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To understand the mechanisms causing running injuries, it is crucial to get insights
into biomechanical loading in the runners’ environment. Ground reaction forces
(GRFs) describe the external forces on the body during running, however,
measuring these forces is usually only possible in a gait laboratory. Previous
studies show that it is possible to use inertial measurement units (IMUs) to
estimate vertical forces, however, forces in anterior-posterior direction play an
important role in the push-off. Furthermore, to perform an inverse dynamics
approach, for modelling tissue specific loads, 3D GRFs are needed as input.
Therefore, the goal of this work was to estimate 3D GRFs using three inertial
measurement units. Twelve rear foot strike runners did nine trials at three different
velocities (10, 12 and 14 km/h) and three stride frequencies (preferred and
preferred± 10%) on an instrumented treadmill. Then, data from IMUs placed on
the pelvis and lower legs were used as input for artificial neural networks (ANNs)
to estimate 3D GRFs. Additionally, estimated vertical GRF from a physical model
was used as input to create a hybrid machine learning model. Using different
splits in validation and training data, different ANNs were fitted and assembled
into an ensemble model. Leave-one-subject-out cross-validation was used to
validate the models. Performance of the machine learning, hybrid machine
learning and a physical model were compared. The estimated vs. measured GRF
for the hybrid model had a RMSE normalized over the full range of values of 10.8,
7.8 and 6.8% and a Pearson correlation coefficient of 0.58, 0.91, 0.97 for the
mediolateral direction, posterior-anterior and vertical direction respectively.
Performance for the three compared models was similar. The ensemble models
showed higher model accuracy compared to the ensemble-members. This study
is the first to estimate 3D GRF during continuous running from IMUs and shows
that it is possible to estimate GRF in posterior-anterior and vertical direction,
making it possible to estimate these forces in the outdoor setting. This step
towards quantification of biomechanical load in the runners’ environment is
helpful to gain a better understanding of the development of running injuries.
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1. Introduction

Although running is a very healthy activity (1), it causes many injuries worldwide (2).

With an average recovery time of 58 days (3), musculoskeletal running injuries form a

barrier to continue running. In fact, injuries are the main reason people completely quit

running (4, 5). Currently, the overall evidence for the effectiveness of interventions to
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prevent lower-limb injuries in running is very limited (6). This can

be explained by the fact that the aetiology of running-related

injuries is not established as it is complex and multifactorial (7).

To get a better understanding of the development of injuries,

research is needed that analyses the change prior to an injury

and change in the (a) amount of participation, (b) load

distribution, (c) magnitude of the load or (d) load capacity (8).

Thus, it is important to quantify biomechanical load

longitudinally in research on running injuries (9).

Ground reaction force (GRF) is the force that the runner exerts

on the ground every single step in vertical, anterior-posterior (AP)

and mediolateral (ML) directions. With this force as input,

combined with an inverse dynamics approach, structure-specific

body loads can be calculated, such as tibial bone load, joint

contact force or Achilles tendon force (10). GRF itself provides a

generic indication of biomechanical load for the musculoskeletal

system as a whole (11). Besides monitoring training load, GRF

can also be used to calculate joint powers. The latter is useful,

for example, to investigate the effect of different footwear

properties (12).

The gold standard to measure GRFs in running is using

instrumented treadmills or force plates embedded in the floor of

a laboratory. However, these lab-based methods are different

from the runners’ natural outside environment, and it is shown

that there are significant differences in kinematics between

outdoor running and running on a treadmill (13). As such, it

can be assumed that kinetics will also be different in outdoor

running. Furthermore, when performing a longitudinal study to

monitor training loads, it is not realistic to have the participants

running on an instrumented treadmill. This stresses the

importance of a GRF estimation outside the laboratory

environment.

Inertial sensor technology makes it possible to move outside of

the lab into the runner’s environment. For example, it is already

shown that it is possible to show fatiguing effects on running

kinematics during a marathon using inertial measurement units

(IMUs) (14). IMUs can also be used to estimate the peak in

vertical GRF, as done using a statistical method (15, 16). As one

of the sensors within the IMU is an accelerometer, acceleration

can easily be used to calculate forces using Newton’s second law

of motion by multiplying acceleration with body mass. This was

applied by Wundersitz et al. (2014), and it was concluded that

accelerometers could asses differences in peak impact forces over

time (17). More recently, a complete vertical GRF waveform was

constructed from three IMUs using a general physical model,

achieving an average root mean squared error (RMSE) of 0.18

body weight (BW) (18). Using a mass-spring-damper model, it

was even possible to estimate vertical GRF waveforms during

running with data from a single IMU (19).

With the increase in availability and usability of wearable

sensors, the ease of collecting data has increased. As more data

are available, it opens up the opportunity to use machine

learning, which requires many observations (20). In 2018, an

artificial neural network was used to estimate the vertical GRF

waveform in running using 3 IMUs, reaching a mean RMSE

<0.27BW (21). To our knowledge, the best estimates for GRF
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waveforms are achieved using bidirectional long short-term

memory (LSTM) network, with a mean RMSE of 0.16BW, for

GRF perpendicular to the ground surface, on various slopes (22).

However, the latter study calculated the RMSE over multiple

strides, including the flight phase. As the GRF during flight

phase is easy to predict (0N), this lowers the RMSE value

compared to studies that used GRF over stance phase only.

So far, work in estimating GRF in continuous running using

IMUs is all limited to a single dimension. However, human

movement is in three-dimensions, meaning that there are also

forces in three directions. AP forces are actually needed together

with the vertical forces to calculate the provided power by the

limbs in the sagittal plane (23). Even more, to use inverse

dynamics in 3D, GRFs in all dimensions are needed. 3D GRF

estimation is already done for walking gait (24–26) or for

running tasks, such as acceleration or change of direction (27).

However, 3D GRF estimation during continuous running using

IMUs is currently lacking in the literature.

Assembling multiple models into an ensemble can result in a

better performance than single models (28), for example, as

shown in a study on estimating ankle moment (29). This

approach is rarely used in the field of biomechanics and not

applied for the estimation of 3D GRF. An ensemble model can

be constructed by taking the average prediction from ensemble-

members. This approach has the potential to improve the

accuracy of the model by leveraging the strengths of each

individual model, as well as by mitigating the effects of

overfitting. Additionally, combining different models can provide

a more robust model that is less sensitive to variations in the

training data, leading to better generalization on unseen data. To

our knowledge, this approach is uncommon in biomechanics.

However, it could boost machine learning model performance to

estimate biomechanical parameters like GRF.

Machine learning models to estimate GRF can be either

generalized or personalized. It is evident that personalized

machine learning models will result in much better model

performance, as shown previously (21, 22). Personal models can

be useful for research purposes, in which biomechanical load

data of a small number of subjects will be tracked longitudinally,

after creation of personal machine learning models. However,

creating these personal models is time consuming, especially if

more subjects are included, and requires the availability of a (3D)

instrumented treadmill. Creating generic models is more

challenging, as they should be able to handle between-subject

variability in the data (20). The upside is that these models can

be used “out of the box”. Once a generic model is created, no

specific model training is needed to estimate 3D GRF for new

subjects. Therefore, this work focussed on generic models only.

As physics-based techniques and machine learning have both

been used to estimate vertical GRF, it opens up the opportunity

to apply a so-called hybrid model. With a hybrid model, the

domain knowledge of the physics-based model is combined with

a machine learning model, and this combination can lead to

improved model performance (27). For example, it is applied

with success in chemical engineering, where physical

conservation laws were applied and corrected by an artificial
frontiersin.org
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neural network that estimated the error of the physical laws (30).

Another method could be to enrich the input space of the model

with a physical estimate. With a hybrid model, the physical

explanatory power can be used while the benefits of fitting with

machine learning are utilized.

This study aims to develop a method to estimate 3D GRF

waveforms during running using data from three IMUs on the

human body. This model could be used to estimate GRF in the

runner’s environment to get insights in biomechanical loading, in

the absence of force measurement. An ensemble artificial neural

network (ANN) will be used to create generic models based on

data for running at different velocities and stride frequencies.

Additionally, an ensemble hybrid ANN will be used to combine

the exploratory power of a physical model with the fitting

performance of machine learning. It is hypothesized that this

hybrid model will outperform the physical and machine

learning-based approaches published in other research. An

accurate GRF estimation for monitoring biomechanical load in

the runners environment could help providing future insights in

aetiology for running injuries.
2. Materials and methods

Sixteen runners participated in the study after signing informed

consent. Inclusion criteria consisted of (1) running a minimum of

15 km/week for the last six months, (2) running with a heel strike,

(3) being able to run 14 km/h for 5 min and (4) no major injuries

in the past six months. A major injury was defined as an injury that

caused a runner to shorten runs or skip runs because of the injury.

Participants were recruited via local athletics and triathlon

associations. The ethics committees (CCMO Arnhem/Nijmegen

and the University of Twente) approved the protocol.
2.1. Measurement setup

Participants were equipped with eight IMUs following the

lower body configuration from the manufacturer (Xsens MTx,

Xsens Technologies, Enschede, The Netherlands) with a sampling

frequency of 240 Hz. As part of a larger study, a total of eight

sensors were placed, on the feet, (proximal) tibias, thighs, pelvis,

and trunk. Sensors were placed using double-sided tape and

covered with additional tape. Leg sleeves were pulled over the

sensors on the tibias. A sensor-to-segment calibration was

performed according to the sensor manufacturer’s instructions.

GRF data were collected with the 3D force plate instrumented

dual-belt treadmill (Y-mill, Motek Medical, Amsterdam, The

Netherlands), with a sampling frequency of 2,048 Hz.
2.2. Running protocol

Before the first running trial, a static trial was performed on

the treadmill, which was used to obtain the subjects’ body mass.

Subsequently, the participants ran in random order at 10, 12
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and 14 km/h (2.8, 3.3 and 3.9 m/s) at a preferred, high, and low

stride frequency. The high and low stride frequencies were

determined by the preferred stride frequency ± 10%. The stride

frequencies were imposed using a metronome, indicating each

foot strike. Subjects ran each trial for 90 s. Each trial started

and finished with three vertical jumps to synchronize the

IMUs and treadmill (see Data processing). There was a three-

minute break between each trial to prevent the participants

from fatiguing.
2.3. Data processing

The data from the treadmill was filtered using a sixth order,

zero-phase shift low pass Butterworth filter with a cut-off

frequency of 30 Hz. Then the data were down sampled to

240 Hz, to match the IMU system. The IMU output used was

3D sensor free acceleration, this gravity subtracted acceleration in

the global frame, was used in this work. The cross-correlation

between the sum of the sensor free acceleration along the axis of

both tibias and vertical GRF was used to find the temporal offset

between the two systems. From the middle of each trial, 40

strides were taken. Flight-phase was detected and labelled if the

measured vertical GRF was <25N for longer than 0.05s, it was

labelled as stance-phase if the measured GRF (mGRF) was >25N

for longer than 0.05s.
2.4. Model structures

In this study, a direct machine learning model (“direct”) and

hybrid machine learning model (“hybrid”) were trained, tested,

and compared to a physical model. The direct and hybrid model

are comparable in structure, the main difference is that the

hybrid model uses the physical estimate as input, in addition to

the sensor acceleration data (Figure 1).

For the physical estimate, a previously developed model based

on Newton’s second law was used to estimate the vertical GRF

from IMU data from the pelvis and both tibias (18). The vertical

GRF is estimated as:

eGRF ¼ (mb � g)þ
X3

i

mb �WFi � (az,i),

with body mass mb, gravitational acceleration g, sensor number i,

weight factor WFi and sensor free acceleration in the vertical

direction az . The weight factor corresponding to the pelvis data

was set to 0.55. The weight factor corresponding to the tibias was

set to 0.23. The sensor free acceleration in the vertical direction

was filtered for the pelvis using a 2nd order bidirectional

Butterworth filter with a cut-off frequency at 5.97 Hz. The tibia

sensor free acceleration in vertical direction was filtered using a

1st order bidirectional Butterworth filter with a cut-off frequency

at 8.74 Hz. The weight factors and cut-off frequencies are taken

from (18), where a model optimization resulted in this set of
frontiersin.org
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FIGURE 1

Overview of the different models. A ensemble artificial neural network (ensANN) was used to estimate 3-dimensinal ground reaction force (3D eGRF
directly). Also, a hybrid model was created by adding the physical estimate as additional input for the ensANN. The estimates of the models were
then compared with measured GRF (mGRF) to evaluate the performance.
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parameters to estimate vertical GRF. As there are no physical

models for the mediolateral and posterior-anterior direction in

running, only the vertical direction is used as physical input for

the hybrid model.
2.5. Machine learning model architecture

Both the direct and hybrid models use the same ANN

architecture. The sensor-free acceleration data were filtered using

a 3rd order bidirectional Butterworth low-pass filter with a cut-

off frequency at 10 Hz. The used ANNs had 2 layers with 100

neurons and ReLU activation function. Mean squared error was

used as the loss function, and adaptive moment estimation

(Adam) was used as the update rule (31). Models were trained

for 1,000 epochs, with a batch size of 250. An early stopping

criterium was implemented as the validation loss did not

decrease for more than 100 epochs. In that case, the model with

the lowest validation loss was used. All models were

implemented in python 3.8 using the TensorFlow backend (32).
FIGURE 2

The leave-one-subject-out cross-validation process to create an ensemble m
validation and 7 for training. Every combination is used as an ensemble-memb
one subject, the test subject was changed and repeated until seven different
validation.
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2.6. Model testing and ensemble

Data of one subject was left out from the data set to train and

validate the models on the other subjects. Seven different models

were trained with randomly created splits with four subjects for

validation and seven subjects for training (Figure 2). Data from

all velocities and stride frequencies were used. Then, the average

estimated GRF (eGRF) over these seven models was calculated

for the left-out-subject to get the ensemble eGRF. This process

was repeated, and every subject was left out. This leave-one-

subject-out cross-validation was used to test how well the models

work for the data of subjects that the model was never trained or

validated for (33).
2.7. Model evaluation

To evaluate the models in terms of accuracy, the root mean

square error (RMSE) of the normalized GRF expressed in

bodyweight and Pearson correlation coefficient were calculated

between the eGRF and mGRF for all three directions. To
odel with 7 random validation-test splits per subject, with four subjects for
er and combined in the ensemble model. After 7 models were trained for
models were fitted for every test to have a leave-one-subject-out cross
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compare the estimations between the different directions, the

relative RMSE (rRMSE) was calculated as

rRMSE ¼ RMSE
max(mGRF)�min(mGRF)

�100,

where the RMSE is corrected for the full range of the mGRF

waveform for that specific trial. Besides the RMSE, also the

absolute active peak error was calculated as the percentual

difference between the estimated and measured peak in the

vertical direction. To evaluate the models in terms of precision,

the Pearson correlation coefficients between the estimated and

mGRF waveforms were calculated. The mentioned error

measures were also calculated for the physical model to compare

performance between the physical and machine learning methods.

A dependent t-test for paired samples was performed between

the different models on the model evaluation parameters to test the

significance of the difference between model performance.
3. Results

Data of 12 subjects (4 female, 8 male, 31.6 ± 9.0 years, 1.78 ±

0.11 m, 73.7 ± 17.5 kg). was included, while data from 4 subjects

had to be excluded (1 × wrong calibration, 1 × not finished

protocol, 2 × not heel strikers). For one subject, two trials were

missing, meaning that a total of 3,520 ((10*3*3*40)−2 × 40)

strides were used to train, validate and test the models.

Leave one-subject-out cross-validation showed that the rRMSE

was lowest in vertical direction for all used models (Table 1).

Although the physical model had the lowest rRMSE (6.6%), it

was not significantly lower than the direct and hybrid models.

The hybrid model was significantly better than the direct model

in vertical direction, with an rRMSE of respectively 7.0 and 7.6%.

In ML and AP direction, the rRMSE values were higher (>8.2%)

compared to the vertical direction, meaning a less accurate

estimate. The variation between subjects and models is shown in

Figure 3.

Pearson correlation coefficients between the estimates and

measured values were moderate (0.57, 0.58) for the direct and
TABLE 1 Model performance for the different models in the different
directions. With root mean squared error (RMSE) in bodyweight (BW),
relative RMSE (rRMSE) as percentage.

Direction Model RMSE
(BW)

rRMSE
(%)

Pearson’s
r

Peak
error (%)

Mediolateral Direct 0.05 ± 0.01 10.9 ± 2.5 0.57 ± 0.21 –

Hybrid 0.05 ± 0.01 10.8 ± 2.5 0.58 ± 0.22 –

Anterior-
posterior

Direct 0.08 ± 0.03 7.8 ± 3.1 0.91 ± 0.09 –

Hybrid 0.07 ± 0.03 7.8 ± 3.2 0.91 ± 0.10 –

Vertical Direct 0.19 ± 0.04* 7.3 ± 1.8* 0.97 ± 0.02*+ 4.21 ± 1.36

Hybrid 0.18 ± 0.04* 6.8 ± 1.7* 0.97 ± 0.01* 4.09 ± 1.35

Physical 0.18 ± 0.03 6.6 ± 1.2 0.98 ± 0.01+ 3.61 ± 1.80

*The denotes a significant difference between the direct and hybrid model with

alpha < 0.05.
+The denotes a significant difference between the direct and physical model with

alpha < 0.05.
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hybrid model in the ML direction. However, a large spread

between the subjects was seen (Figure 4). Even a negative

correlation coefficient was seen for the hybrid model for subject

07. In the AP and vertical direction, a strong correlation (>0.90)

was found on average for both the direct and hybrid model

(Table 1).

Visual inspection of the GRF waveforms shows that most

errors in the estimate are directly after the impact peak

(Figure 5). There are only minor differences between the direct

and hybrid model for the ML and AP direction. For the

ensemble models, also the standard deviation for the ensemble-

members (individual results of leave-one-out-subject-validation)

is plotted (Figure 6). This standard deviation is typically higher

at peak forces. Note also the difference in magnitude of the

forces, the ML force is roughly between −0.2 and 0.2 BW, AP

force between −0.5 and 0.5 and the vertical force between 0 and

3BW for the shown subject.

The ensemble models outperformed most ensemble-members.

For example, for subject 01 in vertical direction, the members had

an rRMSE between 4.9 and 6.7%, the ensemble model had an

rRMSE of 4.7% (Figure 6). This means that the ensemble model

outperforms the best ensemble-member. Furthermore, for 20 out

of 36 GRF estimates, the ensemble model had similar or better

performance than the best ensemble-member.
4. Discussion

Two different ensemble artificial neural networks were

developed to predict continuous, 3D GRF in real-time, with the

final goal to estimate GRF in the runners’ environment. With a

rRMSE of 6.8% over all subjects in vertical direction, the hybrid

model outperformed the direct model (rRMSE of 7.3%). Also,

the relative peak error of the hybrid model was lower than the

direct model (4.1 vs. 4.2%). The rRMSE and relative peak error

indicate that the hybrid model had a higher accuracy than the

direct model in the vertical direction. The precision of the

models in the vertical direction was confirmed by a very strong

correlation with the mGRF (Pearson’s r = 0.97). The performance

of the hybrid and direct model in vertical direction was

comparable with the physical model performance. Model

performance was related to the magnitude of the estimated

forces, meaning that lower forces, e.g. in ML direction, had

higher errors. The findings suggest that, using an ensemble

hybrid model, it is possible to estimate GRF in the AP and

vertical direction using data from an IMU on the pelvis and one

on each tibia. With the current approach, it is not possible, to

precisely estimate the ML forces (Pearson’s r = 0.58).

Although work is done on estimating 3D GRF from IMUs in

walking gait (24–26), and in specific running tasks (34), this is

the first study that used 3 IMUs with the goal to predict GRF in

3D during continuous running. An earlier study estimated 2D

GRF from plantar pressure soles, using a bidirectional LSTM

(23). A rRMSE of 8.0% in AP direction and 7.7% in vertical

direction, which is slightly higher than the results in this study

(7.8% and 6.8% for respectively AP and vertical direction for the
frontiersin.org
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FIGURE 3

Relative root mean squared error (rRMSE) for each axis per model per subject. The exact data can be seen in Supplementary material Table S1. The error
bars indicate the standard deviation.
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hybrid model). Additionally, IMUs can be favourable over pressure

insoles, as the insoles may influence the natural interface between

the feet and the shoe. Model performance in vertical direction

for this study (RMSE of 0.18–0.19BW) is better or comparable

with previously reported models. For example, other studies

found RMSE of 0.28BW (35), 0.27BW (21), 0.21BW (36), 0.19–

0.29BW (37) or 0.16BW (22).

Note that it is tricky to compare different studies as there are

multiple ways to calculate model performance. Often, the RMSE

between the estimated and measured force is calculated over the

stance phase, but not all studies do this (e.g., (19)). Also, the way

how the RMSE is calculated can differ, a lower RMSE can be

achieved if the RMSE calculated over the flight phase as well.

The flight phase is easy to predict as the 3D GRF equals 0N.

This reduces the RMSE compared to the method where only

data from stance phase is used. It can reduce the RMSE by

0.02BW or rRMSE by 1.2% in vertical direction (See

supplementary material). Note that Alcantara et al. also used

flight phase data in their calculation (22). Furthermore, it is

important to keep in mind that RMSE is a relative measure of

model performance, and it depends on the scale of the values.

This is reflected by lower values in RMSE for the ML direction

compared the vertical direction, while the estimate of the vertical

direction is better if we look at the correlation coefficient or

rRMSE (Table 1).
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The ensemble models outperformed the best ensemble-

member for the majority of the GRF estimates (Figure 6), this is

in accordance with another study that uses ensemble models in

biomechanics (29). In an ensemble model, different subjects were

used for training and validation for each ensemble-member. Each

ensemble-member is trained with four subjects for validation and

the remaining for training. Although there is variation between

the validation subjects, it is still expected that the trained

ensemble-member has a bias towards the subjects in the

validation set. This is supported by the fact that there is a

variability in the performance of the ensemble-members (as seen

in the range in Figure 6). The bias towards the validation

subjects is resolved by combining the different ensemble-

members into the ensemble model, improving the generalizability

and thus, performance. Although it comes with the cost of

computation power, it is recommended to use this approach.

There are multiple ways to ensemble a model (28). In the

current study, the average between all members was taken, but

other approaches can be used. For example, the weights of

different members can be altered based on model performance

during training (38). Additionally, model certainty can be

derived from the ensemble-members based on the agreement

between the members. Predicted GRF waveforms could be

discarded if the model confidence is too low. In practice, this can

be used with outdoors running; when a runner takes a sharp
frontiersin.org

https://doi.org/10.3389/fspor.2023.1176466
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/


FIGURE 4

Pearon’s r for each axis per model per subject. The exact data can be seen in Supplementary material Table S2. The error bars indicate the standard
deviation.
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corner or jumps over a tree root, it can lead to a deviation in the

sensor acceleration. This deviation is probably handled differently

by the ensemble-members, causing a low agreement and,

consequently a low certainty of the estimation.

The hybrid model benefits from the input of the vertical eGRF

from the physical model, creating a significantly better estimate in

vertical direction than the direct model. Important to note is that

the parameters of the physical model are estimated using a part

of the data that was used in this study to train the machine

learning models. This could mean that the parameters optimized

in the physical model are optimized on the current dataset;

however, it was shown in a sensitivity analyses that changing

model parameters did not had a large effect on the GRF

estimation (18). This means that the used physical model is

suitable for heel-strikers. In this study, the hybrid model only

used vertical eGRF as additional input besides the sensor

accelerations; however, more than one physical estimate could be

included as input to improve the results. Another method to

combine physical and machine learning models would be by

using the physical estimate as an ensemble-member.

Although there are differences in performance metrics between

the various models, the only significant difference found is in the

vertical direction for the direct and hybrid model for RMSE,

rRMSE and Pearons’ r and between the direct and physical

model in vertical direction for Pearson’s r. This can be explained
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by the high between-subject variability (Figures 3, 4, 7). For the

found significant difference between the direct and hybrid

models, the hybrid model outperforms the direct model for 10

out of 12 subjects (based on RMSE). Although the average RMSE

in vertical direction is lower for the physical model (0.18BW)

compared to the direct model (0.19BW), the direct model still

outperforms the physical model for 4/12 subjects.

One important consideration in evaluating the performance of

a model for predicting ground reaction forces in running is its

clinical and practical applications. While a high degree of

accuracy and precision may be desirable in certain situations,

such as for research purposes, it may not always be necessary or

even desirable in real-world clinical or practical settings. For

example, a model with slightly lower accuracy may be more

useful if it is faster to compute or easier to implement, or less

obtrusive for the user, making it more practical for use in a busy

clinical or personal setting. Additionally, the specific

requirements of the clinical or practical application should be

taken into account when evaluating the model’s performance, as

a model that is highly accurate and precise for one application

may not necessarily be well-suited for another. Also, it is seen

that the latest studies (22, 23) are very similar in accuracy.

Although there is room to improve these models, it might be

more relevant to validate and apply the models in the runners

environment.
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FIGURE 5

The estimated ground reaction curves for the different axes during stance for all models at 12 km/h preferred stride frequency. With the direct model in
blue, hybrid in green, physical in red and reference in orange. Stance phase is replaced by a fixed gap in the data. Note that the y-axis is not the same scale
for the different sub-plots.
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This study focussed on heel strike runners. Even though the

majority of runners has a heel strike [>88% of runners in a

competitive road race with 936 runners (39)] it is still not

applicable to all runners. Another foot strike pattern is related to

another GRF waveform pattern (40), thus the model should still

be validated for other foot strike patterns. Another limitation in

this study is the relatively low amount of participants. To

mitigate this effect, the collected data in this study was made

more diverse by imposing different velocities and stride

frequencies. As data is time consuming to collect and requires

very specific equipment, data augmentation can be used to

enrich the data to get more out of the existing data. Data

augmentation involves generating additional data points from the

original data set through various techniques, such as adding

noise, warping, or scaling the data (41).

The sensor attachment is a point of attention when bridging

the gap to the practice setting. The current study uses tape

fixate the sensors firmly to the body. However, it is not

desirable for daily use to tape the sensors to the body.

Alternatives could be to use straps, attach sensors clothing [e.g.,

commercial available Garmin running pod (42)] or even

integrate sensors in clothing [as done for a football short (43)].

However, the type of attachment does influence the

accelerometer signals (44, 45) and thus the results of the GRF
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prediction. The method for sensor attachment can also influence

the exact sensor location, which also influences the data (46).

Future research should investigate the effect of sensor location

and attachment on the estimation of GRF. Repeatability of the

results when subjects place the sensors themselves should be a

point of attention.

Even though there are numerous studies on estimating GRF in

the lab setting, there is only one study that used eGRF peak during

outside running longitudinally (47), highlighting the gap to the

practical setting. As there are differences in kinematics between

outdoors and treadmill running (13), it is unclear how well the

developed models translate to outdoors circumstances. Probably,

the small changes in kinematics between indoor and outdoor

running might result in changed kinetics. However, as the

models are trained on data from different subjects, with all

unique kinetics and kinematics, it is likely that the models

account for the variability between in and outdoor running as

well. The gap to the practical setting is also identified in a

scoping review of IMU based running gait analyses, suggesting

that future studies should move out of the lab to a less

controlled and more real world-setting to investigate how much

the past lab-based studies can be translated into the outdoor

setting with real-world conditions such as variations in velocity

or road surface (48).
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FIGURE 7

Comparison between performance of the hybrid models and ensemble models with relative root mean squared error (rRMSE) as performance metric.
Performance of the single models is shown as the boxplot, the box indicates the lower to upper quartile values of the data, with an orange line at the
median. The whiskers show the range of the values, with the black circles as outliers. The ensemble models are indicated with a blue circle. Models
were fitted using a leave-one-subject-out cross-validation structure. The average, range and ensemble values can be found in Supplementary
material Table S3.

FIGURE 6

The estimated ground reaction curves for the different axes during stance from the direct model at 12 km/h preferred stride frequency. The shading
indicates the average over the ensemble-members plus/minus one standard deviation. Also, the maximum and minimum values are plotted. Stance
phase is replaced by a fixed gap in the data. Note that the y-axis is not the same scale for the different sub-plots.
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5. Conclusion

The main goal of this study was to estimate ground reaction

force in running in 3D using data from three IMUs. This study

shows that it is possible to estimate GRF in the vertical and

anterior-posterior direction for heel strike runners (Pearson’s r >

0.90). A hybrid model, where data from a physical model is

combined with an artificial neural network, showed the best

performance for the mediolateral and anterior-posterior

direction, however, it was not significantly better than the direct

model. For the vertical direction, the physical model had the

slightly better, but not significantly better performance.

Assembling multiple models into an ensemble increases model

performance. A future application of this model is to quantify

biomechanical load in the real-world environment, to gain

insights in the development of running injuries.
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