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A B S T R A C T

By performing first principles calculations, we investigate the edge reconstruction in free-standing 2D-Xene (X
= Si, Ge, Sn) zigzag nanoribbons. Three different periodicities of edge reconstruction (2𝑎, 3𝑎, 4𝑎) are found,
in which the reconstruction with 3𝑎 periodicity has the lowest energy and shows non-magnetic ground state.
The edge reconstruction can be understood by the reconfiguration of the dangling bond states and edge states
at the zigzag edges. Due to the structural buckling, extra bonding states are formed between edge atoms and
inner atoms, accompanied with charge transfer from the edge states to the dangling bond states. This results in
one-third occupied dangling bond states and a Peierls-like structural reconstruction with 3𝑎 periodicity at the
edge which opens a small band gap. With a tight binding model, the reconstruction of the electronic structures
at the edges are revealed by the hopping integrals between different edge X-p orbitals.
1. Introduction

In wake of graphene, the single-element, monoatomic honeycomb
lattices of two-dimensional (2D) Xene, where X = Si, Ge, or Sn (silicene,
germanene, stanene), have attracted great attention for their rich and
exotic electronic properties [1–5]. In contrast to the flat honeycomb
lattice of graphene, the honeycomb lattice of silicene, germanene and
stanene have a buckling between the A and B sublattices [6], breaking
the mirror symmetry along the plane and decreasing the local lattice
symmetry from 𝐷6ℎ to 𝐷3𝑑 . The lowering symmetry and larger atomic
number of silicon, germanium, and tin as compared to carbon induce
a much stronger spin orbit coupling (SOC) in 2D-Xene [7,8], which
generates novel electronic states, such as topological protected gapless
helical modes at the edges and a quantum spin Hall effect [5].

Whereas these 2D layers may be interesting for applications in elec-
tronics, scientific interest has also focused on the electronic properties
of the 2D-Xene nanoribbons, which are one-dimensional (1D) stripes
‘‘cut’’ from the corresponding 2D-Xene monolayers. The nanoribbons
are typical several nanometers in width and quasi-infinite in length.
The most prominently different edge orientations of honeycomb lattices
are called armchair and zigzag edges respectively, see Fig. 1. The edges
of 2D nanosheets introduce edge states and affect the properties of
the nanosheets [9]. The armchair edge is typically insulating, and thus
mostly harmless. The zigzag edge is more interesting, as in its pristine
form it is metallic, and as such, it is prone to electronic and structural
instabilities [10].

The edge states are best understood for graphene [11,12], where the
carbon atoms are in-plane 𝜎-bonded by 𝑠𝑝2 orbitals, and 𝜋-bonded by
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out-of-plane 𝑝𝑧 orbitals. For each carbon atom at the zigzag edge, one
𝜎-bond is missing, leading to an in-plane 𝑠𝑝2 dangling bond state. In
addition, each such edge carbon atom carries an edge states formed by
the 𝜋–𝑝𝑧 state. In buckled X-ene nanoribbons, the two states at a zigzag
edge discussed above, are still present, but they can now hybridize
because of the broken symmetry. This is consistent with the bond-
ing between the atoms being closer to 𝑠𝑝3 𝜎-bonds, which promotes
a non-planar structure. The edge states and reconstructions of Xene
edges are therefore potentially more diverse than those of graphene.
Such as various edge reconstructions were reported for silicene zigzag
nanoribbons [13–16], which are sensitive to the width and strain.

The edge states can be stabilized by edge reconstruction [17,18],
edge passivation [19], and edge closure [20]. Dangling bond states and
edge states in graphene zigzag nanoribbons each give a relatively flat
edge band containing unpaired electrons, which yields a high density
of states (DOS) near the Fermi level. Such a 1D metallic structure is sus-
ceptible to structural instabilities. For instance, an edge reconstruction
that includes Stone–Wales defects or Klein edges [12,17,18], lifts the
dangling bond state away from the Fermi level [21]. Alternatively, if
the zigzag edge is passivated by hydrogen atoms, the dangling bond
state can be removed completely. This still leaves the 𝑝𝑧 edge band
giving a non-trivial (magnetic) electronic structure, however [22,23].
Edge closure is observed in multilayered graphene, where the zigzag
edges between adjacent graphene layers are closed after thermal treat-
ment [20]. The itinerant magnetism introduced by the high DOS near
the Fermi level is believed to be too weak to compete with the struc-
tural reconstruction [11]. Computationally, X-ene zigzag edges have
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Fig. 1. Geometric structures of Germanene nanoribbons. Zigzag edges and armchair
edges are along 𝑥 and 𝑦 direction, respectively. The dashed rectangle represents 9 × 1
unit cell with zigzag edges repeated in 𝑥 direction.

been studied with hydrogen passivation of the edge atoms, leaving edge
states that might be topological because of the significant spin–orbit
coupling in these materials [15,24–27]. Such edges are treated as being
unreconstructed [13]. Pristine, reconstructed silicene and germanene
zigzag edges with 2𝑎 periodicity have also been considered [13–16],
where it is believed that these are metallic and show anti-ferromagnetic
ground states. Recently, Zhang et al. [1] have studied a germanene
layer on top of a Ge2Pt substrate by scanning tunnelling microscopy
and spectroscopy (STM and STS) and have identified reconstructed
zigzag edges with a 4𝑎 periodicity. The differential conductivity at the
edges has a parabolic shape, and indicates that there are no pronounced
metallic edge states.

Although lots of work have been done on the edge states and edge
reconstruction of 2D Xene, inconsistencies exist and little has been
done to systematically map out the edge states of buckled 2D X-ene
nanoribbons, which are dominated by a mixed 𝑠𝑝2 and 𝑠𝑝3 hybridiza-
tion. To clarify these inconsistencies and have a clear picture on the
edge states of 2D Xene nanoribbons, we systematically investigate the
zigzag edge reconstruction of pristine silicene, germanene and stanene
nanoribbons. Surprisingly, we find that all these edges reconstruct with
a 3𝑎 periodicity. The 3𝑎 periodicity can in fact be predicted from the
band filling of the edge states associated with the buckled pristine
edge. The reconstruction opens a gap and leads to non-magnetic ground
states. The change in electronic structure can be analysed in detail with
the help of a tight-binding model.

2. Computational method

We performed first principles calculations with density functional
theory (DFT) using the all-electron projector augmented wave (PAW)
method [28] and a plane-wave basis set with a cut-off energy of 400 eV
as implemented in VASP package [29–31]. The equilibrium structural
and electronic properties for silicene, germanene, and stanene were
calculated in the generalized gradient approximation (GGA) [32] as
listed in Table 1, which agree well with previous work [33]. Zigzag
nanoribbons were periodically repeated in the 𝑥 direction with 9 ribbon
chains in 𝑦 direction to avoid edge interaction and separated by more
than 20 Å of vacuum in 𝑦 and 𝑧 direction to avoid spurious interaction.
We fix the width of nanoribbons to 9 and construct different size of
supercells labelled as 9 × 𝑛 (𝑛 = 1, 2, 3, 4, 5, 6, 7, 8, 9) as shown in
Fig. 1. For the nanoribbons, 3 ribbon chains in the middle are fixed to
mimic the corresponding bulk material and the rest atomic structures
are fully relaxed until the force less than 0.001 eV/Å. 45 × 1 × 1 k-point
sampling is used.
2

Table 1
Calculated structural parameters for 2D-Xene. 𝑎, 𝑑𝑋−𝑋 , and 𝛿 represent the lattice
constant, bond length, and buckling, respectively.

Xene 𝑎 (Å) 𝑑𝑋−𝑋 (Å) 𝛿 (Å)

Silicene 3.86 2.27 0.45
Germanene 4.05 2.44 0.69
Stanene 4.67 2.89 0.85

3. Electronic properties

The band structures and density of states (DOS) of 9 × 1 zigzag Ger-
manene ribbon are plotted in Fig. 2. In Fig. 2(a), two bands introduced
by the two edges are formed in the bandgap, leaving a DOS peak at
the Fermi level. In flat graphene, when 2D nanosheets are cut into 1D
ribbons, one missing bond at the zigzag edge atoms gives rise to edge
states formed by 𝜋–𝑝𝑧 state and also dangling bond states formed by
𝜎–𝑠𝑝2 state in the bandgap because of one bond missing for the edge
atoms. However, the buckling of the atomic lattice as in 2D Xene (X
= Si, Ge, or Sn) leads to hybridization between the edge states and
the dangling bond states and band dispersion as shown in Fig. 2(a).
The orbital resolved DOS on edge atoms shows that the dangling bond
states near the Fermi level mainly consist of 𝑝𝑦 orbitals, while the edge
states formed by 𝑝𝑧 orbitals are pushed up at 0.5 eV. As a result, the
electrons on the edge states are transferred to the dangling states.

The electronic instability induced by the DOS peak at the Fermi
level leads to spin polarized edges. The edges atoms on the same
side are coupled ferromagnetic. The edges atoms on the two sides are
coupled antiferromagnetically (AFM) (Fig. 2(b)) but only 0.6 meV per
atom lower than the ferromagnetic (FM) state (Fig. 2(c)) and 2.8 meV
per atom lower than the non-magnetic (NM) state. The small difference
in energy for AFM and FM states indicates the large ribbon width is
sufficient to decouple the two edges.

The band structures for nonmagnetic states, in-plane antiparallel
(AFM) and parallel (FM) spins with SOC are shown in Fig. 2(d), (e) and
(f), respectively. As the spin orbit coupling is included, the degenerate
part of edge bands near the Fermi levels split (Fig. 2(d)), which can be
attributed to the symmetry breaking at the edges. The SOC lowers the
total energy by 7 meV per atom with respect to the NM states. The mag-
netic anisotropy energy calculated for the spin polarized edges is about
0.7 meV per edge atom, where the spin prefer the in-plane direction.
This is consistent with previous work [34]. The band structures of AFM
states are not changed much by the SOC. In FM states, the spin up and
down channels (red and black lines in Fig. 2(c)) cross at 𝐾 point near
the Fermi level. As shown in Fig. 2(f), the SOC open up a small band gap
of 36 meV at the crossing point of spin up and down bands. This value
is higher than the one found in 2D germanene (∼ 23.9 meV) [5], which
can be attributed to the symmetry breaking at the edges. By comparing
the total energy of different states with and without SOC, the spin prefer
to lie in-plane and antiparallely between two edges with about 0.6
meV per atom lower than the ferromagnetic coupling. In the following
sections, the SOC effect are included for the total energy calculations.
In addition, the AFM states are also considered for the spin polarized
systems.

To have a better understanding of the states introduced by the
edges, we compensate the dangling bond on one side of the nanoribbon
(bottom edge atoms in Fig. 3(a)) by hydrogen atoms. For clarity, the
SOC and spin polarization are not included. From the projected band
structure Fig. 3(b–d), the dangling bond states of unpassivated edge
atoms (Si, Ge, Sn) with 𝑝𝑦 orbital character (X: 𝑝𝑦, X = Si, Ge, Sn) lie
from 𝛤 to 𝐾 near the Fermi level and pull up the edge states (𝐾–𝑋)
with 𝑝𝑧 orbital character (X: 𝑝𝑧) by 0.5 eV, while the dangling states of
the passivated edge atoms (X𝐻 ) are passivated by hydrogen and only
the flat edge states with 𝑝𝑧 orbital character (X𝐻 : 𝑝𝑧) lying from 𝐾 to
𝑋 are left near the Fermi level. The dangling bond bands are nearly
half occupied. If we further remove the edges states of the bottom edge
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Fig. 2. Band structures and density of states of 9 × 1 zigzag Germanene ribbon with non-spin polarization (a), anti-ferromagnetic polarization (b), ferromagnetic polarization (c),
spin orbit coupling (d), anti-ferromagnetic polarization with spin orbit coupling (e), and ferromagnetic polarization with spin orbit coupling (f). The projected DOS on edge atoms
is shown in (a). 𝐾 point denotes 1

3
𝜋.

Fig. 3. Projected band structures (without SOC and spin polarization) of 9 × 1 zigzag silicene (b), germanene (c), and stanene (c) ribbons with hydrogen passivation on one side
of edge atoms. The contribution from the edge atoms 𝑝𝑧 and 𝑝𝑦 orbitals are show as open red circles and half-filled blue circles, respectively in (b–d) where the symbol size is
proportional to the population of the corresponding state. 𝑆𝑖𝐻 , 𝐺𝑒𝐻 and 𝑆𝑛𝐻 indicate edge atoms passivated by hydrogen atoms.
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Table 2
Edge energies (eV/unit cell) for relaxed silicene, germanene, and stanene zigzag ribbons
with different periodicity. The unit cell refers to 9 × 1 cell. The SOC are included. The
AFM states are considered in 𝐸𝑒𝑑𝑔𝑒(Silicene-2𝑎).

𝑛 2 3 4

𝐸𝑒𝑑𝑔𝑒(Silicene) −0.38 −0.44 −0.37
𝐸𝑒𝑑𝑔𝑒(Germanene) −0.43 −0.51 −0.43
𝐸𝑒𝑑𝑔𝑒(Stanene) −0.22 −0.35 −0.23

atom (red circles near the Fermi level in Fig. 3(b–d)), we can see that
2/3 electron in the dangling states are unpaired, which indicates a 3𝑎
eriodicity of structural reconstruction. Dangling bond states should
ave one unpaired electron per edge atom, while the edge states have
/3 electron unpaired per edge atom. However, as shown in Fig. 3(b–
), only 2/3 electron from the dangling states of the edge atom appear
ear the Fermi level (nonbonding states). 1/3 electron from dangling
tates and 1/3 electron from edge states are missing. From the projected
and structures, we can see that from 𝐾–𝑋 there have bonding states
ith 𝑝𝑦 orbital characters (X: 𝑝𝑦) located just below the Fermi level. 1/3

lectrons from the edge states (𝑝𝑧) and 1/3 dangling states (𝑝𝑦) form
extra bonding states with inner atoms by a charge transfer from edge
states (𝑝𝑧) to dangling bond states (𝑝𝑦). This extra bonding states should
be related to the buckling of the structure and would be discussed in
Section 6. It should be noted that the band dispersion of the dangling
bond states and edge states near the Fermi level are slightly different
for those three 2D-Xene nanoribbons, which would be discussed in
Section 6.

4. Edge reconstruction

The electronic instability at the zigzag of 2D-Xene not only lead to
breaking of the time reversal symmetry but also the spatial symmetry,
namely, the edge reconstruction. We relaxed the structures of 2D-Xene
nanoribbons with different supercell size 9 × 𝑛 (𝑛 = 2, 3, 4, 5, 6, 7,
8, 9). The structure reconstruction greatly decreases the total energy.
The energy gain from the structure reconstruction are much larger than
the energy gain from the spin polarization and spin orbit coupling in
Fig. 2. The effect of spin orbit coupling on the structural relaxation
has been examined by comparing the forces on atoms in calculations
with and without SOC for unrelaxed and relaxed structures. The force
differences on each atom are on the order of 0.0001 eV/Å, which
are smaller than the converge criteria of forces in the relaxations.
Therefore, the SOC is not included in the structural relaxations. The
structures are fully relaxed with AFM states to find the most stable
structures. The relaxation generates three different kinds of periodicity:
2𝑎, 3𝑎 and 4𝑎. Relaxation of large supercells generate a combination of
these three periodicities. For example, 9 × 7 supercell gives rise to a
relaxed structure with 3𝑎+4𝑎 periodicity. 9 × 6 supercell has the same
3𝑎 periodicity as the 9 × 3 supercell. Therefore, here we only consider
the structure relaxation with these three different periodicities. We
define the edge energy as

𝐸𝑒𝑑𝑔𝑒 = (𝐸𝑟𝑒𝑙𝑎𝑥𝑒𝑑 − 𝐸𝑢𝑛𝑟𝑒𝑙𝑎𝑥𝑒𝑑 )∕𝑛 (1)

in which 𝐸relaxed and 𝐸unrelaxed are the total energy for the relaxed and
unrelaxed 2D-Xene nanoribbons, respectively, and 𝑛 is the supercell
size along 𝑥 direction defined above. 𝐸𝑒𝑑𝑔𝑒 are calculated by including
the SOC with in-plane antiparallel magnetization between two edges in
the relaxed structures. In fact, only the relaxed silicene zigzag ribbons
with 2𝑎 periodicity is spin polarized as previous reported [13,15,16].
All of the other relaxed structures are not spin polarized, in which the
𝐸𝑒𝑑𝑔𝑒 are calculated with only SOC. Comparing the edge energies with
different periodicities in Table 2, structures with 3𝑎 periodicity have
the lowest edge energies in 2D-Xene zigzag edges, which is consistent
with the band filling of dangling bond states in Fig. 3. From Table 2, the
relaxed structures with 2𝑎 and 4𝑎 periodicity are close in edge energy,
4

a

while the edge energy difference between the 3𝑎 and 2𝑎∕4𝑎 structures
increase from silicene to stanene. For comparison, the relaxed atomic
and electronic band structures (nonmagnetic) with 2𝑎 and 3𝑎 period-
icity are plotted in Fig. 4. With 2𝑎 periodicity, two degenerate states
near the Fermi level give rise to a DOS peak at Fermi level, leading
to an electronic instability. Only in the relaxed silicene-zigzag ribbons
with 2𝑎 periodicity, two edges become spin polarized and are coupled
ntiparallel. The two bands near the Fermi level mainly come from
he 𝑝𝑧 orbitals of the edge atoms, while the 𝑝𝑦 orbitals form bonding–

antibonding states. For relaxed structures with 3𝑎 periodicity, a gap
pens near Fermi level which further lowers the energy with respect
o the structures with 2𝑎 periodicity. The ground states are insulating
nd non-magnetic.

In 1D atom chain, 1/3 filled band (2/3 unparied electron) would
ead to a Peierls distortion in which three atoms come close and form
rimer to open a gap [35]. However, we have 1D nanoribbon with
inite ribbon width. As two edge atoms (A,B) come close (Fig. 4), the
onds between edge atoms and inner atoms would push the third edge
tom (C) down. This is also happened on many crystal surface, such as
i (100) surface [36]. Fig. 5 shows the band structure and projected
harge density of bonding and antibonding states in relaxed 9 × 3
ermanene nanoribbons with one edge passivated by hydrogen atoms.
he unpassivated edge atom A and B move towards each other and form
onding states with mainly 𝑝𝑦 orbital character, while the antibonding
tates are formed on edge atom C. With structure reconstruction, the
npaired electron on edge atom C are transferred to edge atom A and
which forms bonding and antibonding states and opens a band gap.
nly the edge states (GeH:pz) of the passivated edge atom are left near

he Fermi level.

. Tight binding model

The phonon dispersion can be used to check the dynamic stability
f the relaxed structures. However, the calculation of the phonon
ispersion for relaxed structures with low symmetries are expensive
n the present system. For example, the total number of supercells
ith different finite displacements can be as high as several hun-
red. In this paper, instead of calculating the phonon dispersion, we
onstructed a tight binding model based on the maximally localized
annier functions (MLWFs) to better understand the 3𝑎 periodicity of

dge reconstruction. For the fact that the bonding interaction has a
ixing of 𝑠𝑝2 and 𝑠𝑝3 hybridization in the buckled 2D-Xenens, the Bloch
avefunctions are projected onto atom-centred 𝑠𝑝3 orbitals. For ger-
anene monolayer, the 8 × 8 tight binding Hamiltonian is constructed
ith 4 𝑠𝑝3-backward like orbitals that are maximally localized on each
e atom in primitive cell shown in Fig. 6:

(𝒌) =
(

𝐻𝐴𝐴(𝒌) 𝐻𝐴𝐵(𝒌)
𝐻𝐵𝐴(𝒌) 𝐻𝐵𝐵(𝒌)

)

(2)

he Bloch wave functions resulting from VASP calculation are trans-
ormed to an orthogonal set of Wannier functions by

𝜓𝒌𝛼⟩ =
1

√

𝑁

∑

𝑹
𝑒𝑖𝒌⋅(𝑹+𝜏𝛼 )

|𝑹 + 𝜏𝛼⟩ (3)

in which index 𝛼 represents the A or B sublattice and |𝑹 + 𝜏𝛼⟩ denotes
the Wannier function for different orbitals at site 𝑹 + 𝜏𝛼 . In the tight
binding Hamiltonian, the hopping parameters can be expressed in the
form of Wannier function by

𝐻𝛼𝛽 (𝒌) = ⟨𝜓𝒌𝛼|𝐻|𝜓𝒌𝛽⟩

= 1
𝑁

∑

𝑹𝑹′
𝑒𝑖𝒌⋅(𝑹+𝜏𝛼−𝑹′−𝜏𝛽 )

⟨𝑹 + 𝜏𝛼|𝐻|𝑹′ + 𝜏𝛽⟩
(4)

n which ⟨𝑹 + 𝜏𝛼|𝐻|𝑹′ + 𝜏𝛽⟩ = 𝑡𝛼𝛽 (𝑹 − 𝑹′). The bandstructure for
ermanene monolayer based on Wannier function basis fit quite well
ith that from DFT calculations in the energy range we are interested at
s shown in Fig. 6. Only nearest and next nearest hopping are included
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Fig. 4. Band structures (nonmagnetic) and atomic structures of relaxed zigzag ribbon with 2𝑎 and 3𝑎 periodicity for silicene (a, b), germanene (c, d), and stanene (e, f), respectively.
A, B, C label the edge atoms in structures with 3𝑎 periodicity. The spin orbit coupling is included. The contribution from edge atoms 𝑝𝑧 and 𝑝𝑦 orbitals are show as open red
circles and half-filled blue circles, respectively in (a, c, e) where the symbol size is proportional to the population of the corresponding state.
in the tight binding model. It should be noted that although the
projected MLWFs are not most ‘‘physical’’ Wannier functions, this still
can indicate the bonding interaction between Ge atoms qualitatively.
The projected MLWFs on each Ge atom are shown in the rhs of Fig. 6.
The first three Wannier functions are degenerate and mostly in-plane
5

involved in the formation of 𝜎 bonds between Ge atoms, while the last
one lies out of plane forming 𝜋 bonds.

The hopping parameters for the nearest neighbours in the unit cell
obtained from the Wannier projection are listed in Table 3. We can
see that the buckling in germanene introduces the hopping between
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Fig. 5. (a) Atomic structure and (b) orbital projected band structure (without SOC and spin polarization) of relaxed germanene zigzag ribbon with hydrogen passivation on bottom
edge. A, B, C label the edge atoms in structures with 3𝑎 periodicity. The band decomposed partial charge density for the edge bonding and antibonding orbitals are also shown in
(b). The isosurface levels are 0.004 𝑒∕∀3. The contribution from edge atoms 𝑝𝑧 and 𝑝𝑦 orbitals are show as open red circles and half-filled blue circles, respectively in (b) where
the symbol size is proportional to the population of the corresponding state.
Fig. 6. Comparison of bands structures of germanene monolayer from DFT calculation
and TB model based on Wannier function basis. Surface plot for the maximally localized
𝑠𝑝3-like Wannier functions. The yellow and blue regions indicate positive and negative
values of the real part of the wave-function amplitudes. Considering the bonding
interactions, the first three are labelled as 𝜎 orbitals and the last one is labelled as
𝜋 orbital.

Table 3
Hopping integrals 𝑡 (eV) and buckling 𝛿 (Å) of monolayer germanene, unrelaxed and
relaxed 9 × 3 zigzag edge with three edge atoms (A, B, C). Only the nearest hopping
parameters are shown in the table.

𝜖𝜎 𝜖𝜋 t𝜎𝜎 t𝜋𝜋 t𝜎𝜋 𝛿

germanene −0.35 −1.15 −1.33 0.51 ±1.43 0.69
unrelaxed −2.59 −1.25 −1.89 0.19 ±1.03 0.69
Ge A −2.37 −1.47 −2.79 0.20 ±0.56 0.46
Ge B −2.22 −1.52 −2.61 0.35 ±0.47 0.42
Ge C −2.64 −1.74 −2.09 0.24 ±0.88 0.58

in-plane and out-of-plane orbitals (t𝜎𝜋), indicating the hybridization
between these orbitals. With respective to germanene, the decreased
t𝜋𝜋 at unrelaxed zigzag edge indicates a charge transfer from 𝜋 orbitals
to 𝜎 orbitals, which enhances the 𝜎 bonding interaction indicated by the
6

enhanced hopping between 𝜎 orbitals (t𝜎𝜎). This confirms the formation
of extra 𝜎 bond between edge atoms and inner atoms as indicated in
Fig. 3. After the edge reconstruction, two edge atoms (Ge ‘A’ and ‘B’)
move together and one (Ge C) moves down to the inner part. The
reduced buckling (𝛿) of the edge atoms results in a decrease of t𝜎𝜋
accompanied by an increase on both the t𝜋𝜋 and t𝜎𝜎 . The relative large
hopping between 𝜎 orbitals (t𝜎𝜎) on edge atom ‘A’ and ‘B’ indicate an
enhanced 𝜎 bonds (bonding states in Fig. 5(b)) between edge atoms and
their nearest neighbours as indicated in Fig. 5(b), which formed by the
unpaired 2/3 electron left on each edge atom in Fig. 3. The t𝜎𝜎 of edge
atom ‘C’ is much smaller than that on ‘‘A’’ and ‘‘B’’, indicating a charge
transfer from edge atom ‘C’ to ‘A’ and ‘B’ and forms the antibonding
orbitals in Fig. 5(b). As a result, this Peierls-like edge reconstruction
opens a band gap near the Fermi level as seen in Fig. 4.

6. Discussion

For the applications in the nanodevices, the electronic states in-
duced by the edge of 2D materials that affect the bulk properties cannot
be ignored. In contract to the simple 𝑠𝑝2 hybridization between carbon
bonds in graphene, the mixing of 𝑠𝑝2 and 𝑠𝑝3 hybridization in 2D-Xene
gives rise to more challenges to identify these electronic states induced
by the edges and their effects on the bulk electronic and structural
properties. From the projected band structures shown in Fig. 3, we can
find that the 𝜋 edge states mainly consist of 𝑝𝑧 orbitals, while the 𝑝𝑦
orbitals contribute to the dangling bond states. It looks like a typical 𝑠𝑝2
hybridization where the bonding between atoms are dominated by the
in-plane hybridized 𝑠𝑝2 orbitals. However, in 2D-Xene (X = Si, Ge, Sn)
nanoribbons, due to the structural buckling, part of the dangling states
(mainly 𝑠𝑝2 orbitals) hybrid with the edge states (mainly 𝑝𝑧 orbital).

|𝜓⟩ = 𝑠𝑖𝑛𝜃|𝜓𝑠𝑝2 ⟩ + 𝑐𝑜𝑠𝜃|𝜓𝑝𝑧 ⟩. (5)

This leads to the formation of extra bonding states with inner atoms by
a charge transfer from edge states to dangling bond states at the unre-
laxed zigzag edges (Fig. 3). As a result, 2/3 unpaired electron (mainly
𝑠𝑝2 orbitals) is left on the dangling bond states. After the structural
relaxation, a Peierls-like distortion occurs with ‘‘3a’’ periodicity because
of the ‘‘1/3’’ band filling of the dangling bond states. From silicene to
stanene, the dispersion of dangling bond states in Fig. 3 is enhanced by
the increased structural buckling and hybridization between 𝑠𝑝2 and
𝑝𝑧 orbitals, which should change the band filling of the dangling bond
states. However, for 2D-Xene (X = Si, Ge, Sn) zigzag nanoribbons, the
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increased buckling is accompanied with an increase of lattice constant.
The hopping between neighbouring orbitals do not change much from
2D silicene to stanene, which gives 3𝑎 periodicity for all 2D-Xene (X
= Si, Ge, Sn) zigzag nanoribbons. It should be noted that the width
of the nanoribbons in the calculations is large enough to minimize
the interaction between two edges and mimic the edge of 2D Xene,
while the very narrow nanoribbons could have different electronic and
structural properties for the significant interactions between edges.

For the great potential applications in the silicon based semiconduc-
tor industry, edge reconstruction of the silicene zigzag nanoribbon have
been intensively investigated [13,14,16,37]. A (2 × 1) reconstructed
edge structure with a triangle-pentagon pair defect at the edges was
reported for the zigzag Si nanoribbon. However, in order to reproduce
the (2 × 1) reconstructed edges a tetragonal cell doubled along the
ribbon direction is adopted in their calculations, where the edges
would be reconstructed differently with longer tetragonal cell. The
same reconstructed edges are found in our calculations (see Fig. 4(a)).
As shown in Fig. 4(a), an extra bond is formed clearly between the
edge and inner atoms. From the projected band structures, we can see
that the bonding–antibonding bands mainly consist of 𝑝𝑦 orbitals, while
he 𝑝𝑧 orbitals are left near the Fermi level. In the unrelaxed silicene
igzag ribbons, due to the structural buckling, a charge transfer from
𝑧 orbitals to orbitals 𝑝𝑦 push the 𝑝𝑧 orbitals above the Fermi level as
ndicated in Fig. 3(b). In the relaxed structure with 2𝑎 periodicity, the 𝑝𝑦
angle bond states form extra bond with inner atoms, where only the 𝑝𝑧
dge states are left near the Fermi level. The charge come back from the
𝑦 orbital states to the 𝑝𝑧 orbital states. Because of the reconstruction
f the edges, the unbonded 𝑝𝑧 edge states are not the same as the edge
tates in H-passivated edges where the dangling bond states are fully
ompensated by the hydrogen atoms. The unbonded 𝑝𝑧 orbitals can lead
o spin polarization with two edges coupled antiparallel. On the other
and, the structure can be further relaxed by a charge transfer from
he unbonded 𝑝𝑧 states to the 𝑝𝑦 states, in which three edge atoms form
onding–antibonding states shown in Fig. 5(b), resulting in a relaxed
tructure with 3𝑎 periodicity.

The spin orbit coupling in 2D-Xene could play an important role on
he edge electronic states. However, for the structural relaxation, the
riving forces are mainly from the partially occupied dangling bond
tates, in which the SOC effect does not change the band filling of the
angling bond states. As discussed in Section 4, the affect of SOC on
he forces are smaller than the force converge criterion (0.001 eV/Å).
n fact, the SOC has a relative significant effect on the total energy (75
eV per edge atoms energy gain with respect to the NM states) but
ot the forces which is the gradient of potential energy with respect to
isplacement. Therefore, for simplicity, in our work the SOC is included
nly for the total energy calculations of relaxed structures but not the
tructural relaxation. Including SOC in the structural relaxation will
ot change the main results and conclusion in this work. The most
tale structures have reconstructed edges with 3𝑎 periodicity and are
on-magnetic with a small gap near the Fermi level.

The substrate material on which the 2D-Xene are grown can in-
luence the buckling within the 2D layer, resulting from the Van der

aals interaction between them. Zhang et al. reported the germanene
rown on the Ge2Pt substrate have a lattice constant of 4.3 Å and
relative small buckling of 0.2 Å [1], corresponding to 6% tensile

train. However, they found a 4𝑎 periodicity at the zigzag edge of
ermanene. Our calculations are performed at zero Kelvin, while most
f the experiment are done at room temperature. As indicated in
ection 4, the edge energy difference between the relaxed structures
ith different periodicities are on the scale of a few tens meV. At

oom temperature, the thermal energy (∼ 25 meV) might affect the
eriodicity of the zigzag edges. In addition, the edge band filling and
he edge reconstruction can be changed by the possible charge transfer
etween the substrate and the material or tuned by external electric
7

ield.
7. Conclusion

In conclusion, we have investigated the zigzag edge reconstruc-
tion in 2D-Xene (X = Si, Ge, Sn) nanoribbons by performing first
principles calculations and found ground-state edge reconstructions
with 3𝑎 periodicity, which opens a band gap and shows non-magnetic
ground states. The edge reconstruction is determined by the one-third
band filling of the dangling bond states, which originates from the
buckling of the atomic lattice. The buckling of the 2D-Xene edge atoms
introduces the hopping between 𝜋 and 𝜎 orbitals that reconfigures the
band filling and bonding interaction at the edges. This work offers
fundamental insights to the electronic and structural reconstructions at
the pristine zigzag edges of 2D-Xene nanoribbons, which promotes the
future applications related to 2D-Xene edge states and engineering.
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