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Introduction
• Machine learning-driven malware detection systems have 

demonstrated potential in identifying zero-day malware.
• Existing approaches lack robustness and needs more 

testing on different types of malware.
• AML attacks can help to determine effectiveness and 

robustness of a detection system.

Challenges:
• Obfuscated malware can be difficult to catch. Memory 

forensics is the solution. (VolMemLyzer)
• CIC-MalMem-2022 dataset only covers Spyware, 

Ransomware, and Trojan Horses.
• ML based malware detection systems have been tested on 

Windows, but further research is needed on Linux and 
MacOs to create unification between the systems.

Approach 
Phase 1:
Develop and train machine learning based Malware 
Detection Model:

• Take memory snapshot and extract features.
• Data balancing using SMOTE.
• Split data and input into detection system.
• Binary output (malicious or benign).

Results
• Algorithms Tested in Detection Model

- Decision Trees, Random Forest, LGBM, XGBoost
• Top Performers

- XGBoost, Random Forest
• Metrics used:

- 10-fold cross 
validation

- accuracy
- F1 Score
- FPR
- sensitivity
- PPV
- Cohen kappa
- specificity
- MCC

FIGURE 4: After Code Transformation

Conclusions
• ML based Detection systems are a viable solution to 

combat zero-day malware, but needs more research.
• The new dataset from Phase 2 will help researchers 

to robustify their models against many forms of 
malware.

Future work:
• Defensive Distillation, Adversarial Training
• AE Transferability Problem
• Test model on MacOS and Linux

Tools

Phase 2:
Attack the detection model using JSMA
• Collect malware binaries to execute on a VM and 

take memory snapshot.
• VolMemLyzer to extract features to CSV file (new 

dataset).
• Feed CSV files into the detection model.
• Record performance for analysis in phase 3.

Phase 3: (Future Work)
Analyze model performance and Adversarial 
Example Transferability
• Robustifying Techniques

- Defensive Distillation
- Adversarial Training

• AE Transferability
- Provides insight into ML models

Authors Algorithm Accuracy (in %)

[1] RF, DT 92.01, 99.00

[2] LR 99.97

[3] KNN w/ Stacked 
Ensemble

97.00

This study XGBoost, RF 99.98, 99.98

Figure 1: Basic ML based Detection System Workflow

Figure 2: AML Model Workflow

Figure 3: XGBoost Confusion Matrix

Table 1: Performance comparison of related works.
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