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Abstract

This thesis emphasis is on coordination games. In a coordination game, selecting the same

strategy or decision as the opponent is mutually beneficial for both parties. We studied the

problem of equilibrium convergence in such games in both discrete and continuous (time)

cases.

In the first Chapter, we provide a brief introduction to the field of game theory. We

discuss different categories of agents based on their levels of rationality and decision-making

strategies, along with a variety of games. Additionally, we address important issues and

challenges within this field.

The second Chapter of this work is dedicated to a heterogeneous mixed population of

imitators and best-responders. In this model, agents’ update rules are assumed to be discrete

functions of time. Imitators refer to agents who simply replicate the strategy of another

agent with the highest payoff, while best-responders pick the strategies that maximise their

individual outcomes. Suggesting the concept of ’sections’–a consecutive sequence of agents

with similar strategies– helped us in establishing convergence to an equilibrium state. This

convergence was demonstrated under any arbitrary asynchronous activation sequence within

a linear network. The proof was then extended to networks with ring, starike, and sparse-tree

structures. However, the question of equilibrium convergence for other network structures

remains an open challenge.

In the third Chapter, we examined a large well-mixed population of imitators within

a coordination context. Our analysis is grounded in the assumption that imitation here

is driven by dissatisfaction. Equivalently, agents with lower payoffs are more dissatisfied

and have more tendency to change and imitate higher earners within the population. The



analysis reveals the presence of three fixed points, of which two are stable and one is a saddle

point. The stable manifold of the unstable fixed point is also calculated. Additionally, It

is demonstrated that starting from any initial state, the population eventually converges

towards one of these introduced fixed points.
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Chapter 1

Introduction

Having a set of options, the situation where an individual has to choose a few from the given

set creates a decision-making dilemma[11]. For example, a chef is planning a menu for a

restaurant. They must choose a few dishes from many delicious options to feature.

Each decision-making problem consists of two main components, the decision-maker and

the set of options. Back to our example, the chef is playing the role of the decision-maker,

and the set of options includes all the dishes on the menu.

The limit on the number of options that can be chosen by the decision-maker leads them

to this question:“Which subset of options should I choose?”. The answer to this question

depends extremely on the decision-maker’s level of rationality.

Each individual puts effort into choosing the option that maximizes their outcome. The

definition of outcome is context-dependent. In our example, the chef intends to increase the

restaurant’s income by choosing the features that influence the customers. The restaurant’s

income in this example is considered the outcome of the decision-making problem.

The more general case occurs when individuals’ decisions are interdependent, meaning

that an individual’s decision is not only a function of their priorities over different subsets of

all existing options but also influenced by others’ decisions. Imagine a street with multiple

restaurants. Each restaurant has some specialty dishes. To compete with other restaurants,

choosing the same features as them seems tempting. However, it is not a way to stand out

against the other restaurants. The chef must consider these factors along with their team’s

strengths and limitations in choosing the features that maximize the restaurant’s income.

The impact of others’ decisions on an individual’s payoff (outcome) may drive the in-
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dividual to change their decision once they have the opportunity; if a chef notices that a

neighboring restaurant has chosen the same features, they may feel the need to differentiate

themselves and select new, unique features.

Revising decisions may raise dissatisfaction among people who have already made their

decision. We say the population (of individuals) is in satisfaction if each individual despite

having the chance to change their decisions sticks to it. In other words, each individual

believes their current decision maximizes their outcome regardless this is true or false. In

our example, all chefs are already satisfied with their selected features.

One question is whether a population of decision-makers reaches such a satisfactory

state. The answer is important from several aspects. For example, being aware of reaching

a satisfactory state in economic systems enables us to adapt to changing circumstances and

avoid major disruptions. In economics, this satisfactory state may lead to the stability of

markets which can be reinforced by rules and incentives[5].

However, it may also be important how fast a population of decision-makers reaches such

a satisfactory state if there is one. Moreover, if a population reaches such a satisfactory

state, can it be guaranteed that by changing the decisions of a small proportion of the

population, the population reaches that satisfactory state again? In other words, how stable

this satisfactory state is.

The answer to all these questions depends on several aspects that one of them is how

rational each individual is. For example, someone may just choose randomly among the

options provided. In some cases, the decision-maker may look at others in the population

and see whose outcome is more and what is their choice. Then they make the same decision

hoping this choice increases their outcome. It means such an individual may believe the

outcome only depends on the decision and no other factor. Some may discover others’

decisions also affect their outcome. Therefore, they consider both their preferences and

others’ decisions in calculating the outcome. Someone may also find other affective factors

and involve them in their final decision, such as the time of making a decision. Some people
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learn from made mistakes, and each round use this knowledge in their decision revisions.

The story and context behind the set of options each individual is given also play a

vital role in the answer to questions we discussed before. For example, assume you are a

student and your professor gives you the option to solve only three out of five questions in

the textbook. In this context, if you choose the same set of questions that most of your

friends have chosen, then you can discuss those problems together and solve them easier. In

this case, choosing the same subset of options as your friends brings you a higher score on

the assignment which is the payoff in this case.

There are some other cases where choosing a different option from that of other decision-

makers results in higher payoffs. Consider a scenario where there are limited resources and

individuals are allowed to choose one resource for their usage. If many people choose the

same resource, each individual may receive a smaller proportion of that resource in the end.

This implies choosing a resource that is chosen by fewer people is more profitable. Therefore,

the story behind the options available is also important in understanding the dynamics of a

population.

In this regard, scientists first came up with Classical Game Theory; mathematical models

with the aim of studying the strategic interactions between rational agents[10]. In these

models, each individual is referred to as an agent and the options that they can take as a

set of strategies. Usually, it is assumed that the agents’ strategies are singleton subsets of

all the possible strategies.

In the network graph of a population, each agent corresponds to a node in a graph, and

an edge between two nodes represents a neighborhood relationship between the correspond-

ing agents. Specifically, two agents are considered neighbors if they participate in a game

together. Two agents are said to be in a game if their decisions have an impact on each

other.

The games between every two agents are defined in the format of an n × n, n ∈ N,

matrix, known as the payoff matrix, that describes the outcomes associated with each possible
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combination of strategies that the players can choose. Entry aij is the outcome of playing the

i’th strategy while your opponent plays the j’th strategy and totally there exist n different

strategies:



a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann


.

If the network of a population is complete, the population is said to be well-mixed. If the

payoff matrices of games are different from each other the population is heterogeneous. In

case all payoff matrices are the same, the population is homogeneous.

A game is coordination (resp. anti-coordination) if the agent earns more (resp. less) by

choosing the same strategy as their opponent. It means the diagonal values of the matrix

are greater (resp. less) than the non-diagonal values in the same matrix.

We refer to an agent as a best-responder if every time it updates its strategy, it maximizes

its outcome. An agent is an imitator if it chooses the strategy of the neighbor with the highest

outcome.

An example of coordination games is Battle of the Sexes [4]: Imagine a couple is planning

to spend the night together, but has a choice between two events to attend: a prize fight

and a ballet. Prize fight is the man’s preference while the woman’s preference is the ballet.

However, both would prefer to spend the night together and go to the same event rather

than different ones. The payoff matrix for such a game would look like:

Prize Fight Ballet Prize Fight 5, 3 0, 0

Ballet 0, 0 3, 5

.
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The values in each cell of the matrix represent the man’s and woman’s payoffs respectively

when the man’s and woman’s decisions are the row and column corresponding to that cell,

respectively.

An example of anti-coordination games is the Snowdrift Game[6]. In the snowdrift game,

a situation is imagined where two drivers are stuck behind a snowdrift. Each driver’s option

is either shovelling the snow to free a path (Cooperate) or doing nothing and remaining in

their car (Defect). The case when a player leaves their opponent to do shovelling all by

themselves is the most rewarded situation, however, the opponent is still rewarded for their

work. The situation involving both drivers in shovelling is also beneficial for both. The worst

case is when non of the players participate in the shovelling and they are stuck behind the

snowdrift forever!

Cooperate Defect Cooperate 2, 2 1, 3

Defect 3, 1 0, 0

.

A game is called cooperative if the best outcome is achieved through mutual cooperation.

The previously mentioned game, snowdrift, is also considered a cooperative game. Since the

dominant strategy for both players is defecting, the final outcome will be the worst out of all

the possible outcomes for the game. Cooperation is the best approach to avoid this outcome.

Classical game theory assumes that agents are rational and act in their own self-interest

when choosing their strategies. In this framework, researchers define the game, and there

is no inherent limitation on the agents’ level of rationality except for the researcher’s ratio-

nality! Each agent has only one chance to choose their strategy, and the game’s outcome

is determined by the agents’ collective actions. The objective of classical game theory is

to predict the outcomes of strategic interactions. Agents make strategic choices based on

the expected payoffs of the available strategies to achieve this goal. Researchers use various

methods, such as backward induction, to compute all possible outcomes and select the opti-
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mal strategy that maximizes the agents’ payoff. Some of the applications of this branch can

be seen in the robotic area, such as multi-agent systems, human-robot interaction, resource

allocation, and security [7, 13, 1, 3, 8].

However, in the real world, the existence of a hyper-rational agent is rare. It is seen that

cells and even humans are not hyper-rational in making their decisions. They have mutable

strategies that can change over time. They are not necessarily rational or self-interested,

but rather they have behavioural tendencies that determine their actions. The success of a

strategy or a species in a given environment and understanding the evolution of behaviour

over time matter in these studies [2],[12].

These findings yield scientists to come up with evolutionary game theory a new model that

addresses these issues. In this new model, a population of agents with different strategies

is assumed. A significant part of this new framework is the ratios of different strategies’

populations. Each successful strategy reproduces more of itself and gradually makes that

species population dominant. We say the whole population is in equilibrium if the ratio of

each population’s strategy does not change.

The scenario where agents have the ability to revise their decisions can be represented

as follows: whenever an agent changes its strategy (e.g., from A to B), one member of the

A population dies and a new member is produced in the B population.

In the evolutionary game theory, it is assumed that agents necessarily do not stick to a

strategy. They often have the chance to revise their strategies. But how often? The answer

to this question depends on the definition of time in the problem. The change in agents’

strategies can be defined as a discrete or continuous function of time. In the discrete case

usually, there is an activation sequence ⟨at⟩∞t=0 where at denotes the set of agents active at

time t. If for every t > 0, at is a singleton then the activation sequence is called asynchronous,

otherwise, it is synchronous. Equilibrium in this case is a state that does not change under

any activation sequence. In the continuous case, we are dealing with a system of differential

equations that provide us with the rate of changes in each population size as a continuous
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function of time. Finding the fixed points of this system, the states where the rate of changes

in all populations is zero provides us with the equilibrium states of the populations.

An equilibrium state is considered stable if small perturbations to the strategies’ ratio

result in the population returning to that equilibrium state. Under certain conditions and

theorems, it is possible to experimentally investigate the stability of the fixed points of the

systems.

In the case where the population size is large enough and the population is well-mixed,

the discrete dynamic can be approximated by the continuous one and we can use tools in

continuous cases for dealing with the discrete problem. This case is known asmean dynamics.

Our focus in this thesis is on coordination games. The second chapter is dedicated

to the problem of equilibrium convergence in such games. We considered a heterogeneous

mixed population of imitators and best-responders. The agents’ update rules are assumed as

discrete functions of time. We suggested the number of “sections” (a consecutive sequence of

similar-strategies agents) in a linear graph as a potential function1 for the given dynamics. A

potential function is a defined scalar function over the strategy space of a game that assigns

a numerical value to each possible combination of strategies chosen by the players[9]. The

suggested potential function was the key idea for proving the convergence of the sparse-tree

networks to an equilibrium point under any arbitrary asynchronous activation sequence.

However, the equilibrium convergence for general graphs remains unsolved.

Chapter 3 focuses on analyzing a specific type of coordination game using mean dynamics.

The analysis reveals the existence of three fixed points, of which two are stable and one is

non-hyperbolic.

Chapter 2 has been accepted for publication in The IEEE Control Systems Letters. It

is in the format of the manuscript submitted for publication. Chapter 3 is an ongoing work

and requires further analysis.

1By a potential function we mean a positive upper bounded function that monotonically decreases over
time.
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Chapter 2

Equilibrium Convergence in

Discrete-time Coordination Games

2.1 Introduction

Evolutionary game theory has been successfully applied in different applications ranging

from cancer and epidemiology to finance and rumour propagation [1, 12, 5, 2]. In the

context of decision-making, individuals are modeled as game-playing agents who choose

from a number of available strategies and accordingly earn payoffs against their matched

opponents. The agents revise their decisions according to some update rules, the most

common being (myopic) best-response and imitation. An agent following best-response,

called a best-responder, chooses the strategy that maximizes its payoff against its neighbors

given that they would not change their strategies. On the other hand, an agent following

imitation, known as an imitator, simply imitates a neighbor with a higher payoff. The wide

use of best response by human has been confirmed in experimental studies [13]. Similarly,

imitation behavior emerges in several real-world scenarios, such as employees’ “costumer

sweethearting” [6], building cultural intelligence [15], and training language models [22].

Researchers have explored the existence and convergence towards an equilibrium point

in both imitation and best-response dynamics [4, 9, 7, 10]. In the anti-coordination context

where the highest-earning decision is the opposite of the opponent’s, a population of best-

responders converges to an equilibrium state [18]. The same holds for a population of

best-responders in the coordination context, where the highest-earning strategy matches
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the opponent’s [18, 17]. For populations of imitators, however, equilibration is guaranteed

only in the coordination context [19, Theorem 1]. All of these studies used a potential

function to prove equilibrium convergence. Clearly, a mixed population of imitators and

best-responders may not equilibrate and undergo perpetual fluctuations [11]. The outcome

is known for the anti-coordination case: equilibration can take place if and only if there exists

an equilibrium [11]. What about a mixed population of imitators and best-responders in the

coordination context? The existence of an activation sequence was established in [21] that

would drive any such mixed population to an equilibrium state. It however remains open

whether a potential function exists for such populations that guarantees the convergence of

the population to an equilibrium state under any activation sequence, or if there is a counter

example where an activation sequence can prevent a mixed population from equilibration.

We start tackling this problem for the simple linear graph and find that the number

of the so-called “sections” (consecutive same-strategy playing agents) serves as a potential

function. We then extend the results to a ring. Next, we proceed to a starlike graph, a

central “branching node” connected to several linear graphs or “branches”. We show that

there always exists a branch where the number of sections in that branch will again be a

potential function, establishing equilibration. Finally, we generalize the idea to sparse trees,

i.e., trees where the distance between each two branching nodes is at least three.

2.2 Model

Consider an undirected network G over a finite set N = {1, 2, . . . , n} of agents who decide

between strategies A and B over time t = 0, 1, 2, . . .. For each agent i ∈ N , the network defines

a set of neighbors Ni ⊆ N \{i} that are connected to agent i. At every time step, each agent

i ∈ N plays a two-player (row-column) coordination game with each of its neighbors j ∈ Ni
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and earns a payoff according to their strategies and its payoff matrix

πi =

Ri Si

Ti Pi

 , min{Ri, Pi} > max{Ti, Si} (2.1)

where Ri, Si, Ti, and Pi are agent i’s payoffs when agents i and j play strategy pairs (A, A),

(A, B), (B, A), and (B, B). Then agent i’s utility ui is the accumulated payoff earned against

all of its neighbors: ui(x) =
∑

j∈Ni
πi

xi,xj
where xj is the strategy of agent j, the state

x = [xj] is the vector of all agents’ strategies, and Xpq denotes the entry of matrix X at row

p and column q. Agents update their strategies based on the type of update rule they follow,

which is either best response, that is to choose the strategy that maximizes its utility, or

imitation, that is to copy the strategy of its highest earning neighbor. The updates happen

asynchronously over time, i.e., at each time step, a single agent becomes active to update its

strategy at the next time step. More specifically, agent i active at time t updates its strategy

at time t+ 1 to the following if it is an imitator :

xi(t+ 1) = xk(t), k = argmax
j∈Ni

uj(x(t)). (2.2)

and to the following if it is a best-responder :

xi(t+ 1) = arg max
X∈{A,B}

ui(xi=X(t)) (2.3)

where xi=X is the vector x where the ith entry is fixed to strategy X. In the case where both

strategies A and B maximize the utilities in (2.2) or (2.3), agent i does not switch strategies,

i.e., xi(t+ 1) = xi(t).

Remark 1. The standard inequalities in a coordination game are Ri > Ti and Pi > Si

[20], implying that player i’s payoff is maximized when playing the same strategy as that

of its opponent. What condition (2.1) additionally imposes are the inequalities Pi > Ti and
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Ri > Si, resulting in the so-called opponent-coordination payoff matrix [19]. Then agent i’s

payoff increases if its neighbor switches her strategy to that of agent i, which proves useful

in constructing energy functions for imitation dynamics.

Example 1. [Programming languages] Given the required effort to master a new pro-

gramming language, programmers have to decide between two options each time they program

an application: (i) the comfort of working in the already experienced language and (ii) the

benefit of learning a new language. Some base their decisions on the prevalence of the lan-

guage, because common languages are supported by a community of peers who can smoothen

the learning experience via online forums. Others may focus on how successful other pro-

grammers were in terms of, e.g., their salaries or reputation of developed applications. The

agents here are the community of App developers who interact via online networks. The pro-

gramming languages Python and Java may be considered as the strategies and a programmer

would earn more from his peers if they use the same language.

Example 2. [Social media] Telegram and WhatsApp are two social media applications.

Individuals choosing one of them as their main communication stream may decide based

on the (weighted) frequency or satisfaction of their friends on each platform, implying the

best response and imitation update rules respectively. The individuals also have personal

preferences over the apps because of their features, resulting in different payoff matrices.

Define the agents’ activation sequence as the sequence ⟨at⟩∞t=0, where at is the active agent

at time t. The activation sequence together with update rules (2.2) and (2.3) govern the state

x(t) and define the decision-making dynamics, which we refer to as the coordinating best-

response and imitation dynamics. A state x∗ ∈ {A, B}n is an equilibrium of the dynamics if

under every activation sequence, x(0) = x∗ implies x(t) = x∗ for all t ≥ 0. We are interested

in determining whether the dynamics eventually equilibrate. We avoid trivial cases where

the dynamics “get stuck“ at a non-equilibrium state because one or more unsatisfied agents

do not get the chance to become active. To this end, we assume the activation sequence is
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persistent, i.e., for every agent i ∈ N and every time t > 0, there exists some time t′ > t

when agent i is active at time t′ [16].

It follows from the coordination condition (2.1) and best-response update rule (2.3) that

if agent i tends to play A at some state, so does it at any other state with more A-playing

neighbors. In a more restrictive sense, it can be also shown that if an imitator tends to play

A at some state, so does it at any other state where all of its A-playing neighbors still play A.

This property is referred to as A-coordinating [21, Definition 2], based on which, the existence

of an activation sequence that would drive the dynamics from a given initial condition to

an equilibrium state was shown in [21, Lemma 1, Theorem 2]. However, it remains open

whether the dynamics equilibrate under an arbitrary persistent activation sequence.

2.3 Equilibration results

The main result of this paper is about the equilibration of “sparse trees” as presented in

the following theorem. The distance of two nodes in a graph is the number of edges in the

shortest path connecting the two. Define a branching agent as an agent with more than two

neighbors. We call a tree graph sparse if the distance between every pair of its branching

agents is greater than two.

Theorem 1 (Sparse tree). A sparse-tree network equilibrates under the coordinating best-

response and imitation dynamics with an arbitrary persistent activation sequence.

Sparse trees are a generalization of starlikes, which in turn are a generalization of linear

graphs, defined in what follows. We accordingly, first show the result for linear graphs (as

well as rings), then starlikes, and finally sparse trees.

2.3.1 Linear graphs

Consider network G = (N , E) with edge set E = {{i, i+1} | i = 1, . . . , n− 1}, called a linear

graph.
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Definition 1 (Border agent). Given a linear graph, agent i is a right-border (resp. left-

border) if it has a different strategy compared to agent i + 1 (resp. i − 1). A single agent

with a strategy different from those of its two neighbors is both a right and left border agent.

An agent is a border if it is right or left-border (or both).

We consider the most “left” (resp. “right”) agent, i.e., agent 1 (resp. n), as a left (resp.

right) border agent. We can now define the notion of “section” as follows (Figure 2.1a).

Definition 2 (Section). A section in a linear graph at a given strategy state is a set of

consecutive same-strategy playing agents p, p+ 1, . . . , q, where q ≥ p and agents p and q are

borders. The size of the section is defined as q − p+ 1.

The special case of p = q results in a size-one section consisting of a single agent. The

number of sections appears to serve as a potential function according to the following lemma.

The key idea of the proof is that the emergence of a new section requires the sequence

(A, A, A) (resp. (B, B, B)) to turn into (A, B, A) (resp. (B, A, B)), which is impossible due to the

coordinating nature of the population dynamics.

Lemma 2. The number of sections in a linear graph does not increase under the coordinating

best-response and imitation dynamics with an arbitrary activation sequence.

Proof. A change in the population state takes place only if a border agent is active because

other agents play the same strategy as their neighbors and hence do not switch strategies

according to update rules (2.3) and (2.2). So the number of sections change at time t only

if some border agent i becomes active at time t − 1 and switches its strategy at time t to

say strategy s. At least one neighbor of the border agent plays s at time t− 1 as otherwise,

the agent is not border. We have the following two cases, in neither of which the number of

sections increases:

Case 1. Agent i has two neighbors, i.e., i ̸∈ {1, n}. If both neighbors play s, then the

border agent itself forms a section at time t− 1, which disappears at time t. Since no other
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sections are generated, this results in a reduction in the number of sections. If only one

neighbor plays s, then the number of sections does not change after the switch.

Case 2. Agent i has one neighbor, i.e., i ∈ {1, n}. Then the neighbor plays s at time

t−1, implying that agent i itself again forms a section, which disappears at time t, resulting

in a reduction.

As the number of sections are finite, in view of Lemma 2, there exists some time T > 0

when the number of sections becomes fixed and no longer changes. The sections may still

expand or shrink though, preventing equilibration. However, one can show that once a

section expands from a certain direction, say left (i.e., in the descending order of the agents’

labels), then it may no longer shrink from left. Namely, if the left border of a section “moves”

left after time T , it never “moves” right in the future. This idea is rigorously captured in the

following lemma. For every time t ≥ T , there is the same number of sections which we label

as 1, 2, . . . , S from left to right, that is in the ascending order of their left borders. Denote

by Ls(t) and Rs(t) the left and right borders of section s at time t ≥ T . Given a sequence

of consecutive agents p, p+ 1, . . . , q, where q ≥ p, denote their strategies by x(p,p+1,...,q).

Lemma 3. Consider the time T when the number of sections in the linear graph is fixed.

Then for every section s and any time t1 ≥ T ,

Ls(t1 + 1) = Ls(t1)− 1 ⇒ ∀t ≥ t1 Ls(t+ 1)≤Ls(t), (2.4)

Rs(t1 + 1) = Rs(t1) + 1 ⇒ ∀t ≥ t1 Rs(t+ 1)≥Rs(t).

Proof. We prove the first equation by contradiction; the proof of the second equation is

similar. Assume the contrary and let t3 > t1 be the first time (2.4) is violated, i.e., Ls(t3+1) =

Ls(t3) + 1. Let t2 ∈ [t1, t3 − 1] be the last time that the left border of s decreased, i.e.,

Ls(t2 +1) = Ls(t2)− 1. Let agent i be the left border of section s at time t2, i.e., i = Ls(t2).
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Then

Ls(t2) = Ls(t3 + 1) = i, (2.5)

Ls(t) = i− 1 ∀t ∈ [t2 + 1, t3], (2.6)

Without loss of generality, assume that xi(t2) = B. It is straightforward to show that if the

agents of section s play a strategy, say B, at time T , then the agents of section s will play

B at every future time step as well. Therefore, since agent i is the left border of section s

at time t2 and plays B at t2, it follows that all the agents in section s play B at every time

t ≥ T . Thus, in view of (2.5) to (2.6),

x(i−2,i−1,i)(t2) = (A, A, B),

x(i−2,i−1,i)(t2 + 1) = (A, B, B),

x(i−2,i−1,i)(t) = (A, B, ∗) ∀t ∈ [t2 + 1, t3 − 1],

x(i−2,i−1,i)(t3) = (A, B, B),

x(i−2,i−1,i)(t3 + 1) = (A, A, B).

The reason why xi−2(t2) = A is that otherwise a section would be removed at t2 + 1, which

is impossible as the number of sections is assumed to be fixed after time T . Similarly,

xi−2(t3) = A as otherwise a new section would be generated at time t3 + 1.

Now we show that the two switches of strategies of agent i− 1 at times t2 + 1 and t3 + 1

are in conflict. Note that at both times t2 and t3 agent i plays B but has at time t2 at most

and at time t3 at least one other B-playing neighbor. So as the game is coordinating, i.e., in

view of (2.1), ui(t3) ≥ ui(t2). We reach a contradiction in view of Lemma 6 and by letting

T = t2 and T ′ = t3.

We are ready to prove the equilibration of linear graphs. Consider a section s at time T .
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We say that the left border of section s moves left at time t ≥ T + 1 if Ls(t) = Ls(t− 1)− 1

and moves right if Ls(t) = Ls(t − 1) + 1. Similarly, the movement of the right border is

defined.

Proposition 1. A linear graph equilibrates under the coordinating best-response and imita-

tion dynamics with an arbitrary persistent activation sequence.

Proof. Consider some section s at time T when the number of sections is fixed. If the

left border of section s moves left at any future time, then it can only move left afterward

according to Lemma 3. Since the linear graph is constrained from left by agent 1, the left

border of section s will be fixed at some time. Similarly, the right border will be fixed if it

moves right at some point. So if the left border moves left at some time and the right border

moves right, then the borders of section s will be fixed for all future times.

Now if any of the borders, say right, becomes fixed but the left one only moves right after

time T , then also the left border becomes fixed at some point as it is bounded from right by

the right border (cannot pass it). On the other hand, if the right border only moves left after

time T and the left only moves right, again the two will become fixed as they cannot pass

each other. Therefore, the borders of section s will become fixed at some finite time. Since

s was an arbitrary section, it holds that at some finite time, the borders of every section

become fixed. This implies equilibration as the activation sequence is persistent.

2.3.2 Extension to rings

A network G = (N , E) with edge set E = {{1, 2}, . . . , {n, n+ 1}, {n+ 1, 1}} is a ring.

Proposition 2 (Rings). A ring network equilibrates under the coordinating best-response

and imitation dynamics with an arbitrary persistent activation sequence.

Proof. Following the same arguments used for the proof of the equilibration of a linear

graph, it can be shown that the number of sections in a ring may not increase, and hence



19

will become fixed at some time T , and that if the right border of a section moves right at

some time, it may never move left afterwards, and vice versa. So the only possibility for the

non-equilibration of a ring is that both borders of some section s only and infinitely often

move right or only and infinitely often move left. Consider the second case, i.e., moving

left. Then for every agent i in the ring, there exists a time when it belongs to the section s

and a time when it does not belong to the section. Hence, it will undergo the switches from

x(i−1,i,i+1) = (A, A, B) to (A, B, B) and from (B, B, A) to (B, A, A). So the agent decides differently

at two states with the same number of A and B-playing neighbors. Thus, in view of (2.3),

agent i, and hence, the whole ring are imitators. In view of the convergence result in [19,

Theorem 1] for arbitrary networks of all coordinating imitators, the proof is complete.

2.3.3 Starlikes

We now proceed to a more general network: The starlike [14], that is a tree with at most

one branching agent. Define a branch as a linear graph that begins from a neighbour of

the branching agent and ends with a leaf but does not contain the branching agent itself

(Figure 2.1b-a). Definition 3 and Lemma 4 are for general decision-making dynamics but

are framed here according to Section 2.2. Definition 3 is based on the notion of eventually

periodic sequences [3] and Lemma 4 follows standard induction arguments.

Definition 3 (Eventually periodic). The coordinating imitation and best-response dynamics

are eventually periodic under the activation sequence ⟨at⟩∞t=0 if both the activation sequence

and the resulting state x become periodic after some finite time t0, i.e.,

∃T, t0 ∈ N ∀t ∈ N [at0+t+T = at0+t,xt0+t+T = xt0+t],

where T is the periodicity after time t0, and time interval [t0,∞) is the periodic interval.

The activation sequence ⟨at⟩∞t=0 is called an eventually periodic activation sequence.
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Lemma 4. If the coordinating imitation and best-response dynamics do not equilibrate under

some persistent activation sequence, then there also exists a persistent eventually periodic

activation sequence under which the population does not equilibrate.

Lemma 5. A starlike network equilibrates under the coordinating best-response and imitation

dynamics with an arbitrary persistent activation sequence, if the branching agent does not

switch strategies infinitely many times.

Proof. It is straightforward to show that Lemmas 2 and 3 and hence proposition 1 hold if any

of the end nodes in a linear graph fix their strategies. Consequently, every branch together

with the branching agent forms a linear graph in the starlike that will equilibrate, leading

to the equilibration of the whole starlike.

The equilibration of starlike networks is established in Proposition 3. The idea of the

proof is to focus on the times when the branching agent has the maximum number of same

strategy, say B-playing, neighbors. The moment one of these neighbors, referred to as the

“special agent” switches, the number of sections in the branch containing this special agent,

referred to as the “special branch”, will decrease, and this decrement will never be compen-

sated in the future. So the number of sections in the the spacial branch is an energy-like

function (see (2.7)). If before any of the neighbors switch, the branching agent itself switches,

then the branching agent must be an imitator and the neighbor with the maximum utility

will serve as the special agent. Given a linear graph P , denote the number of sections in P

by n(P ), and more specifically by n(P, t) to denote the number at time t.

Proposition 3 (Starlike). A starlike network equilibrates under the coordinating best-response

and imitation dynamics with an arbitrary persistent activation sequence.

Proof. We prove by contradiction. By assuming the contrary, it follows from Lemma 4, the

existence of a persistent eventually periodic activation sequence denoted by ⟨bt⟩∞t=0 with pe-

riodic interval [t0,∞). The branching agent, say i, switches strategies under ⟨bt⟩∞t=0 infinitely

often; otherwise, the network equilibrates due to Lemma 5. Let tB ≥ t0 be the first time
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agent i plays B and has the maximum number of B-playing neighbours during [t0,∞). De-

note by t1 the first moment after time tB when either agent i or one of its neighbors switches

strategies, resulting in the following two cases:

Case 1: An agent i’s neighbour, say agent j, changes its strategy at time t1. Consider the

branch P (referred to as the “special” branch) including agent j (referred to as the “special”

agent). Denote the times when agent j switches strategies after t1 by t2, t3 . . .. Out of these

time steps, let ⟨tBk⟩∞k=1 ⊂ ⟨tk⟩∞k=1 be those time steps such that agent i had its maximum

number of B-playing neighbors at each time tBk − 1. Clearly, tB1 = t1. We show that

∀k ≥ 1 n(P, tBk+1)− n(P, tBk) ≤ −1. (2.7)

At every time tBk agent j switches from B to A; otherwise, agent i will have more B-

neighbors at time tBk compared to tB. Thus, as the dynamics are coordinating, agent j has

at least one A-playing neighbour at tBk, who is not agent i. Because the network is starlike,

agent j has at most two neighbors, so it has exactly one other neighbor, say agent k, who

plays A at tBk. So n(P ) reduces by one at time tBk. In view of Lemma 7 (in Appendix), n(P )

does not increase if any agent other than j switches strategies. So n(P ) may increase in the

future, only at times when agent j switches strategies, i.e., tk+1, tk+2, . . ..

We show that n(P ) decreases at each time T = t2r for an arbitrary r ∈ N. Agent j

switches from A to B at time t2r. If neighbor k plays A at time T − 1, then agent i plays B

at the same time; otherwise, agent j does not tend to switch. So x(k,j,i)(T − 1) = (A, A, B).

Having the maximum number of B-playing neighbors at time t1, agent i’s utility at time

T − 1 is no more than at time t1− 1: ui(T − 1) ≤ ui(t1− 1). But this is impossible according

to Lemma 6. So neighbor k plays B at time T −1. Then n(P ) reduces by the switch of agent

j at time T .

On the other hand, n(P ) may increase by at most one at each time t2r+1, r ∈ N. Therefore,

there is no finite time T ′ > tBk when n(P ) equals its value at tBk, proving (2.7), a contradiction.
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Case 2: Agent i switches from B to A at time t1. There exists time t2 > t1 when agent i

tends to switch back to B. However, the number of agent i’s B-playing neighbors is maximized

at time t1, when it switched to A. Hence, because of the coordinating dynamics, agent i is

an imitator.

Denote by ⟨Tr⟩∞r=0 the time steps after t0 that agent i changes its strategy, and let ⟨ar⟩∞r=0

be the corresponding neighbors imitated by agent i. Let aj be an agent among ⟨ar⟩∞r=0 with

the maximum utility, i.e., aj = argmaxr uar . So the maximum utility among the agent i’s

neighbors was earned by agent aj at time Tj. Consider the branch P including agent aj.

We show that the number of sections in P decreases at least once after time Tj but never

increases afterwards, which is in contradiction with Tj belonging to the periodic interval of

the activation sequence.

First, we prove the following: Statement 1. At any time Tr, r ≥ 0, when agent i switches

to A, agent aj must also play A. At time Tj − 1, agent aj plays B and has at most one

B-playing neighbor. At time Tr − 1, agent i plays B, so agent aj has at least one B-playing

neighbor. So if agent aj plays B at time Tr, it earns no less than at time Tj because of the

coordinating dynamics, i.e., uaj(Tr) ≥ uaj(Tj). Hence, according to the definition of aj, agent

aj is a maximum earner at time Tr. Since agent i does switch at time Tr, it has to switch to

the strategy of agent aj according to (2.2). This is, however, impossible since both agents

aj and i play the same strategy B at time Tr. This proves Statement 1.

Next, we list and investigate the possible strategy states for the pair (i, aj) starting from

time Tj:

Case 2.1. x(i,aj)(t) = (B, B). Then at the next time Tr ≥ t when agent i changes strategies,

it switches to A. Hence, according to Statement 1, x(i,aj)(Tr − 1) = (B, A). So according to

Lemma 7, n(P ) reduces by at least 1 during [t, Tr − 1] as agent i does not switch strategies

in this interval. We reach Case 2.2 at time Tr as x(i,aj)(Tr) = (A, A).

Case 2.2. x(i,aj)(t) = (A, A). Then at the next time Ts ≥ t when agent i changes strategies,

it switches to B. Now if agent aj plays B at time Ts − 1, we have x(i,aj)(t) = (A, B). So again
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according to Lemma 7, n(P ) reduces by at least 1 during [t, Ts−1]. We reach Case 1 at time

Ts as x(i,aj)(Ts) = (B, B). Now if agent aj plays A at time Ts − 1, we have x(i,aj)(t) = (A, A).

So according to Lemma 7, n(P ) may not increase during [t, Ts − 1]. We reach Case 2.3 at

time Ts as x(i,aj)(Ts) = (B, A).

Case 2.3. x(i,aj)(t) = (B, A). Then at the next time Tp ≥ t when agent i changes

strategies, it switches to A. Hence, according to Statement 1, x(i,aj)(Tp − 1) = (B, A) which

is the same as the state at time t in this case. So according to Lemma 7, n(P ) does not

increase during [t, Tp − 1]. We reach Case 2.2 at time Tp as x(i,aj)(Tp) = (A, A).

At time Tj, the strategy state x(i,aj) matches Case 1, where n(P ) reduces. The proof is

complete since it does not increase afterwards in any of the above cases.

2.3.4 Sparse-trees

We are ready to prove Theorem 1. The idea is to show that the “special branches” of two

branching nodes will intersect, resulting in the so-called “golden branch” (Figure 2.1b) which

is guaranteed to equilibrate.

Proof of Theorem 1. Equilibration of starlike networks were shown in Proposition 3. So

here we consider the case with at least two branching agents. We prove by contradiction and

consider a persistent eventually periodic activation sequence denoted by ⟨bt⟩∞t=0 with periodic

interval [t0,∞). Similar to the proof of lemma 5, it can be shown that at least one branching

agent changes its strategy during the periodic interval of the oscillation. We refer to the

agents who change their strategy during [t0,∞) a settling agent and otherwise unsettling.

For each unsettling agent i, denote its special branch defined in the proof of Proposition 3

by Pi. Equilibration can be shown using Lemma 5 when there is no unsettling branching

agent and similar to Proposition 3 when the special branches of no two branching agents

overlap (no golden branch). So consider the case where there are two branching agents

with the corresponding special neighbors i and j, and whose special branches intersect,

denoted by P . In view of Lemma 7, n(P ) increases only at the time steps when either
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agent i or j switches. On the other hand, for both Case 1 and 2 in Proposition 3, it is

guaranteed that there exists some infinite time series ⟨tik⟩∞k (when agent i switches) such

that n(P, tik+1) − n(P, tik) ≤ −1 for all k ≥ 0, and a some time series ⟨tjk⟩∞k (when agent j

switches) such that n(P, tjk+1)− n(P, tjk) ≤ −1 for all k ≥ 0. This is a contradiction as then

n(P ) is unbounded.

2.4 Conclusion

We showed that every sparse tree network of coordinating heterogeneous imitators and best-

responders equilibrates under any persistent activation sequence. This implies that neither

the heterogeneity in the agents’ perceptions of the coordination game (i.e., different payoff

matrices), nor the order the agents become active can cause fluctuations in the mixed pop-

ulation, at least when their connections are as sparse as a sparse-tree. Whether dense trees

or general graphs equilibrate under every activation sequence remains an open problem. For

the proof, we introduced the number of sections in a linear graph as a potential function and

generalized it to the starlike and then sparse tree networks. The potential functions may

be tested in other decision making dynamics. For example, it is expected for the number of

sections to increase and eventually become fixed in anti-coordination games under certain

conditions [8].

Appendix

We skip the proofs of the following lemmas.

Lemma 6. Consider a network governed by the coordinating best-response and imitation

dynamics with an arbitrary activation sequence. Assume that the network includes neigh-

boring agents p − 1 and p, each of degree two, and denote the other neighbor of agent p

by p + 1. If there exists some time T ≥ 0 when agent p tends to switch strategies and
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x(p−1,p,p+1)(T ) = (A, A, B), then agent p does not tend to switch strategies at any time T ′ when

x(p−1,p,p+1)(T
′) = (A, B, B) and when agent p+ 1 earns non-less, i.e., up+1(T

′) ≥ up+1(T ).

We say that a network admits a linear graph (1, 2, . . . ,m) if there is a link between node

i and i+1 for all i = 1, . . . ,m− 1 and the degree of every node 2, . . . ,m− 1 is two. We refer

to (2, . . . ,m− 1) as the interior of the linear graph.

Lemma 7. Consider a network admitting the linear graph (1, . . . ,m) governed by the coor-

dinating best-response and imitation dynamics. Then the number of sections in the interior

of the linear graph does not increase if each of the ending agents 1 and 2 either are a leaf or

its strategy does not change under the activation sequence.
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(a) Line graphs

A linear graph with five sections.

The sections in this linear graph are

{1}, {2}, {3, 4, 5}, {6, 7}, and {8}.

Blue and red are used for strategies A

and B, respectively. Agents 1, 2, and 8

are each both left and right borders.

Agents 3, and 6 are only left-borders,

while agents 5 and 7 are right-borders.

Agent 4 is a non-border agent.
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(b) Starlike and sparse-tree networks

Top left graph: A starlike

network. The agent on the top is the

branching agent. The graph has three

branches. Top right graph: A

sparse-tree network. Each red

section demonstrates a line in the

population. Blue agents are branching

agents of the population.

Figure 2.1: Chapter 2 figures.
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Chapter 3

Mean Field Dynamics for Diagonal

Coordination Games

In the preceding chapter, we assumed a network with size N where each agent’s neighbours

could be any subset of the total population as long as the network’s graph serves as a sparse

tree. In this chapter, we revise these two assumptions by letting N be a large enough number

and the network be complete–the population is well-mixed. These two assumptions transfer

the underlying dynamics of the game into mean dynamics. The mean dynamics describes

the rate of change in the proportions of the strategies in use which is determined by the

payoff matrix and the agents’ updating rules.

In this chapter, the focus is on imitation dynamics. According to imitation dynamics,

upon receiving a revision opportunity, an agent randomly chooses an opponent and imitates

their strategy with a probability which is a function of payoffs and the social states–the

current share of each strategy among the players [4]. Under some conditions, the imitation

dynamics can be approximated by replicator dynamics where the growth rate of the propor-

tions of agents adopting a strategy depends on the excess payoff of that strategy. Replicator

dynamics are among the most common dynamics in evolutionary game theory. The dynamics

have also been extended to the multi-population game, where the population is heteroge-

neous in terms of payoff matrices [3]. In [2], the convergence of a two-population replicator

dynamic under non-constant payoff matrices has been investigated. The mentioned works

are based on the assumption that the agents of each sub-population are only interacting

with themselves. In other words, the learning only occurs among sub-population members.
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The utility could, however, be dependent on the whole social state. The stability of the

fixed-points of replicator dynamics where the interactions among the agents depend on the

sub-populations they belong to has been investigated in [7]. Some research also considers

a multi-population society where the members of each sub-population only interact with

members of the other sub-populations [5]. None of the above studies, however, considered

a population game where the members of each sub-population interact anonymously–they

interact with and are influenced by others regardless of which sub-population they belong

to. In this chapter, we formulate this population game where the agents use imitation dy-

namics to update their decisions. In this case, the imitation dynamics do not reduce to

the well-known replicator dynamics [1]. The imitation model is assumed to be driven by

dissatisfaction. Particularly, an agent receiving a revision opportunity chooses an opponent

randomly and mimics the opponent with a probability. In this type of imitation, the prob-

ability of imitation decreases as the revising agent’s payoff increases. In other words, their

dissatisfaction reduces and they are less willing to change their decision. We show that the

extreme equilibria–where all agents are playing the same strategy–are locally stable. Under

a special structure of the payoff matrix, It is shown that the interior equilibrium point–where

some agents play strategy 1 and the rest play strategy 2–is not stable.

3.1 Model formulation

Consider a large well-mixed population of size N ∈ N agents choosing between strategies 1

and 2. Agents sharing a common payoff matrix are categorized into the same type. Having

m different payoff matrices implies m sub-populations. The population proportion of type-i

agents is denoted by ni, which satisfies the equality
∑m

i ni = 1. The agents are playing a



31

two-strategy game where the payoff matrix of an agent of type i, i ∈ {1, · · · ,m}, is

πi =

1 2 1 ai 0

2 0 bi

, ai, bi > 0. (3.1)

The proportion of type-i agents playing strategy 1 (resp. 2) is shown as xi (resp. ni−xi).

The proportion of agents playing strategy 1 at time t is represented by X(t) = Σm
1 xi(t). By

presenting the utility of a type-i agent who plays strategy k ∈ {1, 2} as uk
i (X), we have

u1
i (X) = aiX,

u2
i (X) = bi(1−X).

By having these, and under the assumption that agents interact with each other with the

same probability (perfect mixing), the mean field dynamics of the sub-population i can be

described as follows [4]:

ẋi(t) = (ni − xi(t)) ρ
i
21 − xi(t)ρ

i
12, (3.2)

where ρi12 (resp. ρi21) represents the switching rate from strategy 1 to 2 in the type-i sub-

population (resp. from strategy 2 to 1).

3.2 Imitation dynamics

Imitation is the behaviour of replicating the best-outcome observed decision among agents[6].

In a discrete-time model, each agent activates according to an activation sequence and up-

dates its decision based on some imitation protocols. For example, the protocol in which

the activated agent observes a neighbour randomly and then replicates it if its outcome is

higher is different from when the activated agent checks the outcome of all its neighbours
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and then replicates the one with the highest outcome[4]. An imitation protocol is driven

by dissatisfaction whenever a player switches strategies with a probability that is linearly

decreasing in their current payoff, given the opportunity[4].

In the continuous version, the rate of change in each sub-population and consequently

the state of the population at a time can be estimated. Under the mentioned mean-field

approximation assumption and according to imitation driven by dissatisfaction, when agents

update their strategies the switching rate will be formulated as:

ρi12 = (1−X)(C − u1
i (X)),

ρi21 = X(C − u2
i (X)), (3.3)

where C is a large enough constant to ensure that ρ12 and ρ21 remain non-negative, i.e.,

C > max{ai, bi}, for all i ∈ {1, · · · ,m}.

The switching rate from type i to j ̸= i (ρij), when i and j ∈ {1, 2} is increasing in type

j’s population (X when j = 1 and 1−X when j = 2). Since the chance of encountering and

replicating a type-j agent in the overall population increases. It is also decreasing in type

i’s current payoff (ui). Because agents tend to change their strategy less if they earn more.

As a result, changing the strategy is more tempting when the agents are more dissatisfied

with their current strategy.

By plugging eq. (3.2) in eq. (3.3), the mean field dynamics for type-i agents can be

rewritten as

ẋi(t) = (ni − xi)
m∑
i=1

xi(C − bi(1−X))− xi(t)
m∑
i=1

(ni − xi)(C − aix), (3.4)

which is simplified to

ẋi(t) = (ni − xi)X (C − bi (1−X))− xi(t) (1−X) (C − aiX) . (3.5)
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The following Lemma describes the basic properties of the above dynamics.

Lemma 8. The dynamics described by eq. (3.5) are deterministic evolutionary dynamics,

i.e., the solution exists, is forward invariant w.r.t. The simplex {(x1, x2, · · · , xm)| 0 ≤ xi ≤

ni} is unique, and system (3.5) is Lipschitz continuous.

Proof. The proof is similar to those of Theorems 4.4.1 and 4.4.2 [4, Chapter 4] and is omitted

here.

3.2.1 The equilibrium points

Let x∗ denote the equilibrium state of the dynamics (3.5). By definition,

ẋ∗
i (t) = 0, ∀i ∈ {1, . . . ,m}. (3.6)

Solving eq. (3.6) for system (3.5) results in

x∗
i (t) =

niX
∗ (bi (1−X∗)− C)

−X∗2 (ai + bi) +X∗ (ai + bi)− C
, ∀i ∈ {1, . . . ,m}. (3.7)

It can be shown by basic calculations that xi increases with the value of C, and as C increases,

xi converges to niX.

In view of Σix
∗
i = X∗ we obtain the following constraint:

X∗ = Σi
niX

∗ (bi (1−X∗)− C)

−X∗2 (ai + bi) +X∗ (ai + bi)− C
. (3.8)

It will be shown the scenarios where all agents adopt the same strategy are equilibrium

points of the system, X∗ = 0 or X∗ = 1. Referring to these equilibrium points as extreme

(exterior), any other equilibrium point of the system is non-extreme (interior). To investigate

non-extreme equilibrium points, we will have the following assumption.
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Assumption 9. For each sub-population i, i ∈ {1, 2, · · · ,m}, the trace of the payoff matrix

is a constant equal to R.

Example 3. [Global Linguistic Connectivity] Imagine a scenario where countries around

the world decide to teach a second language, either language 1 or 2, at school to increase

global connectivity. Each of these two languages comes with its own unique advantages for

the adopting country. If two countries choose different languages, neither of them gains any

benefit from the linguistic relationship. Countries with the same first and second official

languages are categorized into the same type. Assume there exist m distinct types among all

the countries. Countries within the same type share a common payoff matrix. The payoff

matrix associated with a country of type i ∈ {1, . . . ,m} is as follows:

πi =

1 2 1 ai 0

2 0 bi

. (3.9)

Here, ai and bi represent the advantages of adopting each language for the country and are

scaled, so that ai + bi = 1 for all i ∈ 1, . . . ,m.

Proposition 4. Under Assumption 9, dynamics (3.5) admit three equilibrium states x∗,1,

x∗,2, and x∗,3, located on the hyperplanes X = 0, X = 1, and X = Σinibi
R

, respectively.

Proof. Under Assumption 9, the denominator in equation (3.7) is identical for all types i in

the given state of the population. It implies

X∗ = Σi

(
niX

∗ (bi (1−X∗)− C)

−(X∗)2 (ai + bi) +X∗ (ai + bi)− C

)
=

Σi (niX
∗ (bi (1−X∗)− C))

−R(X∗)2 +RX∗ − C

=
X∗ ((1−X∗)Σi(nibi)− C)

−R(X∗)2 +RX∗ − C
.
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Simplifying the above equation results in

X∗ (R(X∗)2 − (R + α)X∗ + α
)
= 0,

where α = Σinibi. Equating the above relation to zero provides us with the candidate planes

X∗,1 = 0, X∗,2 = 1, and X∗,3 = α
R
, which include the equilibrium points of the system. Based

on the formula obtained in eq. (3.7), each X∗,i is a function of X∗ and can be calculated.

Solutions associated to planes X∗,1 = 0 and X∗,2 = 1 are extreme equilibria for the system

and their feasibility is trivial. Furthermore, the constraints for each sub-population i such

that 0 ≤ x∗,1
i ≤ ni and 0 ≤ x∗,2

i ≤ ni imply X∗,1 = 0 and X∗,2 = 1 result single points that

serve as the equilibrium points of the system. However, the feasibility of the corresponding

solution to the plane X∗,3 = α
R
needs to be validated. First, we show that 0 ≤ X∗,3 ≤ 1, and

then we show that by a sufficiently large C each x∗,3
i corresponding to X∗,3 will be valid, i.e.,

0 ≤ x∗,3
i ≤ ni.

By defining b = max(bi), and a = R− b, we have

X∗,3 =
α

R

=
Σk(nkbk)

R

≤ Σk(nkb)

R

=
b

b+ a

≤ 1.

In what follows, it is shown that by choosing C > R
4
, each x∗,3

i remains non-negative and

not greater than ni. The non-negativeness of x∗,3
i can be concluded by showing that the

nominator and denominator of eq. (3.7) are non-positive, i.e,

−R
(
X∗,3)2 +RX∗,3 − C < −R

(
X∗,3)2 +RX∗,3 − R

4
= −R

(
X∗,3 − 1

2

)2

≤ 0, (3.10)
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and

bi
(
1−X∗,3)− C < 0.

In addition, we need to show that for all i ∈ {1, . . . ,m}, x∗,3
i ≤ ni. This can be concluded

by the following relations:

x∗,3
i (t) =

niX
∗,3 (bi (1−X∗,3)− C)

−R (X∗,3)2 +RX∗,3 − C
≤ ni

⇐⇒ X∗,3 (bi (1−X∗,3)− C)

−R (X∗,3)2 +RX∗,3 − C
≤ 1

(3.10)⇐⇒ X∗,3 (bi (1−X∗,3)− C
)
≥ −R

(
X∗,3)2 +RX∗,3 − C

⇐⇒
(
1−X∗,3) (C − aiX

∗,3) ≥ 0.

Therefore, there exists a valid fixed point corresponding to X∗,3 = α
R
.

3.2.2 Stability analysis of the equilibrium points

Lemma 10. Consider the population game described by system (3.5), and assume that As-

sumption 9 holds. Then, the extreme equilibria x∗,1 and x∗,2 are globally asymptotically stable

in the regions [0, α
R
) and ( α

R
, 1], respectively, while the interior equilibrium point x∗,3 is un-

stable.

Proof. In view of Ẋ = Σiẋi, we have

Ẋ = X (1−X)
(
X − α

R

)
. (3.11)

For the equilibria x∗,1 and x∗,2 note that from eq. (3.11), the sign of Ẋ is negative in the

right ϵ-neighborhood of equilibrium point X∗,1 = x∗,1 and positive in the left ϵ-neighborhood

X∗,2 = x∗,2. These imply any trajectory in the existing neighborhood of the extreme fixed

points will converge to them. Furthermore, since [limX→0 xi = 0] and [limX→1 xi = ni],
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equilibrium points x∗,1 and x∗,2 are globally asymptotically stable.

The equilibrium X = α/R is an interior root for eq. (3.11) and hence the first two terms

of eq. (3.11) are positive around the ϵ-neighborhood of X. The last term, however, is positive

for X > α/R and negative for X < α/R, implying that starting from a ϵ-neighborhood of

X makes the system diverge from X =α/R. More specifically, let X= α/R + ϵ1 for an

arbitrarily small ϵ1 > 0. Then, Ẋ will be and remain positive till X approaches 1. Similarly,

X = α/R − ϵ1 for an arbitrarily small ϵ1 > 0. Then, Ẋ will be and remain negative till X

approaches 0. Therefore, no matter how close the initial condition is to α/R, a trajectory

will escape from the neighborhood of plane X = α/R.

Proposition 5. The hyperplane X = α/R serves as a stable manifold for the interior fixed

point placed on it, x∗,3.

Proof. Equality Ẋ = 0 demonstrates the invariance of plane X = α
R
under dynamics (3.5).

Therefore, any trajectory on it remains so. We additionally demonstrate the convergence of

any trajectory x on this plane towards the interior fixed point. First, let us calculate vector

v = x∗,3 − x. The i’th element of this vector is:

vi = x∗,3
i − xi =

ni
α
R

(
bi
(
1− α

R

)
− C

)
−α2

R
+ α− C

− xi, ∀i ∈ {1, . . . ,m} (3.12)

Rearranging the left-hand side of eq. (3.5), yields a new equality for ẋ∗,3
i :

ẋi = ni
α

R

(
−bi(1−

α

R
) + C

)
+ xi

(
−α2

R
+ α− C

)
(3.13)

It is evident that ẋ is a positive multiply of v and therefore both share the same direction.

This implies that trajectory x converges toward x∗,3.

Example 4. [An example of a two-type population] Consider a population containing

two types 1 and 2 with proportions n1 = 0.6 and n2 = 0.4, respectively, having the following
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payoff matrices:

π1 =

1 2 1 20 0

2 0 880

, π2 =

1 2 1 850 0

2 0 50

. (3.14)

It follows R for this population equals 20 + 880 = 850 + 50 = 900, and the dynamics of the

given system are

ẋ1(t) = (0.6− x1)X (10000− 880 (1−X))− x1(t) (1−X) (10000− 20X) ,

ẋ2(t) = (0.4− x2)X (10000− 50 (1−X))− x2(t) (1−X) (10000− 850X) ,

when C = 104. The behaviour of the interior equilibrium point X∗,3 ≈ 0.60
(
x∗,3
1 ≈ 0.36, x∗,3

2 ≈ 0.24
)

is demonstrated in phase portrait 3.2(a). The green line x+y ≈ 0.60 demonstrates the stable

manifold of the system. The Jacobian matrix for X is:

−3741.33 6044.33

3955.66 −5830.00

 .

This matrix provides us with the approximated eigenvalues 214.32 and −9785.67, along with

their corresponding eigenvectors (0.83, 0.54)T and (−1, 1)T . As can also be observed from

the system’s phase portrait, the system’s unstable manifold aligns with the corresponding

eigenvector of the positive eigenvalue. This manifold is presented with blue color in phase

portrait 3.1.
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Figure 3.1: Stable and unstable manifolds of the system in example 4
a)Phase portrait of the system in example 4 with stable (green curve) and

unstable manifold (blue curve) of the interior fixed point. Red dots represent the
stable equilibrium points of the system, while the black diamond represents the interior

unstable saddle fixed point.

Figure 3.2: System’s dynamics of the system in example 4
a)Phase portrait of the system with an initial value near the interior fixed

point. In this case, the blue trajectory started its travel close to fixed point x∗,3 and still
diverged from it and converged to x∗,2. b)The trajectory solution for the given

system. All agents of each type progressively adopt strategy 2.



40

Bibliography

[1] Giacomo Como, Fabio Fagnani, and Lorenzo Zino. Imitation dynamics in population

games on community networks. IEEE Transactions on Control of Network Systems,

8(1):65–76, 2020.

[2] Lulu Gong, Jian Gao, and Ming Cao. Evolutionary game dynamics for two interacting

populations in a co-evolving environment. In 2018 IEEE Conference on Decision and

Control (CDC), pages 3535–3540. IEEE, 2018.

[3] Dario Madeo and Chiara Mocenni. Game interactions and dynamics on networked pop-

ulations. IEEE Transactions on Automatic Control, 60(7):1801–1810, 2014.

[4] William H Sandholm. Population games and evolutionary dynamics. MIT press, 2010.

[5] R Paul Wiegand, William C Liles, and Kenneth A De Jong. Analyzing cooperative

coevolution with evolutionary game theory. In Proceedings of the 2002 Congress on

Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), volume 2, pages 1600–1605.

IEEE, 2002.

[6] Thomas R Zentall. Imitation: definitions, evidence, and mechanisms. Animal cognition,

9:335–353, 2006.

[7] Jianlei Zhang, Yuying Zhu, and Zengqiang Chen. Evolutionary game dynamics of mul-

tiagent systems on multiple community networks. IEEE Transactions on Systems, Man,

and Cybernetics: Systems, 50(11):4513–4529, 2018.



41

Chapter 4

Concluding Remarks

• In Chapter 2, we analyzed coordination games in discrete time and demonstrated

that every sparse tree network of coordinating imitators and best-responders reaches

equilibrium under any activation sequence, using a semi-potential function. However,

we did not examine the general case.

• The results of Chapter 2 demonstrate that even in the presence of heterogeneity, coor-

dination within a social context is strong enough to drive a sparse-network population

toward an equilibrium.

• Moving on to Chapter 3, we assumed a large, well-mixed network and used this to

transfer the discrete dynamics from Chapter 2 to continuous mean field dynamics.

When the payoff matrices are diagonal, we found that the system has three fixed

points, two of which are trivial and one that is an interior fixed point. We proved that

the interior fixed point is a saddle fixed point while the others are stable. We also

calculate the stable manifold associated with the interior fixed point.

• Despite the existence of a saddle fixed point, we can demonstrate that under some

perturbations, the population will converge to one of the three fixed points of the

system, eventually.


