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géosciences (LOG), France

*CORRESPONDENCE

Juliana Tavora

j.tavora@utwente.nl

RECEIVED 01 May 2023

ACCEPTED 20 June 2023

PUBLISHED 17 July 2023

CITATION
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Turbid coastal plumes carry sediments, nutrients, and pollutants. Satellite remote

sensing is an effective tool for studying water quality parameters in these turbid

plumes while covering a wide range of hydrological and meteorological

conditions. However, determining boundaries of turbid coastal plumes poses a

challenge. Traditionally, thresholds are the approach of choice for plume

detection as they are simple to implement and offer fast processing (especially

important for large datasets). However, thresholds are site-specific and need to

be re-adjusted for different datasets or when meteorological and

hydrodynamical conditions differ. This study compares state-of-the-art

threshold approaches with a novel algorithm (PLUMES) for detecting turbid

coastal plumes from satellite remote sensing, tested for Patos Lagoon, Brazil.

PLUMES is a semi-supervised, and spatially explicit algorithm, and does not

assume a unique plume boundary. Results show that the thresholds and PLUMES

approach each provide advantages and limitations. Compared with thresholds,

the PLUMES algorithm can differentiate both low or high turbidity plumes from

the ambient background waters and limits detection of coastal resuspension

while automatically retrieving metrics of detected plumes (e.g., area, mean

intensity, core location). The study highlights the potential of the PLUMES

algorithm for detecting turbid coastal plumes from satellite remote sensing

products, which can have significantly positive implications for coastal

management. However, PLUMES, despite its demonstrated effectiveness in this

study, has not yet been applied to other study sites.

KEYWORDS

satellite remote sensing, coastal plumes, turbid plumes, PLUMES algorithm,
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1 Introduction

Coastal plumes are defined as regions of turbid freshwater flowing

from a river mouth or estuary (National Oceanic Atmospheric

Administration, 2006). They are the most prominent marker of

exchange between continental sources and the oceans, typically

developing on the inner continental shelf. Coastal plumes exhibit

high turbidity, which results from the significant amount of

Suspended Particulate Matter (SPM) remobilized from heavy rainfall

in the catchment area. These plumes carry high amounts of nutrients

(Lihan et al., 2008), organic matter (Ciotti et al., 1995) and adsorbed

pollutants with the SPM. Their distinct color sets them apart from the

surrounding (clearer) marine waters. These turbid and nutrient-rich

plumes often exhibit light-limited conditions while providing favorable

conditions for reproduction and nursing of adapted species. The

formation of coastal plume induces horizontal and vertical

stratification within the water column (Horner-Devine et al., 2015),

and leads to patterns of deposition and transport of sediments

(Marques et al., 2010b).

The dynamics of coastal plumes is ruled by a series of forcing

mechanisms, such as river discharge, currents, tides, wind regime

and Coriolis effects (e.g., Marques et al., 2009; Monteiro et al., 2011;

Horner-Devine et al., 2015). River discharge represents the main

variability factor in the newly formed (turbid and of low salinity)

plume structure. The wind regime influences propagation of coastal

plumes (Osadchiev and Sedakov, 2019). Tides, on the other hand, are

associated with the structure of these features (Monteiro et al., 2011),

and can contribute to the propagation and reduction of offshore

vertical stratification. In addition, tides alter circulation patterns

between upwelling and subsidence events, being important in plume

radial scattering (Marques et al., 2009). When combined with tides,

river discharge and winds, the Coriolis effect of the earth’s rotation

can alter the dispersion patterns of large plumes. These large plumes

show a characteristic bulge off the coastal inlet before forming a

coastal buoyancy current (Horner-Devine et al., 2015). Small plumes

are, in contrast, strongly influenced by winds and coastal currents

(Saldıás et al., 2016) resulting in a more energetic temporal variability

(Osadchiev and Zavialov, 2020) of flow direction, areas, and shapes,

for example. Lastly, the large spatial and temporal variability of

coastal plumes is affected by changes in bathymetry (Lee and Valle-

Levinson, 2013) and can be highly affected by extreme events (e.g.,

cyclones, hurricanes, storms), due to intensification of forcing

mechanisms (e.g., Yuan et al., 2004).

Traditionally, turbid coastal plumes are studied either with

numerical models or spatially discrete sampling strategies of

shipboard surveys, moored stations, Lagrangian drogues and

drifters (e.g., Zavialov et al., 2003; da Silva D. V. et al., 2022).

Over the last few decades, studies of coastal plumes carried out

using data from satellite remote sensors (examples in Table 1) have

popularized as they can provide high spatial and temporal coverage

(Klemas, 2012) allowing to differentiate plumes (and small plume

features) from the ambient marine water (Klemas, 2012; Ody et al.,

2022), although limited to the surface layer.

Of these known satellite remote sensing-based methods to delimit

coastal plumes, all resort to a (necessary) degree of user supervision

and most apply maximum likelihood technique or thresholds to
Frontiers in Marine Science 02
establish the domain of plumes; approaches that have potential

drawbacks due to their subjective nature. Maximum likelihood

approach is usually carried out for multiple spectral products of the

same time-step, in two phases: the training and the plume

classification itself (either binary or with more classes). In a

preliminary training phase, the statistical criteria for which the

targeted features will be recognized are established. In the

classification phase, these criteria are used according to where the

probability of the likelihood of a pixel belonging to a pre-determined

class is maximum. Guneroglu et al. (2013) further investigated the

potential of automated class selection in the training phase. This

automated process is followed by a K-means classification. Threshold

techniques use a much simpler approach, by applying a pre-set value

commonly determined from trial-and-error (e.g., Petus et al., 2014;

Mendes et al., 2017; Toublanc et al., 2023) or statistical assumptions

(e.g., Lahet and Stramski, 2010; Saldıás et al., 2012; Gangloff et al.,

2017; Maciel et al., 2021). It is, therefore, a challenging task to

precisely extract coastal plumes for the same environment/site at

different times using a pre-set value or trained class because turbidity

is significantly different under different forcing mechanisms (e.g.,

seasonal variability, or changes due to extreme events). In that case,

maximum likelihood approaches need to be re-trained (e.g., Thomas

and Weatherbee, 2006) and thresholds must be adjusted not only for

a specific site but case-by-case (e.g., Maciel et al., 2021), otherwise

plumes may be overestimated, underestimated, or missed. To avoid

overestimation, a few studies have further applied shallow water

masks (typically< 20 m depth; e.g., Gangloff et al., 2017; Ody et al.,

2022), manual adjustments (e.g., Korshenko et al., 2023), or region

growing technique (e.g.,Teodoro et al., 2008; Teodoro and Goncalves,

2011); although the latter is less known for coastal applications but

widely applied in the medical (e.g., Tariq et al., 2019; Kroon, 2022)

and in spatial planning/cartography (e.g., Gonçalves, 2006).

Application of shallow-water masks is intended to prevent the

recurring issue that the thresholding method cannot distinguish

between causes of turbid zones (i.e., turbid wakes, wave-driven

coastal resuspension from the plume itself) like the human eye. For

example, Gangloff et al. (2017) observed that shallow water masks

lead to an underestimation by 20-100% in the Grand Rhône (France)

for small plumes. Alternatively, the region growing technique, by

assuming a spatially explicit context, may also assist in removing

turbid zones that do not, in principle, belong to the region of plume

influence. This region-growing technique scans for contiguous pixels

according to a criterion of similarity (e.g., pixels below or above a

threshold as in Teodoro et al., 2008; Teodoro and Goncalves, 2011)

departing from a location of plume origin (also referred to as seed). In

addition to the approaches mentioned, a new generation of artificial

intelligence (AI) algorithms, including machine learning and deep

learning, has been applied for the detection of various types of plumes

such as volcanic ash (Guerrero Tello et al., 2022; Wilkes et al., 2022),

fire smoke (Khan et al., 2021), atmospheric gases (Finch et al., 2022)

or dust (Berndt et al., 2021) plumes. However, to the best of our

knowledge, no studies have yet addressed the challenge of identifying

turbid coastal plumes applying AI approaches.

This study presents a comparison of state-of-art threshold

approaches and proposes a novel algorithm for coastal plume

detection (PLUMES; PLUme Monitoring in Estuaries and Shelfs),
frontiersin.org
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discussing their advantages and limitations to identify plumes

boundaries. The PLUMES algorithm proposes a semi-supervised

statistically based and spatially explicit algorithm that does not

assume a unique turbid plume characteristic. The Patos Lagoon

turbid coastal plume, in southern Brazil, is used as a pilot

application of the PLUMES algorithm and the applicability of the

method to different estuaries and coastal shelfs is discussed.
2 Materials and Methods

2.1 Study site

This study focuses on the region of plume influence (ROPI) of

the Patos Lagoon (Figure 1). Patos Lagoon is distinctively classified

by Kjerfve (1986) as the largest choked coastal lagoon in the world,

with about 250 km in length and 40 km in width. It is connected to

the south Atlantic Ocean through a narrow inlet with less than 700

m width. This single inlet shelters the navigation channel of one of

the most important commercial ports of southern Brazil, the Port of

Rio Grande (Fernandes et al., 2021).
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The lagoon receives freshwater discharged from two main

tributaries, Guaıb́a and Camaquã Rivers, and a smaller lagoon,

Mirim Lagoon, through the São Gonçalo Channel. Freshwater flow

to the Patos Lagoon varies with season. High values ~3000 m³s-1 are

discharged during the wet season (late winter and early spring),

followed by low-to-moderate flow ~700 m³s-1 during the dry season

(summer and autumn) (Moller et al., 2001; Fernandes et al., 2021).

Of the tributaries, Guaıb́a River is known for its largest contribution

of suspended sediment inputs to the system. The region is affected

by two meteorological systems, the South Atlantic anticyclones and

those of polar origin, which dictates shifts in the prevailing NE

winds (Moller et al., 2001) to S-SW on a time scale from days to

weeks (Moller et al., 1996). The NE-SW wind regime is responsible

for saltwater intrusion in the estuarine zone (Moller et al., 2001;

Bitencourt et al., 2020) or freshwater extrusion (plume formation)

and for vertical salinity gradients (Moller and Fernandes, 2010).

The Patos Lagoon exhibits a microtidal regime, with a mean

range of 0.5 m and diurnal dominance (Moller et al., 2001), having

negligible influence on the lagoon’s circulation (Moller et al., 2001;

Fernandes et al., 2004). As the tidal amplitude is small, the dynamics

of the lagoon and turbid plume is controlled by the combined effect
TABLE 1 Overview of the published studies on plume detection in coastal environments.

Method Parameter Criteria Reference

Maximum
likelihood

nLw(412-555);
nLw(412-670)

Mean, standard deviation and covariance of spectral parameters for each
trained class

(Lihan et al., 2008),
(Thomas and Weatherbee,
2006)

Threshold

SPM

trial-and-error
maximum autocorrelation

(Constantin et al., 2018),
(Zhang et al., 2016),
(Petus et al., 2014)

percentile 95th (Longitude, Latitude, time)
(Gangloff et al., 2017),
(Ody et al., 2022)

SPM and Digital Number* trial-and-error and region growing
(Teodoro et al., 2008),
(Teodoro and Goncalves, 2011)

TOA Rrs(645)* maximum between-class variance with Gaussian filter (Maciel et al., 2021)

TOA Rrs(560)* x Rrs(660)* K-means cluster with automated training class selection (Guneroglu et al., 2013)

Rrs(850)* trial-and-error (Tedstone and Arnold, 2012)

Lw(555)* maximum correlation with rainfall, river discharge, and wind (Machaieie et al., 2022)

nLw(555 or 645)* trial-and-error (Mendes et al., 2017)

nLw(555, 645)* maximum correlation with rainfall (Lahet and Stramski, 2010)

nLw(645)* maximum correlation with river discharge
(Fernández-Nóvoa et al.,
2015)

nLw(555)* maximum correlation with salinity (Saldıás et al., 2012)

Salinity and Rrs(645)* maximum correlation with river discharge (Guo et al., 2017)

Salinity** K-means cluster with manual adjustments (when needed) (Korshenko et al., 2023)

Stratification salinity index** trial-and-error (Toublanc et al., 2023)

Chlorophyll-a trial-and-error of gradient contour (Dzwonkowski and Yan, 2005)

PLUMES Turbidity/SPM Similarity of pixels from control points and region growing check this study
*proxy for turbidity/SPM.
**applied to numerical models.
Acronyms: nLw, Lw, and Rrs are satellite remote sensing-related data meaning normalized water-leaving radiance; water-leaving radiance; and Remote sensing reflectance,respectively. TOA
refers to top-of-atmosphere remote sensing reflectance. Works corresponding to maximum correlation with environmental forcings or to percentile 95th are in bold.
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of wind and river discharge: high river discharge (Q > 2,000 m³s-1)

overrules the dynamics promoted by winds, whereas, in dry periods,

the wind effect becomes the most important forcing mechanism

(Fernandes et al., 2002). Marques et al. (2010a) verified the

importance of the river discharge intensity to its formation and

Zavialov et al. (2018) identified the importance of the local wind

action promoting the plume’s stratification (Zavialov et al., 2018).

More recently, Bortolin et al. (2022) observed that seasonal and

interannual forcings combined (related to El Niño Southern

Oscillation), developed configurations of high and low discharge

responsible for formation of turbid coastal plumes and their spread

within Patos Lagoon and in the inner continental shelf. The authors

also provided in their Supplementary Material a full time series of

true-color composites from Landsat-5, -7, -8 between 1984 and

2020, providing overview of Patos Lagoon coastal ROPI.
2.2 In-situ data

In-situ data comprises time series of turbidity (T) as a surrogate

parameter for SPM, river discharge, and winds. Turbidity data was

available from the database SIstema de Monitoramento da COSTA

Brasileira (SIMCOSTA1) in the period 2016-2021 for four moored

stations (see Figure 1 for locations): Station 1 (buoy RS-1) is located
1 https://simcosta.furg.br/home (accessed on 3 February, 2022).
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near the limit of the lower estuary, station 2 located in the

navigation channel (buoy RS-2), station 3 located at the mouth of

the estuary (buoy RS-3), and an offshore station 4 (buoy RS-4). Each

in-situ station consists of meteo-oceanographic buoys conditioned

to a sampling frequency of 30 minutes. The RS-1 station has a

LOBO type buoy (Land/Ocean Biogeochemical Observatory),

measuring turbidity with a resolution of 0.1 NTU at a wavelength

of 700 nm and the RS-2 and RS-4 stations work with the Axys type

buoy, using the Eco-Triplet optical sensor to measure turbidity at a

wavelength of 700 nm. The SIMCOSTA dataset consists of latitude

and longitude; collection date (second, minute, hour, day, month,

and year), and a series of quality control tests (namely Gross Range

Test; Spike Test; Rate of Change Test; and Flat Line Test),

attributing the flag values for each of the tests: 1 (passed), 2 (not

analyzed), 3 (suspect), 4 (failed) and 9 (missing data). Here we only

keep data with flags attributed as 1.

Among the drivers of the estuarine dynamics, daily river

discharge was recorded in the gauging stations in each of the

lagoon’s tributaries (i.e., from 2013 to 2021) and made available

from Agência Nacional de Águas (ANA2) for Guaıb́a and Camaquã

rivers. River discharge from São Gonçalo Chanel was estimated

through a rating curve method (Oliveira et al., 2015) applied to

water level data available from Agência de Desenvolvimento da

Lagoa Mirim (ALM). The sum of all three river discharges was
FIGURE 1

Estuary of Patos Lagoon, Brazil. Black circles represent the Buoy location (RS-1; RS-2, RS-3, and RS-4). Orange circle is the location of wind data
station. In the Landsat-8 (Operational Land Imager – OLI) true-color composite of 2021-07-12, the dark-yellow triangle represents the control
points used as plume origin and white-filled circles represent control point used as reference background marine waters inPLUMES algorithm (refer
to Section 2.4.2). Landsat-8 image credit: USGS/NASA. Bathymetry data (depth) was provided by Brazilian Navy, Rio Grande Port Authority, Exclusive
Economic Zone National Assessment Program (ReviZEE), and GEBCO and described by da Silva, D. V. et al. (2022) and da Silva P. D. et al. (2022).
2 https://www.gov.br/ana/pt-br (accessed on 26 January, 2023).
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applied. Hourly wind data from 2013-2021 were obtained from

Instituto Nacional de Meteorologia (INMET3) from Rio Grande

(station A802).
2.3 Remote sensing data and processing of
turbidity estimates

Initially, all available level 1 satellite scenes from Landsat-8

(2013-2021), were obtained from the United States Geological

Survey (USGS4). Landsat-8 being part of a long-term

constellation of satellite sensors (since the 80’s), represents an

important tool for coastal management. These images were

atmospherically corrected using POLYMER, a software developed

and maintained by HYGEOS5. POLYMER was chosen for the best

fit with in-situ turbidity data in Patos Lagoon compared with results

in (Tavora et al., 2023). Further, flags were checked for each scene

and pixels were removed where atmospheric correction flags were

indicating atmospheric artifacts.

Water reflectance from these satellite scenes were then

compared with in-situ turbidity data at equivalent dates following

good-practices recommended in IOCCG (2019): (1) the minimum

time difference (i.e.,< 30 min), seeking to apply the comparison with

the maximum of matching properties, (2) 3-by-3-pixel windows

centered at the in-situ data location, (3) with a coefficient of

variation lower than 0.25, and (4) at least 50% of valid pixels

within a sampling box.

Using the match-up data, the semi-analytical algorithm

described in Nechad et al. (2009) (Eq. 1) was empirically

calibrated by applying a least squares minimization with a cost

function (Eq. 2). The approach determines the best fitted

coefficients (A and C) that represent in-situ turbidity data of

Patos Lagoon.

T =  
(A  �   rw)
1 −   rwC

Eq: 1

c2 =on
i=1 Tinsitu (i) −  T(i)

� �2h i
Eq: 2

where A (NTU) and C (-) are regionally calibrated coefficients

computed from the minimization and limited to positive values, rw
is median water reflectance (-), Tin-situ is in-situ turbidity (NTU)

and n is number of match-ups available.

We split the number of matchups between validation and

calibration sets: 70% of total matchups were used for calibration of

A and C, while the remaining (30% of total match-up points) was used

to test and confirm the accuracy achieved by the regionally calibrated

coefficients. After, turbidity (NTU) maps were applied to every scene

using newly estimated A and C coefficients (refer to Supplementary

Material 1 for coefficients and match-up comparison). Lastly, the
3 https://mapas.inmet.gov.br (accessed on 26 January, 2023).

4 https://earthexplorer.usgs.gov/ (accessed on 3 November, 2022).

5 https://www.hygeos.com/polymer.
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turbidity maps were inspected for missing spots from masked cloud

disturbances within the coastal plume domain and removed. This is a

necessary step because maps presenting such atmospheric artifacts

may deteriorate the identification of the shape of the plume and lead

to underestimation of its area (e.g., Petus et al., 2014). Remaining

turbidity maps total 61.
2.4 Methods to detect turbid
coastal plumes

2.4.1 Traditional state-of-art approaches for
plume detection

Traditionally, thresholds are employed for the detection of

turbid coastal plumes from satellite remote sensing (Ody et al.,

2016; Gangloff et al., 2017; Maciel et al., 2021). Hereafter, we employ

two of the most used approaches to detect the plumes and compare

results with the proposed PLUMES method, MAXcorr, (Guo et al.,

2017; Machaieie et al., 2022) and P95 (Gangloff et al., 2017). In

MAXcorr, the threshold is obtained from the highest correlation

with local driving mechanisms of river discharge and wind. The

method assumes that the spatial magnitude and intensity of a given

plume is a function of the forcing mechanisms acting upon the

coastal environment. Here we applied the MAXcorr method by

setting the range of turbidity thresholds to vary between 1 and 50

NTU, while allowing an average lag response for river discharge (1-

30 days) and wind speed (1-24 hours) prior to satellite overpass.

The obtained turbidity threshold presents the combination of

forcings with the maximum correlations. The maximum

correlation is determined by multiplying the correlations

determined from each parameter. In the P95 method, the

threshold is estimated from the 95th percentile of satellite-derived

turbidity. The approach assumes that turbid coastal plumes are

limited to highest turbidity values within the distribution by taking

the 5% highest values (i.e., percentile 95th). The unique threshold is

defined from the stack of satellite turbidity scenes in all three

dimensions (i.e., latitude, longitude, time) to reach the 95th

percentile. Gangloff et al. (2017) also observed that turbid coastal

plumes contemplate two parts: a distal part (delimited by the P95

threshold) characterized as the largest coastal plume domain

surrounded by less turbid plume boundaries due to suspended

sediment settling and/or mixing with the ambient marine waters,

and a proximal part (or the core) characterized by boundaries of

higher turbidity and a smaller region contained within the distal

plume domain. To identify the proximal part, authors have applied

the 90th percentile of turbidity within each detected distal plume,

resulting on a scene-by-scene proximal plume threshold.

2.4.2 The novel algorithm for plume
detection: PLUMES

In this work we propose a spatially explicit time-resolved

method to detect coastal plumes, the PLUMES algorithm

(Figure 2). The PLUMES algorithm, in a similar fashion to

supervised classification, starts by requesting a selection of control

points from the stack of satellite turbidity maps: (i) in the origin of

the turbid plume, such as a coastal inlet or river mouth and (ii)
frontiersin.org
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where turbid plumes do not occur, representing the background

marine waters and the offshore coastal water. We recommend that

the selection of such control points should be carried out by

inspecting the stack of satellite-based scenes (for example the

mean and standard deviation maps; refer to Figure SM2) to

determine the ROPI and aid in the decision of control point’s

location. We suggest observing preferable direction of plume

deflection, zones of constant resuspension and navigation route of

ships. The control point located at the origin of the plume should

specially consider the direction of plume deflection (likely

represented by highest mean turbidity and standard deviation).

Concerning the selection of control points representing background

marine waters (likely represented by lowest mean turbidity and

standard deviation), we recommend the selection of two or more

control points to capture most of the background marine spatial

variability and prevent missing pixels from cloud cover. For the

same reason, we also recommend that the marine control points are

selected not as points grouped in a small location of the satellite

scene, in the sense that the more spread these control points are, less

likely they will capture the same cluster of missing pixels. For the

application in the Patos Lagoon turbid plume, we selected one

control point in the origin of the plume and three control points in

the region of background marine waters (refer to Figure 1 for

location of reference points used). Also note that the turbidity

values of control points vary from image to image because turbidity

is linked to the local hydrological and meteorological settings.

Once the location of control points is determined, these control

points are checked if there are enough data points within a 5-by-5

window centered at each control point to be able to continue (we

recommend the use of a n-by-n window to capture the noise of the

sample in each control point, something not possible with the selection

of a single pixel). For application in Patos Lagoon, the selection of

control points resulted in 25 pixels located in the plume origin and 75

pixels representing background marine waters.

Within the limits of the (5-by-5 pixels) control points, if the

number of missing values surpasses a pre-set threshold of 35%, the
Frontiers in Marine Science 06
satellite scene is flagged, otherwise the statistical parameters

(median, standard deviation and variance of the 5-by-5 pixels)

within the turbid plume and non-plume samples are calculated.

After checking for a minimum quantity of valid pixels within

control points, a second criteria must be met: turbidity intensity

must be higher in the control point set at the origin than the

intensity set for the background marine waters. The assumption

relies in the fact that a turbid coastal plume must be more turbid

than its background marine waters.

For each turbidity map, the control points are grown to

delineate the region belonging to the turbid plume and the region

of non-plume by applying a measure of similarity of pixels in each

scene (Eq. 3). This measure of similarity considers the squared

difference between the pixel intensity and the median of the control

point weighted by its measure of variability.

M(i,j) =  
plume,  

(I(i,j)− morigin)
2

sorigin
<

(I(i,j)− mmarine)
2

smarine

non − plume, otherwise

8<
: Eq: 3

where M(i,j) is the binary image (classes plume versus non-

plume) indexed at pixel position (i,j) at each satellite scene (I), m is

the median of the control points (plume or non-plume), s is the

measure of variability of the control points.

This recently determined plume is referred to as the distal

plume. Within the domain of the distal plume, the PLUMES

algorithm also determines the proximal plume (also known as the

core of the plume). While the former is determined using the linear-

scale turbidity map, the proximal plume region is determined using

log-transformed turbidity maps. The reason to use log-transformed

turbidity is that relative to the median turbidity of the distribution,

it increases the difference among low turbidity values and

approximates higher turbidity values facilitating the detection of

the region of highest turbidity (the proximal plume).

Further, within the PLUMES algorithm, the region growing

algorithm, adapted from the original algorithm by Kroon (2022),

runs a final check in the neighboring pixels of the already segmented
FIGURE 2

Flowchart of the algorithm framework split into two main parts (1) user-dependent initial algorithm conditions by defining the ROPI and location of
control points from stack of n scenes, and (2) scene-by-scene image segmentation. ‘o’ shape represents pixel origin (or seed), and ‘x’ shape
represents control points of region representing non-plume pixels. See also PLUMES algorithm available as a package of MATLAB functions (https://
github.com/julianatavora/PLUMES_algorithm).
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turbid plume region (both distal and proximal plumes), which is set

to grow from the control point known as the origin of the turbid

plume; consolidating the plume feature. Finally, a table of plume

metrics, some of which inspired on Gangloff et al. (2017) (i.e., area,

orientation, plume centroid, mean, maximum, and minimum

turbidity, and turbidity of control points) is returned to the user.
2.5 Sensitivity of plume detection to
control points

Sensitivity analyses were conducted to determine how the detection

of plumes by the PLUMES algorithm is affected by the choice of control

points and window size (location in Figure 3), and thus provide a

strategy for the choice of control points. The sensitivity analysis here

consists of three groups of tests. The first group (Group 1) evaluated the

impact of setting marine control points at varying distances from the

control point at plume origin, aligned perpendicular to the coastline

orientation, with a total of five tests. The second group (Group 2),

consisting of three tests, uses a jackknife approach by removing one of

the three marine control points while maintaining the control point at

the plume origin. The third group (Group 3) performed two tests, the

first consisting of a random selection of a new control point located at

the plume’s origin while retaining the marine control points, followed

by selecting three new control points located furthest offshore. Each

sensitivity test was performed using different window sizes (3-by-3, 5-

by-5, and 7-by-7 pixels), to evaluate sensitivity to window size. In total,

33 sensitivity runs were performed, with results presented in terms of

the spatial distribution of plume occurrence (Supplementary Material

3) and the area of detected plumes.
2.6 Performance assessment of
detected plumes

2.6.1 Assessment of plume detection
How to determine to what extent a method for plume detection

performs better than another? To date, there is no clear definition

(and academic consensus) of what determines a plume’s limits from

surface maps. In that sense, the process of validation of plume

estimates is challenging (i.e., no ground-reference). However, we
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established a relative assessment by comparing the detection of turbid

coastal plumes from both the PLUMES algorithm and thresholds

(MAXcorr and P95) applied to the satellite-based turbidity maps. The

congruence of detected plumes was assessed using the Intersection

over Union (IoU) score. IoU score identifies the systematic difference

among the detected features (Rezatofighi et al., 2019) and thereby is

used to compare the detection of turbid plumes among approaches in

this manuscript. The IoU score ranges from 0 (no overlap) to 1

(complete overlap of features). The high (low) scores however, in this

study, do not imply correctness (wrongness) of one method over

another but provide a clue to whether traditional and novel

approaches detect similar structures or are similarly biased.

2.6.2 Criteria for assessment of limitations and
advantages of approaches

Advantages and limitations of coastal plume detection were

evaluated. First criteria for ease of assessment of coastal plumes

were considered (i.e., lack of ground-reference, need for additional

information). Second, the capacity of a method to extract spatial

information, such as the ability to distinguish features and its

computational costs. Thus, there are four key factors that were

evaluated in this work, i.e., (1) Implementation: how easy is the

approach to set up? (2) Effectiveness: does it need additional

(subjective) input? Are there (site-specific) empirical assumptions?

(3) Pitfalls/Strengths: do tools detect features not related to the

plume (e.g., coastal resuspension), or can tools detect low turbidity

plumes? (4) Speed: how fast is it to process a satellite image.
3 Results

3.1 Plumes detected from the traditional
state-of-art thresholds

To determine appropriate threshold values for plume detection,

statistical analysis was carried out examining the relationship

between turbidity and two forcing mechanisms: river discharge

and wind speed. Figure 4 shows the statistical results highlighting

the correlations observed with river discharge (Figure 4A) and wind

speed (Figure 4B). The analysis also revealed that the maximum
A B C

FIGURE 3

Location of control points by group of sensitivity tests: group 1 by changing distance (5, 10, 15, 20, and 30 km) of marine control points from the
control point at plume origin (A), group 2 by removing one of the three marine control points selected (refer to Figure 1) at time (B), and group 3
(C) by selecting a new location for the control point at origin (Test 9 with square symbols) and selecting three new marine control points offshore
(Test 10 with round symbols). Red symbols denote the same position of control points as in Figure 1, symbols in black denote locations have
changed.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1215327
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Tavora et al. 10.3389/fmars.2023.1215327
correlation is found with river discharge (mean of river discharge 16

days previous to satellite overpass) and wind speed (mean of wind

speed 6h previous to time of satellite overpass) with distal plume

area (it should be noted that the MAXcorr approach does not detect

proximal plumes).

In addition to the statistical analysis applied in MAXcorr

approach, an alternative approach was employed to explore the

threshold of turbidity: P95. P95 was carried out considering the

percentile 95th of distribution of turbidity in both spatial (latitude

and longitude) and temporal dimensions (stack of satellite scenes).

Overall, the MAXcorr and P95 methods yielded relatively similar

thresholds for turbidity (14 NTU and 17.7 NTU, respectively) in the

context of distal plume detection. Overall, each threshold approach

demonstrates a particular advantage: while MAXcorr, in theory,

estimates the maximum relationship with forcing mechanisms, the

P95 approach allows for estimates of proximal plumes.
3.2 Plumes detected from the
PLUMES algorithm

Contrary to the fixed boundary assumptions (i.e., thresholds),

the PLUMES algorithm yields variable turbidity in the coastal
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plume boundary as it is set for each scene, while considering the

spatial context of plume origin. Figure 5 depicts the range of

turbidities in the automatically retrieved plume metrics

(Figure 5A; e.g., area, centroid, mean intensity), the range of

turbidities of control points (Figure 5B) and the variability of

turbidity in the determined boundaries (both distal and proximal

plumes; Figure 5C). The results presented below are relative to a

total of 59 scenes. Out of 61 satellite-based maps of turbidity, two

scenes were flagged as they did not meet the pre-set criteria for

plume detection of valid pixels (scene of May 24, 2018, with 40% of

missing pixels) and intensity ratio (scene of March 29, 2021).

3.2.1 Sensitivity of PLUMES to the choice of
control points

Tests to investigate the sensitivity of the PLUMES algorithm to

the selection of control points revealed two main results: variable

rate of flagged plumes (i.e., plumes unidentified) and the spatial

variability of detected plumes (Figure 6; Figure SM3). Overall, test 1

(marine control point 5km from plume origin) and test 10 (marine

control points selected furthest from origin) represent the most

extreme selection of marine control points, yielding extreme results

(both in area and number of detected plumes). Of these two tests,

test 1 resulted in about 30% of flagged plumes and smallest plumes,
A B

FIGURE 4

Heatmap of kendall-tau correlation coefficients (r) for the range of turbidity values (1-50 NTU) used as possible threshold to delimit Patos Lagoon
coastal plume using inputs from (A) river discharge averaged over a range of 1 to 30 days prior to satellite overpass and (B) wind speed averaged
over a range of 1 to 24 hours prior to satellite overpass. Values estimated as the maximum relationship (i.e., maximum values observed from the
linear correlations estimated from river discharge versus turbidity and linear correlations estimated from wind speed versus turbidity) are marked by
dark black lines, pointing convergence point. Regions in white represent r for which p-value < 0.05.
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while test 10 resulted in the largest plumes detected (two folds larger

than the reference shown in Figure 6A). Thus, choosing marine

control points too close to the plume origin will likely lead to

misdetection of turbid plumes by either flagging their occurrence

(especially failing the criteria of ratio of control points) or

estimating smaller domains (Figure 6A), while choosing marine

control points too far offshore will likely lead to estimating wider

plume domains (Figure 6F). Remainder tests (2-9) did not yield

significantly different results.

Concerning pixel window size, overall, larger pixel window sizes

yielded slightly larger plumes, while the number of flagged plumes

was not largely affected.
3.3 Differences and similarities of
detected plumes

Significant coastal turbidity events along-shore are registered by

the three approaches (Figure 7) with comparable total area of plume

occurrence (pixels where at least once a plume was detected). The

PLUMES algorithm estimated the largest plume boundaries both

for proximal and distal plumes. Yet, the percentage of occurrence of

plumes is at least twice as low when applying MAXcorr and P95

than the PLUMES algorithm (Figure 7C versus Figures 7A, B),
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particularly in the region near the inlet (the plume origin). This is

observed for both distal and proximal plumes. Additionally, the

percentage of occurrence of proximal plumes applying PLUMES

(Figure 7E) seems more comparable with distal plumes identified by

applying the threshold approaches (Figures 7A, B). This similarity

between proximal plume from PLUMES (Figure 7C) with distal

plumes from MAXcorr and P95 (Figures 7A, B) may be an

indication that the latter two approaches are biased towards

detecting turbidity-rich coastal plumes while missing low

turbidity plumes.

To further investigate the comparability of plumes from different

methods, and their overlap, we compared the area of identified distal

plumes using the IoU scores (Figures 8A–C) and turbidity at the

control point of plume origin (Figures 8D–F). Generally, good

agreement of detected areas is reported with a high IoU score (IoU

> 0.8). This good agreement is observed between MAXcorr and P95

over the entire range of plume’s areas, implying that these

approaches provide similar results. PLUMES, on the other hand,

yielded larger plume areas for many scenes. Figures 8D, E shows the

pattern of low turbidity (mostly below 18 NTU) in the plume origin

for scattered points that do not fall within good agreement of

detected plume area (seemingly overestimation of plumes, see also

Figure 9) whereas no pattern is observed from median turbidity of

marine control points in Supplementary Material 4.
FIGURE 5

Metrics of turbid coastal plumes detected from the novel PLUMES algorithm summarized as spatial variability (A) of the plume’s centroids (location
of scatted points) color-coded by average plume intensity and sizes representing the area of detected plumes. In-set panels depict median turbidity
of control points (B; r kendall-tau = 0.31, p> 0.001) and mean turbidity of plumes boundaries (C; r kendall-tau = 0.85, p> 0.001). Vertical and
horizontal bars in (B, C) represent standard deviation.
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As observed in Figure 8, for several scenes, the PLUMES

algorithm detects larger (Figure 9) or smaller (Figure 10) distal

plumes compared to either MAXcorr or P95, while in other cases,

results of the three approaches are similar (Figure 11). We inspected

examples of each of these three groups in detail. Figure 9 depicts

four examples of low turbidity scenes for which case plumes are

underestimated by MAXcorr and P95 approaches relative to

PLUMES. These are majorly represented by a low IoU score (<

0.2, i.e., little limited overlap of detected plume areas between

methods) and plumes with boundaries of turbidity below the

defined thresholds (explaining the low retrieval of plume features

by MAXcorr and P95). Contrastingly, Figure 10 depicts four

examples of apparent relative overestimation by PLUMES (0.2 >

IoU > 0.8, moderate to good overlap of plumes), where MAXcorr

and P95 consistently detect fragments of coastal resuspension or

clusters of pixels above threshold (e.g., Figure 10C). These examples

demonstrate how PLUMES may aid in preventing the detection of

non-plume coastal features. Figure 11 depicts examples of good

agreement between PLUMES with MAXcorr and P95 (IoU > 0.8,

i.e., remarkably high overlap of detected plumes between methods).
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These are represented by moderate-to-high turbidity and relatively

sharper boundaries compared to the previous examples.
4 Discussion

4.1 Challenges and outlook of detecting
turbid coastal plumes

Defining turbid coastal plumes is not a trivial task Gangloff et al.

(2017). Plume boundaries have been traditionally addressed relying

on site-specific knowledge to define where a plume boundary most

likely is (Constantin et al., 2018), but according to (Gangloff et al.,

2017), different approaches for plume detection yield different

results which may also differ from a plume manually drawn by

an expert.

Nonetheless, what should/could be used to define a plume’s

limits? Currently, in the absence of a definition of plume

boundaries, one is left with the threshold-based approaches.

Although these approaches are relatively simple to implement
A B
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FIGURE 6

Comparison of area of detected plumes (in km2) from the sensitivity tests by changing control points location, number of control points, and window-size of
control points (denoted by 3-by-3, 5-by-5 and 7-by-7). The selection of control points used in this sensitivity test is depicted in Group 1 (A, D, G, I, J) and
Group 2 (B, E, H), Group 3 (C, F) and the reference (panel (K), adopting control points as in Figure 1). Refer to Figure 3 for location of control points in Group
1 and 2. Note that the number of plumes detected in each test is shown by each boxplot (denoted by n). An n below 61 (total number of satellite scenes)
means that scenes had plume undetected (i.e., flagged) by failing the criteria established in the PLUMES algorithm.
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and have fast processing times, they are subjective. The threshold is

likely to change based on the dataset available and timeframe

analyzed. In this respect, the threshold needs to be identified for

each new satellite acquisition that is added to the stack. As we have

shown in this work (e.g., Figure 8) these approaches are prone to

ignore less intense plumes or smaller highly turbid coastal plumes.

This drawback has been addressed by other authors with the aid of

additional site-specific adjustments to achieve higher accuracy and

precision; e.g., shallow-water masks (Gangloff et al., 2017); noise-

removal and region growing (Teodoro et al., 2008); manual

adjustment of plume boundary (Korshenko et al., 2023).

It must be acknowledged that there will be scenarios where

plume detection is challenged regardless of the employed plume

detection method. For example, visually, plumes with sharp fronts

are relatively easier to distinguish from the background marine

waters compared to dissipating plumes where borders are fuzzy

[Tariq et al. (2019) discusses the challenges of feature detection with

sharp versus dissipating boundaries] and plume intensity is closer to

the intensity of the background marine water (e.g., Figure 8D). We

anticipate that certain scenarios may particularly increase the

challenge, such as strong meteorological and hydrodynamic

conditions (i.e., passage of polar systems; meteorological tides)

that increase surface turbidity through wave-driven resuspension
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and/or prevent settling of particles while intensifying mixing and

leading to dissipating plumes.

In the last couple of years, AI algorithms have been increasingly

used for a wide range of applications. AI approaches have, to our

knowledge, not been applied to detect the outline and spatial

context of coastal plumes. This may be due to the more complex

challenges posed by the dynamic nature of the water constituents in

coastal areas and the atmosphere above it, as observed from satellite

scenes. In this context, PLUMES, by considering the spatially

explicit context of a turbid coastal plume, advances detection of

turbid coastal plumes. Looking forward, PLUMES can benefit from

potential automated control point selection, and/or future AI-based

algorithms can benefit from the spatial explicitness provided by

PLUMES in terms of training and cross-validation. However, such

direction needs further investigation.
4.2 Advantages and potential limitations
of PLUMES algorithm relative
to MAXcorr and P95

In the PLUMES algorithm, we included several improvements

over previous methods. Firstly, it is context-based and considers the
FIGURE 7

Overall congruence of plumes (maps of percentage of plume occurrence by approach). Top panels (A–C) depict the detected distal plumes and
bottom (D, E) depict proximal plumes. Panels (A) depicts plumes detected from the MAXcorr approach, (B, D) depict plumes detected from the P95
approach, and (C, E) plumes detected from the PLUMES approach. MAXcorr has not a methodology for proximal plume estimates.
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neighboring pixels in each turbidity map, guaranteeing that the

detected plume feature is spatially coherent. The approach reduces

the likelihood of underestimating coastal plumes and capturing

coastal resuspension. Secondly, PLUMES determines two plume

features: distal and proximal plume and provides an overview of

detected metrics. Thirdly, it has a plurality of satellite sensors and

water quality applications based on intensity, including sea surface

temperature and colored organic matter plumes.

Previously published methods for plume detection perform best

under a relatively narrow suite of conditions (i.e., site and dataset

dependent). Indeed, for the Gironde Estuary, three studies have

reported varied thresholds for plume detection (e.g., Constantin

et al. (2018) applied a threshold of 8 g.m-3, Castaing et al. (1999) a

threshold of 3 FTU, while Lafon (2009) indicated a range between 6

and 10 g.m-3) all of which were applied to different datasets.

Furthermore, Teodoro and Goncalves (2011) reported the

threshold approach was found to be invalid for comparing different

years of the same dataset in the Douro River. These examples

demonstrate the non-trivial task of assuming a uniform threshold

value for turbid plume detection, highlighting the advantages of using

algorithms like PLUMES that can accommodate varying conditions.

Aiming on providing more accurate and comparable results,

PLUMES was set-up to be used as a time-step-based algorithm

allowing to consider the spatial variability of turbidity conditions at

each time-step (scene) independently.

While PLUMES has been applied to Landsat in this study,

PLUMES also has, as have the state-of-the-art threshold methods,

potential for use with other sensor data. Applying the PLUMES

algorithm, we compared results from Landsat-8 scenes as described

in this study, to Sentinel-2 scenes in the same day overpass. Refer to
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Supplementary Material 5 for processing of Sentinel-2 turbidity and

to Figures SM6-A and SM6-B for comparison between Landsat-8

and Sentinel-2 detected plumes. We observed that one plume with

complex features was not detected (failing the region growing step)

and the remaining comparative scenes yielded overall good

agreement among distal plumes. Results in Figures SM6-A, B

suggest a potential multiplicity of satellite sensors available

to PLUMES.

However, the effectiveness of PLUMES detecting turbid coastal

plumes is dependent on the selection of control points that

accurately represent the classes to be segmented (i.e., plume

versus non-plume). The optimal number of control points, their

location in a satellite scene or turbidity map of coastal plume, and

the appropriate window size for each control point are important

considerations for successful plume detection (for which we

recommend the use of composite maps of mean and standard

deviation from the stack of scenes). While at least one control point

within the turbid coastal plume domain and one control point

representing the non-plume region are necessary, selecting more

control points can capture more of the coastal variability and

prevent flagging. For instance, in this study three control points

were used for Patos Lagoon in the background marine waters,

leading to better plume detection. Although theoretically a single-

pixel control point can be effective in detecting plumes, it is not

recommended due to noise in satellite image acquisition (Tariq

et al., 2019). Thus, it is recommended to use larger window sizes,

such as 5-by-5 or 7-by-7, when segmenting noisy images (Adams

and Bischof, 1994).

To establish control points that accurately represent turbid

coastal plumes and their variability, we suggest performing a few
A B
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FIGURE 8

Area of detected distal plumes from each of the approaches, color-coded with IoU (Intersection over Union) scores (A–C) and color-coded with
median turbidity (in NTU) of PLUMES’s control point at origin (mo; D–F). Symbols contoured in red represent snapshots in Figure 9; in blue
(Figure 10) and in black (Figure 11). Different symbols represent different dates of plumes in each figure.
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training tests by modifying the location, number, or window size of

control points. This process of testing and modifying control points,

similar to a sensitivity test, allows the optimization of the PLUMES

algorithm’s performance specific to the site being studied. This level

of human input grants the PLUMES algorithm a semi-supervised

characteristic. It is important to note that a certain level of user

input is always required for image segmentation (Adams and

Bischof, 1994) and the difference between the trial-and-error

criteria of setting thresholds and selecting control points for

region growing algorithms is that the effect of control points

selection allows for targeted classification of images being

particularly useful for complex or irregular features (Adams and

Bischof, 1994) such as turbid coastal plumes. Once a set of control

points is established, PLUMES can discriminate non-plumes from

turbid plumes for all scenes. Note that literature offers a few options

for automated selection of control points (e.g., Fan et al., 2005;

Gómez et al., 2007) but these methods primarily focus on

application for objects with sharp boundaries. As a result, they

are not yet suited for application in turbid coastal plumes.
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While it is important to acknowledge the limitations of any

algorithm or approach, it is also important to recognize its strengths

and potential applications. The PLUMES algorithm, for instance,

can be a powerful tool for detecting turbid coastal plumes in satellite

images, which can have significant implications for coastal

management. The PLUMES also takes advantage of the region

growing approach (mostly popular in the medical field and urban

planning) by removing fragments that, in principle, do not belong

within the coastal plume domain, provided that they are not

attached to the plume. However, PLUMES has not yet been tested

for plume detection in other study sites and requires a certain level

of user input. Thresholds, on the other hand, are widely applied and

are simple to implement (particularly P95, as no further

assumptions and calculations need to be made) offering fast

processing times (which can be useful when operating large

datasets). Briefly we provide a table summarizing criteria and

scores of each plume detection approach (Table 2).

Finally, the PLUMES methodology, similarly to P95 or

MAXcorr, offers an adaptable approach for implementation in
FIGURE 9

Examples of scenes which detected plume seem overestimated (IoU score< 0.2) from PLUMES algorithm compared with P95 and MAXcorr based on
IoU score. (A–D) respectively depict scenes of 2015-06-01, 2016-02-28, 2021-05-16 and 2018-02-17. The IoU score of each scene is highlighted in
Figure 8 with the respective red-contour symbols. Black line represents the boundaries of plumes detected with PLUMES algorithm, dark orange
represents boundaries of plumes from MAXcorr threshold, and blue boundaries are plumes from P95 threshold.
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regions experiencing plumes and requires a collection of satellite

scenes that captures temporal changes within the plume domain.

The difference is that PLUMES, beyond analyses of the stack of

satellite scenes to depict the spatial and temporal variability within

the ROPI, requires the selection of control points in the plume

origin and in background marine waters. This selection depends on

the river or estuary configuration (e.g., narrow inlet, funnel-

shaped), and preferable direction of plume deflection, furthest

extension of turbid plumes, or bathymetry favoring coastal

resuspension (e.g., location of nearshore bars and shoals). To aid

on the spatial understanding of turbid plumes, composite maps of

mean and standard deviation are recommended. For Patos Lagoon,

plume origin was observed as region of both highest mean turbidity

and standard deviation whereas marine control points, representing

background waters, were observed as regions of lowest mean

turbidity and standard deviation. The inclusion of sensitivity tests

is also important during this step to assess the detection of plume

boundaries. While the PLUMES algorithm has potential to be
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transferable to other regions with plumes, further research is

needed to test its robustness.
5 Synthesis and conclusions

Diverse methodologies have been employed in coastal regions

to understand the dynamics of turbid coastal plumes from satellite

remote sensing with thresholds being the most frequent approach.

Here we provide a novel satellite-based algorithm called PLUMES,

designed for monitoring of turbid coastal plumes such as the Patos

Lagoon coastal plume. The PLUMES algorithm relies on a semi-

supervised approach for selection of control points that will be used

as references to detect a turbid coastal plume. The selection of these

control points is a crucial step in achieving improved results. The

PLUMES exhibits several advantages, including lower likelihood of

missing low turbidity plumes (such as the ones with turbidity

boundaries below threshold) and detecting coastal resuspension
FIGURE 10

Examples of scenarios which detected plumes are underestimated (0.2 > IoU > 0.8) from PLUMES algorithm compared with MAXcorr and P95.
(A–D) respectively depict scenes of. 2015-12-10, 2016-08-22, 2019-11-19, and 2020-05-29. The IoU score of each scene is highlighted in Figure 8
with the respective blue-contour symbols. Black line represents the boundaries of plumes detected with PLUMEs algorithm, dark orange represents
boundaries of plumes from MAXcorr threshold, and blue boundaries are plumes from P95 threshold. Attention for the coastal resuspension detected
with MAXcorr and P95.
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or other coastal features detached from the turbid coastal plume.

Notably, the versatility of PLUMES is not limited to Landsat-8,

however the longer time-series will likely provide a better spatial

and temporal understanding of plume configuration.

The scope of application of PLUMES potentially extends

beyond the identification of feature detection (and their metrics)
Frontiers in Marine Science 15
in turbidity maps and is likely not limited to satellite-based products

alone. PLUMES may be applied to analyze various parameters such

as algal blooms, sea surface temperature, salinity fields, and even oil

spills, as extracted from satellite remote sensing maps or numerical

models. Therefore, the approach suggested here can serve as a

simple, yet (potentially) versatile tool for coastal management. To
FIGURE 11

Examples of scenes which detected plume yielded an IoU score > 0.8, i.e., good correspondence among the three algorithms. (A–D) respectively
depict scenes of 2013-11-18, 2016-06-19, 2020-06-14, 911 and 2020-09-18. The IoU score of each scene is highlighted in Figure 8 with the
respective black-contour symbols. Black line represents the boundaries of plumes detected with PLUMEs algorithm, dark orange represents
boundaries of plumes from MAXcorr threshold, and blue boundaries are plumes from P95 threshold. Attention for the coastal resuspension detected
with MAXcorr and P95.
TABLE 2 Pertinence of each tested plume detection approach regarding the four selected criteria.

Implementation Effectiveness

Pitfalls/Strengths

Processing speed (s)*Detection of coastal resuspension Missing low
turbidity plumes

MAXcorr + + – – + (~30)

P95 ++ ++ – – + (~30)

PLUMES + ++ + + - (~57)
Symbols represent the efficiency of methods from not likely or low (-) to very likely or very high (++). Note that scores in Pitfalls/Strengths category have inverse meaning: (+) means less likely to
have a detection of coastal resuspension or missing low turbidity plume while (-) means the opposite.
*refers to a satellite scene of 4177x6889 pixels.
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enhance the detection of coastal features further, future research

could involve integrating artificial intelligence (AI) techniques and

further testing the robustness of the method for monitoring turbid

coastal plumes in other study sites.
6 Software availability

PLUMES software will be available as a package of MATLAB

func t i on s unde r h t t p s : / / g i t hub . c om/ j u l i an a t a vo r a /

PLUMES_algorithm. Project partners are welcome to contribute

to this open-source package (e.g., by implementing their site-

specific plume detection as an add-on; converting PLUMES to

Python or Google Earth Engine languages; or recommending

additional features). Practical examples of the PLUMES

application will be available within the subfolder “Examples”.
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