
Boise State University Boise State University

ScholarWorks ScholarWorks

Cyber Operations and Resilience Program
Graduate Projects College of Engineering

5-2023

Improvements to Passive Fingerprinting of Operational Improvements to Passive Fingerprinting of Operational

Technology Environments Technology Environments

Lawrence Wellman
Boise State University

Recommended Citation Recommended Citation
Wellman, Lawrence Rodney. (2023). "Improvements to Passive Fingerprinting of Operational Technology
Environments". Cyber Operations and Resilience Program Graduate Projects. 4.
https://scholarworks.boisestate.edu/cyber_gradproj/4

© 2023, Lawrence R. Wellman.

https://scholarworks.boisestate.edu/
https://scholarworks.boisestate.edu/cyber_gradproj
https://scholarworks.boisestate.edu/cyber_gradproj
https://scholarworks.boisestate.edu/engineering
https://scholarworks.boisestate.edu/cyber_gradproj/4

Improvements to Passive Fingerprinting of Operational Technology Environments

by

Lawrence Wellman

A project completed in fulfillment

of the CORe 591 requirements for the degree of

Master of Science in Cyber Operations and Resilience

Boise State University

May 2023

Improvements to Passive Fingerprinting of

Operational Technology Environments

Lawrence Wellman

Cyber Operations and Resilience Program

Boise State University

Abstract— This paper explores the effectiveness of three network tools for analyzing network traffic and highlights their reliance on

network ports to fingerprint TCP and UDP network protocols. Considering this limitation, the paper introduces protoDetect, a novel tool

demonstrating a possible solution for identifying Operational Technology (OT) network protocols.

Keywords—Operational Technology, ICS, Network Fingerprinting

I. INTRODUCTION

Motivation. Operational Technology (OT) networks are
essential for monitoring and controlling critical infrastructure
environments such as power grids, manufacturing plants, and
water treatment systems. The disruption of these
environments can have significant and immediate effects on
the citizens and corporations that rely on their continued
operation.

Systems in an OT environment are often designed and
installed by third parties and operated by a combination of
vendors and onsite engineers. They are often left in place until
they fail to work, resulting in many generations of devices.
The vendor may no longer support these devices or still be
operating. The security of OT networks can be improved by
identifying and classifying the network traffic generated by
the various OT devices. Recognizing the multiple
connections, systems, and applications in an environment is a
preliminary step in security monitoring, penetration testing,
incident response, system backup, and recovery [1]. This
research paper proposes a novel method for passively
fingerprinting Industrial Control System (ICS) network
traffic, targeting incident responders looking for solutions that
are not environment-specific specifically without relying on
the network port.

Limitation. Existing passive fingerprinting techniques used
by tools in the field require protocols to either be on a default
and expected port or that the operator will know and be able
to configure tools where the default port has been modified.
Individual tools may be able to scan and identify specific
protocols on nonstandard or all ports [2]. However, this
capability has only been identified for a limited number of
widespread protocols or is available only as vendor-
proprietary tools.

Approach. This paper reviews three network traffic parsing
tools and finds they cannot effectively parse traffic transmitted
on nonstandard ports. To overcome this limitation, a novel
approach is proposed using methods demonstrated in [3]–[6].
Further, this paper presents a series of techniques to classify
network traffic by extracting unique traits identified in the data
sections of the protocols. This is then demonstrated through

the development of protoDetect, which incorporates unique
fingerprints for Modbus [3], S7Communication (S7Comm)
[4], Distributed Network Protocol 3 (DNP3) [5], and
Ethernet/IP [6].

Contribution. The main contribution of this research is
showing that currently, available network tools cannot
identify traffic configured to run on a different port. It also
presents a tool for fingerprinting connections irrespective of
the port transmitted on.

Roadmap. Section 2 provides an overview of existing work.
Section 3 looks at the results of commonly used tools and
shows that they fail to identify protocols where the ports have
been manipulated. Section 4 describes and illustrates the tool's
results developed to address this issue. Section 5 discusses the
developed tool's shortcomings and future work and concludes
in Section 7.

II. RELATED WORK

Interest in device fingerprinting is growing in the
academic and industrial research communities. This research
is commonly split between active methods which send traffic
to the device to determine its type and protocols. Active
fingerprinting can be done by sending intentionally
manipulated packets to identify variations in the device's
response to commands that return device information. Typical
examples of active fingerprinting are Nmap [7], Xprobe2 [8],
or PLCScan [9]. Passive fingerprinting relies on monitoring
device emanations to identify variances that can be used to
identify unique attributes of the device. For example,
discrepancies in individual packet flags, communications
delays and other timing, session interactions, and packet
application data. Typical tools for passive fingerprinting
include p0f [10] and GrassMarlin [11]. Research in [12]
examines network flows extracted from collected network
traffic and separates ICS from non-ICS devices.

The described research primarily focuses on identifying
specific devices rather than specifically looking at identifying
particular protocols. [13] looks at methods for classifying
traffic on the fly using the first five packets to identify traffic

that may be attempting to hide by changing its ports, such as
peer-to-peer (p2p) traffic.

III. REVIEW OF COMMONLY USED TOOLS

This section looks at Wireshark, GrassMarlin, and
SynSaber OT PCAP Analyzer, specifically each tool's
capability to identify network protocols. It identifies that each
tool relies primarily on network ports to determine protocol
and that if the port is changed, they fail to recognize the
protocol successfully.

Wireshark is a free and open-source network packet
analyzer with many uses, including troubleshooting networks,
examining potential security issues, verifying network
applications, and debugging protocol implementations [14]. It
can capture network traffic and save it as a packet capture
(PCAP). Wireshark can parse approximately 3000 protocols
[15].

Wireshark has two primary methods for protocol
identification. The first is a link dissector that defines when
traffic should be forwarded to the dissector. This is generally
implemented by adding a dissector with a field, value, and a
handle, e.g., “tcp.port, 22, ssh_handle”. Multiple dissectors
will often be added to support various ports for the same
protocol handler. The second method is a heuristic dissector,
which will check bytes in incoming packets to match
conditions defined in the protocol description. This can be
used to identify protocols that contain easily identifiable
attributes such as a magic number or message IDs. Heuristic
dissectors are used for approximately 271 parsers. However,
this is commonly combined with link dissectors. For example,
in cases where multiple protocols overlap on network ports
and thus still rely on the network port for identification. Thus,
of the 3000 protocols supported by Wireshark, only around 64
protocols don’t rely on the network port for protocol
identification.

GRASSMARLIN is a Java-based program released by the
NSA. The tool aims to provide situational awareness of
industrial control systems but has received few updates since
its initial release in 2016. GRASSMARLIN leverages an older
version of Wireshark to process network traffic but includes
119 fingerprints to identify different OT devices and
protocols. These protocols are defined in XML files. The only
file which does not leverage the port in its fingerprinting is the
Operating System which leverages TTL to identify different
operating systems.

SynSaber released a free OT PCAP Analyzer in 2023 [16].
This tool runs a local web server that allows users to upload a
PCAP; it will then provide an overview of the vendor and
protocols identified in the PCAP. This tool's source is
unavailable, so the protocol identification method is unknown.

Additionally, to test these tools' capability to identify
protocols, two datasets of PCAPs were used. The first is a
collection of ICS PCAPs from various online locations
provided on GitHub [17]. The second is a set of PCAPs used
to test parsers developed for Malcolm, also retrieved from
GitHub [18].

A modified version was created for each PCAP file which
changed UDP and TCP ports by adding 2001 to each port. The
files were altered using Scapy, a Python library for reading
and packet manipulation, which was used to read the files,
make the modifications to the source and destination ports and
then recalculate the checksum and length of the packet. 2001
was selected because it pushed all well-known ports (0, 1023)
outside this range. Adding 1 to each network port handles
cases where default ports are often changed by adding the
number to itself, for example, by chaining port 22 to port 2222
or port 80 to port 8080. Finally, this simple modification
allowed the researcher to reverse the change while reviewing
the files.

Then for each PCAP, the original file was loaded into the
three tools, and then the modified version was loaded into the
tool to identify any changes in protocol detection. For
Wireshark, the packet dissections were exported as a CSV file
then the protocol column was compared. For GrassMarlin and
SynSaber, the tools were manually loaded, and then
differences were compared manually.

IV. PROTODETECT: ICS PROTOCOL DETECTION

This section presents protoDetect, a command line tool
developed for PCAPs, and identifies network protocols. This
tool takes a directory or a file as input and writes connections
to a log file. This output can be used to configure security tools
with the port used for various protocols used. Three fields
were identified and used to fingerprint each protocol. These
included a protocol identifier or specific bytes that help
identify a particular protocol, length fields, and cyclic
redundancy check (CRC) or checksum. Where possible, a
combination of these fields was used.

A. Modbus TCP

Modbus was originally a serial protocol developed by
Modicon to communicate with its programmable logic
controllers (PLCs) [19]. It has been adapted to communicate
over multiple methods, including Modbus TCP, a variant that
defaults to port 502.

Image 1: Modbus Protocol Description [20]

The Modbus protocol fingerprint uses two methods to
detect the protocol. The first is the protocol identifier
“0x0000”. However, two bytes, especially all zero bytes, may
overlap with other protocols and lead to a high false positive
rate. The second method uses the length field, which counts
the bytes following the length field to the end of the packet.
Combining these two methods reduced false positives in the
given data set.

B. S7Comm

S7Comm is a Siemens proprietary protocol that runs
between PLCs in the Siemens S7-300/400 family [21].

S7Comm consists of a combination of protocols, including, at
a minimum, ISO transport services on top of the TCP (TPKT)
and connection-oriented transport protocol (COTP).
S7Comm, by default, uses port 102.

The S7Comm protocol fingerprint uses similar methods to
the Modbus protocol. The protocol identifier in the header is
the hex bytes “0x32”. The TPKT layer contains a length layer
that counts the entire length of the data section.

C. DNP3

DNP3 is a set of protocols used in process automation and
typically used by electric and water companies [22]. The
default port for DNP3 is 20,000.

Image 2: DNP3 Protocol Description [23]

This protocol contains several reoccurring structures
allowing it to be identified confidently. In the header, the
protocol starts with a protocol identifier “0x0564”. The length
field is calculated by adding the bytes in the control,
destination, source fields, and user data sections. Each user
data section is 16 bytes, with the final block containing the
remaining bytes. The header and user data sections contain a
CRC, which can be verified. For the current data set, sufficient
accuracy was achieved by looking for the protocol identifier
and calculating the header CRC.

D. Ethernet/IP or CIP

Ethernet/IP is one of a few protocols that utilize CIP and
is one of the leading industrial protocols used in the United
States [24]. The default ports for Ethernet/IP are TCP 44818
and UDP 2222.

This protocol contains a protocol identifier of hex “0x
00000000” and a length field. However, unlike other
fingerprinted protocols, CIP uses zero-length packets
containing only the header. This renders the fingerprint for
these two fields unable to identify these specific packets as
CIP reliably.

V. DISCUSSION

This section will discuss the tool's results and looks at
future work that can improve the research findings. One
comparison is included below of Wireshark and protoDetect.

 Wireshark protoDetect

Modbus 99472 99478

DNP3 38 24

S7comm 106421 212794

Ethernet/IP 0

Table 1: Number of Packets for Unchanged 4SICS-
GeekLounge-151022.pcap

 Wireshark protoDetect

Modbus 0 99478

DNP3 0 24

S7comm 0 212794

Ethernet/IP 0 0

Table 2: Number of Packets identified for Modified
4SICS-GeekLounge-151022.pcap

In Table 1, we can see variations in the number identified
by protoDetect when it comes to individual packets. The
primary reason for variations was that Wireshark does not
count packets with TCP issues, such as TCP Retransmission
or TCP duplicate ACKs. However, a few misidentified
packets were also identified where protoDetect’s fingerprints
were not specific enough, and future revisions could be
improved. These issues are mitigated because protoDetect
lists the recognized protocols and the host and ports they
communicate on. This list is a culmination of the
fingerprinting of each packet; thus, misidentifications of a
single packet will generally not result in the entire
communication being misclassified.

protoDetect relies on a fingerprint being developed for
each protocol. A good fingerprint requires multiple verifiable
fields available in the protocol. The CRC was the most reliable
field of the areas used as it involves a block of bytes to match
a specific value. Future work should add protocols and
methods to generate automatic fingerprints for a protocol
found within a PCAP that currently does not have a defined
fingerprint. Originally the protoDetect was developed using
Golang, and issues were identified in the gopacket library for
handling packets that did not adhere to TCP specifications.
This resulted in the script being rewritten in Python using
Scapy. While this proved to be more reliable, it did come at a
significant time cost to analyze a file. Future work should
identify methods to speed up the protocol analysis.

VI. CONCLUSION

This paper examines the challenges of fingerprinting network
protocols in an operational technology network. It reviews the
current capabilities of network capture analysis tools and
identifies their reliance on network ports to fingerprint TCP
and UDP network protocols. It then proposes a potential
solution that could be applied to run a first pass identifying OT
network protocols and identifying which port they are
communicating with. The proposed methods are then
demonstrated using protoDetect. There is then a discussion of
future works that could help overcome shortcomings in the
presented tool.

REFERENCES

[1] “The 18 CIS Controls,” CIS.

https://www.cisecurity.org/controls/cis-controls-list/

(accessed Jun. 25, 2022).

[2] “Configuring HTTP Inspection on All Ports.”

https://sc1.checkpoint.com/documents/R81/WebAdmin

Guides/EN/CP_R81_DataLossPrevention_AdminGuid

e/Topics-DLPG/Configuring-HTTP-Inspection-on-All-

Ports.htm (accessed Mar. 27, 2023).

[3]“Modbus_Messaging_Implementation_Guide_V1_0b.pdf

.” Accessed: May 07, 2023. [Online]. Available:

https://www.modbus.org/docs/Modbus_Messaging_Im

plementation_Guide_V1_0b.pdf

[4] “78028908_SIMATIC_Comm_DOKU_v23_e.pdf -

CPU-CPU Communication with SIMATIC Controllers

- ID: 78028908 - Industry Support Siemens.”

https://support.industry.siemens.com/cs/document/7802

8908/cpu-cpu-communication-with-simatic-

controllers?dti=0&lc=en-GE (accessed May 07, 2023).

[5] “Overview of DNP3 Protocol.”

https://www.dnp.org/About/Overview-of-DNP3-

Protocol (accessed May 07, 2023).

[6] “EtherNet/IP: Industrial Protocol White Paper.”

Institute of Electrical and Electronic Engineers, 2001.

Accessed: May 07, 2023. [Online]. Available:

https://literature.rockwellautomation.com/idc/groups/lit

erature/documents/wp/enet-wp001_-en-p.pdf

[7] “Nmap: the Network Mapper - Free Security Scanner.”

https://nmap.org/ (accessed Jun. 26, 2022).

[8] binarytrails, “binarytrails/xprobe2.” May 19, 2022.

Accessed: Jun. 26, 2022. [Online]. Available:

https://github.com/binarytrails/xprobe2

[9] “Google Code Archive - Long-term storage for Google

Code Project Hosting.”

https://code.google.com/archive/p/plcscan/ (accessed

Jun. 26, 2022).

[10] “p0f v3.” https://lcamtuf.coredump.cx/p0f3/ (accessed

Jun. 26, 2022).

[11] “GRASSMARLIN.” NSA Cybersecurity Directorate,

Jun. 20, 2022. Accessed: Jun. 25, 2022. [Online].

Available:

https://github.com/nsacyber/GRASSMARLIN

[12] I. Chakraborty, B. M. Kelley, and B. Gallagher,

“Industrial control system device classification using

network traffic features and neural network

embeddings,” Array, vol. 12, p. 100081, Dec. 2021,

doi: 10.1016/j.array.2021.100081.

[13] V. Sowinski-Mydlarz, J. Li, K. Ouazzane, and V.

Vassilev, “Threat intelligence using machine learning

packet dissection,” Trans. Comput. Sci. Comput. Intell.,

Jul. 2021, Accessed: May 07, 2023. [Online].

Available: https://www.springer.com/series/11769

[14] “Chapter 1. Introduction.”

https://www.wireshark.org/docs/wsug_html_chunked/C

hapterIntroduction.html (accessed Mar. 27, 2023).

[15] “Wireshark · Display Filter Reference: Index,”

Wireshark. http://localhost:3000/docs/dfref/default.html

(accessed Mar. 28, 2023).

[16] “SynSaber Launches a Free OT PCAP Analyzer Tool

for the ICS Community,” SynSaber | Industrial

Cybersecurity. https://synsaber.com/news-and-

events/free-ot-pcap-analyzer-tool-from-synsaber/

(accessed Mar. 28, 2023).

[17] J. Smith, “ICS-pcap.” Feb. 02, 2023. Accessed: Feb.

06, 2023. [Online]. Available:

https://github.com/automayt/ICS-pcap

[18] “Malcolm-PCAP.” mmguero-dev, Mar. 08, 2023.

Accessed: Mar. 28, 2023. [Online]. Available:

https://github.com/mmguero-dev/Malcolm-PCAP

[19] “Modbus,” Wikipedia. Apr. 24, 2023. Accessed: May

07, 2023. [Online]. Available:

https://en.wikipedia.org/w/index.php?title=Modbus&ol

did=1151570531

[20] “About Modbus TCP | Simply Modbus Software.”

https://www.simplymodbus.ca/TCP.htm (accessed May

07, 2023).

[21] “S7comm.” https://wiki.wireshark.org/S7comm

(accessed May 07, 2023).

[22] “DNP3,” Wikipedia. Mar. 20, 2022. Accessed: May 07,

2023. [Online]. Available:

https://en.wikipedia.org/w/index.php?title=DNP3&oldi

d=1078136308

[23] “DNP 3,” RACOM.

https://www.racom.eu/eng/support/prot/dnp3/index.htm

l (accessed May 07, 2023).

[24] “EtherNet/IP,” Wikipedia. Mar. 22, 2023. Accessed:

May 07, 2023. [Online]. Available:

https://en.wikipedia.org/w/index.php?title=EtherNet/IP

&oldid=1146034135

	Improvements to Passive Fingerprinting of Operational Technology Environments
	Recommended Citation

	Improvements to Passive Fingerprinting of Operational Technology Environments

