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Spin-projected charge conductance in SNN junctions with noncentrosymmetric superconductors
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A superconductor–normal-metal–normal-metal junction in which the superconducting potential is a mixture
between s-wave and p-wave potentials is investigated using the Usadel equation equipped with Tanaka-Nazarov
boundary conditions. This Research Letter provides several ways to distinguish between s-wave+chiral p-wave
superconductors and s-wave+helical p-wave superconductors and a way to determine whether a superconductor
has a mixed pair potential. Thus it is of great importance in the determination of the pair potential of super-
conductors. It is shown that the different spin sectors satisfy independent equations and can thus be calculated
separately even if the d vector depends on the direction of momentum. This greatly simplifies the equations to
be solved. It was found that a difference in conductance for sectors with opposite spins arises if both an s-wave
component and a p-wave component are present, even in the absence of a magnetic field. It is shown that the
spin-projected charge conductance for s-wave + chiral p-wave junctions and s-wave + helical p-wave junctions
is qualitatively similar. A setup containing two superconductor–normal-metal junctions is shown to give a clear
difference between the two types of superconductivity.
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The field of superconductivity has attracted a lot of
attention since its discovery, both experimentally and the-
oretically [1]. Since the discovery of high-temperature su-
perconductors [2–4] and the discovery of novel types of
materials such as topological insulators [5], attention has
shifted more and more towards unconventional supercon-
ductors [6–10], such as spin-triplet superconductors [11,12],
whose existence remains under debate even today [7,13], and
odd-frequency superconductivity [14–17]. Many efforts focus
on superconductors whose crystal has inversion symmetry,
with pair potentials that have a well-defined parity. However,
if the underlying crystal of a superconductor breaks inversion
symmetry, the resulting pair potential is expected to be of
mixed parity [18]. There have been discovered several su-
perconductors whose crystal possesses inversion symmetry
breaking [19–29].

Whereas there has been an effort to understand the
proximity effect induced by these materials [30], a good
understanding of the charge transport in structures con-
taining noncentrosymmetric superconductors is still lacking.
Moreover, little is known about how to distinguish between
different types of mixed-parity superconductors.

In this Research Letter we theoretically investigate the
charge conductance and spin-projected charge conductance
of mixed-parity superconductors and propose an experiment
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using which different types of mixed pair potentials can be
distinguished. The experiment we propose based on our model
can be used to narrow the window of possible pair potentials
of unconventional superconductors.

Mixed potentials in a superconductor–normal-metal–
normal-metal (SNN) junction were studied in the
one-dimensional (1D) case using a form [31] of
the Tanaka-Nazarov boundary conditions. However, in
the one-dimensional case, one cannot distinguish between
different types of s-wave+p-wave potentials. The 1D Fermi
surface consists of only two points; so there is only one
even (s) and one odd (p) mode. Therefore, in this Research
Letter the method is generalized to the two-dimensional
s-wave+chiral p-wave junctions and s-wave+helical p-wave
junctions (Fig. 1). Moreover, the expression for the resistance
of the junction following from the Keldysh equations [31] has
been generalized, allowing the distribution functions to be
opposite for opposite spins.

It is shown that the density of states, the charge con-
ductance, and the spin-projected charge conductance can
all be used to distinguish between s-wave+chiral p-wave
superconductors and s-wave+helical p-wave superconduc-
tors. In addition, it is shown that the spin-projected charge
conductance can be used to determine whether a su-
perconductor has a mixed pair potential. With this, this
Research Letter contributes to the determination of pair po-
tentials in and the understanding of novel unconventional
superconductors.

This Research Letter is organized as follows. First, we
describe the method that we use to model the system and
how to deduce the density of states and conductance from
our results. Then we show the results for junctions with
s-wave+helical p-wave superconductors and s-wave+chiral
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FIG. 1. Illustration of the SNN junction investigated in this Re-
search Letter, with the normal metal bar between the two reservoirs.
The superconductor is indicated with a red color, whereas nor-
mal metals are blue. Using a superconductor with a mixed singlet
(s-wave) and triplet (p-wave) pair potential leads to a difference in
conductance for opposite spins in the SNN junction. Two types of su-
perconducting pair potential are investigated. First, superconductors
having a pair potential with a mixture of s-wave and helical p-wave
[Eq. (2)] components are investigated. For helical superconductors
the magnitude and phase of the d vector are constant, but the di-
rection of the d vector is aligned with the direction of momentum.
In helical superconductors there are two sets of chiral edge modes,
the left- and right-traveling modes. Second, superconductors having
a pair potential with a mixture of s-wave and chiral p-wave [Eq. (3)]
components are investigated. For chiral superconductors the d vector
always points out-of-plane but has a phase dependent on the direction
of momentum, as illustrated by color. The bulk-boundary correspon-
dence implies that for chiral superconductors there is only one type
of chiral edge modes, only the right-moving edge states or only the
left-moving edge states.

p-wave superconductors. We conclude with a summary of the
results and an outlook.

A conventional way to describe mesoscopic systems that
include superconductors is using the quasiclassical Keldysh
Green’s function technique [32,33], where the Green’s func-
tion is given by G = [GR GK

0 GA], where GR, GA, and GK are the
retarded, advanced, and Keldysh Green’s functions in particle-
hole and spin space. The Eilenberger equation [34,35] is used
in the clean limit, and the Usadel equation [36] is used in the
dirty limit. The Usadel equation reads

∇(G∇G) = [iEτ3, G], (1)

where E is the energy and τ3, a 4×4 matrix, is the third
Pauli matrix in Nambu space. In this Research Letter,
the Usadel equation will be studied to describe a normal
metal in proximity [37–48] to a superconductor whose pair
potential has both an s-wave component and a p-wave com-
ponent, studied before in different geometries and limits
[30,49–52]. The geometry to be studied is a superconductor–
normal-metal–normal-metal junction (SNN junction). We will
model the normal metal bar in the middle and treat the
other parts as superconducting and normal metal reservoirs,
respectively.

It is assumed that the contact with the normal metal
electrode is very good. Therefore continuity at this in-
terface can be assumed. At the interface between the
bar and the superconducting electrode, the Usadel equa-
tion is equipped with the Tanaka-Nazarov boundary con-
ditions [53]. The Tanaka-Nazarov boundary conditions are
the generalization of Nazarov’s circuit theory [54] to non-
isotropic superconductors, using the fact that odd-parity even-
frequency triplet superconductors may induce even-parity
odd-frequency triplet pairs in a dirty normal metal [55]. Using
these boundary conditions, several types of systems have been
studied [56–63].

In Ref. [31] a form of the Tanaka-Nazarov boundary
conditions was derived, and this form was used to study
one-dimensional SNN junctions. In addition to the one-
dimensional bar, a two-dimensional bar in which the Green’s
function has no y dependence can also be considered, that
is, either a bar that is thin enough that the one-dimensional
Usadel equation can be studied or a junction that is wide, so
that boundaries are far away. In this case, the Usadel equa-
tion does not change, but multiple modes contribute to the
Tanaka-Nazarov conditions [53,54,56]. The modes are inte-
grated as specified in Ref. [56]. For pairs with opposite spin,
the s-wave potential changes sign, whereas the p-wave po-
tential does not. The same parameters in the Tanaka-Nazarov
boundary conditions were used as in Ref. [31]; that is, the
ratio γB between boundary resistance and bar resistance is set
to γB = 2, the transparency is given by T = cos2 φ

cos2 φ+z2 with the
barrier parameter z = 0.75, and the Thouless energy was set
to ETh = D

L2 = 0.02�, where D is the diffusion constant, L is
the length of the junction, and � is the superconducting gap.

The density of states on the normal metal side of the
superconductor–normal-metal interface and the conductance
of the junction were calculated for various ratios between
the magnitudes of the singlet and triplet components of the
pair potential. The calculation for the s-wave + chiral p-wave
junction, for which the d vector is (0, 0, eiφ ), is relatively
similar to the calculation of the one-dimensional s-wave +
p-wave junction, though the phase in the diffusive normal
metal must be computed numerically, as discussed in the Sup-
plemental Material. The calculation of the Green’s function
in the s-wave + helical p-wave junction is more complicated
than for the one-dimensional case studied in Ref. [31] or the
two-dimensional s-wave + px-wave junction and s-wave +
chiral p-wave junction, because the d vector has directional
dependence. For mixed s-wave and helical p-wave supercon-
ductors [64–67],

�̄ = �s1 + �p(cos φσx + sin φσy), �± = �s ± �p, (2)
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whereas for mixed s-wave and chiral p-wave superconduc-
tors [68–70],

�̄ = �s1 + �peiφσz, �± = �s ± �pe±iφ. (3)

In both cases we define

�0 =
√

�2
s + �2

p, (4)

r = �p

�s
. (5)

The retarded Green’s function is a 4×4 matrix. The Usadel
equation for 4×4 matrices is much less convenient to solve
than the Usadel equation for 2×2 matrices, because satisfying
the normalization condition is more complex. Therefore a way
to find two separated equations for 2×2 matrices, as for the
previous cases, was sought.

For the s-wave + chiral p-wave case this separation is
immediate since the equations for the different spin configu-
rations [ 1

2 (1 ± σz )] are decoupled. For the s-wave + helical
p-wave case, however, this is less clear in advance since
the spin direction depends on the direction of momentum.
From expression (2) it is found that the average potential over
(−π

2 , π
2 ) is �s + 2

π
�pσx. Thus it is convenient to transform to

the basis of spins polarized in the x direction via G −→ UGU ,
where

U = 1√
2

[
σx + σz 0

0 σx + σz

]
. (6)

Since Uτ3U = τ3 and U 2 is the identity, this Green’s function
satisfies the Usadel equation with Tanaka-Nazarov boundary
conditions if GS is also transformed to UGSU . It will be shown
that after this transformation, G is of the form

G =

⎡
⎢⎢⎢⎣

cosh θ↑ 0 0 sinh θ↑eiχ↑

0 cosh θ↓ sinh θ↓eiχ↓ 0
0 − sinh θ↓e−iχ↓ − cosh θ↓ 0

− sinh θ↑e−iχ↑ 0 0 − cosh θ↑

⎤
⎥⎥⎥⎦, (7)

where θ↑,↓ and χ↑,↓ are complex scalar functions of position
for 0 � x � L. In the Supplemental Material [71] it is shown
that the Green’s function is indeed always in this subspace,
and even more, that the following relations hold for the up and
down sectors: θ↑ = −θ↓ =: θ , χ↑ = −χ↓ =: χ . Since χ must
be constant due to the absence of a supercurrent in the SNN
junction, the problem is reduced to the following equation for
the function θ (x) and parameter χ :

D
d2θ

dx2
+ 2iE sinh θ = 0, (8)

θ (x = L) = 0, (9)

dθ

dx

∣∣∣∣
x=0

= Sθ (θ (0), χ ), (10)

Sχ (θ (0), χ ) = 0, (11)

where Sθ and Sχ are determined by the Tanaka-Nazarov
boundary conditions. The full expression for these terms is
discussed in more detail in the Supplemental Material. The
density of states normalized to its value in the metallic state
can be calculated from the results using

ρ(E ) = Tr 1
2 (1 + τ3)G, (12)

where τ3 is the third Pauli matrix in Nambu space and 1 is
the 4×4 identity matrix. The resulting local density of states
normalized to the normal metal local density of states is shown
in Fig. 2. If the s-wave component of the pair potential is
dominant, that is, if r < 1, there is a dip in the density of states
at zero energy, whereas r > 1 results in a peak in the density
of states at zero energy. In contrast to a bulk superconductor,
the density of states is finite for all energies because of the
presence of the normal metal electrode. The zero-energy peak
or dip is equally high for mixed potentials as it is for pure

s-wave or helical p-wave superconductors, similar to the one-
dimensional case [31].

This can be understood from Eqs. (2) and (3). In contrast
to the chiral p-wave junctions, the potentials �± are indepen-
dent of angle for helical p-wave junctions. This independence
arises because the eigenvalues of (cos φσx + sin φσy) are al-
ways 1 and −1, regardless of φ. Therefore �+

|�+| is 1 and �−
|�−|

is either 1 (if r < 1) or −1 (if r > 1) regardless of the angle φ.
This should be contrasted with the chiral p-wave case, where
�± = 1√

r2+1
(1 ± reiφ ), which means that �+

|�+| and �−
|�−| will

be dependent on r, φ.
Since the zero-energy results only depend on �+

|�+| and �−
|�−| ,

as discussed in the Supplemental Material, there is a binary
distinction at E = 0 between r < 1 and r > 1 for s-wave +
helical p-wave superconductors and a nonbinary distinction
for s-wave + chiral p-wave junctions. For nonzero energies
the density of states becomes dependent on the actual value
of r. For r < 1 there is a peak at E ≈ �−, then the density
of states slowly decays for E ∈ (�−,�+), and a very sharp
decay towards the normal states for E > �+ follows. If r > 1
there is a dip around E ≈ |�−|, after which the density of
states increases towards the normal states value.

The conductance was also calculated for the s-wave +
helical p-wave superconductor. Observe that if the retarded
part CR satisfies CR(−φ) = YCR(φ)Y , then the advanced part
CA and Keldysh part CK satisfy YCA(−φ)Y = CA(φ) and
YCK (−φ)Y = CK (φ) as well.

Thus the equations for the Keldysh part also split into
two systems of equations for 2×2 matrices that are coupled
at the boundary. Even more, the equations θ↑ = −θ↓ and
χ↑ = −χ↓ are still satisfied by the symmetry discussed in the
Supplemental Material, as in the px-wave and chiral p-wave
case. Thus the expression for the resistance of the junction
can be derived in a similar manner to Ref. [31], with an
appropriate definition of IK . The expressions for IK need to
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FIG. 2. The density of states in the (a) s-wave + chiral p-wave junction and (b) s-wave + helical p-wave junction for different values of
r = �p

�s
as a function of energy E , r ∈ {0, 0.5, 2, ∞}, where r = 0 and r = ∞ correspond to s-wave and p-wave pair potentials, respectively.

In the insets it is shown that there is a zero-energy peak in the density of states if the p-wave component is dominant, while there is a dip if the
s-wave component is dominant, similar to the one-dimensional case [31]. Both the peak and the dip have a width of the order of the Thouless
energy. For nonzero energies the density of states becomes dependent on the actual value of r. Parameters are set to γB = 2, z = 0.75, and
ETh = 0.02�.

be compared with the definition in Ref. [31]. The definition of
IK used here is discussed in the Supplemental Material, where
it is also shown that the expression found here reduces to the
expression in Ref. [31] if there is no helical component in the
superconducting pair potential.

The conductance is given by

σ = ∂I

∂V
, (13)

IK = σN

16e

∫ ∞

−∞
dE Tr{τ3(Ḡ∇Ḡ)K}, (14)

σup − σdown = σN

16e

∫ ∞

−∞
dE Tr{τ3σd (Ḡ∇Ḡ)K}, (15)

where σd is a Pauli matrix determined by the direction of the d
vector. For s-wave + chiral p-wave superconductors, σd = σ3

always; for s-wave + helical p-wave superconductors, σd de-
pends on the direction of the interface and can be σ1 or σ2. The
results for the conductance are shown in Fig. 3 normalized to
the conductance σN of the normal metal if it is not in proximity
to the superconductor. Results are shown for r = 0, 1

2 , 2,∞.
The conductance in the s-wave + helical p-wave junction is
very similar to the conductance in the s-wave + chiral p-wave
junction; if �p > �s, there is both a sharp peak and a broader
peak. This is consistent with the appearance of Andreev bound
states with dispersion in Ref. [72].

An important difference compared with the s-wave + chi-
ral p-wave junctions is that for s-wave + helical p-wave
junctions the zero-bias conductance is quantized; that is, it
assumes a constant value for r < 1 and a constant value for
r > 1. Thus, whereas the addition of an s-wave component
lowered the zero-bias conductance peak both when mixed
with a px-wave component and when mixed with a chiral

p-wave component, in helical superconductor junctions the
addition of an s-wave component does not influence the height
of the zero-bias conductance peak. Moreover, the double-peak
structure, as observed in Ref. [73] and discussed for pure
chiral p-wave superconductors in Ref. [57], is robust against
the inclusion of an s-wave component. This is in correspon-
dence with the results for the density of states and the pair
amplitude. The derivation of the conductance in the Sup-
plemental Material explicitly allows for a difference in
conductance for different spin orientations. This feature has
never appeared in superconductors that are spin-singlet or
spin-triplet superconductors without parity mixing; so it is
expected that this difference should vanish for these types of
superconductors. However, for mixed-type superconductors
it is different. The Green’s function has both a singlet com-
ponent and a triplet component; that is, the spin structure is
of the form a + bσ with ab 
= 0. This means that for each
angle there is a spin polarization in the Green’s function.
Averaged over the full angle, this polarization will disappear.
However, for the boundary condition, the average is only
taken over (−π

2 , π
2 ), and it is not clear whether this term

vanishes.
An exact expression for the spin-projected charge con-

ductance can be found in the Supplemental Material. The
spin-projected charge conductance σup − σdown is shown for
the quasi-one-dimensional s-wave + px-wave junction in
Fig. 4 for different values of r. It is confirmed that if
the superconducting pair potential is of a pure s-wave or
p-wave type, the difference in conductance for opposite
spins is zero, as expected. However, if r ∈ (0,∞), there
is a finite difference in conductance for different spins.
For low voltages this difference is very small, but between
eV = |�−| and eV = �+ the spin-projected charge conduc-
tance is not small. The spin-projected charge conductance
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FIG. 3. The conductance of the (a) s-wave + chiral p-wave junction and (b) s-wave + helical p-wave junction for different values of the
parameter r = �p

�s
, r ∈ {0, 0.5, 2, ∞}, where r = 0 and r = ∞ correspond to the s-wave and p-wave pair potentials. There is a clear zero-bias

conductance peak if the p-wave component is dominant, consisting of both a contribution with a width of the order of the Thouless energy
and a broad peak inherent to the dominant p-wave pair potential. If the s-wave component is dominant, there is only a small peak of the width
of the Thouless energy [42]. For the s-wave + helical p-wave superconductor the zero-bias conductance peak is robust against inclusion of
an s-wave component of the pair potential; for the s-wave + chiral p-wave superconductor it is not. Moreover, for eV ∈ (�−,�+), there is a
smooth peak for s-wave + chiral p-wave junctions and two sharper peaks for s-wave + helical p-wave junctions. Parameters are set to γB = 2,
z = 0.75, and ETh = 0.02�.

for s-wave + chiral p-wave superconducting junctions is
qualitatively similar to that for s-wave + helical p-wave
superconducting junctions, though for the s-wave + he-
lical p-wave case the change around eV = �+ is much
sharper. The spin-projected charge conductances for s-wave +
chiral p-wave superconductors and s-wave + helical p-wave

superconductors are qualitatively similar. For s-wave + heli-
cal p-wave superconductors, the change at eV ≈ �+ is much
sharper than for s-wave + chiral p-wave superconductors.
However, this difference might not be clearly visible in ex-
periment due to uncertainties. However, a clear difference
between s-wave + chiral p-wave superconductors and s-wave

FIG. 4. The spin-projected charge conductance for (a) s-wave + chiral p-wave junctions and (b) s-wave + helical p-wave junctions.
For spin-singlet or spin-triplet superconductors without parity mixing, the spin-projected charge conductance is spin independent, but for
mixed-potential superconductors there is a difference in the conductance for different spin orientations. The difference in spin-projected charge
conductance is very small for eV < |�−|, indicated with the left dashed lines, and decays to zero for eV > �+, indicated with the right dashed
lines. The results for s-wave + chiral p-wave junctions and s-wave + helical p-wave junctions are qualitatively similar, though for s-wave +
helical p-wave junctions the transition between the three regimes is much sharper. Parameters are set to γB = 2, z = 0.75, and ETh = 0.02�.
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FIG. 5. Schematic of an experiment that can be used to distinguish between s-wave + chiral p-wave junctions and s-wave + helical p-wave
junctions. The width W of the junction is much larger than the coherence length, so that the horizontal and vertical junctions can be ignored.
For the s-wave + chiral p-wave junction the spin polarization of the current is the same in both bars, whereas for the s-wave + helical p-wave
junction the polarization of the current has a perpendicular direction in one bar compared with the other.

+ helical p-wave superconductors can be observed in the
setup in Fig. 5. Instead of using a single SNN junction, a
corner junction is studied. It is assumed that the size W
of the superconductor is much larger than the coherence
length, so that the different arms of the junction do not
influence each other and thus the two arms can be consid-
ered as separate SNN junctions rather than a single NNSNN
junction.

For the s-wave + chiral p-wave superconductor the d vec-
tor points in the z direction independent of the direction of
momentum; so both bars will show a difference in conduc-
tance for spins polarized in the z direction. For the s-wave +
helical p-wave case, however, the d vector is dependent on
the direction of momentum. In the previous sections it was
shown that the spin polarization depends on the average over
the Green’s function over modes that make an angle less than
π
2 with the outward normal. This means that for one of the
bars the current will be partly polarized along the x direction,
whereas for the other bar the current will be partly polarized
along the y direction. Thus, whereas for the s-wave + chiral p-
wave superconducting junction the spin polarization is in the
same direction, for the s-wave + helical p-wave junction the
spin polarization is in perpendicular directions. This means
that a clear difference between s-wave + chiral p-wave super-
conductors and s-wave + helical p-wave superconductors can
be observed.

In this Research Letter it has been shown that the SNN
junction can be used to distinguish mixed s-wave + p-wave
superconductors from the pure s-wave or p-wave supercon-
ductors. Moreover, it is shown that a spin-projected charge
conductance can be used to distinguish different types of s-
wave + p-wave potentials, such as s-wave + chiral p-wave
potentials and s-wave + helical p-wave potentials. A form
of the Tanaka-Nazarov boundary conditions was applied to

two-dimensional helical s-wave + p-wave junctions. It was
shown that the equations for the helical p-wave junctions can
be solved using the 2×2 matrix formalism, even though there
is a strong coupling between the d vector and the direction
of the momentum in the superconductor. This allows for the
usage of the θ parametrization. Moreover, an expression for
the conductance was found by allowing the distribution func-
tions in the Keldysh component to be spin dependent. In the
case of an s-wave or p-wave superconducting pair potential
without parity mixing, the expression found here reduces to
the known expression. In the case of a mixed potential the
correction to the total conductance is only small; however, it
was found that there is a difference in the conductance for
different spin orientations in case both an s-wave component
and a p-wave component are present in the pair potential. For
future work, it is important to investigate the supercurrent in
junctions containing two superconductors including s-wave +
helical p-wave superconductivity and to calculate whether
dissipationless spin currents are possible. Also, the addition
of a magnetic field or a spin filter to the setup would be
an interesting road to follow. In that way the nontrivial spin
dependence highlighted by the presence of a spin-projected
charge conductance could manifest in quantities that are
easier to measure, such as the density of states or charge
conductance.
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superconductivity and large upper critical field in the non-
centrosymmetric antiferromagnet CeIrGe3, Phys. Rev. B 81,
140507 (2010).

[27] R. Settai, I. Sugitani, Y. Okuda, A. Thamizhavel, M.
Nakashima, Y. Ōnuki, and H. Harima, Pressure-induced super-
conductivity in CeCoGe3 without inversion symmetry, J. Magn.
Magn. Mater. 310, 844 (2007).

[28] E. Bauer, G. Rogl, X.-Q. Chen, R. T. Khan, H. Michor, G.
Hilscher, E. Royanian, K. Kumagai, D. Z. Li, Y. Y. Li, R.
Podloucky, and P. Rogl, Unconventional superconducting phase
in the weakly correlated noncentrosymmetric Mo3Al2C com-
pound, Phys. Rev. B 82, 064511 (2010).

[29] W. Xie, P. Zhang, B. Shen, W. Jiang, G. Pang, T. Shang, C. Cao,
M. Smidman, and H. Yuan, CaPtAs: A new noncentrosymmet-
ric superconductor, Sci. China Phys. Mech. Astron. 63, 237412
(2020).

[30] G. Annunziata, D. Manske, and J. Linder, Proximity effect with
noncentrosymmetric superconductors, Phys. Rev. B 86, 174514
(2012).

[31] Y. Tanaka, T. Kokkeler, and A. Golubov, Theory of proximity
effect in s + p-wave superconductor junctions, Phys. Rev. B
105, 214512 (2022).

[32] W. Belzig, F. K. Wilhelm, C. Bruder, G. Schön, and A. Zaikin,
Quasiclassical Green’s function approach to mesoscopic super-
conductivity, Superlattices Microstruct. 25, 1251 (1999).

[33] V. Chandrasekhar, An introduction to the quasiclassical theory
of superconductivity for diffusive proximity-coupled systems,
in The Physics of Superconductors, edited by K.-H. Bennemann
and J. Ketterson (Springer, Berlin, 2004), pp. 55–110.

[34] G. Eilenberger, Transformation of Gorkov’s equation for type II
superconductors into transport-like equations, Z. Phys. A 214,
195 (1968).

[35] A. Larkin and Y. Ovchinnikov, Quasiclassical method in the
theory of superconductivity, Zh. Eksp. Teor. Fiz. 55, 2262
(1968) [Sov. Phys. JETP 28, 1200 (1969)].

[36] K. D. Usadel, Generalized Diffusion Equation for Supercon-
ducting Alloys, Phys. Rev. Lett. 25, 507 (1970).

[37] B. Josephson, Possible new effects in superconductive tun-
nelling, Phys. Lett. 1, 251 (1962).

[38] B. Josephson, Coupled superconductors, Rev. Mod. Phys. 36,
216 (1964).

L012022-7

https://doi.org/10.1103/RevModPhys.36.225
https://doi.org/10.1103/PhysRevLett.43.1892
https://doi.org/10.1103/PhysRevB.23.5788
https://doi.org/10.1007/BF01303701
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/RevModPhys.63.239
https://doi.org/10.1143/JPSJ.81.011009
https://doi.org/10.1143/PTPS.160.1
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1088/0953-8984/21/16/164210
https://doi.org/10.1088/0034-4885/78/10/104501
https://doi.org/10.1038/nphys3242
https://doi.org/10.1103/PhysRevResearch.2.032023
https://doi.org/10.1103/RevModPhys.77.1321
https://doi.org/10.1143/JPSJ.81.011013
https://doi.org/10.1103/RevModPhys.91.045005
https://doi.org/10.1140/epjst/e2019-900168-0
https://doi.org/10.1103/PhysRevLett.92.027003
https://doi.org/10.1143/JPSJ.73.530
https://doi.org/10.1143/JPSJ.73.3129
https://doi.org/10.1103/PhysRevLett.93.247004
https://doi.org/10.1143/JPSJ.74.1903
https://doi.org/10.1103/PhysRevLett.95.247004
https://doi.org/10.1143/JPSJ.75.043703
https://doi.org/10.1103/PhysRevB.81.140507
https://doi.org/10.1016/j.jmmm.2006.10.717
https://doi.org/10.1103/PhysRevB.82.064511
https://doi.org/10.1007/s11433-019-1488-5
https://doi.org/10.1103/PhysRevB.86.174514
https://doi.org/10.1103/PhysRevB.105.214512
https://doi.org/10.1006/spmi.1999.0710
https://doi.org/10.1007/BF01379803
https://doi.org/10.1103/PhysRevLett.25.507
https://doi.org/10.1016/0031-9163(62)91369-0
https://doi.org/10.1103/RevModPhys.36.216


KOKKELER, TANAKA, AND GOLUBOV PHYSICAL REVIEW RESEARCH 5, L012022 (2023)

[39] B. Josephson, Supercurrents through barriers, Adv. Phys. 14,
419 (1965).

[40] A. I. Larkin and Y. U. N. Ovchinnikov, Nonlinear effects during
the motion of vortices in superconductors, Zh. Eksp. Teor. Fiz.
73, 7 (1977) [Sov. Phys. JETP 46, 155 (1978)].

[41] A. Kastalsky, A. W. Kleinsasser, L. H. Greene, R. Bhat, F. P.
Milliken, and J. P. Harbison, Observation of Pair Currents in
Superconductor-Semiconductor Contacts, Phys. Rev. Lett. 67,
3026 (1991).

[42] A. Volkov, A. Zaitsev, and T. Klapwijk, Proximity effect under
nonequilibrium conditions in double-barrier superconducting
junctions, Phys. C (Amsterdam) 210, 21 (1993).

[43] A. Volkov, The proximity effect and subgap conductiv-
ity in superconductor-barrier-normal metal contacts, Phys. B
(Amsterdam) 203, 267 (1994).

[44] B. J. van Wees, P. de Vries, P. Magnée, and T. M. Klapwijk,
Excess Conductance of Superconductor-Semiconductor Inter-
faces Due to Phase Conjugation Between Electrons and Holes,
Phys. Rev. Lett. 69, 510 (1992).

[45] Y. V. Nazarov, Circuit Theory of Andreev Conductance,
Phys. Rev. Lett. 73, 1420 (1994).

[46] S. Yip, Conductance anomalies for normal-metal–insulator–
superconductor contacts, Phys. Rev. B 52, 15504 (1995).

[47] V. Schmidt, The Physics of Superconductors (Springer, Berlin,
1997).

[48] Y. Tanaka and S. Kashiwaya, Anomalous charge transport
in triplet superconductor junctions, Phys. Rev. B 70, 012507
(2004).

[49] M. Eschrig, C. Iniotakis, and Y. Tanaka, Properties of interfaces
and surfaces in non-centrosymmetric superconductors, in Non-
centrosymmetric Superconductors, edited by E. Bauer and M.
Sigrist, Lecture Notes in Physics Vol. 847 (Springer, Berlin,
2012), pp. 313–357.

[50] P. Gentile, C. Noce, A. Romano, G. Annunziata, J. Linder,
and M. Cuoco, Odd-frequency triplet pairing in mixed-parity
superconductors, arXiv:1109.4885.

[51] Y. Rahnavard, D. Manske, and G. Annunziata, Magnetic
Josephson junctions with noncentrosymmetric superconduc-
tors, Phys. Rev. B 89, 214501 (2014).

[52] V. Mishra, Y. Li, F.-C. Zhang, and S. Kirchner, Effects of
spin-orbit coupling in superconducting proximity devices: Ap-
plication to CoSi2/TiSi2 heterostructures, Phys. Rev. B 103,
184505 (2021).

[53] Y. Tanaka, Y. V. Nazarov, and S. Kashiwaya, Circuit Theory of
Unconventional Superconductor Junctions, Phys. Rev. Lett. 90,
167003 (2003).

[54] Y. V. Nazarov, Novel circuit theory of Andreev reflection,
Superlattices Microstruct. 25, 1221 (1999).

[55] Y. Tanaka and A. A. Golubov, Theory of the Proximity Effect
in Junctions with Unconventional Superconductors, Phys. Rev.
Lett. 98, 037003 (2007).

[56] Y. Tanaka, Y. V. Nazarov, A. A. Golubov, and S.
Kashiwaya, Theory of charge transport in diffusive nor-
mal metal/unconventional singlet superconductor contacts,
Phys. Rev. B 69, 144519 (2004).

[57] Y. Tanaka, S. Kashiwaya, and T. Yokoyama, Theory of en-
hanced proximity effect by midgap Andreev resonant state

in diffusive normal-metal/triplet superconductor junctions,
Phys. Rev. B 71, 094513 (2005).

[58] Y. Asano, Y. Tanaka, A. A. Golubov, and S. Kashiwaya,
Conductance Spectroscopy of Spin-Triplet Superconductors,
Phys. Rev. Lett. 99, 067005 (2007).

[59] T. Yokoyama, Y. Tanaka, and A. A. Golubov, Resonant proxim-
ity effect in normal metal/diffusive ferromagnet/superconductor
junctions, Phys. Rev. B 73, 094501 (2006).

[60] Y. Sawa, T. Yokoyama, Y. Tanaka, and A. A. Golubov, Qua-
siclassical Green’s function theory of the Josephson effect
in chiral p-wave superconductor/diffusive normal metal/chiral
p-wave superconductor junctions, Phys. Rev. B 75, 134508
(2007).

[61] S.-I. Suzuki, A. A. Golubov, Y. Asano, and Y. Tanaka, Effects
of phase coherence on local density of states in superconducting
proximity structures, Phys. Rev. B 100, 024511 (2019).

[62] S.-I. Suzuki, A. A. Golubov, Y. Asano, and Y. Tanaka, Quasi-
particle spectrum in mesoscopic superconducting junctions
with weak magnetization, in Proceedings of the Interna-
tional Conference on Strongly Correlated Electron Systems
(SCES2019), JPS Conference Proceedings Vol. 30 (Physical
Society of Japan, Tokyo, 2020), p. 011045.

[63] T. Kokkeler, Usadel equation for a four terminal junction,
Master’s thesis, University of Twente, 2021.

[64] G. E. Volovik, The Universe in a Helium Droplet, International
Series of Monographs on Physics Vol. 117 (Oxford University
Press, Oxford, 2003).

[65] C. Iniotakis, N. Hayashi, Y. Sawa, T. Yokoyama, U. May,
Y. Tanaka, and M. Sigrist, Andreev bound states and tunnel-
ing characteristics of a noncentrosymmetric superconductor,
Phys. Rev. B 76, 012501 (2007).

[66] X.-L. Qi, T. L. Hughes, S. Raghu, and S.-C. Zhang, Time-
Reversal-Invariant Topological Superconductors and Superflu-
ids in Two and Three Dimensions, Phys. Rev. Lett. 102, 187001
(2009).

[67] Y. Tanaka, T. Yokoyama, A. V. Balatsky, and N. Nagaosa,
Theory of topological spin current in noncentrosymmetric su-
perconductors, Phys. Rev. B 79, 060505 (2009).

[68] M. Matsumoto and M. Sigrist, Quasiparticle states near the
surface and the domain wall in a px ± ipy-wave superconductor,
J. Phys. Soc. Jpn. 68, 994 (1999).

[69] N. Read and D. Green, Paired states of fermions in two di-
mensions with breaking of parity and time-reversal symmetries
and the fractional quantum Hall effect, Phys. Rev. B 61, 10267
(2000).

[70] A. Furusaki, M. Matsumoto, and M. Sigrist, Spontaneous Hall
effect in a chiral p-wave superconductor, Phys. Rev. B 64,
054514 (2001).

[71] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.5.L012022 for an explicit calcula-
tion.

[72] P. Burset, F. Keidel, Y. Tanaka, N. Nagaosa, and B. Trauzettel,
Transport signatures of superconducting hybrids with mixed
singlet and chiral triplet states, Phys. Rev. B 90, 085438 (2014).

[73] S.-P. Chiu, C. Tsuei, S.-S. Yeh, F.-C. Zhang, S. Kirchner, and
J.-J. Lin, Observation of triplet superconductivity in
CoSi2/TiSi2 heterostructures, Sci. Adv. 7, eabg6569 (2021).

L012022-8

https://doi.org/10.1080/00018736500101091
https://doi.org/10.1103/PhysRevLett.67.3026
https://doi.org/10.1016/0921-4534(93)90005-B
https://doi.org/10.1016/0921-4526(94)90068-X
https://doi.org/10.1103/PhysRevLett.69.510
https://doi.org/10.1103/PhysRevLett.73.1420
https://doi.org/10.1103/PhysRevB.52.15504
https://doi.org/10.1103/PhysRevB.70.012507
http://arxiv.org/abs/arXiv:1109.4885
https://doi.org/10.1103/PhysRevB.89.214501
https://doi.org/10.1103/PhysRevB.103.184505
https://doi.org/10.1103/PhysRevLett.90.167003
https://doi.org/10.1006/spmi.1999.0738
https://doi.org/10.1103/PhysRevLett.98.037003
https://doi.org/10.1103/PhysRevB.69.144519
https://doi.org/10.1103/PhysRevB.71.094513
https://doi.org/10.1103/PhysRevLett.99.067005
https://doi.org/10.1103/PhysRevB.73.094501
https://doi.org/10.1103/PhysRevB.75.134508
https://doi.org/10.1103/PhysRevB.100.024511
https://doi.org/10.1103/PhysRevB.76.012501
https://doi.org/10.1103/PhysRevLett.102.187001
https://doi.org/10.1103/PhysRevB.79.060505
https://doi.org/10.1143/JPSJ.68.994
https://doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1103/PhysRevB.64.054514
http://link.aps.org/supplemental/10.1103/PhysRevResearch.5.L012022
https://doi.org/10.1103/PhysRevB.90.085438
https://doi.org/10.1126/sciadv.abg6569

