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ON BIBO STABILITY OF INFINITE-DIMENSIONAL LINEAR
STATE-SPACE SYSTEMS∗

FELIX L. SCHWENNINGER† , ALEXANDER A. WIERZBA† , AND HANS ZWART†‡

Abstract. In this paper we consider BIBO stability of systems described by infinite-dimensional
linear state-space representations, filling the so far unattended gap of a formal definition and charac-
terization of BIBO stability in this general case. Furthermore, we provide several sufficient conditions
guaranteeing BIBO stability of a particular system and discuss to which extent this property is pre-
served under additive and multiplicative perturbations of the system.
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1. Introduction. The concept of stability is omnipresent in control theory. In
this paper we consider systems that feature both a control input u : [0,∞) → U and
a corresponding observation output y : [0,∞) → Y mapping to normed space U and
Y , respectively, and study one particular notion of stability, namely bounded-input-
bounded-output stability, usually referred to by its abbreviation as BIBO stability.

Roughly speaking, a system is BIBO stable if for any time interval [0, T ] and
any control input u, we have that the corresponding output function y is bounded
uniformly relative to u, both with respect to the (essential) supremum norm. For a
linear system this reduces to the existence of a constant c > 0 such that

sup
t∈[0,T ]

‖y(t)‖Y ≤ c sup
t∈[0,T ]

‖u(t)‖U ,

for any T > 0 and any u in (a subspace of) L∞([0, T ];U). In the following we focus
on systems given in a state space representation, formally written as equations

(1.1)
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

t ≥ 0,

where x(t) ∈ X , u(t) ∈ U , y(t) ∈ Y with Banach spaces X , U and Y and where A, B,
C, D refer to suitably defined linear operators. For finite-dimensional systems, that
is, when X , Y and U are finite-dimensional normed spaces, BIBO stability reduces to
the property that the impulse response t 7→ CetAB is absolutely integrable on [0,∞),
which particularly holds true if the system is exponentially stable.

This becomes more subtle when considering infinite-dimensional state spaces
which e.g. appear in the study of distributed parameter systems described by par-
tial differential equations. While in the case of bounded operators B : U → X and
C : X → Y , i.e. distributed control and observation, the property that t 7→ CetAB
is absolutely integrable still characterises BIBO stability, this changes in general. In
particular this challenge emerges when modelling boundary control and observation
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by state-space representations (1.1). This give rise to more involved issues regarding
the existence of solutions and the well-definedness of concepts such as transfer func-
tion, impulse response and input-output mapping – subtleties, which do not arise in
the finite-dimensional case. One remarkable consequence of this setting is, for exam-
ple, that exponential stability of the system does no longer imply BIBO stability (see
e.g. the system in Theorem 5.1).

While we show in the following that also in the infinite-dimensional case a char-
acterisation of BIBO stability in terms of the transfer function exists, establishing it
in a concrete case may become prohibitively hard, hence calling for alternative ap-
proaches. Note in particular, that the conditions to be checked are significantly more
involved than, for example, those in the case of L2-to-L2 input-output stability, for
which only boundedness of the transfer function needs to be checked [27].

It is worth noting that BIBO stability is closely related to other system-theoretic
stability notions. It places itself within the wider class of input-output-stabilities, all
related to the property that boundedness of the output can be inferred from boundness
of the input, both with respect to some function norms.

Stabilities of such form in terms of the L2-norms for both input and output
functions, have been studied extensively within the context of L2-well-posed linear
systems and their generalisation to other Lp-spaces. However usually intertwined with
additional input-state stability considerations [24]. Thus, BIBO stability is similar to,
but more general than the concept of L∞-well-posed systems [24, Def. 2.2.1], as in the
latter case not only boundedness of the input-output map but also of the input-state
and state-output maps with respect to the ‖ · ‖∞-norms is required. Therefore BIBO
stability seems to be more difficult to study.

On the other hand, input-state-stability (ISS) refers to bounding the state function
in the ‖ · ‖∞-norm by a combination of the input in the ‖ · ‖∞-norm and the state
space norm of the initial state [22, 23]. The state-output mapping included in this
notion again is not considered in the case of BIBO stability. Note however, that in
the case that the ouput operator C : X → Y is bounded, ISS and BIBO stability are
– although very different and in particular not equivalent – of the same complexity.

From an operator-theoretical viewpoint, BIBO stability can be phrased as the
question of whether the input-output operator of the system is bounded as an operator
from L∞([0, t], U) to L∞([0, t], Y ) with its norm not depending on t. Operators of
this type – bounded from some Lp to Lp and in addition shift-invariant (as is the case
for the input-output operators of systems formally of the form (1.1)) – are closely
related to operators represented by convolutions with distributions of certain classes.
However, in the case considered for BIBO stability, i.e. p = ∞, this relation is more
subtle compared to p <∞, in which case one even finds a one-to-one correspondence
provided that U and Y are finite-dimensional [9].

BIBO stability has been variously employed in control theory, most recently for
example in the context of novel control techniques, such as e.g. funnel control for
systems of relative degree, [13, 3]. In fact, here BIBO stability of the, possibly infinite-
dimensional, internal dynamics is key to apply the model-independent control law, see
e.g. [14, 4, 5], also for concrete control problems.

While BIBO stability of finite-dimensional systems is well-studied in the litera-
ture, particularly in the context of engineering applications, there is only little treat-
ment available in infinite dimensions. This includes systems given by convolutions
[28, 29, 7], specific classes of transfer functions [6, 2] and concrete PDEs [5].

In this paper, we first consider several different definitions of BIBO stability
for general system nodes, distinguishing between different functions spaces equipped
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with the ‖ · ‖∞-norm, Section 2. We then show that for a large class of system
nodes, namely when both the input and the output space are finite-dimensional,
these different definitions will all be equivalent to the inverse Laplace transform of
the transfer function being a measure of bounded variation, Section 3. This result may
seem, at first glance, to capture the same statement as presented by Unser in [28] and
in particular Theorem 4 therein. A closer look, however, reveals major distinctions.
Indeed, this work extends the results from [28] to systems in state-space form which are
not a-priori given in terms of a convolution operator. For a more detailed discussion
of the relation between these results, we refer the reader to Section 3.3.

To overcome the technical difficulties of studying the inverse Laplace transform
of a given function, in Section 4 we will provide three simple sufficient conditions for
particular systems to be BIBO stable.

Finally, we consider the case that the system investigated can be written as a
perturbation of a BIBO stable system. Such a situation can appear e.g. when ad-
ditional terms are introduced in the system modelling. Whereas BIBO stability of
multiplicative perturbations may fail, Section 5, we show that it is preserved in certain
parabolic cases for additive perturbations, Section 6.

1.1. Notation. We will use A . B to indicate that there exists a constant c > 0
independent of the other quantified variables, such that A ≤ cB.

For a function z : [0,∞) → Z and T > 0, we denote by z|[0,T ] : [0,∞) → Z
its truncation to the interval [0, T ] defined by z|[0,T ](t) := z(t)χ[0,T ](t), where χA
refers to the indicator function on the set A. We will use Cnc ((0, T ), Z) to denote the
space of n-times continuously differentiable Z-valued functions z : (0, T ) → Z that
are compactly supported away from 0.

For any α ∈ R, let Cα := {z ∈ C | Re (z) > α}. All considered Banach spaces
are over the field of complex numbers. For a finite-dimensional vector space Z, let
its dimension be denoted by dZ . Let L (X,Y ) be the set of bounded operators from
a Banach space X to a Banach space Y . B∗ is the Hilbert space adjoint of a linear
operator B between two Hilbert spaces.

In the following A will always denote the generator of a strongly continuous
semigroup T = (T(t))t≥0 on a Banach space X . Its growth bound is denoted by

ω(T) = inf{ω ∈ R : supt>0 e
−tω‖T(t)‖ < ∞} and the semigroup is called exponen-

tially stable if ω(T) < 0. The semigroup is called (bounded) analytic if it extends
(boundedly and) analytically to an open sector {z ∈ C \ {0} : | arg(z)| < θ} for some
θ ∈ (0, π/2) and this extension satisfies the semigroup property on this sector. X1 is
defined as the space D(A) with the norm ‖x‖X1

:= ‖(βI −A)x‖X with β ∈ ρ(A) and
X−1 as the completion of X with respect to the norm ‖x‖X−1

:= ‖(βI − A)−1x‖X
again with β ∈ ρ(A). There exists a unique extension T−1 = (T−1(t))t≥0 of the semi-
group T to the space X−1 with generator A−1 : X → X−1 which is an extension of
the operator A. For more details on these notions see [24, 26]. In the following we
will often not write the subscript −1 and refer to both the original semigroup and its
extension by T. The same applies to the operators A and A−1. If A is the generator
of a bounded analytic semigroup, let Xα with −1 < α < 1 denote the domains of
definition of the fractional powers of (−A)α equipped with the respective norms as
defined e.g. in [24, Sec. 3.9].

For a function f or a measure h, let f̂ and L{h} denote their Laplace transforms
if they exist (on some right half-plane) and let L−1 {g} denote the inverse Laplace
transform of g if it exists.
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2. System nodes and their solutions. We begin by giving the definition of
general system nodes in the sense of Staffans as the description of systems which are
formally given by the pair of equations (1.1).

Definition 2.1 ([27, Def. 4.1]). Let U , X and Y be Banach spaces. A system
node on (U,X, Y ) is a collection Σ(A,B,C,G) where A : D(A) ⊂ X → X is the
generator of a strongly continuous semigroup T = (T(t))t≥0 on X with growth bound
ω(T), B ∈ L (U,X−1), C ∈ L (X1, Y ) and G : Cω(T) → L (U, Y ) is an analytic
function satisfying for all α, β ∈ Cω(T)

(2.1) G(α)−G(β) = C
[
(αI−A)−1 − (βI−A)−1

]
B.

Remark 2.2. 1. We will call U , X and Y the input space, state space and
output space, respectively. Furthermore, B is called the input operator, C the
output operator and G the transfer function of the system node.

2. Equation (2.1) does not uniquely determine the transfer function G from A,
B and C. It is instead easy to show that any two transfer functions that
satisfy Equation (2.1) for the same operators A, B and C differ only by a
constant in L (U, Y ) [27]. Note however that these different transfer functions
give rise to two different system nodes with differing input-output behaviour.

Definition 2.3 ([27, Sec. 4]). Let Σ(A,B,C,G) be a system node. The combined
observation/feedthrough operator is defined as the operator

C&D

[
x
u

]
:= C

[
x− (βI−A)

−1
Bu

]
+G(β)u,

with β ∈ Cω(T) and domain

D(C&D) =

{[
x
u

]
∈ X × U

∣∣∣∣Ax+Bu ∈ X

}
.

Note that the operator C&D is bounded from its domain equipped with the graph
norm ‖[ xu ]‖D(C&D) = ‖u‖U + ‖x‖X + ‖A−1x+ Bu‖X to Y [24, Lem. 4.7.3 & 4.3.10].

With this operator the well-defined version of the formal expressions (1.1) associated
to the system node Σ(A,B,C,G) becomes

ẋ(t) = Ax(t) +Bu(t)

y(t) = C&D

[
x(t)
u(t)

]
.

(2.2)

In the following, we will consider two different types of solutions to these equations,
namely, the classical solutions and generalised solutions in a distributional sense.

2.1. Classical solutions.

Definition 2.4 ([27, Def. 4.2]). Let Σ(A,B,C,G) be a system node. A triple
(u, x, y) is called a classical solution of the system node on [0,∞) if

(a) u ∈ C([0,∞), U), x ∈ C1([0,∞), X) and y ∈ C([0,∞), Y ),

(b)

[
x(t)
u(t)

]
∈ D(C&D) ∀t ≥ 0,

(c) Equations (2.2) holds for all t ≥ 0.

We cite the following results that guarantee the existence of such classical solutions
and provide a representation of the state trajectory and the output function.
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Lemma 2.5. Let Σ(A,B,C,G) be a system node.

1. Let u ∈ C2([0,∞), U) and

[
x0
u(0)

]
∈ D(C&D). Then Equation (2.2) has a

unique classical solution (u, x, y) with x(0) = x0 and x ∈ C2([0,∞), X−1).
2. Let (u, x, y) be a classical solution of Σ(A,B,C,G). Then:

(a) x satisfies the variations of constants formula, i.e.

(2.3) x(t) = T(t)x(0) +

∫ t

0

T−1 (t− s)Bu(s) ds.

(b) If u ∈ C2
c ([0,∞), U), then y has a Laplace transform on Cω(T) and

ŷ = G · û on Cω(T).

Proof. Part 1 is [24, Lem. 4.7.8] and [27, Prop. 4.3], Part 2a is [24, Thm. 4.7.11]
and Part 2b is [24, Lem. 4.7.12] and [27, Prop. 4.3].

2.2. Distributional solutions in the sense of Staffans. Motivated by the
variations of constants formula (2.3) we define generalised solutions in a distributional
sense. Thereby we make use of Y -valued distributions, which are linear functionals
on the space of test functions C∞

c ([0,∞), Y ′). We denote the action of a distri-
bution y on a test function ϕ ∈ C∞

c ([0,∞), Y ′) by y (ϕ). Note that any function
y ∈ L1

loc ([0,∞), Y ) can be considered as a Y -valued distribution acting via

y (ϕ) = 〈ϕ, y〉 :=

∫ ∞

0

〈ϕ(t), y(t)〉Y ′,Y dt.

Definition 2.6 ([24, Def. 4.7.10]). A triple (u, x, y) is called a generalised so-
lution in the distributional sense of the system node Σ(A,B,C,G) if

(a) u ∈ L1
loc([0,∞), U) and x ∈ C([0,∞), X−1)

(b) x(t) = T(t)x0 +
∫ t
0 T−1 (t− s)Bu(s) ds for some x0 ∈ X and all t ≥ 0

(c) y is the Y -valued distribution given distributionally as

y(t) =
d2

dt2

(
(C&D)

∫ t

0

(t− s)

[
x(s)
u(s)

]
ds

)
, t ≥ 0

that means which acts on test functions ϕ ∈ C∞
c ([0,∞), Y ′) as

y (ϕ) =

〈
ϕ′′, (C&D)

∫ ·

0

(· − s)

[
x(s)
u(s)

]
ds

〉

=

∫ ∞

0

〈
ϕ′′(t), (C&D)

∫ t

0

(t− s)

[
x(s)
u(s)

]
ds

〉

Y ′,Y

dt.

By the following lemma generalised solutions exist for any input u ∈ L1
loc([0,∞), U).

Lemma 2.7 ([24, Thm. 3.8.2(i) & Lem. 4.7.9]). For any u ∈ L1
loc([0,∞), U)

and x0 ∈ X there exists a unique generalised solution in the distributional sense of
Σ(A,B,C,G).

Furthermore, any classical solution (u, x, y) is a generalized solution in the dis-
tributional sense.
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3. BIBO stability. Having introduced the concept of system nodes and their
solutions, we can now define the notion of BIBO stability. This can be done in two
different ways, either using classical solutions, or using the class of distributional
solutions. It will turn out that for the case of finite-dimensional input and output
spaces U and Y these two definitions are equivalent.

Definition 3.1 (Using distributional solutions). A system node Σ(A,B,C,G)
is called L∞-BIBO stable if there exists c > 0 such that for any generalised solution
in the distributional sense (u, x, y) with u ∈ L∞

loc([0,∞), U) and x(0) = 0 we have that
y ∈ L∞

loc([0,∞), Y ) and for all t > 0

(3.1) ‖y‖L∞([0,t],Y ) ≤ c‖u‖L∞([0,t],U).

Definition 3.2 (Using classical solutions). The system node Σ(A,B,C,G) is
called C∞-BIBO stable if there exists c > 0 such that for all classical solutions (u, x, y)
with x(0) = 0 and u ∈ C∞

c ((0,∞), U) we have that y ∈ Cb([0,∞), Y ) and

‖y‖L∞([0,∞),Y ) ≤ c‖u‖L∞([0,∞),U).

Remark 3.3. In the latter definition the choice of C∞
c ((0,∞), U) may seem arbi-

trary. Indeed one could have chosen to use another subspace K ⊆ C([0,∞), U) to
define a notion of K-BIBO stability.

However, Theorems 3.4 and 3.5 show that if the input and output spaces are
finite-dimensional, all such definitions are equivalent as long as C∞

c ((0,∞), U) ⊆ K.

For the remainder of this section, we will restrict ourselves to the case that both the
input space U and the output space Y are finite dimensional. This restriction will be
used to characterise the input-output map by convolution operators, which seems to
be no longer possible in the more general case.

The following two equivalences will be proved in the following sections.

Theorem 3.4. A system node Σ(A,B,C,G) with finite-dimensional input and
output spaces is C∞-BIBO stable if and only if there exists a measure of bounded
total variation h ∈ M([0,∞),CdY ×dU ) such that L{h} = G on the half-plane Cω(T).

Proof. Necessity and sufficiency are Proposition 3.6 and Proposition 3.8 below.

Theorem 3.5. A system node Σ(A,B,C,G) with finite-dimensional input and
output spaces is C∞-BIBO stable if and only if it is L∞-BIBO stable.

Proof. Sufficiency follows from Lemma 2.7, necessity is Proposition 3.10 below.

3.1. Proof of Theorem 3.4.

3.1.1. From a measure of bounded variation to C∞-BIBO stability. Let
M([0,∞),CdY ×dU ) denote the set of Borel measures of bounded total variation on
[0,∞) with values in CdY ×dU . Furthermore, for h ∈ M([0,∞),CdY ×dU ) let ‖h‖M
denote the total variation of h [10, Sec. 3.2]. Then there is a simple, sufficient condition
for a system node to be BIBO stable.

Proposition 3.6. Let Σ(A,B,C,G) be a system node. Assume there exists a
measure of bounded total variation h ∈ M([0,∞),CdY ×dU ) such that L{h} = G on
the half-plane Cω(T). Then Σ(A,B,C,G) is C∞-BIBO stable.

Proof. Let u ∈ C∞
c ((0,∞), U) and y ∈ C([0,∞), Y ) be the output of the classical

solution with x(0) = 0. By Lemma 2.5 we have that ŷ = G · û. As the inverse Laplace
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transform ofG exists by assumption, this implies by [10, Thm. 3.8.1(iii)] that y = h∗u
and thus by [10, Thm. 3.6.1(i)] that y ∈ Cb([0,∞), Y ) and that

‖y‖L∞([0,∞),Y ) ≤ ‖h‖M‖u‖L∞([0,∞),U).

Remark 3.7. In general, L{h} for h ∈ M([0,∞),CdY ×dU ) only exists on C0 and
thus L{h} = G only holds on C0 ∩Cω(T). However, then L{h} will have an analytic
continuation to Cω(T), which in the following we will always identify with L{h}.

3.1.2. From C∞-BIBO stability to a measure of bounded variation.

Proposition 3.8. Let Σ(A,B,C,G) with finite-dimensional input and output
spaces be C∞-BIBO stable. Then there exists a measure of bounded total variation
h ∈ M([0,∞),CdY ×dU ) such that:

1. For any classical solution (u, x, y) with u ∈ C∞
c ((0,∞), U) and x(0) = 0 we

have y = h ∗ u.
2. L{h} = G on the half-plane Cω(T).

Proof. Let S : C∞
c ((0,∞), U) → C([0,∞), Y ) be the input-output operator of the

system node that maps the input function u to the corresponding output y of the
classical solution with x(0) = 0. By Lemma 2.5 this operator is well-defined.

For T ∈ R, let τT be the shift-operator, defined on a function f : R → U as

(τT f)(t) := f(t− T ), t ∈ R.

Considering a function on [0,∞) as defined on all of R by trivially extending it with
0, we can directly see that for all T ≥ 0 (i.e. for right-shifts) τT leaves C∞

c ((0,∞), U)
invariant, i.e. τT (C∞

c ((0,∞), U)) ⊆ C∞
c ((0,∞), U). Furthermore, from causality and

the uniqueness of classical solutions of the system node, it follows that S commutes
with τT for all T ≥ 0, i.e. τTS = SτT .

Now define the operator S̃ : C∞
c (R, U) → C(R, Y ) by setting for u ∈ C∞

c (R, U)

S̃u := τ−T S τT u,

where T ≥ 0 is such that u(t) = 0 for all t < −T . The compact support ensures

the existence of such T and S commuting with right-shifts ensures that S̃u does not
depend on the chosen T .

Then S̃ is clearly linear, invariant under left and right shifts and, as a result of
the assumed BIBO stability of the system node,

‖S̃u‖L∞(R,Y ) . ‖u‖L∞(R,U).

Then by applying [25, Thm. I.3.16, Thm. I.3.19 & Thm. I.3.20] componentwise, we
find that there exists h ∈ M(R,CdY ×dU ) such that

S̃u = h ∗ u for all u ∈ C∞
c (R, U).

By the construction of S̃ we have that S = S̃|C∞

c
((0,∞),U) and therefore

(3.2) Su = h ∗ u for all u ∈ C∞
c ((0,∞), U).

Finally, the causality of the system node implies that h ∈ M([0,∞),CdY ×dU ).
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For the second part, note that, as h ∈ M([0,∞),CdY ×dU ), the Laplace transform
L{h} exists and from Equation (3.2) it thus follows that for all classical solutions
(u, x, y) with u ∈ C∞

c ((0,∞), U), we have ŷ = L{h} · û. Comparing this with the
result from Lemma 2.5 yields the claim.

3.2. Proof of Theorem 3.5.

3.2.1. BIBO-inequality for all classical solutions with x(0) = 0. By Defi-
nition 3.2, C∞-BIBO stability only requires the BIBO-inequality to hold for classical
solutions (u, x, y) with u ∈ C∞

c ((0,∞), U) and x(0) = 0. As a first step we show that
this implies the same inequality for all classical solutions (u, x, y) with x(0) = 0.

Proposition 3.9. Let Σ(A,B,C,G) with finite-dimensional input and output
spaces be C∞-BIBO stable. Then there exists a measure of bounded variation h ∈
M([0,∞),CdY ×dU ) such that for any classical solution (u, x, y) with x(0) = 0 we
have that y = h ∗ u and thus that

‖y‖L∞([0,T ],Y ) ≤ ‖h‖M‖u‖L∞([0,T ],U) for all T ≥ 0.

Proof. Let (u, x, y) be a classical solution of the system node with x(0) = 0.
Define for any T > 0 the smoothly cut-off input uT ∈ Cc([0,∞), U) as

uT (t) :=





u(t) 0 ≤ t ≤ T

u(T )ξ(t− T ) T < t ≤ T + 1

0 T + 1 < t

,

where ξ ∈ C∞([0, 1],R) is some smooth function satisfying ξ(0) = 1, ξ(1) = ξ′(1) =
ξ′′(1) = 0. Our aim is to show that there exists a classical solution (uT , xT , yT ) with
this input. For this, consider first the input function wu(T ) : [0,∞) → U defined as

wu(T )(t) :=

{
u(T )ξ(t) t ≤ 1

0 1 < t
,

for which clearly wu(t) ∈ C2([0,∞), U). Furthermore, as by [24, Thm. 4.7.11]

[
x(T )

wu(T )(0)

]
=

[
x(T )
u(T )

]
∈ D(C&D),

by [24, Lem. 4.7.8] there exists a unique classical solution (wu(T ), xw, yw) of the system
node with xw(0) = x(T ).

Then define xT : [0,∞) → X and yT : [0,∞) → Y as

xT (t) :=

{
x(t) t ≤ T

xw(t− T ) T < t
and yT (t) :=

{
y(t) t ≤ T

yw(t− T ) T < t
.

Then we have uT ∈ C([0,∞), U), xT ∈ C([0,∞), X), xT ∈ C1([0, T ], X) and xT ∈
C1([T,∞], X) by construction. Furthermore, as both (u, x, y) and (wu(T ), xw, yw) are
classical solutions of the system node, it follows from Equation (2.2) that

ẋw(0) = Axw(0) +Bwu(T )(0) = Ax(T ) +Bu(T ) = ẋ(T ),

yw(0) = C&D

[
xw(0)
wu(T )(0)

]
= C&D

[
x(T )
u(T )

]
= y(T ),
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and thus we can conclude that xT ∈ C1([0,∞), X) and yT ∈ C([0,∞), Y ). Further-
more, Equation (2.2) is satisfied on [0,∞). Hence (uT , xT , yT ) is a classical solution
of the system node.

We can now argue completely analogous to [24, Lem. 4.7.12] to first conclude that
uT , xT and yT have Laplace transforms defined on Cω(T) and that they satisfy

ŷT (s) = G(s) · ûT (s), s ∈ CωT
.

From the relation between ŷT and ûT , and G having an inverse Laplace transform
h ∈ M([0,∞),CdY ×dU ) by Proposition 3.8, we then find that yT = h ∗ uT .

Finally, by causality of the system node and the uniqueness of classical solutions
we have for all T ≥ 0 that y|[0,T ] = yT |[0,T ]. Thus for any t ≥ 0 we find in particular

y(t) = y|[0,t](t) = yt|[0,t](t) = (h ∗ ut)(t) = (h ∗ u)(t),

and thus can conclude that y = h ∗ u. The inequality follows then immediately from
this representation and h ∈ M([0,∞),CdY ×dU ).

3.2.2. BIBO-inequality for generalised distributional solutions. Propo-
sition 3.9 shows that in a C∞-BIBO stable system we have for any classical solution
(u, x, y) with x(0) = 0 and any T ≥ 0 that ‖y‖L∞([0,T ],Y ) ≤ ‖h‖M‖u‖L∞([0,T ],U). We
extend this inequality to all distributional solutions with u ∈ L∞

loc ([0,∞), U).

Proposition 3.10. Let Σ(A,B,C,G) with finite-dimensional input and output
spaces be C∞-BIBO stable and let h ∈ M([0,∞),CdY ×dU ) be the inverse Laplace
transform of G that exists by Proposition 3.8. Let furthermore (u, x, y) be a generalised
solution in the distributional sense with x(0) = 0 and u ∈ L∞

loc([0,∞), U). Then
y = u ∗ h, y ∈ L∞

loc([0,∞), Y ) and

(3.3) ‖y‖L∞([0,T ],Y ) ≤ ‖h‖M‖u‖L∞([0,T ],U) for all T > 0.

Proof. Let u ∈ L∞
loc([0,∞), U) and let (u, x, y) be the corresponding generalised

solution in the distributional sense with x(0) = 0.
Then consider for any T > 0 the input function uT := u|[0,T ] ∈ L∞ ([0,∞), U)

giving rise to generalised solutions (uT , xT , yT ), which by causality agree on [0, T ]
with (u, x, y). Define furthermore

MT (t) :=

∫ t

0

uT (s) ds,

[
KT (t)
LT (t)

]
:=

∫ t

0

(t− s)

[
xT (s)
uT (s)

]
ds.

ThenMT and LT are locally absolutely continuous as Lebesgue integrals. In addition,
‖MT‖L∞([0,∞),U) ≤ T ‖uT‖L∞([0,∞),U) and ‖LT‖L∞([0,∞),U) ≤ T 2‖uT ‖L∞([0,∞),U), so
both functions are bounded.

By [24, Lem. 4.7.9] KT ∈ C1([0,∞), X) and solves

K̇T (t) = AKT (t) +BLT (t),

for almost all t > 0 and, by [24, Thm. 4.7.11] due to LT being continuous, even for

all t > 0. Thus (LT ,KT , (C&D)
[
KT (t)
LT (t)

]
) is a classical solution of the system node.

As the system node is C∞-BIBO stable, we have (C&D)
[
KT (t)
LT (t)

]
= h ∗ LT by

Proposition 3.9. Thus we find

yT =
d2

dt2

(
(C&D)

[
KT (t)
LT (t)

])
=

d2

dt2
(h ∗ LT ) .
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But then, by [10, Thm. 3.7.1], we find that yT = h ∗ d2

dt2LT = h ∗ uT and thus,
as this holds for any T > 0 and by causality we have y = h ∗ u. Now, as h ∈
M([0,∞),CdY ×dU ), if u ∈ L∞

loc([0,∞), U) then y = u ∗ h ∈ L∞
loc([0,∞), Y ) by [10,

Cor. 3.6.2(i)] and Equation (3.3) follows from [10, Thm. 3.6.1(i)].

Remark 3.11. Note that the previous proposition does not pose a contradiction to
examples such as the ones provided in [9, Ex. 2.5.9], [32, Rem. 3.8] or [19, Thm. 3.1] of
bounded, shift-invariant operators from L∞ to L∞ that do not admit a representation
in terms of a convolution or a transfer function on all of L∞. Instead, the result here
merely shows that these input-output operators cannot arise from or be represented
in the form of a system node.

3.3. Relation to the results from [28]. At a cursory glance, the first central
results of this contribution – the characterisation of C∞-BIBO stability by the im-
pulse response being a measure of bounded total variation in Theorem 3.4 and the
equivalence to L∞-BIBO stability in Theorem 3.5 – may seem to capture the same
statement as [28] in particular Theorem 4 therein. On a closer look there is however
a major distinction to be made out.

What [28] considers is a continuous operator Th : D(R) → D′(R) defined on the
space of test functions D(R) in terms of a convolution Th(f) = f ∗h with a distribution
h and the question for which type of h it admits a continuous extension in particular to
an operator Th : L∞ → L∞. It finds that this is the case if and only if h ∈ M([0,∞))
is a measure of bounded total variation.

In contrast, this contribution studies the question under which circumstances the
input-output operator of a system node is well-defined and bounded as an operator
from L∞ to L∞. The way to showing that this again reduces to the impulse response
existing and being a measure of bounded total variation leads – similar to [28] – to
first considering the restricted input-output operator acting only on the test functions
as input, and using it to derive existence and boundedness of the full input-output
operator.

While this may seem like just a direct application of Theorem 4 from [28], this
is not the case. This result does show that a continuous extension of the restricted
output operator exists and is given by the convolution with the distribution defining
its behaviour on the test function. However, it is not at all clear that the thus
constructed operator from L∞ to L∞ is actually the full input-output operator of the
system. After all, it is not even clear that the output for any L∞ input is again in
L∞. And furthermore by [9, Ex. 2.5.9] uniqueness of the extension is potentially not
even given if boundedness of the full input-output operator was assumed.

Thus another way of understanding the main result from the first part of this
contribution is showing that the input-output behaviour of the system node is first of
all well-defined as an operator from L∞ to L∞ and that it is precisely the one given
by the convolution extension as studied in [28].

4. Sufficient conditions for BIBO stability. We start by giving sufficient
(but not necessary) conditions for BIBO stability of particular types of system nodes.

4.1. Riesz-spectral systems. We consider special system nodes Σ(A,B,C,G),
where A : D(A) → X is supposed to be a Riesz-spectral operator on a Hilbert space
X [26] and B : C → X−1 and C : X1 → C are scalar control and observation
operators. This means that there exists a Riesz-basis {φn}n∈N

in X such that each
φn is an eigenvector of A with eigenvalue λn. By {ψn}n∈N

we denote the associated
biorthogonal sequence satisfying 〈φn, ψm〉 = δn,m for all m,n ∈ N. Furthemore,
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there exist sequences (bn)n∈N and (cn)n∈N given by bn := 〈Bu, ψn〉 and cn := Cφn
respectively such that the operators B and C are given by Bu = u · b and Cx = 〈x, c〉
for all u ∈ U and x ∈ X1, respectively, with elements b :=

∑
k bkφk ∈ X−1 and

c :=
∑
k ckψk ∈ X−1. Such a system node is called a Riesz-spectral system.

Using the sequences λn, bn and cn we can now give a sufficient condition for BIBO
stability of a corresponding Riesz-spectral system node with scalar input and output.

Proposition 4.1. Let Σ(A,B,C,G) be a Riesz-spectral system with A having
eigenvalues only in the open left half-plane. Assume further that the coefficient se-
quences (bn)n∈N and (cn)n∈N satisfy

(4.1)
∑

k

∣∣∣∣
bkc

∗
k

Re (λk)

∣∣∣∣ <∞.

Then Σ(A,B,C,G) is L∞-BIBO stable.

Proof. As Re (λn) < 0 for all n ∈ N, we get for s ∈ C0 that |s− λn| ≥ |Re (λn)|

so that
∣∣∣ bnc

∗

n

s−λn

∣∣∣ ≤
∣∣∣ bnc

∗

n

Re(λn)

∣∣∣. Since (sI−A)
−1
x =

∑
n∈N

〈x,ψn〉φn

s−λn
for s ∈ Cω(T), [26,

Prop. 2.6.2.], we find that the transfer function is given by

G(s) = α+
∑

n∈N

bnc
∗
n

s− λn
.

with α some constant. By the assumption and Fubini’s theorem,

∫ ∞

0

∣∣∣∣∣
∑

n∈N

bnc
∗
ne
λnt

∣∣∣∣∣ dt ≤
∫ ∞

0

∑

n∈N

∣∣bnc∗neλnt
∣∣ dt =

∫ ∞

0

∑

n∈N

|bnc
∗
n| e

Re(λn)t dt

≤
∑

n∈N

∫ ∞

0

|bnc
∗
n| e

Re(λn)t dt =
∑

n∈N

|bnc
∗
n|

|Re (λn) |
<∞.

Thus, by continuity of the Laplace transform, G = L{h} for

h(t) = α δ(t) +
∑

n∈N

bnc
∗
ne
λnt.

Since h ∈ M([0,∞),C), Σ(A,B,C,G) is L∞-BIBO stable by Proposition 3.4.

Remark 4.2. 1. Proposition 4.1 easily extends to the case of finitely many
λk’s with Re (λk) ≥ 0. The sufficient condition in this case becomes

∑

k∈N

Re(λk)<0

∣∣∣∣
bkc

∗
k

Re (λk)

∣∣∣∣ <∞ and (Re (λk) ≥ 0 ⇒ bkc
∗
k = 0) .

2. It is easy to see that the condition in the proposition is not necessary. In-

deed, let Σ
(
Ã, B̃, C̃, G̃

)
be the system defined by (λ̃k) = (−1,−2,−3, . . .),

(̃bk) = (1, 1, . . .) and (c̃k) = (1, 1, . . .) and G̃ determined up to an additve
constant. Then (4.1) is not satisfied. Now consider the “stacked system”

Σ (A,B,C,G) =
([

Ã 0
0 Ã

]
,
[
B̃

B̃

]
, [ C̃ −C̃ ] , 0

)
, which is still Riesz-spectral and

does not satisfy (4.1) either by construction. However, Σ (A,B,C,G) is L∞-
BIBO stable as its transfer function is 0. For more detailed calculations we
refer the reader to the proof of Theorem 5.1 below.
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3. Even for Riesz-spectral systems, L∞-well-posedness is strictly stronger than
L∞-BIBO stability and we can charaterize this stronger property in the case
that A generates an analytic, exponentially stable semigroup. Then a Riesz-
spectral system Σ(A,B,C,G) is L∞-well-posed in the sense of [24] if and only
if C is bounded, i.e., (cn)n∈N ∈ ℓ2 (N,C). The sufficiency holds by Lemma
6.1 below and since B is automatically infinite-time L∞-admissible, see [15].
The necessity holds for general system nodes, [24, Thm. 4.4.2].

4.2. Integrability of CT(·)B. In the case that the infinite-dimensional analogue
of the impulse response h(t) := CetAB of a finite-dimensional state-space system is
well-defined, its integrability provides a sufficient condition for BIBO stability.

Proposition 4.3. Let Σ(A,B,C,G) be a system node. Suppose that there exists
a Banach space Z continuoulsy embedded in X−1 such that

• C has a continuous extension CZ to Z
• T(t)B ∈ Z for almost all t > 0, and
• CZT (·)B ∈ L1 ([0,∞),L (U, Y )) .

Then Σ(A,B,C,G) and Σ(A∗, C∗, B∗,G∗) are both L∞-BIBO stable.

Proof. If CZT(·)B ∈ L1 ([0,∞),L (U, Y )), then in particular its Laplace transform

H(s) =

∫ ∞

0

CZT(t)Be
st dt, s ∈ Cα

exists on some right half-plane Cα. At the same time we have for any x ∈ X−1 that

(sI−A)
−1

(rI −A)
−1
x =

1

r − s

∫ ∞

0

T(σ)
(
e−sσ − e−rσ

)
xdσ,

and thus for any u ∈ U that (r − s)C (sI−A)−1 (rI −A)−1Bu = (H(s)−H(r)) u.
But this implies that H = G+ c for some c ∈ C so that we find

L−1 {G} = L−1 {H} − cδ(·) = CZT(·)B − cδ(·),

which is a measure of bounded variation by the assumption. But then we can ar-
gue analogously to the proof of Theorem 3.5 to show that the system node is L∞-
BIBO stable. More precisely, the properties of convolutions and Laplace transforms
of matrix-valued measures employed therein have to be replaced by the correspond-
ing results for general operator-valued L1 ([0,∞),L (U, Y )) functions (see e.g. [18,
Lem. D.1.11]).

The second statement follows from the observation that clearly also B∗T(·)∗C∗ ∈
L1 ([0,∞),L (Y ∗, U∗)) if CT(·)B ∈ L1 ([0,∞),L (U, Y )).

For analytic semigroups also the converse of this proposition holds.

Proposition 4.4. Let Σ(A,B,C,G) be a C∞-BIBO stable system node with A
the generator of an analytic semigroup and finite-dimensional input and output spaces
U and Y . Then the function t 7→ CT(t)B is in L1 ([0,∞),L (U, Y )).

Proof. It suffices to show this for U = Y = C. Then we can identify B and
C with elements b ∈ X−1 and c ∈ (X1)

∗, such that Bu = b u for any u ∈ U and
Cx = 〈x, c〉X1,(X1)∗

for any x ∈ X1.

For fixed t > ǫ
2 > 0 and any u ∈ C∞

c (ǫ, t− ǫ) and extended with 0 to [0,∞),
by Lemma 2.5, there exists a classical solution (u, x, y) with x(0) = 0. Furthermore,
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by the C∞-BIBO stability there is k > 0 such that for all such solutions we have
‖y‖L∞([0,∞),C) ≤ k‖u‖L∞([0,∞),C). Then we have

|y(t)| =

∣∣∣∣C
(∫ t

0

T(t− s)Bu(s) ds− (αI−A)
−1
Bu(t)

)
+G(α)u(t)

∣∣∣∣

=

∣∣∣∣
∫ t−ǫ

ǫ

〈T(s)b, c〉 u(t− s) ds

∣∣∣∣ ≤ k‖u‖L∞([0,∞),C).

Now, as 〈T(·)b, c〉 is in particular continuous on [ǫ, t−ǫ], it is also in L1 ([ǫ, t− ǫ],C). By
an adapted version of [11, Lem. 9.17] we then conclude that ‖ 〈T(·)b, c〉 ‖L1([ǫ,t−ǫ],C) ≤
k independent of t and ǫ. But this then implies first that ‖ 〈T(·)b, c〉 ‖L1([0,t],C) ≤ k
for all t > 0 and thus also ‖ 〈T(·)b, c〉 ‖L1([0,∞),C) ≤ k.

4.3. A related result for more general systems. Using Propsition 4.3, one
finds that there are sufficient conditions for BIBO stability of systems that may not
be of Riesz-spectral form, which are closely related to the one from Proposition 4.1.

Theorem 4.5. Let Σ(A,B,C,G) be a system node where A generates an expo-
nentially stable and analytic semigroup T = (T(t))t≥0, B ∈ L (U,X−α) and C ∈
L (Xβ , Y ) with α+ β < 1. Then Σ(A,B,C,G) is L∞-BIBO stable.

Proof. As B ∈ L (U,X−α) we have B̃ := (−A)−αB ∈ L (U,X) and as C ∈

L (Xβ ,C) we have C̃ := C(−A)−β ∈ L (X,Y ). Furthermore, due to the analyticity of
the semigroup, CT(t)B is well-defined for all t > 0. Then we have

‖CT(t)B‖L(U,Y ) = ‖C̃(−A)α+βT(t − s)B̃‖L(U,Y )

≤ ‖C̃‖L(X,Y )‖B̃‖L(U,X)‖(−A)
α+β

T(t− s)‖L(X),

and thus by the estimate from [20, Thm. 2.6.13] find that for all t > 0 we have

∫ t

0

‖CT(s)B‖L(U,Y ) ds .

∫ ∞

0

s−α−βe−δs ds,

with constants independent of t. Hence CT(·)B ∈ L1 ([0,∞),L (U, Y )). Then, by
Proposition 4.3, the system is L∞-BIBO stable.

Theorem 4.6. Let Σ(A,B,C,G) be a system node on a Hilbert space X, where A
generates an exponentially stable and analytic semigroup T = (T(t))t≥0 that is similar
to a contraction semigroup, B ∈ L (U,X−α) and C ∈ L (Xβ , Y ) with α + β = 1 and
finite-dimensional U and Y . Then Σ(A,B,C,G) is L∞-BIBO stable.

Proof. It suffices to consider U = Y = C. By the assumptions on B and C there
exist b, c ∈ X such that Bu = u · (−A)αb and Cx =

〈
x, (−A∗)βc

〉
. Thus, using weak

square function estimates [8], by [17, Thm. 1 & Lem. 12] we find that

∫ ∞

0

|CT(s)B| ds =

∫ ∞

0

|〈AT(s)b, c〉| ds <∞.

Then again, by Proposition 4.3, the system is L∞-BIBO stable.

5. BIBO stability under multiplicative perturbations. As a second ques-
tion we consider the conservation of BIBO stability under multiplicative perturbations
Σ(AP,B,C, G̃) of the system node Σ(A,B,C,G), where P : X → X is a bounded



14 FELIX L. SCHWENNINGER, ALEXANDER A. WIERZBA, HANS ZWART

operator and G̃ a transfer function solving Equation (2.1) for the triple (AP,B,C).
However, BIBO stability is not preserved in general, even if exponential stability is.

Recall that an operator B ∈ L (U,X−1) is called L
p-control-admissible for a semi-

group T = (T(t))t≥0 if for all t > 0 the map Φt : Lp ([0,∞), U) → X−1 given

by Φt(u) =
∫ t
0
T(t − s)Bu(s) ds maps into X and is in L (Lp ([0,∞), U) , X) [30,

Def. 4.1]. An operator C ∈ L (X1, Y ) is called Lp-observation-admissible if for some
t > 0 and any x ∈ X1 the function CT(·)x : [0, t] → Y is in Lp ([0, t], Y ) and the
map Ψt : X1 → Lp ([0, t], Y ) given by Ψt(x) = CT(·)x is bounded with respect to
the X-norm [31, Def. 6.1]. Furthermore, admissible operators are called infinite-time
admissible if the families of maps Φt respectively Ψt are bounded uniformly in t.

Furthermore, we remind the reader that a system node Σ(A,B,C,G) is called
L2-well-posed if B and C are L2-control-admissible and L2-observation-admissible
and in addition G is analytic and bounded on some right half-plane [27, Prop. 4.9].

Theorem 5.1. For every separable Hilbert space X there exists an L2-well-posed,
exponentially stable and L∞-BIBO stable system node Σ(A,B,C,G) and a bounded

and coercive operator P : X → X such that any system node Σ(AP,B,C, G̃) is
exponentially stable, but neither L∞-BIBO stable nor L2-well-posed.

Proof. Let (φk) be a Riesz basis of the Hilbert spaceX with biorthogonal sequence

(ψk). Then consider the sequence (λk) = (−1,−1,−2,−2, . . .) =

{
−k+1

2 k odd

−k
2 k even

.

By [26, Prop. 2.6.2 & 2.6.5] we can define the diagonalizable operator A : D(A) ⊂
X → X using the sequence (λk) that generates a strongly continuous semigroup
T = (T(t))t≥0 on X that is clearly exponentially stable.

Furthermore, let (bk)k∈N and (ck)k∈N be the sequences (bk) = (1, 1, . . .) and (ck) =

(1,−1, 1,−1, . . .) =

{
1 k odd

−1 k even
. Both of these sequences satisfy the Carleson mea-

sure criterion with respect to the eigenvalue sequence (λk)k∈N. Thus we can define
operators B := · b ∈ L (C, X−1) and C := 〈·, c〉 ∈ L (X1,C) using b :=

∑
k bkφk ∈ X−1

and c :=
∑

k c
∗
kφk ∈ X−1 [26, Thm. 5.3.2]. Moreover, B and C are infinite-time L2-

admissible observation and control operators for the semigroup T, respectively.

Using that (s−A)−1x =
∑
k

〈x,ψk〉
s−λk

φk for all s ∈ C0, we find that Equation (2.1)

takes the form G(s)−G(t) = (t− s)
∑

k sk for s, t ∈ C0, where

sk =





1

(s+ k+1

2 )(t+ k+1

2 )
k odd

− 1

(s+ k

2 )(t+
k

2 )
k even

.

This sum converges absolutely and by reordering we find that
∑

k sk = 0 and for
s ∈ C0 thus any transfer function for (A,B,C) satisfies G(s) = α with α ∈ C.

We conclude that Σ(A,B,C,G) is indeed L2-well-posed as G ∈ H∞(C0) [27,
Prop. 4.9]. Furthermore L−1 {G(s)} (t) = α δ(t) exists in the distributional sense and
is a measure of bounded variation, showing that the system is also L∞-BIBO stable.

Consider now the sequence (pk) = (1, 2, 1, 2 . . .) =

{
1 k odd

2 k even
. Then, by [26,

Prop. 2.5.4] this defines an operator P ∈ L (X) by Px =
∑

k pk 〈x, ψk〉φk, that is
furthermore coercive. The operator AP : D(A) → X is then still diagonal with respect

to the Riesz basis φk, being represented by the sequence (λ̃k) = (λkpk), and generates
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a strongly continuous semigroup T̃ =
(
T̃(t)

)
t≥0

that is again exponentially stable.

Furthermore, B and C are still infinite-time L2-admissible control and observation
operators as the sequences (bk) and (ck) still satisfy the Carleson measure criterion.

Employing Expression (2.1) we find that for any transfer function G̃(s) of the

perturbed system Σ(AP,B,C, G̃) we have that G̃(s)− G̃(t) = (t− s)
∑

k s̃k with

s̃k =





1

(s+ k+1

2 )(t+ k+1

2 )
k odd

− 1
(s+k)(t+k) k even

.

This sum again converges absolutely and, after reordering, we can read off that

G̃(s) =
ψ
(
1 + s

2

)

2
− ψ(1 + s) + α̃,

with ψ(s) = d
ds ln Γ(s) being the digamma function [1, 6.3.1] and α̃ some constant.

We observe that lims→∞ G̃(s) = −∞ and thus the system node Σ(AP,B,C, G̃) is
not L2-well-posed. Furthermore, by [10, Thm. 3.8.2], if the inverse Laplace transform

of G̃ were a measure of bounded variation, then G̃ would be bounded on some right
half-plane. Therefore the system cannot be L∞-BIBO stable.

The above relation between BIBO stability and L2-well-posedness is not that
accidental, as the following remark shows.

Remark 5.2. As the Laplace transform of a measure of bounded total variation,
the transfer function G of a BIBO stable system node is in particular bounded and
analytic on the open right half-plane C

+
0 [10, Thm. 3.8.2]. In the case that B and C

are L2-admissible control and observation operators respectively, L2-well-posedness is
thus implied by BIBO stability [27, Prop. 4.9].

6. BIBO stability under additive generator perturbations. Finally, we
want to consider the analogous question to the one discussed in Section 5, but now
for a bounded additive perturbation, i.e. going from a system node Σ(A,B,C,G) that

is known to be BIBO stable to Σ(A+ P,B,C, G̃) with P ∈ L (X).

6.1. System nodes with the identity as control/observation operator.
We begin by considering two particular types of system nodes, namely those for which
either B or C is the identity operator. Note that for these the input resp. output
space will not be finite-dimensional, so that the results of Section 3 do not apply.

In particular, this means that we cannot establish BIBO stability using the con-
dition on the inverse Laplace transform of the transfer function. Instead we will have
to directly show that the BIBO-inequality (3.1) is satisfied.

Lemma 6.1. Let Σ(A,B, I,G) be a system node with B infinite-time L∞-control-
admissible. Then Σ(A,B, I,G) is L∞-BIBO stable.
In particular, the assertion holds if B is Lp-control-admissible for some 1 ≤ p ≤ ∞
and A generates an exponentially stable semigroup.

Proof. Let u ∈ L∞
loc ([0,∞), X) and (u, x, y) be the corresponding distributional

solution with x(0) = 0 of the system node. Then the infinite-time L∞-control-

admissibility implies that there exists c > 0 such that x(t) =
∫ t
0 T(t− s)Bu(s) ds ∈ X
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and ‖x(t)‖X ≤ c ‖u‖L∞([0,t],X) for all t > 0, see e.g. [17]. The function

y(t) = C&D

[
x(t)
u(t)

]
= x(t)− (βI−A)−1Bu(t) +G(β)u(t),

is measurable and thus y is a function and

‖y(t)‖X =
∥∥∥x(t)− (βI−A)−1Bu(t) +G(β)u(t)

∥∥∥
X

≤ ‖x(t)‖X + ‖ (βI−A)
−1

‖‖B‖ |u(t)|U + ‖G(β)‖ |u(t)|U

≤
(
c+ ‖ (βI −A)−1 ‖‖B‖+ ‖G(β)‖

)
‖u‖L∞([0,t],X) ,

showing that the system node is L∞-BIBO stable.
The second part of the lemma directly follows from the first by noting that Lp-
admissibility implies infinite-time L∞-admissibility when the semigroup is exponen-
tially stable, see e.g. [15, Lem. 2.9].

Remark 6.2. Note that the converse of Proposition 6.1, i.e. that L∞-BIBO stabil-
ity of the system node Σ(A,B, I,G) implies L∞-control-admissibility of B, does not
hold. Indeed, following [16, Example 2.3], consider the system node Σ(A,A−1, I) on
the state space X = c0(N) with the diagonal operator A = diag(n). Then this system
node is L∞-BIBO stable, but A−1 is not L∞-control-admissible.

Corollary 6.3. Let Σ(A,B,C,G) be a system node with an Lp-observation-
admissible operator C ∈ L (X1, Y ) for some p ∈ (1,∞), B ∈ L (U,X) and A the
generator of an exponentially stable and analytic semigroup. Then Σ(A,B,C,G) is
L∞-BIBO stable.

Proof. This follows from Proposition 4.5, as any Lp-observation-admissible oper-
ator C is bounded as an operator from Xα to Y for some α ∈ (0, 1), see e.g. [21].

The following shows that Corollary 6.3 does not hold for arbitrary semigroups.

Proposition 6.4. Let A generate a right-invertible strongly continuous semi-
group T = (T(t))t≥0 and let C : X1 → Y be an observation operator such that there

exists c > 0 such that for all classical solutions (u, x, y) of Σ(A, I, C, C (·I−A)
−1

)
with x(0) = 0 and all T > 0 we have ‖y‖L∞([0,T ],Y ) ≤ c‖u‖L∞([0,T ],X). Then C
extends to a bounded operator from X to Y .

Proof. Let xU ∈ D(A) and define the input function u = T(·)xU . Then the

function t 7→ x(t) :=
∫ t
0 T(t − s)u(s) = tT(t)xU satisfies x(t) ∈ X1 for all t ≥ 0

and is continuously differentiable in X with derivative ẋ(t) = T(t)xU + tAT(t)xU =
Ax(t) + u(t) [24, Thm. 3.2.1]. Hence (u, x, Cx) is a classical solution of the system

node Σ(A, I, C, C (·I−A)
−1

) and by the assumption we thus have that for t > 0

‖tCT(t)xU‖Y ≤ ‖Cx(·)‖L∞([0,t],Y ) . ‖u‖L∞([0,t],X) ≤ sup
τ∈[0,t]

‖T(τ)‖ ‖xU‖X .

Thus tCT(t) extends continuously to an operator in L (X,Y ). But then we find for
some fixed t > 0 and with S(t) ∈ L (X) denoting the right inverse of T(t) that

‖t Cx‖Y = ‖t C T(t)S(t)x‖Y ≤ ‖t C T(t)‖ ‖S(t)x‖X ≤ ‖t C T(t)‖ ‖S(t)‖ ‖x‖X ,

and thus ‖Cx‖Y . ‖x‖X implying that C extends to C ∈ L (X,Y ).
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Note furthermore that C being L1-observation-admissible is in general not sufficient
to ensure L∞-BIBO stability of Σ(A, I, C, C (·I−A)

−1
).

Proposition 6.5. There are system nodes Σ(A, I, C, C (·I−A)
−1

) with C being
L1-observation-admissible that are not L∞-BIBO stable.

Proof. There exists a Hilbert space X and an unbounded operator A that gen-
erates an exponentially stable and analytic semigroup such that any operator C ∈
L (X1,C) is L

1-observation-admissible [17]. Furthermore, any such C can be written
for all x ∈ X1 as Cx = 〈c̃, Ax〉X with some c̃ ∈ X .

Assume for any such C the system node Σ(A, I, C, C (·I−A)
−1

) was L∞-BIBO
stable. Then consider, for any f ∈ L∞ ([0,∞), X) with ‖f‖L∞([0,∞),X) = 1 the map

Sf : L (X1,C) → L∞ ([0,∞), Y ) , C 7→ C

∫ ·

0

T(· − s)f(s) ds.

One can show that each of these maps is closed and thus by a closed graph argument
bounded. Then by the uniform boundedness principle, there exists K > 0 such that
for any C ∈ L (X1,C) and any f ∈ L∞ ([0,∞), X)

∥∥∥∥C
∫ ·

0

T(· − s)f(s) ds

∥∥∥∥
L∞([0,∞),Y )

≤ K ‖C‖L(X1,C)
‖f‖L∞([0,∞),X) .

Thus, as
∥∥∥∥C

∫ ·

0

T(· − s)f(s) ds

∥∥∥∥
L∞([0,∞),Y )

=

∥∥∥∥
∫ ·

0

〈A∗
T
∗(· − s)c̃, f(s)〉 ds

∥∥∥∥
L∞([0,∞),Y )

,

and ‖C‖L(X1,C)
. ‖c̃‖X we find that

(6.1)

∥∥∥∥
∫ ·

0

〈A∗
T
∗(· − s)c̃, f(s)〉 ds

∥∥∥∥
L∞([0,∞),Y )

≤ K‖c̃‖X ‖f‖L∞([0,∞),X) .

But now for any s ∈ [0, t] we have ys =
A∗

T
∗(t−s)c̃

‖A∗T∗(t−s)c̃‖ ∈ X with ‖ys‖X = 1 such that

〈A∗T∗(t− s)c̃, ys〉 = ‖A∗T∗(t− s)c̃‖. Consider then the function f : [0, t] → X given

by s 7→ f(s) = A∗
T
∗(t−s)c̃

‖A∗T∗(t−s)c̃‖ . Clearly f is continuous on [0, t) and thus also measurable

on this interval. Furthermore, we have ‖f‖L∞([0,t],X) = 1. Then by (6.1) we have that∫ t
0
‖A∗T∗(t− s)c̃‖ ds ≤ K‖c̃‖X , that is for any t > 0 and any c̃ ∈ X we have that

‖A∗
T
∗(·)c̃‖L1([0,t],X) ≤ K‖c̃‖X ,

i.e. that A∗ is L1-observation-admissible. But this implies that A is L∞-control-
admissible [31] and thus by [16, Thm. 2.9] A is bounded, giving a contradiction.
Therefore the assumption cannot hold.

Remark 6.6. We note that Lemma 6.1 and Proposition 6.4 also show that the du-
ality notions between admissible control and observation operators do not fully extend
to BIBO stability. Indeed, consider a non-L∞-BIBO stable system node Σ(A, I, C,G)
with A the generator of an exponentially stable semigroup on a Hilbert space X and
an L1-control-admissible C : X1 → C, guaranteed to exist by Proposition 6.5. Its
dual system node Σ(A∗, C∗, I,G∗) is L∞-BIBO stable as C∗ L∞-control-admissible,
by [31] and Corollary 6.1. As the dual system of Σ(A∗, C∗, I,G∗) is again (isomorphic
to) Σ(A, I, C,G), we conclude that BIBO stability is not preserved under duality.
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6.2. Additive perturbations.

Theorem 6.7. Let Σ(A,B,C,G) be an L∞-BIBO stable system node and let

P ∈ L (X). If both Σ(A + P,B, I, (·I−A+ P )
−1
B) and Σ(A, I, C, C (·I−A)

−1
) are

L∞-BIBO stable, then any additively perturbed system node Σ(A+P,B,C, G̃) is L∞-
BIBO stable.

Proof. Let u ∈ L∞
loc ([0,∞), U). Then we have generalized solutions (u, xA, yA)

of Σ(A,B,C,G) with xA(0) = 0 and (u, xA+P , yA+P ) of Σ(A + P,B,C, G̃) with
xA+P (0) = 0.

First, as xA+P solves ẋA+P = (A+P )xA+P +Bu in X−1 for almost all t > 0 and
xA solves ẋA = AxA + Bu in X−1 for almost all t > 0, we see that x̃ = xA+P − xA
solves ˙̃x = Ax̃ + PxA+P in X−1 for almost all t > 0. Thus there exists a generalized
solution (PxA+P , x̃, ỹ) of the system node Σ(A, I, C, C (·I−A)

−1
) with

ỹ = C
[
x̃− (αI−A)

−1
PxA+P

]
+ C (αI−A)

−1
PxA+P = Cx̃,

to be understood in a distributional sense (meaning states and inputs are to be read
as twice integrated and the resulting expression is twice differentiated).

As (u, xA+P , xA+P ) is a generalised solution of the L∞-BIBO stable system

node Σ(A + P,B, I, (·I−A+ P )
−1
B), there exists c1 > 0 such that for all u ∈

L∞
loc ([0,∞), U) and all T > 0

‖xA+P ‖L∞([0,T ],X) ≤ c1‖u‖L∞([0,T ],U),

whence PxA+P ∈ L∞
loc ([0,∞), X). As Σ(A, I, C, C (·I−A)

−1
) is L∞-BIBO stable we

conclude that ỹ ∈ L∞
loc ([0,∞), Y ) and that there exists c2 > 0 such that

‖ỹ‖L∞([0,T ],Y ) ≤ c2‖PxA+P ‖L∞([0,T ],X) ≤ c2‖P‖‖xA+P‖L∞([0,T ],X)

≤ c1c2‖P‖‖u‖L∞([0,T ],U).

Further, consider for any α ∈ Cω(T)∩C
ω(T̃) (with T̃ being the semigroup generated by

A+P ) the expression from Definition 2.6 for the outputs yA and yA+P and let (C&D)A
and (C&D)A+P be the combined output/feedthrough operators of the system nodes

Σ(A,B,C,G) and Σ(A + P,B,C, G̃) respectively. Then we have in a distributional
sense (again meaning all x and u are to be understood as twice integrated and a
distributional double derivative applied in the end, see also Definition 2.6)

yA+P − yA = (C&D)A+P

[
xA+P

u

]
− (C&D)A

[
xA
u

]

= C
[
(xA+P − xA)−

(
(αI− (A+ P ))

−1
− (αI−A)

−1
)
Bu

]
+
(
G̃(α) −G(α)

)
u

= ỹ − C (αI−A)
−1
P (αI− (A+ P ))

−1
Bu+

(
G̃(α) −G(α)

)
u.

Now, as C (αI−A)
−1
P (αI− (A+ P ))

−1
B ∈ L (U, Y ) and G̃(α) −G(α) ∈ L (U, Y )

this actually holds as an equality of functions and we have

yA+P = yA + ỹ − C (αI −A)
−1
P (αI− (A+ P ))

−1
Bu+

(
G̃(α) −G(α)

)
u.
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P Σ
(
A, I, C, C (· I−A)

−1
)

Σ
(
A+ P,B, I, (· I− (A+ P ))

−1
B
)

Σ (A,B,C,G)

G̃(α) −G(α)− C (αI−A)
−1
P (αI− (A+ P ))

−1
B +≡Σ

(
A+ P,B,C, G̃

)

Fig. 6.1. Decomposition of the additively perturbed system

The statement then follows from the L∞-BIBO stability of Σ(A,B,C,G) as
∥∥∥C (αI−A)

−1
P (αI− (A+ P ))

−1
B u(t)

∥∥∥
Y

≤
∥∥∥C (αI−A)

−1
∥∥∥
L(X,Y )

‖P‖L(X)

∥∥∥(αI− (A+ P ))
−1
B
∥∥∥
L(U,X)

‖u(t)‖U .

Remark 6.8. The construction carried out in the proof of Theorem 6.7 can be
understood as decomposing the perturbed system node Σ(A + P,B,C, G̃) into the
unperturbed system node Σ(A,B,C,G), a pure gain part and a concatenation of P ,

Σ(A,B, I, (·I− (A+ P ))−1B) and Σ(A, I, C, C (·I−A)−1) as depicted in Figure 6.1.

Using the two results of the previous section we then have the following corollary.

Corollary 6.9. Let Σ(A,B,C,G) be an L∞-BIBO stable system node with A
being the generator of an exponentially stable, analytic semigroup T = (T(t))t≥0,
B ∈ L(U,X−1) an L∞-admissible control operator for T and C ∈ L(X1, Y ) an Lp-
admissible observation operator for T for some 1 < p ≤ ∞. Let furthermore P ∈
L (X) be such that A+P : D(A) → X generates an exponentially stable semigroup T̃.

Then any additively perturbed system node Σ(A+ P,B,C, G̃) is L∞-BIBO stable.

Proof. Σ(A + P,B, I, (·I−A+ P )
−1
B) is L∞-BIBO stable by Lemma 6.1 and

Σ(A, I, C, C (·I−A)
−1

) is L∞-BIBO stable by Corollary 6.3 and thus the statement
follows directly from Theorem 6.7.

7. Final remarks. For an application of the results derived in this work to a
concrete example, we refer the reader to [12], where a chemical reactor system has
been studied in the context of Funnel control and BIBO stability of semilinear systems.

Within the study of BIBO stability for linear systems some open questions remain.
First, the situation in the case of infinite-dimensional input or output spaces is, apart
from a few special cases, unresolved. This includes the question of the relation between
the two different BIBO notions and whether or not the inverse Laplace transform of
the transfer function being an (operator-valued) measure of bounded total variation,
is still is a necessary condition for BIBO stability.

Secondly, it would be desirable to extend perturbation results as in Section 6 to
non-analytic semigroups as they appear e.g. in the study of hyperbolic PDEs.

Acknowledgments. The authors would like to thank the anonymous reviewers
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