment.

Figure 5. Direction of flow symbols. (a) Undirected flow. (b) Directed flow.
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4.6.1. Relating two visualizations by identification of nodes
To display different facets or patterns in the same dataset, two or more visualizations
may be needed. In this case, one node has two different representations. Users can
relate these two symbols by identifying the node they are representing. Many techni-
ques can help users identify the nodes, such as drawing lines, color-coding, brushing,
positioning, or labelling the symbols. Figure 6 shows examples of relating two visual-
izations by node identification.

There are three possibilities of flow representation when relating two OD visualiza-
tions. Flow symbols can be isolated in each visualization, drawn across two visualiza-
tions, or both. These three conditions are illustrated in Figure 7.

4.6.2. Relating two visualizations by nesting
Nesting is another way of relating two visualizations. Nesting is when one visualization
is embedded into another, and flow can be identified by the hierarchy of nesting. The
nesting procedure is illustrated in Figure 8.

In this section, we have discussed the five aspects of classifying OD visualizations:
granularity of flows, dimensionality in the display, spatial semantics of the display, rep-
resentation of nodes and flows, and ways of relating two visualizations. In the next

Figure 6. Examples of the identification of nodes. In the two visualizations (Vis-1 and Vis-2), nodes
are represented by several node symbols. Node symbols in the two visualizations can be identified
in several ways. (a) Positioning: Nodes can be positioned close to each other, in corresponding
positions in each visualization, or by other rules. (b) Drawing lines between node symbols, indicat-
ing that they are representing the same node. These lines need to differ from flow symbols. (c)
Color-coding the node symbols. (d) Brushing: Interaction can be applied to node identification.
When selecting the node symbol in Vis-1, the corresponding symbol in Vis-2 will be highlighted.
(e) Labelling: Labels are used to identify nodes directly.

Figure 7. Three possibilities of flow representation when relating two OD visualizations. (a) Flow
symbols are connecting origins and destinations within one visualization. (b) Flow symbols are con-
necting origins and destinations across two different visualizations. (c) Combination of (a) and (b).

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 15



section, we discuss relationships between these aspects and how they can be applied
to classify examples of OD visualizations.

5. Evaluation of the classification scheme

This section reviews published OD visualizations and provides a visual clustering per-
spective based on our classification scheme. We examined 40 OD visualizations in
total, including 14 compound OD visualizations, which were created by relating two
visualization techniques. We characterize these visualizations using our scheme of five
aspects discussed in Section 4 and cluster them using hierarchical methods. We also
visualize the mutual correlations between variables. These correlations may facilitate
further design decisions by following common choices or experimenting with choices
that yield different visualizations.

5.1. Characterizing and clustering of OD visualizations

In the following, we examine 40 different examples of OD data visualizations. These
visualizations are designed to visualize OD data or analyze OD data visually. Some of
these are compound OD visualizations, which consist of more than one visualization
each, resulting in 54 examples in total. The classification of these 54 examples accord-
ing to our scheme is presented in Table 2. We also used a distance matrix to visually
indicate clusters in terms of this classification (Figure 9).

The rows of Table 2 refer to considered examples (E), and the columns refer to the
five aspects of the classification scheme. The columns have three hierarchical levels:
aspects (A), variables (V), and features (F), corresponding to the five aspects presented
in Section 4, their nine variables, and their 27 features. The rectangle in the rows indi-
cates whether the example can be characterized by the corresponding features in the
columns. Examples 1–14 are compound OD visualizations. They consist of two OD vis-
ualizations each and are related. The two parts of a compound OD visualization are
referred to as a and b (e.g., 1a, 1b, 2a, 2b, etc.). The two right-hand columns show
how two such visualizations that are part of a compound visualization relate to each
other (Section 4.6). Examples 15–40 are not compound OD visualizations.

After characterizing the examples, we computed distances between every two
examples according to the characterization in Table 2, which yielded a 54�54 matrix.
More specifically, we computed the distance of two example visualizations with the
first three aspects A, while ignoring how two OD visualizations were related in a com-
pound visualization. The distance dist(Ei, Ej) between two visualizations Ei and Ej was

Figure 8. Relating two visualizations by nesting. There are two visualizations (Vis-1 and Vis-2).
Multiple Vis-1 are nested into Vis-2, which are positioned where the node symbols in Vis-2 are
located.
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defined in terms of the six groups of features F from variables V. That is, it was
defined in terms of the features Fi,n,k which relate to the variables Vn of visualization
Ei. The distance between two visualizations is then defined as the normalized accumu-
lation of comparison results:

dist Ei, Ejð Þ ¼ 1� 1
jVj

XjVj
n¼1

1
jFnj

XjFnj
k¼1

compareðFi, n, k, Fj, n, kÞ
� �

Figure 9 shows the distance matrix, which is reordered via the single-linkage clus-
tering method (Seifoddini 1989). The matrix reveals the cluster pattern marked by a
blue rectangle in Figure 9. The blue marks show visualizations that are similar to each
other based on this classification scheme, indicating that this categorization scheme
can be used to cluster OD visualizations.

Figure 9. Reordered distance matrix for 54 OD visualization examples. The 54 � 54 matrix repre-
sents distances among 54 OD visualizations. It is reordered by the single-linkage clustering method.
Certain visualizations are more similar than others, and these are grouped in a blue rectangle.
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In Figure 9, seven clusters (A-G) can be distinguished. In cluster E (1b, 4b, 10a, 11a,
12a, 13b, 14a), mainly maps in a compound OD visualization are shown, providing a
geographic context where no flow symbols are displayed. Visualizations in the other
clusters share certain characteristics:

� Cluster A (20, 34, 35, 36, 37, 38, 39, 40) mainly consists of 3D visualizations. The
representation of flows in this cluster is “linking”, with most of them using “hybrid”
or “space-related” semantics of the display space.

� Cluster B (10b, 11b, 14b, 15, 16, 17) consists of diagrams that do not provide geo-
graphic context, such as pie charts and rose charts. The representation of nodes in
this cluster is “O/D grouped”.

� Cluster C (2b, 3b, 6b, 8a, 9b, 30) mainly consists of visualizations of matrix views.
Most of them have “attribute-related” semantics of the display space, with nodes
representation being “OD-grouped” and flows representation being “intersecting”.

� Cluster D (4a, 9a, 13a, 22, 23, 26, 29) consists of node-link diagrams. The represen-
tation of nodes and flows is “OD-joint” and “linking” correspondingly. All visualiza-
tions in this cluster have “undirected” flow representation.

� Cluster F (5a, 7a, 19, 21, 24) mainly consists of flow maps, most of which use
“linking” flow representation to visualize individual flows.

� Cluster G (1a, 6a, 7b, 12b, 18, 25, 28) consists of chord charts and Sankey diagrams.
Their dimensionality of nodes is “2D”, and they all visualize the magnitude of
nodes.

5.2. Correlation of features

To understand how the first 25 features (i.e., the features of the first three aspects)
correlate, we introduced another distance function, which yields another matrix
(Figure 10). The correlation of two features corr(Fi,Fj) was, according to the definition
chosen, determined by the frequency of their co-occurrence in a visualization. The fea-
tures Fk,i and Fk,j related to example Ek.

corr Fi, Fjð Þ ¼ 1
Ej j

XjEj
k¼1

coexistenceðFk, i, Fk, jÞ

Figure 10 displays the reordered distance matrix of the 25 features, to which the
single-linkage clustering method was applied. As is visible from the matrix, the fea-
tures correlated with each other, with values ranging from 0.04 to 0.32. However,
there were no particularly strong correlations between any feature pairs, showing that
the features are largely independent. This demonstrates that the feature choice is
meaningful and that the classification scheme is effective and expressive at classifying
the examples.

5.3. Correlations of the variables

In addition to correlations between the features, we also examined correlations
between the variables, which were determined by the accumulation of conditional dis-
tance between the two examples. The conditional distance between the two examples
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is similar to the visualization distance in Section 5.1, considering only two variables.
The features corresponding to the variables Vm and Vn were referred to as Fm,k and
Fn,l, respectively. Correspondingly, the features Fi,m,k and Fj,m,k related to examples Ei
and Ej. The correlation between two variables can be expressed as:

dist Vm, Vnð Þ ¼
P Ej j�1

i¼1

PjEj
j¼iþ1

1
Fmj j

PjFmj
k¼1 compareðFi, m, k , Fj,m, kÞ � 1

Fnj j
PjFnj

l¼1 compareðFi, n, l, Fj, n, lÞ
��� ���

ð Ej j2 � Ej jÞ=2

Figure 11 shows the distance matrix, which was reordered using the single-linkage
clustering method. The matrix shows that the variables correlated to varying degrees,
with values ranging from 0.192 to 0.464. This indicated that the variables were inde-
pendent to a large degree, similar to the conclusion drawn in Section 5.2, showing
that the classification scheme is effective and expressive in terms of classifying the
example.

6. Conclusion

In this article, we have proposed a classification scheme for OD visualizations which
we evaluated by a study of existing OD visualizations. We studied the many OD visual-
ization designs and how other researchers have classified OD visualizations from vari-
ous perspectives. Our scheme concerns five aspects of OD visualizations: the
granularity of flows, the dimensionality of the display space, the semantics of the

Figure 10. Reordered distance matrix showing the correlation among the 25 features.
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display space, the representation of nodes and flows, and the relating two visualiza-
tions. The five aspects contain eight variables and 25 features.

To evaluate the classification scheme proposed in this research, we classified 40
existing OD visualizations and created a 54� 54 distance matrix, including 14 com-
pound OD visualizations. The resorted matrix revealed a cluster pattern (see Figure 9),
from which seven clusters can be distinguished. The cluster result successfully classi-
fied typical OD visualizations, which tests the effectiveness of the aspects and variables
in this classification scheme. For example, cluster A consists of 3D visualizations
(dimensionality of the display space). Cluster B consists of diagrams that do not pro-
vide geographic context, such as pie charts and rose charts, and their representation
of nodes is “O/D grouped” (representation of nodes). Cluster C mainly consists of visu-
alizations of matrix views, in which the representation of flow is “intersecting” (repre-
sentation of flows), and most of them have “attribute-related” spatial semantics
(semantic of the display space). Cluster D consists of node-link diagrams, in which the
representation of nodes is “OD-joint” and the representation of flows is “linking”, with
all of them having “undirected” flow representation (representation of nodes and
flows). Cluster F consists of various flow maps, most of which visualize individual flows
(granularity of flows). Cluster G consists of visualizations where the dimensionality of
nodes is “2D”, and they all visualize the magnitude of nodes (dimensionality of nodes).
The clusters prove that the classification scheme can be effectively used to group OD
visualizations.

We then evaluated the correlation of the first 25 features. We created a 25� 25
matrix and sorted it (see Figure 10), which showed no significant clusters. Meanwhile,
the correlations between every two features had a value lower than 0.5, indicating
that the features are largely independent. After that, we evaluated the correlation of
the first eight variables in the same way, and the result showed that they are also
largely independent (see Figure 11). The evaluations show that the classification
scheme is effective and expressive in terms of classifying the examples.

This classification scheme can help people without previous experience to quickly
create OD visualizations. A designer can easily find a visualization method for various
representations and switch the style of visualizations by adapting one or more varia-
bles. This classification scheme can also help to develop existing OD visualizations. For

Figure 11. Reordered distance matrix showing the correlation of the eight variables.
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example, by adapting the dimensionality of node symbols and flow symbols of the
Necklace map, it can be developed into a 3D visualization. Moreover, this classification
benefits OD visualization design by trying different ways of relating two OD visualiza-
tions. Designers can try new combinations of OD visualizations aimed at fulfilling cer-
tain tasks or reducing visual complexity.

However, the design of OD visualizations should consider several other factors
besides the five aspects studied in this research, such as data, task, users, interaction,
display environment, and scalability. When it comes to data, components, volume,
structure, format, and source can influence the design of OD visualizations, affecting
visual complexity and system performance. Tasks can be further specified as elemen-
tary or synoptic tasks (Andrienko and Andrienko 2006), depending on the data rele-
vant to the task, which determines the choice of visualization strategy. Designed OD
visualizations do not always function well without a solid user study (Koua and Kraak
2004). Factors in the interaction process, such as objective, operator, and operand, can
all influence the design of OD visualizations (Roth and MacEachren 2016). From this
point of view, data, user, task, and interaction build a complex system for OD visualiza-
tion designers to explore. The same OD visualization design can be implemented and
rendered in different environments, such as monitor, virtual reality, or augmented real-
ity environments. User experience in various environments may differ, and therefore,
the usability of the same design will also differ. Additionally, the scalability of OD visu-
alizations has an influence on complexity, which should also be considered when
designing OD visualizations.

The future work of this research will focus on designing user-centred, task-oriented,
and interactive OD visualizations. Using this classification scheme, we will explore new
combinations of OD visualizations and three-dimensional OD visualizations for prob-
lem-solving purposes. Meanwhile, we will carry out usability tests with the designed
OD visualizations.

Notes

1. The dimension of the display space can be larger than the one of the piece of paper or the
monitor, like when a three-dimensional display space is projected to a two-dimensional
piece of paper.

2. Acknowledging that thematic (i.e. non-spatial and non-temporal) information related to the
OD movement can be quite complex and very different in nature, the display space (or a
subspace of it) usually refers to only some particular facet of the thematic information and
not its entirety. To distinguish the concept of such a particular facet from thematic
information as a more holistic concept, we refer to the former as an attribute and to the
collection of such attributes as an attribute space.

3. The terms chosen to refer to the five cases described below and summarized in Figure 3 is
self-explanatory to varying degrees. The description of the cases introduced here should
therefore be understood as definitions of these introduced terms.
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