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Inspired by the highly efficient information processing of the brain, which is based
on the chemistry and physics of biological tissue, any material system and its
physical properties could in principle be exploited for computation. However, it is
not always obvious how to use a material system’s computational potential to the
fullest. Here, we operate a dopant network processing unit (DNPU) as a tuneable
extreme learning machine (ELM) and combine the principles of artificial evolution
and ELM to optimise its computational performance on a non-linear classification
benchmark task. We find that, for this task, there is an optimal, hybrid operation
mode (“tuneable ELM mode”) in between the traditional ELM computing regime
with a fixed DNPU and linearly weighted outputs (“fixed-ELM mode”) and the
regime where the outputs of the non-linear system are directly tuned to generate
the desired output (“direct-output mode”). We show that the tuneable ELM mode
reduces the number of parameters needed to perform a formant-based vowel
recognition benchmark task. Our results emphasise the power of analog in-matter
computing and underline the importance of designing specialised material
systems to optimally utilise their physical properties for computation.
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Introduction

Spurred by the increasing computational demands of artificial intelligence (AI), the
difficulties of conventional computing hardware to keep up with these demands, and
inspired by the highly efficient information processing of the brain, there is a growing
interest in harnessing chemical and physical phenomena in material systems for complex,
efficient computations (Kaspar et al., 2021). This growing field of research goes by different
names, such as unconventional, natural or in-matter computing (Zauner, 2005; Miller et al.,
2018). Designing a material system as a computing device is a non-trivial task, especially on
the nanoscale. Instead, one can train certain designless, disorderedmaterial systems to exhibit
functionality, a process we refer to as “material learning” (Chen et al., 2020), in analogy to
“machine learning” in software systems. In these disordered material systems, a single
trainable parameter influences the whole system. This global tuneability can potentially
reduce the number of parameters that need to be stored subsequently, reducing the necessary
communication between the memory and processing units (Sze et al., 2017).
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A recent example of a designless, tuneable nanoscale material
system that can be trained for functionality using material
learning is a dopant network processing unit (DNPU) (Chen
et al., 2020). It consists of a network of donor or acceptor dopant
atoms in a semiconductor host material. Transport is dominated
by hopping and Coulomb interactions, giving rise to strongly
non-linear IV characteristics, including negative differential
resistance (NDR) (Tertilt et al., 2022). Charge carriers hop
from one dopant atom to another under the influence of input
and control voltages applied at surrounding electrodes. The
output consists of the current(s) measured at one or more
electrodes. For material learning using DNPUs, their electronic
properties should be tuneable, non-linear, and exhibit negative
differential resistance (NDR). This can be realised by varying one
or more control voltages, as shown in Figure 1A. Among other
things, DNPUs have been shown to have the capability of solving
non-linear classification tasks (Chen et al., 2020). There are
several methods to obtain desired functionality in DNPUs by
material learning. We have demonstrated DNPU training with
artificial evolution (Miller and Downing, 2002), off-chip gradient
descent (Ruiz Euler et al., 2020), and more recently, gradient
descent in matter (Boon et al., 2021).

In-matter artificial evolution is a material-learning approach in
which (digital) computer-controlled evolution is used to manipulate
a physical system. It allows the exploitation of complex physical
effects, even if these effects are a priori unknown (Miller et al., 2014).
Off-chip gradient descent is an approach where an artificial neural
network (ANN) is trained to emulate the behaviour of the physical
DNPU. This allows the use of standard deep-learning methods to
determine the control voltages that are needed to reach a desired
functionality (Ruiz Euler et al., 2020). Gradient descent in
matter is a method that uses lock-in techniques to extract
the gradient in the output with respect to the tuneable
parameters by perturbing these parameters in parallel with
different frequencies. Using the extracted gradient, it is
possible to gradually move towards a desired functionality
directly in the material system (Boon et al., 2021).

Another popular framework for utilising the complexity of
disordered material systems is reservoir computing (RC).
Independently developed RC schemes are echo state networks
(ESNs) (Jaeger, 2010), liquid state machines (LSMs) (Maass et al.,
2002), and the backpropagation-decorrelation (BPDC) on-line
learning rule (Steil, 2004). Generally, the concept of RC was used
in combination with recurrent neural networks (RNNs), which

FIGURE 1
Dopant Network Processing Units as tuneable extreme learning machines: (A) IV curves measured between an input and an output electrode of a
12-electrode dopant network processing unit (DNPU), for different control voltages applied to a third control electrode (0 V is applied to the other
electrodes), exhibiting negative differential resistance (NDR) when the control voltage increases (orange and blue curves). Inset: atomic forcemicroscope
(AFM) image of the DNPU. (B) Schematic of a DNPU used in the “tuneable ELMmode”, with input (green), output (grey) and control (blue) electrodes.
The final output of the system is obtained by linearly combining the output currents with tuneable weights. (C) Schematic of the conventional, ‘direct-
output mode’. In this case there is a single output (without linear weight factor), while the other electrodes are either used as input or control. (D)
Schematic of the ‘fixed-ELMmode’: all electrodes are either inputs or outputs, where the latter are linearly combined to form the output. (E) Schematic of
the “tuneable ELM mode”, which is a hybrid of the modes shown in (C) and (D).
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exhibit time-dependent (dynamic) behaviour (Lukoševičius and
Jaeger, 2009). Here, the network (reservoir) projects input values
non-linearly into a high-dimensional space of its reservoir states. To
train such a network to perform a certain task, a linear, supervised
reservoir readout layer is used to map the reservoir states to a desired
output. As only the weights of the readout layer need to be trained,
while the random network itself remains fixed during the training
process, the training is relatively fast and efficient as compared to
other neural network training methods (Tanaka et al., 2019). Its
general applicability makes RC a suitable approach to utilise
disordered material-based networks to perform desired
computations, as has been shown, for example, in network of
carbon nanotubes (Dale et al., 2016) and polymers (Usami et al.,
2021). Another approach that linearly combines the output states of
a network is that of extreme learning machines (ELMs) (Wang et al.,
2021). Recent work shows that a physical ELM is equivalent to a
physical RC system without time dynamics. An opto-electronic
network is used to implement both an RC system and an ELM,
based on a switch that turns a feedback loop on or off, changing the
network from a time-dependent to a time-independent system
(Ortín et al., 2015). Figure 1B) illustrates a 12-electrode DNPU
operated in the tuneable ELM mode, where the black lines indicate
the weighted connections of the readout layer mapping the DNPU’s
output states (currents) to the desired output of the network.

In the present study we move from 8-electrode DNPUs used in
our previous work (Chen et al., 2020; Ruiz Euler et al., 2020; Ruiz-
Euler et al., 2021) to a 12-electrode DNPU to increase the
computational capabilities of DNPUs based on boron-doped
silicon. To further increase the computational capabilities of this
12 electrode DNPU, we operate this DNPU in the tuneable ELM
mode. This tuneable ELM approach is inspired by the work of Dale
et al, (2017), who showed that by combining the concept of RC with
in-matter artificial evolution, it is possible to obtain a reservoir
capable of reaching higher accuracies for RC benchmark tasks (Dale
et al., 2016; Dale et al., 2017). Their work mainly focusses on the use
of micron-scale carbon nanotube/polymer mixtures. DNPUs are
different from these systems in several ways. On the one hand, they
have a smaller footprint and are silicon-based, which may facilitate
scaling and integration with conventional electronics. On the other
hand, DNPUs do not exhibit time dynamics at the timescales of our
measurements, which holds if the measurements are performed
below 1 MHz (Tertilt et al., 2022). This makes these systems, in their
present form, unsuitable to process data directly in the time domain,
but more suitable for the ELM approach. The advantage of physical
ELMs over physical RC systems is the compatibility with the off-chip
gradient descent training technique (Ruiz Euler et al., 2020). This
training technique allows incorporation of the DNPU performing
the ELM function in bigger networks of coupled DNPUs and other
ANN elements to create a new combined network that can be
trained in one training run, after which the task can be implemented
in the material platform. This could lead to a universal training
technique allowing for the use of different material platforms (e.g., a
DNPU as tuneable non-linear ELM combined with memristor
technology for linear operations) to be optimised at the same time.

In Figure 1A, we show that a DNPU needs so-called control or
tuning electrodes to achieve negative differential resistance (NDR).
NDR is necessary to perform complex non-linear classification tasks
such as achieved by the XOR Boolean logic gate (Bose et al., 2015;

Chen et al., 2020).Whenmoving from the single-output mode to the
tuneable ELM mode, the question is to what degree tuneability is
necessary to extract the most non-linear computation from a
DNPU. This is investigated by studying the computational power
of a DNPU in the tuneable ELM operation mode for different
numbers of control (NC) and output (NO) electrodes, using two
input electrodes. To quantify computational power we use the
Vapnik-Chervonenkis, VC dimension (Ruiz-Euler et al., 2021),
defined as the maximum number of non-collinear points that
can be classified into all possible binary groups. Since it is a
priori not known how many control and output electrodes are
needed to realise the highest computational capability, we study
multiple tuneable ELM modes, going from the standard direct-
output mode (NC = 9, NO = 1, Figure 1C) to the fixed-ELM mode
(NC = 0, NO = 10, Figure 1D). As an example, a tuneable ELMmode
with NC = 4, NO = 6 is schematically represented in Figure 1E. First,
we search for the optimal operation mode for performing binary
classification tasks. For the optimal operation mode, we demonstrate
the use of the off-chip gradient descent training technique (Ruiz Euler
et al., 2020) to perform the formant-based vowel recognition
benchmark task (Hillenbrand, 2009) with up to five emulated
DNPUs in parallel. Finally, we will use the vowel recognition
benchmark to show that using DNPUs as tuneable ELMs allows
one to reduce the number of parameters that need to be tuned and
stored as compared to an ANN counterpart. Our results emphasise
the power of in-matter computing and underline the importance of
combining different material platforms in a way that optimises their
computational capabilities.

Results

VC dimension analysis

In Figure 2A the measurement scheme of the VC dimension
analysis is presented. To perform this analysis, seven input points
are defined in a two-dimensional voltage input space (as represented
by the two waveforms in the left part of Figure 2A). These points are
chosen within the working range of −1.1 to 1.1 V of the DNPU that
we used for our study. In Figure 2B, the points used to create the
input voltage waveforms Vin1, Vin2 are plotted against each other.
The first four input points are chosen such that for the fixed-ELM
mode VC dimension four can be realised. To avoid collinearity, the
other points are chosen by placing them collinearly on the line
connecting two points and shifting them from this line to lift
collinearity. Point 5 is placed in between point 1 and 3 and
shifted along the Vin1 input. Point 6 is placed in between points
2 and 4 and shifted along the Vin2 axis. Point 7 is placed in between
points 1 and 4 and shifted both along the Vin1 and Vin2 axis. The
shifts are chosen in a similar way as by Ruiz-Euler et al, (2021) and
such that a good spread of points is obtained. Using these input
points, the complexity of the task can be varied by the number of
points that need to be correctly labelled by the tuneable DNPU ELM
(Figure 2A, middle part), where a perceptron is used to determine
when the points are correctly labelled (see Methods). For each n
input points there are 2n possible labels. In Figure 2A, the DNPU and
the linear layer are trained to yield as output the binary label
[0000110], which is one of the 27 = 128 labels for VC dimension 7.
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The training of the DNPU ELM is performed using a
combination of a computer-assisted genetic algorithm (GA)
(Such et al., 2017), to find the voltages needed to tune the ELM,
and pseudoinverse learning (Tapson and van Schaik, 2013), to find
the optimal weights in the linear readout layer. For each genome (set
of control voltages) in the genetic algorithm, new weights for the
readout layer are found using pseudoinverse learning, after which
the output of the network is mapped to a class probability using a
perceptron (see Methods). For VC dimension 6 (blue points) and 7
(orange points) several different tuneable ELM modes have been
studied, see Figure 2C:NC = 0, 1, 2, 4, six and nine for VC dimension
6. The NC = 0 and NC = 9 cases are the direct output and fixed-ELM
modes, respectively. All values of NC in between correspond to the
tuneable ELM modes. Because for VC dimension six the tuneable
ELM modes have the highest computational capacity, we only
analyse these further for VC dimension 7. We observe that the
NC = 2 mode has the highest computational capability, since this
operation mode has the highest capacity for VC dimension 7.

We now investigate how diversified the outputs from the
terminals are when increasing the number of output terminals of
a DNPU. In the field of RC and ELMs, in general, having more
output states (output channels) in the network results in the
capability of solving more complex tasks. However, this is only

valid when the output states are linearly separable from one another
(Legenstein and Maass, 2007; Dale et al., 2019). The linear
separability of the output states can be quantified by calculating
the rank of the output matrix, where the highest possible rank equals
the number of output states (Legenstein and Maass, 2007). In our
case, for both the full-ELM mode (NC = 0) and the optimal tuneable
ELMmode (NC = 2, for the case used to generate Figure 3B) the rank
of the output matrices is 7, meaning that there are seven linearly
separable outputs. Here we expect that the increase in the VC
dimension for the NC = 2 case originates from the added
tuneability the control electrodes provide. To investigate this
behaviour, we analyse the correlations in the DNPU output
states. This is done by calculating the Pearson correlation
coefficient between all the output currents of the fixed-ELM
mode, as shown in Figure 3A. It is observed that most of the
correlations between the outputs are relatively high (dark blue).
Outputs 1 and 10 as well as five and six even have a correlation
coefficient of 1.00, meaning that they provide the same information.
Therefore, using output electrodes one and six instead as control
electrodes does not result in a loss of information, while allowing to
tune the DNPU towards a more complex output response. Based on
this observation, the choice which electrodes to use as control for the
NC = 1, two modes is straightforward. For the other two tuneable

FIGURE 2
VC dimension analysis: (A) Schematic of the VC dimension benchmark for the raw input waveforms on the left using the DNPU (inputs: green,
controls: blue, outputs: grey) and the readout layer in a tuneable ELM operation mode, with NC = 2 control electrodes and NO = 8 output electrodes
(middle). The output waveform of label [0000110] for VC dimension seven is displayed on the right, where only the output at the plateaus of the input is
shown. (B) Schematic of the seven voltage input points labelled one to seven to indicate which points are used for the analysis of the VC dimension
1–7. (C) The capacity (fraction of correct labels) for the different operation modes, indicated by the number of control electrodes used. Blue: VC
dimension 6 (6 input points). Orange: VC dimension 7 (7 input points, only for the tuneable ELM modes). The DNPU schematics at the x-axis show the
electrode configurations.
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ELMmodes (NC = 4, 6) the control electrodes were chosen such that
at least one output or input electrode is in between the control
electrodes, resulting in the DNPU schematics shown in Figure 2C.
To further illustrate this choice. We show the correlation matrices
for NC = 2 for the label [0000101] in Figure 3B. On average, the
correlation coefficients are closer to 0, showing the increased
variability between the outputs. This also shows the limitation
of using the rank of the output matrix to analyse the linear
separability of the output states. Although we know how many
output states are linearly separable, we do not gain information
about the degree of separability. Here the correlation
coefficients we calculated help to gain a more in-depth
understanding of the behaviour of the output states. Since
the number of output states limits the performance of the
ELM, it is likely that better results can be achieved if the
DNPU has more electrodes to both allow for a higher degree
of tuneability and an increase of the number of output states. In
this case it might be possible to achieve a single set of control
voltages capable of solving VC dimension 7, where, for the NC =
2 case, we had to retrain the DNPU multiple times to get the
necessary information in the output states.

Vowel recognition using tuneable DNPU
ELMs

To demonstrate the capability of the DNPU to perform more
complex tasks, we focus on the Hillenbrand formant-based vowel
recognition benchmark task (Hillenbrand, 1995). For this task, we
emulate the behaviour of multiple DNPUs in parallel. The behaviour
of all DNPUs is derived from a single physical DNPU, so we
“cloned” a single DNPU. Formant-based vowel recognition is a
classification benchmark with a limited number of features and
classes, making it a task that can be solved with a limited number of
DNPU ELMs. Hillenbrand, 1995) extracted the formants from
recordings of a spoken vowel at different times, which are the
broad spectral acoustic maxima caused by acoustic resonances in

the human vocal tract. This allows the transformation of a task that
is commonly performed using dynamic systems to a static
benchmark task, making it compatible with DNPUs. Adult male/
female as well as boy/girl speakers each pronounced 12 different
vowels. From the recordings, a dataset was constructed by first
extracting the fundamental frequency or pitch f0, which is the lowest
frequency present in a spoken vowel. This frequency is directly
linked to the size of the speaker’s vocal cords. Therefore, men tend to
have a low f0 and women a high f0. This is a useful measure to take
into account when classifying over different ages and genders, as is
done in this benchmark (Pernet and Belin, 2012).

After determining f0, Hillenbrand et al. extracted four formants
before the vowel is spoken (known as the “steady state”) and three
formants at 20%, 50% and 80% of the spoken vowel duration. In
Figure 4A we show a spectrogram of the vowel “oa” pronounced by
an adult male, where the vertical features indicate the different
formant frequencies and the horizontal lines the times at which they
have been extracted. This results in a total of 14 features to be used as
the inputs for the task. See Methods for an elaboration on the
Hillenbrand data set and how the formants are mapped to the input
for the DNPU.

To use a single DNPU in theNC = 2 tuneable ELMmode, we need
flexibility in the number of inputs. To reduce this number, while still
using the information from all 14 features, we use a linear discriminant
analysis (LDA), where the input data are linearly mapped to a feature
space in which classes have the highest separation (between-class
covariance) and lowest within-class covariance, see Supplementary
Note S1. After this linearmapping, the input data are normalised to the
DNPU input range (−1.0 to 1.0 V). This results in 10 new inputs
ordered from the best (V1) to the worst (V10) classifying input, see
Figure 4A. In Figure 4B, V2 is plotted against V1. It is seen that the
vowels have less overlap when projected toV1 than toV2, as is expected
when using LDA. To demonstrate the computational capabilities of the
DNPUs without needing to fabricate several of them, we use the single
DNPU analysed above andmeasure its output currents when eitherV1

and V2, V3 and V4, etc., are applied as input voltages. This corresponds
to putting N = one to five identical “cloned” DNPUs in parallel.

FIGURE 3
Correlation matrices. (A) Correlation matrix of the output currents of the DNPU for the fixed ELMmode (NC = 0) for VC dimension 7. The darker the
blue, the higher the correlation in the output currents. (B) Correlation plot for label 5 ([0000101]) of the outputs of the DNPU in the NC = 2 tuneable ELM
mode.
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Effectively, this corresponds to using five different DNPUs, because the
control voltages of the cloned DNPUs will be different, leading to
completely different input-output characteristics (in the next
paragraph we explain how the control voltages are determined).
For the cases with N < 5, the last 2×(5−N) inputs are discarded.
Finally, we use a single linear readout layer with as inputs themeasured
currents, as stored in a digital computer, of the N clones of the DNPU;
see Figure 4C.We call thismethod of performing the vowel recognition
task, where we use a physical device in combination with operations
performed in a computer, a “hybrid” method. We note that the
measured currents contain noise and other uncertainties that are
also present in a fully physical implementation.

In addition to the network with the cloned physical DNPU, a
network is created with N clones of an ANN surrogate model (SM)
of the DNPU that accurately emulates its behaviour (Ruiz Euler
et al., 2020). To train this network for the vowel recognition task, we
use the off-chip gradient descent-based training technique we
introduced in Ref. (Ruiz Euler et al., 2020). We extend that work
by including the linear readout layer in a complete ANN model of
the full network (the SM and the linear readout layer; see Figure 4C).
This allows us to use standard deep-learning methods to train the

complete network for the vowel recognition task. The found N pairs
of control voltages are applied to the physical DNPU, after which the
vowel recognition is performed with the hybrid method.

Figure 4D shows the accuracies in the vowel recognition after the
training, both for the networks with N clones using the DNPU SM
(orange, SM method) and the physical DNPU (blue, hybrid
method). For each N, we performed six training runs (see
“Methods”), of which we chose the five attempts with the highest
recognition accuracy to remove potential outliers. The average
values and standard deviations of these five attempts were used
to obtain the reported accuracies and error bars. We observe an
increase in average accuracy from 71.4% to 89.9% for the hybrid
method betweenN = 1 andN = 3. The saturation in accuracy whenN
is further increased is attributed to the limited added information in
V7-V10. This can be directly linked to the LDA method, where the
first LDA components have the largest linear separability (least
overlap) and the last LDA components the smallest. We elaborate on
this in Supplementary Note S1 and provide an illustration in
Supplementary Figure S1.

We also observe in Figure 4D that transferring the control
voltages found in the SM method to the hybrid method results in

FIGURE 4
Spoken vowel recognition task: (A) Left: spectrogram of an adult male pronouncing “oa”. The horizontal lines indicate the times at which the
formants are extracted. Right: mapping of formant frequencies to voltages V1-V10 using linear discriminant analysis (LDA). (B) V2 versus V1 for all 12 vowels,
showing overlap, especially for V2. (C) Vowel classification by N DNPUs in parallel, with a linear readout layer: V1 and V2 are inputs to DNPU1, V3 and V4 are
inputs to DNPU2, etc. (D) Classification accuracies for N clones of the physical DNPU and of the surrogate model (SM) of the DNPU.
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very limited performance loss (from 90.6% to 89.9% for N = 3). This
shows the robustness of the SMmethod. The small performance loss
is attributed to remaining model uncertainties in the SM and the
inability of the SM to account for noise. In Supplementary Figure S2
we show that when replacing the LDA by a trainable linear layer with
14 inputs and 2N outputs in a further extended ANNmodel, we can
increase the highest accuracy obtained in the vowel recognition task
from 90.6% to 92.6% for the SM method. A similar improvement is
expected for the hybrid method.

Parameter reduction using DNPU ELMs

In this subsection, we show that the number of tuneable
parameters needed in the vowel recognition task using DNPUs
is, for a comparable accuracy, much less than using ANNs. We
consider the network structure discussed in the previous subsection;
see Figure 4. We use ANNs with two inputs and eight outputs, equal
to those of the DNPU in the optimal tuneable ELM mode (NC = 2,
NO = 8; see Figure 2). To reach a comparable recognition accuracy as
with (cloned) DNPUs, the ANNs can be much smaller than the
ANN used in the surrogate model (SM) of the DNPU. We use as
ANN structure a fully-connected non-linear network between the
inputs and the outputs with a ReLU activation function (see
“Methods”). Using N = one to five of these small ANNs,
illustrated in Figure 5A with the red boxes, we make a network
with the same structure as that in Figure 4, but with the ANNs
replacing the (cloned) DNPUs. We train this network and use it to
perform the vowel recognition task from the previous subsection.
Figure 5B compares the achieved average accuracy and error (green)
to the ones achieved using the DNPU (blue). The accuracy and error
were obtained in the same way as in the previous subsection
(extracted from five of the six training runs). We see that,
especially for high N, the average accuracies of the hybrid
measurements using cloned DNPUs are quite close to those of
the ANNs (89.9%, as compared to 91.4% for N = 3).

Since one of the important limitations of deep learning is the
storage and retrieval of the values of the parameters used in an ANN
(Xu et al., 2018), it is important to reduce the number of parameters.

For an ANN, the number of parameters is equal to the number of
weights and biases. In Figure 5C, the number of parameters (weights
+ biases for the ANNs and control voltages for the DNPU) of the
ANN replacing the DNPU in the network is plotted against N
(green: 24N). For the DNPU case, the number of parameters is equal
to the number of control voltages (blue: 2N). The reason why the
number of parameters for the DNPU case is smaller than that for the
ANN case is that the control voltages of the DNPU have a global
effect on the outputs (Chen et al., 2020). While for the DNPU one
parameter influences all outputs, for the ANN one parameter
influences only one output. In the context of ELM/RC
frameworks, this is not a surprising result. However, it does
emphasize an important advantage of implementing ELMs and
RCs in analog hardware. We note that in the consideration of
the number of parameters, we did not take account the weights
in the linear readout layer. The reason is that we want to focus on the
capabilities of the DNPU itself, which can be exploited in various
other tasks than only vowel recognition. We conclude that their
global tuning capability in combination with their non-linear input-
output relation can make DNPUs a powerful tool for in-matter
computation.

Discussion

We have studied the computational power of a dopant network
processing unit (DNPU), consisting of a region with boron dopants
at the surface of a silicon substrate, contacted with 12 electrodes that
can be used as data inputs, controls and outputs. We used the
complex non-linear dependence between input voltages and output
currents of the DNPU, tuned by voltages applied to the control
electrodes, in combination with a linear readout layer. Three modes
of operation were considered: (1) the “fixed-ELM mode”, (2) the
“direct-output mode” and (3) the “tuneable ELM mode”. In the
fixed-ELM mode (1), where the DNPU cannot be tuned, all
electrodes are used as inputs or outputs. In the direct-output
mode (2), the electrodes are used as inputs, tuneable controls
and one or more outputs, without using a readout layer. The
tuneable ELM mode (3) is a combination of 1 and 2, where the

FIGURE 5
Parameter reduction using DNPUs: (A) Same network as in Figure 4C, but with the DNPUs replaced by single-layer fully-connected ANNs (red
boxes). (B) Vowel recognition accuracy for the network with ANNs (green) as compared with the network with DNPUs (blue, same data as in Figure 4D).
(C) Number of tuneable parameters for the network with ANNs (green) compared with the network with DNPUs (blue).
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DNPU can be partially tuned by control voltages. We found that the
tuneable ELM mode provides the highest computational power, as
quantified by the Vapnik-Chervonenkis (VC) dimension. For the
case of two data inputs, we found optimal computation power with
two controls and eight outputs. The fact that the fixed-ELM mode
(10 outputs) has suboptimal computing power was rationalised by
considering the output correlation matrix, which shows strong
correlations between the two outputs adjacent to the each of the
two inputs. In that case the computation power can be increased by
using one of these outputs to as a control electrode, leading to a total
of two controls. We conclude from this analysis that consideration of
the output correlation matrix is important for optimizing the
operation mode of a complex tuneable ELM.

We solved the vowel recognition benchmark task by a hybrid
network of emulated DNPUs in the optimal tuneable ELM mode in
combination with a common linear readout layer, where the
dimension of the input data are reduced while maximising the class
separation, using linear discriminant analysis (LDA). As training
method, an off-chip gradient descent method was applied using a
surrogate model (SM) of the physical DNPU, yielding pairs of control
voltages that we applied to the physical DNPU for validation. The noise
present in the physical DNPU and deviations from the SM lead to only
a small decrease in the accuracy of the vowel recognition task in this
hybrid method, as compared to using the SM. Since the different pairs
of control voltages in the hybrid method effectively correspond to
using different DNPUs, the approach is equivalent to a network using
different physical DNPUs. It should therefore be possible to extend this
approach to large and fully physical networks with a large number of
DNPUs, where also the LDA and the linear readout layer are realised
by physical systems such as memristors (Yao et al., 2020) and optical
networks (Feldmann et al., 2021). Since training of the latter systems is
also done by physically implementing the parameters found by
artificial neural networks (ANNs) (Yao et al., 2020; Feldmann et al.,
2021), it should be possible to incorporate the training of these physical
networks in the off-chip training technique in a similar way as
demonstrated in the present work. This could potentially lead to
physical networks trained for classification tasks that outperform
ANNs regarding inference. We showed that the global, non-linear
tuneability of a DNPU requires fewer parameters than aminimal ANN
that has similar input-output behaviour. Since these parameters should
be stored in memory and retrieved for each recognition task, the use of
DNPUs instead of ANNs will be less memory intensive.

The vowel recognition task demonstrated in this workwas performed
with an accuracy of 89.9% on the test dataset by emulating the behaviour
of multiple DNPUs from one physical DNPU. An increase to 92.6%
accuracy was shown to be possible by training the DNPU and all linear
layers instead of employing LDA. These accuracies are similar to those
reported in other work: 89% using spin-torque nano-oscillator (Romera
et al., 2018) and 93% accuracy using an optical system (Wright et al.,
2022). It should be noted however, that in both these other approaches a
subset of the data was used that only included female speakers and seven
vowels, making the task easier to solve. Since we include both female and
male voices of adults and children on all 12 vowels, the classification task is
intrinsically more difficult. As we reach similar accuracies on this harder
task, we deem it worthwhile exploring our approach further, preferably at
room temperature.

The present work shows the power of using designless
disordered systems, such as DNPUs, for computation and

provides insight into optimally harnessing their computation
power. Building on this, we have indicated how such systems can
be combined with other physical systems, exploiting each system’s
optimal operation type (such as linear vs. non-linear), to create
combined networks for analog computing. On the side of the
DNPUs, several optimisation steps still need to be taken, such as
consistent room temperature operation, increasing the number of
electrodes and going beyond two inputs. Besides this,
interconnecting technologies is always a non-trivial step that
should also be made in this case. At the same time, we did show
the importance of non-linear computation and indicated how
DNPUs as tuneable ELMs could be optimised to fulfil this role in
future analog hardware systems.

Materials and methods

Dopant network processing units

The DNPU used in this work is fabricated in a similar fashion as
the one in Chen et al. (2020). The main difference is the number of
electrodes: 12 instead of 8. These electrodes are made by e-beam
evaporation of 1 nm Ti and 25 nm Pd, placed on top of a boron
doped silicon substrate in a circle with a diameter of 300 nm. The
boron concentration under the contacts is approximately 2×1019 cm-3,
which creates an ohmic contact between the electrodes and the
substrate. Using the electrodes as a mask, the silicon is etched such
that the boron concentration at the receded silicon surface is reduced
to approximately 5×1017 cm-3, resulting in variable-range hopping at
77K (Chen et al., 2020).

Measurements

AllDNPUmeasurements are performed using a customised dipstick
to insert the device into liquid nitrogen (77K). Tomeasure its behaviour,
theDNPU is wire bonded to a printed circuit board (PCB) that has 12 IV
converters connected, allowing us to use up to 12 output channels. These
IV convertors have either 10MΩ or 100MΩ feedback resistances,
allowing us to measure a current range of −400 nA to 400 nA
or −40 nA to 40 nA, respectively. Output electrodes that are close to
the input/control electrodes have relatively large output currents and are
connected to the 10MΩ IV converters. This allows measuring the full
output current range. The electrodes further away from the input/control
electrodes are connected to the 100MΩ IV converters, such that the
relatively small output currents can be determined more accurately. We
calculate the measured voltages back to current values in nA. During the
measurements, the voltages are applied and measured using a national
instruments compactDAQ (NI cDAQ-9132) with two modules, one for
digital-to-analogue conversion (NI-9264) and one for analogue-to-
digital conversion (NI-9202). This measurement system is automated
using Python (https://github.com/BraiNEdarwin).

Vapnik chervonenkis dimension training

To train the network (DNPU + linear readout layer) to yield all
the binary labels of the corresponding VC dimension n we combine
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a genetic algorithm (Such et al., 2017) (GA) with pseudoinverse
learning (Tapson and van Schaik, 2013). This is done by randomly
initialising a set of 25 genomes of control voltages in the
range −1.1 to 1.1 V as optimisable parameters. For each genome
the current waveforms of all the NO outputs of the DNPU are
measured for the input waveforms given in Figure 2A. This yields
elements of an array X of size n×NO that are linearly combined to
obtain the target output waveforms. The NO weightsW of the linear
readout layer are calculated using the pseudo-inverse learning
method, which solves (Tapson and van Schaik, 2013)

W � YtX
+ (1)

where Yt is the target output waveform (consisting of a sequence of
0’s and 1’s) and X+ is the pseudoinverse of X. The 25 obtained
network output waveforms Y � W ·X are evaluated and ranked
based on their fitness (F). In this work we define the fitness as the
correlation between the actual and the target output waveforms (Y
and Yt), multiplied by a sigmoid function of the separation (sep)
between the lowest high (binary 1) and the highest low (binary 0)
state, see Eq. 28:

F � corr Y,Yt( ) p 1

1 + e−2p sep−2( ) (2)

Based on the fitness ranking of the present genomes, the next-
generation of genomes is spawned by: (1) keeping the five best
genomes from the previous generation; (2) slightly altering the five
best genomes by introducing small fluctuations to the genes
(voltages); (3) generating five genomes by cross-breeding (blend
alpha-beta crossover (BLX alpha-beta)) between the five best
performing genomes with a certain probability; (4) five genomes
are obtained via crossbreeding between the top five and five random
genomes; (5) the last five genomes are randomly generated. For
details, we refer to https://github.com/BraiNEdarwin. The GA is
performed for 25 generations.

After the GA optimization, the combination of control voltages
corresponding to the genome with the highest fitness is applied to
the DNPU. To determine whether the correct labels are obtained by
the DNPU and the linear readout layer we use a perceptron. We
train the perceptron with the output waveforms and the correct
labels. The perceptron is trained for 200 epochs using adaptive
moment estimation (Adam) gradient descent for 200 epochs
using a binary cross-entropy loss function (Paszke et al., 2019),
with a learning rate of 7 × 10−3, beta coefficients for running
averages of (0.9, 0.999), a numerical stability constant ε = 10–3,
and a weight decay of 0. After training the perceptron, the
accuracy is determined by calculating the correctly obtained
labels divided by the total number of labels, where a label is
identified as found when 100% accuracy is achieved. For each
label, we make two attempt runs of the whole algorithm. A label
is correctly classified/found when an accuracy of 100% is
reached in one of the two attempts.

Hillenbrand dataset

The Hillenbrand dataset consists of 12 vowels spoken by
male, female, boy and girl speakers. For each of these speakers
the duration of the vowel and the fundamental frequency is

stored. Besides the fundamental frequency, 13 formants are
extracted per speaker, four at the steady state (before
speaking) and 3 at 20%, 50% and 80% of the spoken vowel.
This has been done for 1,669 recordings. In some cases not all
formants could be determined. In these cases the frequency of
the formant is denoted as a zero. We removed these samples
from the dataset, which leaves us with 1,373 recordings. For our
analysis we do not take the duration of the recording as a
network input. We map the formant data to voltages using a
linear weight matrix, normalising the voltages such that they lie
in the DNPUs voltage range (−1.1 V, 1.1 V). The weight matrix is
generated using the linear discriminant analysis (LDA) function
from the Python sklearn library (Pedregosa, 2011). See
Supplementary Note S1 for more details about the LDA.

Off-chip gradient descent

The off-chip gradient descent method uses an artificial neural
network (ANN) trained on the input-output data of the DNPU. This
is done by following the approach used by Ruiz Euler et al, (2020),
where the number of activation electrodes (input + control
electrodes) for the case Nc = 2, No = 8 is reduced from seven to
four and the number of output electrodes is increased from one to 8.
We take 4,850,000 samples to train the ANN. The ANN consists of
five fully connected hidden layers, each with 90 nodes and ReLU
activation functions. The ANN with its weights and biases forms the
surrogate model (SM) of the DNPU.

Next, we combine N = one to five cloned SMs with a fully
connected linear readout layer (Figure 4C) and train the combined
network for the vowel recognition task using gradient descent with
respect to the optimisable parameters, which are the 2N SM control
voltages and the weights and biases of the readout layer. The internal
parameters of the SM are kept constant. For the vowel recognition
training, the 1,373 recordings from which the formants are extracted
are separated into train, validation and test data (861, 256 and
256 recordings, respectively). The validation dataset is used to
prevent overfitting on the training dataset. After each training
epoch, the found set of parameters is only saved if the loss
function for the validation data is also lower than for the
previous set of parameters, giving as a final result the set of
parameters with the lowest validation loss. For the calculation of
the losses, the cross-entropy loss function is implemented using
PyTorch (Paszke et al., 2019). The parameter optimization was done
using Adam for 500 epochs, with a learning rate of 5 × 10−2, beta
coefficients for running averages of (0.9,0.999), a numerical stability
constant of 1 × 10−8, and a weight decay of 0. The results reported in
the main text are obtained for the test dataset using the final
parameters. In total, six different random initialisations and
divisions of the training and validation data are used for training,
keeping the test data unchanged.

In the comparison of the number of parameters (Figure 5), the
small ANNs, with two inputs and eight outputs, have 16 weights and
eight biases. These small ANNs are incorporated in the network
described above, where each cloned DNPU SM is replaced by a small
ANN. The training of this network occurs in exactly the same way as
the network with the cloned SMs, where the 16N weights and 8N
biases take over the role of the 2N DNPU control voltages.
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