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Abstract

Abstract

The existence of localized vibrational modes in the high-entropy oxide Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O

is investigated using classical lattice dynamics. New empirical interatomic potentials for the cation-

oxygen interactions in Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O are developed and are shown to yield supe-

rior agreement with the experimental crystal structures, dielectric constants, and phonon fre-

quencies of the parent binary oxides. Various probes for localization are calculated and suggest

Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O supports localized modes beyond a high-frequency mobility edge in the

vibrational density-of-states.
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Chapter 1

Introduction

1.1 High-Entropy Oxides

1.1.1 Overview

The field of high-entropy oxides (HEOs)1 began with the synthesis of Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O in
2015 by C. M. Rost et al. [1]. HEO was prepared by ball-milling an equiatomic mixture of the binary
oxides MgO, CoO, NiO, CuO, and ZnO into a powder, using a hydraulic press to form the powder
into pellets, and sintering the pellets in a tube furnace. If the pellets were sintered at a temperature
T > Tc (where the critical temperature Tc is between 850–900 ◦C) and air-quenched to room tem-
perature, XRD and SEM results revealed HEO crystallized in a single-phase rocksalt structure with
an ordered oxygen sublattice and a cation sublattice which was occupied with equal probability by
Mg, Co, Ni, Cu, and Zn. This was despite a) nonuniform crystal structures2, electronegativities, and
cation coordination numbers, and; b) limited mutual solid solubility. A possible3 crystal structure
of HEO is shown schematically in Fig. 1.1. Rost et al. further demonstrated that HEO undergoes a

Figure 1.1: Possible instance of a 64-atom Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O supercell.

1Unless otherwise indicated, throughout this thesis ‘HEO’ shall refer to Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O.
2MgO, CoO, and NiO crystallize in the rocksalt structure at STP, whereas ZnO and CuO crystallize in the

wurtzite and tenorite structures, respectively.
3‘Possible’, since the configuration space of the cation sublattice is immense.
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reversible single-phase to multi-phase structural transformation as the sintering temperature is ad-
justed. When HEO prepared at T > Tc is re-sintered between 800–850 ◦C, a needle-shaped Cu-rich
tenorite phase emerges. At still lowering sintering temperatures between 700–750 ◦C, an elongated,
particle-shaped Co-rich spinel phase also precipitates out of HEO [2]. However, if HEO is again
re-sintered back to T > Tc, the tenorite and spinel phases dissolve and the single-phase rocksalt
structure is recovered. This is referred to as ‘phase cycling’ below, although this is not standard
nomenclature. Since their inception in 2015, high-entropy oxides crystallizing in the spinel [3], per-
ovskite [4], and α-PbO2 [5] structures have been synthesized, among many others. B. Musico et al.
have previously reviewed some of the various high-entropy oxides and corresponding experimental
results which have been studied as of 2020 [6]. For reference, Table 1.1 reviews the masses of the

Ion Mass (gmol−1)

O 16.00
Mg 24.31
Co 58.93
Ni 58.69
Cu 63.55
Zn 65.38

Table 1.1: Masses of the constituent ions in HEO.

constituent ions in HEO. Oxygen is the lightest ion at 16 gmol−1, followed by Mg at 24 gmol−1.
Cobalt, nickel, copper, and zinc are nearest-neighbours on the periodic table and have an average
mass of roughly 60 gmol−1.

A precise, all-encompassing definition of a high-entropy material has not yet been established.
However, it is widely accepted that high-entropy materials are crystalline, single-phase, and mass-
disordered down to the atomic scale [7].

Differentiating high-entropy materials from conventional solid solutions is not easy. Some exper-
imental tests which have been proposed are: a) a configurational entropy in excess of 1.6R, where R
is the ideal gas constant; b) an endothermic reaction enthalpy, and; c) a crystal structure which is
different from the parent oxides. None of these tests are perfect in isolation. For example, (Ti,Zr)O2

satisfies criteria b) and c), but its configurational entropy is much less than 1.6R [7]. Phase cy-
cling was initially thought to be the definitive characteristic of a configurational entropy-stabilized
material; however, a recent paper by Fracchia et al. on Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O showed that
phase-cycling occurs even in the ternary oxide Ni0.8Cu0.2O, where the configurational entropy is
considerably lower [8]. Hence, while configurational entropy is significant, a prominent role is still
played by conventional solid solubility limits. Aamlid et al. have proposed a new ‘gold standard’
for entropic stabilization might be attempting to identify a systematic variation of the single-phase
dissolution with configurational entropy as the stoichiometry of the cations is adjusted [7].

1.1.2 Previous Work

Kotsonis et al. have recently reviewed the functional properties of Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O which
have been studied as of 2023 [9]. Some of the salient results from their paper are listed below.
Investigations into the infrared and Raman spectra of HEO are also summarized.
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Thermal Conductivity

Lim et al. have measured a low thermal conductivity4 of 3 WmK−1 in HEO [10]. This is above the
analytic limit for an amorphous system despite the strong phonon scattering resulting from mass
and force constant disorder. Lim et al. have also shown that the thermal conductivity of HEO
further decreases by a factor of roughly one-half if any of Sc, Sn, Cr, or Ge are added to the cation
sublattice. Braun et al. have shown that the low thermal conductivity of HEO is not concomitant
with an increased elastic modulus [11]. This is in contrast to conventional materials. HEO therefore
allows for an interesting and unusual combination of material properties.

Energy Storage

Bérardan et al. reported a high room-temperature Li-ion conductivity5 of 103 S/cm in HEO [13].
Sarkar et al. later showed that the specific capacity of HEO cells remains stable after 50 charge
and discharge cycles. The removal of one cation species drastically alters the electrochemical be-
haviour [14]. HEO shows potential for applications to solid-state batteries by tuning the stoichiom-
etry of the cations to alter the Li storage properties.
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Figure 1.2: Real part of the optical conductivity of HEO. Adapted from [15].

Infrared Spectroscopy

Afsharvosoughi and Crandles have measured the infrared reflectance of HEO and extracted the
real part of the optical conductivity from Kramers-Kronig analysis [15]. See Fig. 1.2. Their data

4For reference, the thermal conductivity of pure MgO is between 45–60 WmK−1 [10].
5The 300 K Li-ion conductivity of common electrolytes and ranges from 10−8–10−3 S/cm [12].
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consists of a strong mode near 360 cm−1 and a weak mode near 150 cm−1. The weak mode is
of unclear origin, although the insignificant temperature dependence in Fig. 1.2 likely rules out
anharmonic effects. The strong mode was associated with the reststrahlen band characteristic of
rocksalt crystals. NiO and CoO present subsidiary structures in their reststrahlen bands below their
Néel temperatures TN due to spin-phonon coupling. However, no such features emerge in HEO even
as it is cooled below TN = 112 K. This was attributed to the high scattering rate of the strong
mode.

Raman Spectroscopy

T. Afsharvosoughi has also measured the temperature-dependent Raman spectrum of HEO [16].
Their data consists of five peaks, the first four of which have been assigned to, in order of increasing
frequency, a TO, LO, LO + TO, and 2LO mode, respectively6. The nature of the fifth peak is not
clear. On one hand, its central frequency is close to 3ωLO, where ωLO is the LO central frequency, and
may therefore be a 3LO mode. On the other hand, the strength of the mode increases significantly
as HEO is cooled below TN . In analogy with the Raman spectrum of pure NiO. the fifth peak may
be a two-magnon mode. Further theoretical investigation into magnetic ordering in HEO may be
needed to resolve the nature of this mode.

1.2 Plan for this Thesis

The scaling theory of localization (see Sect. 2.2 for further details) suggests that the eigenstates of a
three-dimensional system are either localized or extended, depending upon the amount of disorder
present in the system. Given that the cation sublattice of HEO is strongly disordered, it is natural
to ask whether or not the vibrational modes of HEO are localized. It should be noted that HEO
is a cleaner platform to study vibrational mode localization than the sister field of high-entropy
alloys, which are electrically conducting and hence require a treatment of electron-phonon coupling.
In addition, localized vibrational modes have been shown to reduce the thermal conductivity of
GaAs/AlAs superlattices by up to 50% [17], and are therefore of practical importance for the
application of HEO to thermal coatings.

In this thesis, large, toy model HEO supercells are constructed from a ‘superposition’ of the
parent binary oxides. For example, the Mg–O interaction in HEO is assumed to be the same as it
is in pure MgO, and so forth. See Sect. 3.1 for more details regarding the interaatomic potentials.
Classical lattice dynamics is used to extract the eigenfrequencies and eigenvectors of HEO, from
which various probes for localization are calculated. Previous studies; i.e. the works of Anand et
al. [18] and Chen et al. [19], have also constructed toy models of HEO in this way to study its
thermodynamics and the mechanical effects of Li-dopant, respectively. To the best of the author’s
knowledge, however, this thesis represents the first demonstration that localized vibrational modes
do indeed exist in HEO.

Chapter 2 discusses the relevant theoretical background in classical lattice dynamics and An-
derson localization. Chapter 3 develops empirical interatomic potentials for HEO by fitting to the
crystal structures, dielectric constants, and phonon frequencies of the parent binary oxides. Chap-
ter 4 confirms the potentials reproduce the experimental crystal structure and optical conductivity
of HEO and presents several diagnostics for mode localization.

6Here first letter indicates whether the mode involves a longitudinal (L) or transverse (T) phonon; uppercase ”O”
indicates an optical phonon. Sect. 2.2.2 explains these classifications in greater detail. The LO+TO and 2LO modes
are combination modes involving an LO and a TO phonon and two LO phonons, respectively.
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Chapter 2

Theory

2.1 Classical Theory of Lattice Dynamics

In this section the theory of lattice dynamics within the framework of classical mechanics is reviewed.
The notation used is adopted from Srivastava [20], with the one exception that ε is used instead
of e to denote a phonon eigenvector. Vector notations such as overarrows/boldface are omitted for
brevity; it is clear from the context which quantities are scalars and which are vectors.

a1

a2
a3

b b

u u′

Figure 2.1: Two unit cells in a crystal.

2.1.1 Equations of Motion

Consider a d-dimensional crystal composed of N ≡
∏

α Nα unit cells located at

Unit cell positions = {ℓ ≡ (ℓ1, . . . , ℓd) : ℓα ∈ [0, Nα − 1] ∀α ∈ [1, d]}

where Nα is the number of unit cells in the αth primitive direction. Each unit cell further contains p
basis atoms situated at

Basis atom positions = {b ≡ (b1, . . . , bd) : bα ∈ [0, Nα − 1] ∀α ∈ [1, d]}

At zero temperature, the Np atoms are ‘frozen’ at {ℓ + b}, ignoring zero-point motion. At finite
temperature, the atoms fluctuate about {ℓ+ b} by the time-dependent displacement vectors {u}:

xα(ℓb; t) = ℓα + bα + uα(ℓb; t) (2.1)

where the time dependence of x, u will henceforth be suppressed. The Lagrangian for the crystal is:

L =
1

2

∑
ℓb

mb u̇α(ℓb)
2 − U ({x}) (2.2)
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where mb is the mass of the bth basis atom and U is the potential energy of the crystal, whose
dependence on {x} is not known a priori. Summation over repeated vector projections is implicit
throughout this section. Substituting Eq. 2.2 into the Euler-Lagrange equations leads to dpN
coupled, nonlinear equations of motion. This is a completely intractable problem. The following
assumption about the {u} must be made to make progress:

Assumption of small atomic displacements: The thermal excursions {u} are much smaller
than the zero-temperature interatomic spacings {ℓ+ b}.

If this assumption holds, U can be expanded in a Taylor series of the {u}:

U({x}) = U({ℓ+ b}) +
∑
ℓb

Φα(ℓb)uα(ℓb) +
1

2

∑
ℓb

∑
ℓ′b′

Φαβ(ℓb; ℓ
′b′)uα(ℓb)uβ(ℓ

′b′) + . . . (2.3)

where the ‘force constants’ are defined by

Φα(ℓb) =
∂U

∂uα(ℓb)

∣∣∣∣
0

Φαβ(ℓb; ℓ
′b′) =

∂2U

∂uα(ℓb) ∂uβ(ℓ′b′)

∣∣∣∣
0

(2.4)

with obvious generalizations to higher-order terms. The notation
∣∣
0
is shorthand for ‘evaluated at

the zero-temperature configuration’. By choosing the constant U({ℓ + b}) as the zero of potential
energy in Eq. 2.3, it can be discarded without loss of generality.

Assumption of mechanical equilibrium: The zero-temperature configuration {ℓ + b} is
also an equilibrium configuration.

The force exerted on atom (ℓb) by the rest of the crystal is

Fα(ℓb) = −
∂U

∂uα(ℓb)
= −Φα(ℓb)−

∑
ℓ′b′

Φαβ(ℓb; ℓ
′b′)uβ(ℓ

′b′) + . . .

Thus if the foregoing assumption holds, the {F} must vanish in the limit {u → 0}. This can only
be true if {Φα(ℓb) = 0}. Consequently, Eq. 2.3 reduces to

U({x}) = 1

2

∑
ℓb

∑
ℓ′b′

Φαβ(ℓb; ℓ
′b′)uα(ℓb)uβ(ℓ

′b′) + . . . (2.5)

The O(u2) term in Eq. 2.5 is called the ‘harmonic’ term, while the terms of O(u3) and above are
collectively referred to as ‘anharmonic’ terms. From the infinity of anharmonic terms in Eq. 2.5
it follows that the Euler-Lagrange equations still cannot be solved in closed form. One more
assumption must be made:

Harmonic approximation: For sufficiently small1 temperatures the anharmonic contri-
butions to Eq. 2.5 are negligible compared to the harmonic term.

1The notion of ‘sufficiently small’ temperatures depends strongly on both the material and the physical quantity
under study. For instance, anharmonic effects manifest in the reflectance spectrum of MgO already at 5 K [21],
but excellent agreement with inelastic neutron scattering data taken at 300 K can be obtained within the harmonic
approximation [22].
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Thus if the harmonic approximation holds, Eq. 2.5 assumes the much simplified form

U({x}) = 1

2

∑
ℓb

∑
ℓ′b′

Φαβ(ℓb; ℓ
′b′)uα(ℓb)uβ(ℓ

′b′) (2.6)

Substituting Eq. 2.6 into the Euler-Lagrange equations produces

mb üα(ℓb) = −
∑
ℓ′b′

Φαβ(ℓb; ℓ
′b′)uβ(ℓ

′b′) (2.7)

which is Newton’s second law for a crystal. There are dpN coupled differential equations of the
form Eq. 2.7, but the harmonic approximation has guaranteed they are all linear, and therefore
amenable to solution by Fourier transform. This will be discussed in Sect. 2.1.3. All the material
dependence is contained within the force constants {Φαβ(ℓb; ℓ

′b′)} and the masses {mb}.

2.1.2 Symmetries of the Force Constant Matrix

1. Clairaut’s symmetry: It follows from the definition of the force constants as mixed partial
derivatives that2

Φαβ(ℓb; ℓ
′b′) = Φβα(ℓ

′b′; ℓb) (2.8)

2. Translational invariance: The potential is invariant under translations of the lattice into itself:

Φαβ(ℓb; ℓ
′b′) = Φαβ(ℓ+ ℓ′′, b; ℓ′ + ℓ′′, b′) (2.9)

By choosing ℓ′′ = −ℓ or ℓ′′ = −ℓ′, it follows that the force constants depend on the coordinates
of the unit cells only through their difference:

Φαβ(ℓb; ℓ
′b′) = Φαβ(0b; ℓ

′ − ℓ, b′) = Φαβ(ℓ− ℓ′, b; 0b′)

3. Rigid-body invariance: The force exerted on each atom is invariant under rigid-body transla-
tions of the crystal through a constant vector c:

Fα(ℓb) = −
∂U

∂uα(ℓb)
= −cβ

∑
ℓ′b′

Φαβ(ℓb; ℓ
′b′)

!
= 0

Since the components of c are linearly independent, this implies the ‘acoustic sum rule’∑
ℓ′b′

Φαβ(ℓb; ℓ
′b′) = 0 (2.10)

Additional constraints follow from the invariance of the potential and forces under rotations and
point group symmetries [23], but they will not be needed here.

2There is no standardized name for this symmetry. It is called Clairaut’s symmetry here after Clairaut’s theorem
in mathematics, which guarantees the equality of mixed partial derivatives under weak assumptions of continuity.
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2.1.3 Dynamical Matrix

The solution of Eq. 2.7 in the steady state is a plane-wave of the form

uα(ℓb) =
1
√
mb

∑
q

εα(b; q) exp[i (q · ℓ− ωqt)] (2.11)

where q is a wavevector, ωq is the frequency of the qth vibrational mode, and the dpN coefficients
{εα(b; q)} are to be determined. By imposing periodic boundary conditions

uα(ℓ+Nαaα, b)
!
= uα(ℓb) =⇒ q · aα =

2πnα

Nα

, nα ∈ [0, Nα − 1] ∀α

it follows that there are N =
∏

αNα allowed wavevectors – one for each unit cell in the crystal.
Substituting Eq. 2.11 into Eq. 2.7:

∑
q

exp(−iωqt)

[
ω2
qεα(b; q) exp(iq · ℓ)−

1
√
mb

∑
ℓ′b′

Φαβ(ℓb; ℓ
′b′)

1
√
mb′

εβ(b
′; q) exp(iq · ℓ′)

]
= 0

∑
q

exp[i (q · ℓ− ωqt)]

[
ω2
qεα(b; q)−

1
√
mb

∑
ℓ′b′

Φαβ(ℓb; ℓ
′b′)

1
√
mb′

εβ(b
′; q) exp[iq · (ℓ′ − ℓ)]

]
= 0

∑
q

exp[i (q · ℓ− ωqt)]

[
ω2
qεα(b; q)−

1
√
mb

∑
ℓ′b′

Φαβ(0b; ℓ
′ − ℓ, b′)

1
√
mb′

εβ(b
′; q) exp[iq · (ℓ′ − ℓ)]

]
= 0

∑
q

exp[i (q · ℓ− ωqt)]

[
ω2
qεα(b; q)−

1
√
mb

∑
ℓ′b′

Φαβ(0b; ℓ
′b′)

1
√
mb′

εβ(b
′; q) exp(iq · ℓ′)

]
= 0

∑
q

exp[i (q · ℓ− ωqt)]

ω2
qεα(b; q)−

∑
b′

εβ(b
′; q)

1
√
mbmb′

∑
ℓ′

Φαβ(0b; ℓ
′b′) exp(iq · ℓ′)︸ ︷︷ ︸

Dαβ(bb′;q)

 = 0

∑
q

exp[i (q · ℓ− ωqt)]

[
ω2
qεα(b; q)−

∑
b′

Dαβ(bb
′; q) εβ(b

′; q)

]
︸ ︷︷ ︸

Eα(b;q)

= 0

∑
q

exp[i (q · ℓ− ωqt)]Eα(b; q) = 0

In the third line the symmetry Eq. 2.9 has been used. The fourth line follows from changing the
summation index from ℓ′ − ℓ→ ℓ′.

The sum over q in the final line vanishes if and only if Eα(b; q) = 0 ∀q. Clearly Eα(b; q) = 0 is
a necessary condition. To prove that it is also sufficient, multiply through by exp(−iq′ · ℓ) and sum
over ℓ: ∑

q

exp(−iωqt)Eα(b; q)
∑
ℓ

exp[i(q − q′) · ℓ]︸ ︷︷ ︸
Nδq−q′,0

= 0 =⇒ exp(−iωqt)Eα(b; q) = 0 ∀q
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The factor exp(−iωqt) is always nonzero and can be safely divided out. The plane wave ansatz
Eq. 2.11, which is consistent with the translational symmetry Eq. 2.9, has therefore reduced the
dpN coupled equations of motion Eq. 2.7 to N independent matrix equations Eα(b; q) = 0, or

ω2
qεα(b; q) =

∑
b′

Dαβ(bb
′; q) εβ(b

′; q) (2.12)

where {Dαβ(bb
′; q)} are elements of the dp× dp dynamical matrix defined by

Dαβ(bb
′; q) =

1
√
mbmb′

∑
ℓ′

Φαβ(0b; ℓ
′b′) exp(iq · ℓ′) (2.13)

whose eigenvalues are the {ω2
q} and whose eigenvectors, which were initially introduced as Fourier

expansion coefficients in Eq. 2.11, are the {εα(b; q)}.
The following argument shows the dynamical matrix is also Hermitian:

Dβα(b
′b; q)∗ =

1
√
mb′mb

∑
ℓ′

Φβα(0b
′; ℓ′b) exp(−iq · ℓ′)

=
1

√
mbmb′

∑
ℓ′

Φβα(0b
′;−ℓ′b) exp(iq · ℓ′)

=
1

√
mbmb′

∑
ℓ′

Φαβ(−ℓ′b; 0b′) exp(iq · ℓ′)

=
1

√
mbmb′

∑
ℓ′

Φαβ(0b; ℓ
′b′) exp(iq · ℓ′)

= Dαβ(bb
′; q)

The second line follows from changing the summation index to ℓ′ → −ℓ′, the third line follows from
Clairaut’s symmetry Eq. 2.8, and the fourth line follows from Eq. 2.9. By a standard theorem of
linear algebra, the Hermiticity of the dynamical matrix guarantees it has exactly dp eigenfrequencies
and dp eigenvectors [24]. To keep track of which eigenvector corresponds to which eigenfrequency,
a label s will be appended to the {ωq} and the {εα(b; q)} as follows

ωq → ωqs; εα(b; q)→ εα(b; qs)

Hermiticity further implies that the eigenvalues of the dynamical matrix {ω2
qs} are all real and that

the eigenvectors are orthonormal ∑
b

ε∗α(b; qs) εα(b; qs
′) = δss′ (2.14)

and complete [24]: ∑
s

ε∗α(b; qs) εβ(b
′; qs) = δαβ δbb′ (2.15)

The completeness relation in particular implies the general solution to Eq. 2.7 can be expanded in
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a series of the eigenvectors:

uα(ℓb; t) =
1√
Nmb

∑
qs

Aqs εα(b; qs) exp{i (q · ℓ− ωqst)} (2.16)

where the expansion coefficients {Aqs} are to be determined from the initial conditions. Eq. 2.16
is the starting point for the theory of vibrational wavepacket dynamics developed in Sect. 2.3.2.
Alternatively, it is possible to show that the Hamiltonian is diagonal when written in terms of
certain real linear combinations of the {Aqs}. These combinations are called ‘normal coordinates’,
and are formulated explicitly in Eq. 2.30. When the Hamiltonian is then quantized, one finds

Ĥ =
∑
qs

ℏωqs

(
â†qs âqs +

1

2

)
which is formally identical to the Hamiltonian of the 1D quantum harmonic oscillator. The opera-
tor â†qs creates one quasiparticle – a phonon – with crystal momentum ℏq in the eigenmode s.

There are additional constraints on the eigenvectors and eigenfrequencies which will be needed
in Sect. 2.3. From above, the squared eigenfrequencies {ω2

qs} are purely real. It follows that the
eigenfrequencies {ωqs} themselves are either purely real or purely imaginary. The latter possibility
can be excluded on physical grounds, since Eq. 2.11 implies imaginary eigenfrequencies cause the
atomic displacements to erupt exponentially in time, in contradiction with the assumption that the
potential was expanded about an equilibrium configuration. Hence {ωqs ≥ 0}. In addition, it is
possible to prove by demanding that Eq. 2.11 obeys time reversal symmetry that [20]

ωqs = ω−qs (2.17)

from which it also follows
ε∗α(b; qs) = εα(b;−qs) (2.18)

It is also important to note3 that the eigenvectors are purely real at the Brillouin zone centre. This
follows from setting q = 0 in the Hermiticity argument. It is easy to see in this case that the
dynamical matrix is real and symmetric, and can therefore be diagonalized by a real orthogonal
matrix of its eigenvectors [24].

2.1.4 Coulomb Interaction

In an ionic crystal the Coulomb interaction between electrically-charged ions can account for up
to 90% of the potential energy [25]. It can be shown that the Coulomb interaction introduces a
modification to the dynamical matrix of the form [26]

D → D + ZCZ (2.19)

where Z is a diagonal matrix of the ionic charges and ZCZ is defined by

zb zb′ Cαβ(bb
′; q) =

∑
ℓ′

Φ
(C)
αβ (ℓb, ℓ

′b′) exp(−iq · ℓ′) (2.20)

3All phonon calculations in Chapter 4 were performed at q = 0.
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where zb is the charge on the bth atom. The {Φ(C)} are the Coulomb force constants; i.e. derivatives
of the Coulomb interaction with respect to interatomic distances. Since the Fourier transform of
the r−1 potential does not exist, the series Eq. 2.20 is conditionally convergent; i.e. its value depends
on the direction q → 0 in reciprocal space4. In this thesis, Eq. 2.20 was summed by applying Ewald’s
method5, as a result of which it was decomposed into two terms: one which converges rapidly in
real space, and another which converges rapidly in reciprocal space [25].

2.1.5 The Shell Model

The results of Sect. 2.1.4 are only valid so long as the ions are treated as point changes. This is
known as the ‘rigid-ion model’. Because the polarisabilty of the ions is ignored, the rigid ion model
incorrectly predicts ϵ∞ = 1 [26]. A glance at the data in Appendix A shows that the binary oxides
in HEO have a high-frequency dielectric constant ϵ∞ ∼ 4.

One solution to this problem is the ‘shell model’ introduced by Dick and Overhauser [27], in
which atoms are decomposed into massive point charges bonded by isotropic, harmonic springs to
massless, charged shells; i.e. a core-shell pair interact via

Φ(r) =
1

2
kr2 (2.21)

where k is the stiffness constant and r is the core-shell distance. The atomic polarisability is

α =
(Y e)2

k
(2.22)

where e is the electron change and Y (in units of e) is the shell charge. The shell model qualitatively
captures the quantum-mechanical reality of a charged nucleus surrounded by an electron cloud. If
the shell model is applied to an ionic crystal, the dynamical matrix becomes [26]

D → D + ZCZ − (Dcs + ZCY ) (Dss + Y CY )−1 (Dcs + ZCY )T (2.23)

where Y is a diagonal matrix of the shell charges, and Dcs, Dss, describe the core-shell and shell-
shell interactions, respectively. If the shells are omitted; i.e. Dcs = Dss = Y = 0, then Eq. 2.23
correctly reduces to the dynamical matrix Eq. 2.19 of an ionic crystal in the rigid-ion description.

2.2 Anderson Localization

2.2.1 Overview

In 1958, P. Anderson proposed that scattering from a static, random potential could cause electronic
eigenstates to localize and induce a phase transition from a conducting to an insulating material [28].
An example of how this might occur in 1D is shown in Fig. 2.2. Although the eigenstates |1⟩ , |2⟩
are energetically degenerate, they are too far removed spatially for electrons to hop between them.
This phenomenon has come to be known as ‘Anderson localization’ and applies to waves in general
(i.e. and not just to electronic Bloch states). Subsequent experimental studies have even observed
the Anderson localization of light and sound waves [29]. The scaling theory of localization devel-

4This property is responsible for the phenomenon of LO-TO splitting in ionic crystals.
5This is the default setting in GULP, the program that was used to perform the lattice dynamical calculations. See

Sect. 3.2 for more details about GULP.
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x

Φ(x)

Φ0

|1⟩ |2⟩

Figure 2.2: Random potential landscape in one dimension. The eigenstates with energy Φ0 are too
far apart for electrons to hop between them. Adapted from [30].

oped in 1979 by the ‘gang of four’ (Abrahams, Anderson, Licciardello, and Ramakrishnan) showed
that any amount of disorder whatsoever is sufficient to localize all eigenstates in one- and two-
dimensions. In three-dimensions eigenstates may be localized or extended, depending upon the
amount of disorder in the system [31].

2.2.2 Vibrational Modes in Disordered Media

It has been shown in Sect. 2.1.3 that for each theN allowed values of the wavevector q, the vibrations
in crystalline solids are characterised by dp frequencies {ω2

qs} and eigenvectors {εα(b; qs)} obtained
by diagonalizing the dynamical matrix. The ‘dispersion relation’ is the dp-fold multivalued function
obtained by plotting ωqs against q. The vibrational density-of-states (VDOS)

D(ω) =
∑
qs

δ(ω − ωqs) (2.24)

counts the number of modes with frequencies between ω and ω+dω. In practise the delta function
in Eq. 2.24 is sometimes approximated by a Lorentzian function [25] with a broadening factor b
comparable to the resolution of INS experiments; i.e.

δ(ω − ωqs) ≈
b/π

1 +
[
b (ω − ωqs)

2] (2.25)

It is very important to emphasize that all the theory discussed so far is valid only for crystalline
media. In an amorphous solid the translational symmetry Eq. 2.9 is broken and the wavevector q
is ill-defined. Stated another way, the equations of motion Eq. 2.7 can no longer be decoupled by
a plane wave expansion of the form Eq. 2.11. It follows immediately from the non-existence of q
that the dispersion relation likewise does not exist in an amorphous solid. The VDOS, on the other
hand, can be generalized and assumes the form

D(ω) =
∑
i

δ(ω − ωi) (2.26)
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where the {ωi} are the frequencies obtained from a brute-force diagonalization of the 1023 equations
of motion Eq. 2.7. It is worth noting that Eq. 2.26 can be thought of as the limit of Eq. 2.24 in the
absence of translational symmetry.

While Eq. 2.26 is conceptually true, it is not useful in practise. It is simply not possible to set
up and solve 1023 coupled differential equations for the frequencies {ωi}. As a workaround, the
method of ‘supercell lattice dynamics’ can be applied to obtain an approximation to the VDOS of
an amorphous solid using the machinery of Sect. 2.1. This will be discussed in Sect. 2.2.3.
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Figure 2.3: VDOS of crystalline (c-Si) and amorphous (α-Si) silicon normalized to unit intensity.
Mode assignments adapted from [32]. INS data on α-Si adapted from [33]. Refer to
Sect. 2.3.3 for details regarding the Si model.

There are three types of disorder which are of interest in this thesis: mass disorder, force constant
(or bonding) disorder, and structural disorder. HEO is mass disordered since its cation sublattice
is randomly populated by Mg, Co, Ni, Cu, and Zn. HEO is also force constant disordered, since
e.g. the different cations interact with oxygen through different potentials (see Sect. 3.1 for details
regarding the potential models employed here). As a counterexample, one could imagine a toy
model HEO in which there is a single potential for all cation-oxygen interactions, and a single
potential for all cation-cation interactions. Such a system would still be mass disordered, but not
force constant disordered. Structural disorder, on the other hand, refers to systems without long-
range crystalline order. Amorphous silicon is an example, but HEO is not, since it crystallizes in
the rocksalt structure.

From the nonexistence of q it also follows that the classification of modes as either longitudi-
nal/transverse (L/T) is also lost; i.e. there is no direction of propagation with respect to which a
mode can vibrate transversely or longitudinally. Beltukov et al. have generalized L/T modes by
considering Voronoi cells surrounding all atoms in a sample of amorphous silicon (α-Si). T-modes
conserve the volume of the cells, while L-modes do not [34]. Similarly, with no well-defined disper-
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sion relation, modes cannot be classified as acoustic (∂ωqs/∂q ∼ q) or optical (∂ωqs/∂q ∼ const),
where both derivatives are to be evaluated at q = 0. The appropriate generalization in this case
is the ‘phase quotient’ introduced by Bell and Hibbins-Butler [35], which is applied to HEO in
Sect. 4.2.2.

Allen and Feldman [36] and Allen et. al [37] proposed that the ‘phonon gas’ model of thermal
conductivity in crystalline solids should be replaced by the taxonomy of propagons, diffusons, and
locons in glasses. Propagons are extended, plane wave-like modes which generally occupy the
lowest-frequency part of the VDOS, where q is still somewhat well-defined. The eigenvectors of a
propagon are spatially coherent; i.e. the displacements of nearest-neighbours are strongly correlated.
Conversely, the eigenvectors of a locon are randomly-oriented and the vibrations are confined to a
region of finite spatial extent. In α-Si locons occupy the highest-frequency part of the VDOS, beyond
the ‘mobility edge’ [37], although this is not a universal feature: a recent lattice dynamical study
on amorphous polymers, for example, has shown that locons can exist at low frequencies and can
actually dominate (at 90%) the total fraction of vibrational modes [38]. Diffusons, like propagons,
are extended modes, but like locons, their eigenvectors are randomly-oriented. A wavepacket of
diffusons transports energy diffusively, hence the nomenclature. A summary of the three types of
vibrational excitations is sketched in Table 2.1.

Mode Extended? Frequency Eigenvectors Transport

Propagon Yes Low Periodic Ballistic

Diffuson Yes Medium Random Diffusive

Locon No High Random None

Table 2.1: Characteristics of propagons, diffusons, and locons.

2.2.3 Supercell Lattice Dynamics

One of the most common ways to study the lattice dynamics of a disordered solid is to build
a ‘supercell’; i.e. an extrusion of the primitive/conventional unit cell. An example of an HEO
supercell was shown in Fig. 1.1. The larger the supercell is made, the more representative of a truly
disordered material it becomes. It cannot be made arbitrarily large, however, for the computational
resources required to diagonalize the dynamical matrix scales as N3 [39]. Hence a balance must
be struck between the desired accuracy of the calculation and the resources available to the user.
The minimum size of the requisite supercell can be determined by ensuring all physical properties
of interest are converged with respect to N .

An application of the supercell method to the VDOS of α-Si is shown in Fig. 2.3. For comparison,
INS data on α-Si and the VDOS of crystalline silicon (c-Si) are also shown. The sharp peaks in the
VDOS of c-Si are broadened in α-Si, but its general features are nonetheless preserved. This is also
true of crystalline Ge, crystalline SiO2, and their amorphous counterparts [40]. Allen et al. [37] note
in particular that the diffuson modes in α-Si transition from having TA-like to LA-like character
near 250 cm−1, just as would be expected in c-Si.
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2.3 Classical Wavepacket Dynamics

2.3.1 Motivation

The final column of Table 2.1 suggests that propagons, diffusons, and locons can be distinguished
by studying the time-dependence of their energy transport. To make this idea precise, consider
a wavepacket located at the centre of a large supercell. The wavepacket has been initialized by
displacing some of the atoms while holding the rest at their equilibrium positions. See Fig. 2.4
in Sect. 2.3.4 for an illustration. All of the atoms initially have zero momentum, so the only
energy stored in the supercell is potential. At time t = 0, the atoms are suddenly released and the
wavepacket is allowed to propagate.

If the wavepacket consisted of propagons, the wavefront should spread linearly in time at some-
thing like the sound velocity; i.e. ⟨r⟩ ∼ t and consequently ⟨r2⟩ ∼ t2, where the average ⟨·⟩ is taken
over all atoms in the supercell. Similarly, if the wavepacket consisted of diffusons, the wavefront
should spread diffusively; ⟨r2⟩ ∼ t. Lastly, if the wavepacket consisted of locons, then the wavefront
should not spread at all; ⟨r2⟩ ∼ const. Define now at each time t a diffusion coefficient [41]

D(t) =
⟨r2(t)⟩ − ⟨r2(0)⟩

t
(2.27)

It follows from the preceding discussion that by studying the dependence of D(t) on t it should be
possible to discriminate between the three types of modes. The results are summarized in Table 2.2.
However, it is not clear at this stage how to calculate ⟨r2⟩. This is taken up in Sects. 2.3.2 and 2.3.3.

D(t) Mode

t Propagon

const. Diffuson

t−1 Locon

Table 2.2: Expected time dependence of the diffusion coefficient.

2.3.2 General Theory

The general solution to the equations of motion Eq. 2.7 was given in Eq. 2.16 and is

uα(ℓb; t) =
1√
Nmb

∑
qs

Aqs εα(b; qs) exp[i (q · ℓ− ωqst)]

where the explicit time dependence of the {u} has been restored. Physically, uα(ℓb; t) is the displace-
ment of the atom (ℓb) away from equilibrium and must be real-valued at all times. This constraint



Chapter 2. Theory 16

can be enforced by adding to Eq. 2.16 its complex conjugate and halving the result:

uα(ℓb; t)
!
=

1

2
√
Nmb

∑
qs

[
Aqs εα(b; qs) exp{i (q · ℓ− ωqst)}+ A∗

qs ε
∗
α(b; qs) exp{−i (q · ℓ− ωqst)}

]
=

1

2
√
Nmb

∑
qs

[
Aqs εα(b; qs) exp{i (q · ℓ− ωqst)}+ A∗

qs εα(b;−qs) exp{−i (q · ℓ− ωqst)}
]

=
1

2
√
Nmb

∑
qs

εα(b; qs)
[
Aqs exp(−iωqst) + A∗

−qs exp(iωqst)
]
exp(iq · ℓ)

=
1√
Nmb

∑
qs

εα(b; qs)Q(qs; t) exp(iq · ℓ)

The second line follows from the relation Eq. 2.18 between an eigenvector and its complex conjugate;
the third line follows by replacing q → −q in the summation and using the time-reversal symmetry
relation Eq. 2.17. In the final line the ‘normal coordinates’ defined by

Q(qs; t) =
1

2

[
Aqs exp(−iωqst) + A∗

−qs exp(iωqst)
]

(2.28)

have been introduced. It may be seen that the general solution involves 2dpN unknowns, which
can be taken either as the the real and imaginary parts of the {Aqs}, or more conveniently, as the
values of {Q(qs; t), Q̇(qs; t)} at time t = 0. This is precisely the information provided by the 2dpN
initial positions and velocities {uα(ℓb; 0), u̇α(ℓb; 0)}. The transformation between the two sets of
unknowns is effected by solving the matrix equation:(

Q(qs; 0)

Q̇(qs; 0)

)
=

1

2

(
1 1
−iωqs iωqs

)(
Aqs

A∗
−qs

)
⇐⇒

(
Aqs

A∗
−qs

)
=

1

iωqs

(
iωqs −1
iωqs 1

)(
Q(qs; 0)

Q̇(qs; 0)

)
(2.29)

Substituting Eq. 2.29 into Eq. 2.28, the normal coordinates are equivalently expressed as

Q(qs; t) = Q(qs; 0) cosωqst+
Q̇(qs; 0)

ωqs

sinωqst (2.30)

and the displacements are given by

uα(ℓb; t) =
1√
Nmb

∑
qs

εα(b; qs)

[
Q(qs; 0) cosωqst+

Q̇(qs; 0)

ωqs

sinωqst

]
exp(iq · ℓ) (2.31)
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The {Q(qs; 0), Q̇(qs; 0)} can also be written in terms of the initial values of the displacements and
velocities themselves as follows:

uα(ℓb; 0) =
1√
Nmb

∑
qs

εα(b; qs)Q(qs; 0) exp(iq · ℓ)

∑
ℓ

uα(ℓb; 0) exp(−iq′ · ℓ) =
1√
Nmb

∑
qs

εα(b; qs)Q(qs; 0)
∑
ℓ

exp[i (q − q′) · ℓ]︸ ︷︷ ︸
Nδq−q′,0

=

√
N

mb

∑
s

εα(b; q
′s)Q(q′s; 0)

The second line follows from multiplying through by exp(−iq′ · ℓ) and summing over ℓ. Moving
the prefactor

√
N/mb to the left-hand side, multiplying by ε∗α(b; q

′s′), and performing a second
summation over bα produces

1√
N

∑
bα

√
mb ε

∗
α(b; q

′s′)
∑
ℓ

uα(ℓb; 0) exp(−iq′ · ℓ) =
∑
bα

ε∗α(b; q
′s′) εα(b; q

′s)︸ ︷︷ ︸
δss′

Q(q′s; 0) = Q(q′s′; 0)

where δss′ arises from the completeness relation Eq. 2.15. An analogous expansion of the {Q̇(qs; 0)}
in terms of the {u̇α(ℓb; 0)} can be derived by differentiating both sides of Eq. 2.31 with respect to
time and evaluating the result at t = 0. In summary, the expansions are

Q(qs; 0) =
1√
N

∑
bα

√
mb ε

∗
α(b; qs)

∑
ℓ

uα(ℓb; 0) exp(−iq · ℓ) (2.32)

Q̇(qs; 0) =
1√
N

∑
bα

√
mb ε

∗
α(b; qs)

∑
ℓ

u̇α(ℓb; 0) exp(−iq · ℓ) (2.33)

2.3.3 Dynamics in a Large Supercell

Consider a crystal described by a supercell. If the supercell is made large enough, then to first
approximation N = 1, the only lattice site is ℓ = 0, and the Brillouin zone consists of the single
point q = 0. Suppose further that all atoms are initially at rest. Then the left-hand side of Eq. 2.33
vanishes and Eqns. 2.31 and 2.32 can be combined into the single equation

uα(b; t) =
1
√
mb

∑
s

εα(b; s) cosωst
∑
b′α′

√
mb′ ε

∗
α′(b′; s)uα′(b′; 0) (2.34)

where the labels ℓ = q = 0 have been discarded. Future algebraic manipulations will be made
considerably easier if Eq. 2.34 is recast as a matrix equation. Here the Dirac notation used by Allen
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and Kelner [42] in the context of vibrational wavepackets is introduced by the correspondence rules:

uα(b; t)←→ ⟨bα|u(t)⟩
εα(b; s)←→ ⟨bα|s⟩
ε∗α(b; s)←→ ⟨s|bα⟩

cosωst δss′ ←→ ⟨s|Ĉ(t)|s′⟩
mbα δαα′δbb′ ←→ ⟨bα|M̂ |b′α′⟩

The {|bα⟩} are vectors in direct space, while the {|s⟩} are vectors in the eigenbasis of the dynamical
matrix. In the fourth line an operator Ĉ(t) has been introduced which is diagonal in the eigenbasis
and whose eigenvalues are the {cosωst}. The fifth line is more subtle: each component of a given
atomic displacement is obviously weighted by the same mass, so there is no harm in writing mb →
mbα. The {mbα} are the eigenvalues of the ‘mass operator’ M̂ which is diagonal in direct space.
In the Dirac notation, the orthonormality and completeness relations Eqns. 2.14 and 2.15 relations
read, respectively ∑

bα

⟨s|bα⟩ ⟨bα|s′⟩ = ⟨s|s′⟩ = δss′ (2.35)

∑
s

⟨s|bα⟩ ⟨b′α′|s⟩ = ⟨b′α′|bα⟩ = δαα′ δbb′ (2.36)

Similarly, Eq. 2.34 now reads:

⟨bα|u(t)⟩ = 1
√
mb

∑
s

⟨bα|s⟩ cosωst
∑
b′α′

√
mb′ ⟨s|b′α′⟩ ⟨b′α′|u(0)⟩

=
1
√
mb

∑
s

⟨bα|s⟩

(∑
s′

δss′ cosωs′t

)∑
b′α′

√
mb′ ⟨s|b′α′⟩ ⟨b′α′|u(0)⟩

=
1
√
mb

∑
ss′

⟨bα|s⟩ ⟨s|Ĉ(t)|s′⟩
∑
b′α′

√
mb′ ⟨s′|b′α′⟩ ⟨b′α′|u(0)⟩

=

(∑
b′′α′′

⟨bα|M̂− 1
2 |b′′α′′⟩

)∑
ss′

⟨bα|s⟩ ⟨s|Ĉ(t)|s′⟩
∑
b′α′

(∑
b′′′α′′′

⟨b′α′|M̂
1
2 |b′′′α′′⟩

)
⟨s′|b′α′⟩ ⟨b′α′|u(0)⟩

=

(∑
b′′α′′

⟨bα|M̂− 1
2 |b′′α′′⟩

)∑
ss′

⟨b′′α′′|s⟩ ⟨s|Ĉ(t)|s′⟩
∑
b′α′

(∑
b′′′α′′′

⟨b′α′|M̂
1
2 |b′′′α′′⟩

)
⟨s′|b′α′⟩ ⟨b′′′α′′′|u(0)⟩

=

(∑
b′α′

⟨bα|M̂− 1
2 |b′α′⟩

)∑
ss′

⟨b′α′|s⟩ ⟨s|Ĉ(t)|s′⟩
∑
b′′α′′

(∑
b′′′α′′′

⟨b′′α′′|M̂
1
2 |b′′′α′′′⟩

)
⟨s′|b′′α′′⟩ ⟨b′′′α′′′|u(0)⟩

=
∑
ss′

∑
b′α′

∑
b′′α′′

∑
b′′′α′′′

⟨bα|M̂− 1
2 |b′α′⟩ ⟨b′α′|s⟩ ⟨s|Ĉ(t)|s′⟩ ⟨s′|b′′α′′⟩ ⟨b′′α′′|M̂

1
2 |b′′′α′′′⟩ ⟨b′′′α′′′|u(0)⟩

The replacement ⟨s|bα⟩ → ⟨s′|bα⟩ is made in the third line with impunity since the delta function
enforces s = s′. For the same reason, ⟨bα|s⟩ → ⟨b′′α′′|s⟩ and ⟨b′α′|u(0)⟩ → ⟨b′′′α′′′|u(0)⟩ in the fifth
line. The penultimate line follows from exchanging the primed and doubly-primed (bα) indices.

Summation over dyads |bα⟩⟨bα| and |s⟩⟨s| generates resolutions of unity by Eqns. 2.35 and 2.36.
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Furthermore, since the above holds for any bra ⟨bα|, it can be very succinctly written as

|u(t)⟩ = M̂− 1
2 Ĉ(t)M̂

1
2 |u(0)⟩ (2.37)

which generalizes Allen and Kelner’s results for a 1D chain with constant mass to arbitrary mass-
and force-constant disorder in d dimensions. The direct translation of the foregoing (i.e. without
summation over dyads) reads

u(t) = M− 1
2εC(t)ε†M

1
2u(0) (2.38)

where ε is a unitary matrix whose columns are the vibrational eigenvectors. Eq. 2.37 has the
advantage of holding in any basis whatsoever; Eq. 2.38 is more useful in practical computations,
where only certain matrix elements are known. One would probably not know, for instance, the
initial displacements in the eigenbasis; i.e. the column vector ⟨s|u(0)⟩. Differentiating Eq. 2.38
with respect to time, the velocities of the atoms are

|v(t)⟩ = −M̂− 1
2 Ω̂Ŝ(t)M̂

1
2 |u(0)⟩ (2.39)

where Ŝ and Ω̂ are diagonal in the eigenbasis with eigenvalues {sinωst} and {ωs}, respectively. The
same formula is given in the ‘conventional’ matrix-vector notation as

v(t) = −M− 1
2εΩS(t)ε†M

1
2u(0) (2.40)

Following Allen and Kelner, consider now the vector

|W (t)⟩ = M̂
1
2 |v(t)⟩ − iΩ̂M̂

1
2 |u(t)⟩ (2.41)

whose physical significance will soon become apparent. The amplitude of |W (t)⟩ is

⟨W (t)|W (t)⟩ = ⟨v(t)|M̂ |v(t)⟩+ ⟨u(t)|M̂
1
2 Ω̂2M̂

1
2 |u(t)⟩ (2.42)

where use has been made of the fact that Ω̂, M̂ are Hermitian operators to eliminate the cross terms.
The first term on the right-hand side of Eq. 2.42 is equal to twice the kinetic energy of the crystal:

2T =
∑
bα

mb u̇α(b; t)
2

=
∑
bα

u̇α(b; t)

(∑
b′α′

mbα δαα′ δbb′

)
u̇α(b; t)

=
∑
bα

∑
b′α′

⟨v(t)|bα⟩ ⟨bα|M̂ |b′α′⟩ ⟨b′α′|v(t)⟩

= ⟨v(t)|M̂ |v(t)⟩

Note in the third line that ⟨bα|v(t)⟩ = ⟨bα|v(t)⟩∗, which follows from the reality of the atomic
velocities. It will now be shown that the second term on the right-hand side of Eq. 2.42 is equal
to twice the potential energy. To prove this, it is first noted that, by construction, the dynamical
matrix is diagonal in the eigenbasis:

D̂ = D̂
∑
s

|s⟩⟨s| =
∑
s

ω2
s |s⟩⟨s| = Ω̂2 (2.43)
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Also, when specialized to the large supercell, Eq. 2.13 reduces to

Dαα′(bb′) =
Φαα′(bb′)
√
mbmb′

(2.44)

The potential energy is then

2Φ =
∑
bα

∑
b′α′

uα(b; t) Φαα′(bb′)uα′(b′; t)

=
∑
bα

∑
b′α′

uα(b; t)
√
mbmb′ Dαα′(bb′)uα′(b′; t)

=
∑
bα

∑
b′α′

uα(b; t)

(∑
b′′α′′

⟨bα|M̂
1
2 |b′′α′′⟩

)
Dαα′(bb′)

(∑
b′′′α′′′

⟨b′α′|M̂
1
2 |b′′′α′′′⟩

)
uα′(b′; t)

=
∑
bα

∑
b′α′

∑
b′′α′′

∑
b′′′α′′′

⟨u(t)|bα⟩ ⟨bα|M̂
1
2 |b′′α′′⟩ ⟨bα|D̂|b′α′⟩ ⟨b′α′|M̂

1
2 |b′′′α′′′⟩ ⟨b′α′|u(t)⟩

=
∑
bα

∑
b′α′

∑
b′′α′′

∑
b′′′α′′′

⟨u(t)|bα⟩ ⟨bα|M̂
1
2 |b′′α′′⟩ ⟨b′′α′′|D̂|b′α′⟩ ⟨b′α′|M̂

1
2 |b′′′α′′′⟩ ⟨b′′′α′′′|u(t)⟩

=
∑
bα

∑
b′α′

∑
b′′α′′

∑
b′′′α′′′

⟨u(t)|bα⟩ ⟨bα|M̂
1
2 |b′α′⟩ ⟨b′α′|D̂|b′′α′′⟩ ⟨b′′α′′|M̂

1
2 |b′′′α′′′⟩ ⟨b′′′α′′′|u(t)⟩

= ⟨u(t)|M̂
1
2 D̂M̂

1
2 |u(t)⟩

which is indeed equal to the second term on the right-hand side of Eq. 2.42 once the replacement
D̂ = Ω̂2 is made using Eq. 2.43. Thus

⟨W (t)|W (t)⟩ = 2T + 2Φ = 2E (2.45)

i.e. the overlap ⟨W (t)|W (t)⟩ it is an integral of the motion, equal to twice the total energy E of the
crystal. Inserting a resolution of unity:

⟨W (t)|W (t)⟩ =
∑
bα

⟨W (t)|bα⟩ ⟨bα|W (t)⟩ =
∑
bα

|⟨bα|W (t)⟩|2

which suggests that a reasonable, additive definition of the on-site energy is

ϵα(b; t) =
1

2
|⟨bα|W (t)⟩|2 (2.46)

The wavepacket width introduced in Sect. 2.3.1 can finally be written as〈
r2(t)

〉
=

1

E

∑
bα

[bα −Rα(t)]
2 ϵα(b; t) (2.47)

where R(t) is the center-of-energy of the wavepacket defined by

Rα(t) =
1

E

∑
b

bα ϵα(b; t) (2.48)

Both Eqns. 2.47 and 2.48 are again generalizations of Allen and Kelner’s results. To find ⟨r2(t)⟩ it
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is necessary to know |W (t)⟩, which can be calculated from the initial displacements as follows:

|W (t)⟩ = M̂
1
2 |v(t)⟩ − iΩ̂M̂

1
2 |u(t)⟩

= −Ω̂
[
Ŝ(t) + iĈ(t)

]
M̂

1
2 |u(0)⟩

= −iΩ̂
[
Ĉ(t)− iŜ(t)

]
M̂

1
2 |u(0)⟩

=
[
Ĉ(t)− iŜ(t)

] (
−iΩ̂M̂

1
2 |u(0)⟩

)
= e−iΩ̂t |W (0)⟩
= Û(t) |W (0)⟩

The second line follows from the definitions of the atomic displacements and velocities Eqns. 2.38
and 2.39. In the fourth line the fact that Ω̂, Ĉ, Ŝ are all diagonal in the eigenbasis has been used to
commute the multiplications Ω̂Ĉ and Ω̂Ŝ.

2.3.4 Wavepacket Dynamics and Localization

Ā

A

Figure 2.4: Supercell of HEO A wrapped in an environment of HEO Ā. All the atoms in A are
initially displaced, while all the atoms in Ā are fixed to the equilibrium positions. The
result is a wavepacket (A) which has been initialized with potential energy only.

Consider a cubic supercell A of HEO embedded in the centre of an HEO environment. The
union of A and its environment Ā is a larger supercell of HEO which is denoted by B. If A is not
too small, Ā should not look too dissimilar from periodic repetitions of A itself. In other words,
a mode which was a locon in A should still approximately be localized in B, and similarily for
propagons and diffusons. The setup is illustrated in Fig. 2.4. At time t = 0 all the atoms in Ā are
fixed to zero initial displacement, while all the atoms in A are displaced in proportion to one of
eigenmodes of A. The initial displacements of B are given symbolically by

|u(0)⟩ = M̂− 1
2 |0 ∪ sA⟩ =⇒ |W (0)⟩ = Ω̂ |0 ∪ sA⟩ (2.49)

when |0 ∪ sA⟩ is a vector whose components in the eigenbasis are equal to zero if an atom b ∈ Ā
and is equal to an eigenvector component of mode sA if b ∈ A. The relation between |u(t)⟩ and
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|0 ∪ sA⟩ follows from Eq. 2.11. Evolving |W (0)⟩ forward in time with Û(t) produces

⟨bα|W (t)⟩ = ⟨bα|Û(t)Ω̂|0 ∪ sA⟩

= ⟨bα|

(∑
s

|s⟩⟨s|

)
Û(t)Ω̂

(∑
s′

|s′⟩⟨s′|

)(∑
b′α′

|b′α′⟩⟨b′α′|

)
|0 ∪ sA⟩

=
∑
ss′

∑
b′α′

⟨bα|s⟩ ⟨s|Û(t)Ω̂|s′⟩ ⟨s′|b′α′⟩ ⟨b′α′|0 ∪ sA⟩

In the ‘classical’ matrix-vector notation, this reads

W(t) = εU(t)Ω ε† sA (2.50)

The on-site energies and wavepacket width Eqns. 2.46 and 2.47 can be calculated at once from
the components {⟨bα|W (t)⟩}. The diffusion coefficient Eq. 2.27, which is a function of ⟨r2⟩ only,
discriminates between propagons, diffusons, and locons according to the predictions of Table 2.2.

2.3.5 Correlation Amplitude

The correlation amplitude in quantum mechanics measures the similarity of state |Ψ(t)⟩ at time t
to the initial state |Ψ(0)⟩ at time t = 0. Since |W (t)⟩ obeys the Schrödinger equation for state kets

|W (t)⟩ = Û(t) |W (0)⟩ (2.51)

it is the Newtonian analogue of the state of a quantum system. Note in this analogy that the
operator Û(t) plays the role of the quantum propagator for a time-independent potential (the
potential must be time-independent, since the total energy of the crystal is conserved). A correlation
amplitude for the wavepacket can therefore be defined as

⟨W (t)|W (0)⟩ = ⟨W (0)|Û(t)|W (0)⟩
= ⟨0 ∪ sA|Ω̂ Û(t) Ω̂|0 ∪ sA⟩

=
∑
bα

∑
b′α′

∑
ss′s′′s′′′

⟨0 ∪ sA|bα⟩ ⟨bα|s⟩ ⟨s|Ω̂|s′⟩ ⟨s′|Û(t)|s′′⟩ ⟨s′′|Ω̂|s′′′⟩ ⟨s′′′|b′α′⟩ ⟨b′α′|0 ∪ sA⟩

or, in the classical notation, as the quadratic form

W∗(t) ·W(0) =
(
ΩT ε† sA

)T U(t)
(
ΩT ε† sA

)
(2.52)

Physically, a locon should not spread far in space and should closely resemble its initial state after a
long time t. The opposite is true of propagons and diffusons. Hence a correlation amplitude which is
close to unity (in modulus) for all time gives further evidence for the existence of localized modes.
Eq. 2.52 is also much faster (numerically) to evaluate than Eq. 2.50, since the large matrices ε
appear only in matrix-vector multiplications with the initial state sA, which contains mostly zeros.
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Chapter 3

Methods

3.1 Interatomic Potentials

Due to the complicated nature of chemical bonding, the interaction energy Φ introduced in Sect. 2.1
is not known a priori in any real material. To diagonalize the dynamical matrix Eq. 2.13 it is
therefore necessary to choose, on the basis of ionic vs. covalent bonding, and agreement with
experimental data, a reasonable functional form of Φ. In this work, it is assumed that the short-
range interaction between atoms located at b, b′ is given by the pairwise Buckingham potential

Φ(xbb′) = Abb′ exp

(
−xbb′

ρbb′

)
− Cbb′

x6
bb′

xbb′ = |b− b′| (3.1)

where the two terms on the right-hand side represent, respectively, the repulsion between overlap-
ping electron clouds and the van-der-Waals attraction between fluctuating dipoles. The constants
{A, ρ, C} depend on the species of atoms b, b′ under consideration and vary between materials. Use
of the Buckingham potential is ubiquitous in lattice dynamical studies on metal oxides. The effects
of atomic polarisability are accounted for with the shell model discussed in Sect. 2.1.5. For simplic-
ity, the sum of the core and shell charges is fixed to the formal charge on each ion, either +2 or −2
for the cations and oxygen, respectively. It is important to emphasize that shell-shell interactions
are parametrized by Eq. 3.1, while a core and its shell interact via Eq. 2.21. The Coulomb potential
acts between all pairs of cores and shells.

For HEO with 5 species of cations and its oxygen sublattice, the number of Buckingham po-
tentials required to parametrize all shell-shell interactions is 1

2
6(6 + 1) = 21, each contributing 3

unknowns {A, ρ, C}. The core/shell pairs further contribute another 6× 2 unknowns {Y, k}. Thus
the total number of unknown numerical constants, which must be determined from a fit to exper-
imental data, is 75. This exceeds the number of recorded HEO observables (cf. [6] for a review).
Further assumptions therefore need to be made to proceed with the lattice dynamical approach. The
remainder of this section is devoted to an exposition of these assumptions and their justifications.

Assumption 1: The Buckingham potentials describing the shell-shell interactions in the
parent binary oxides are directly transferable to HEO. Thus the Mg–O interaction in
HEO is assumed to be the same as the Mg–O interaction in MgO, and so forth. Likewise,
the Mg core and shell parameters in MgO are directly transferable to HEO.

Since HEO is itself synthesized from a powderized mixture of its parent binary oxides, this assump-
tion is physically sensible. The impetus of this assumption, however, is mostly practical: the binary
oxide observables are more bountiful than the HEO observables.

Assumption 2: Cations interact only with oxygen (and not amongst themselves).

Lewis & Catlow [43] found satisfactory agreement between the simulated and experimental elastic
constants of spinel oxides by neglecting cation-cation interactions and using Assumption 1 to fit
their cation-oxygen potentials. HEO should better conform to Assumption 2 than spinel since, for
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the binary oxides MgO, CoO, and NiO, there is no difference in coordination [19]. Assumption 2
has the added advantage of reducing the number of unknowns from 75 to 30.

Assumption 3: The Buckingham O–O parameters are taken from Lewis & Catlow.

The Buckingham O–O interaction and the oxygen core/shell parameters must be the same in the
binary oxides and HEO; i.e. an oxygen in MgO, CoO, etc., is the same as an oxygen in HEO. It is
reasonable to fix the O–O parameters at the values determined by Lewis & Catlow since they are
highly transferable [44] and in widespread use. The oxygen core/shell parameters were allowed to
vary in the fit to improve the agreement with experimental data (see Sect. 3.4 and Table 3.3), but
did not deviate far from the Lewis & Catlow values. Assumption 3 further reduces the number of
unknowns from 30 to 27.

Assumption 4: The van der Waals term is nonzero only for the O–O interaction.

No improvement in the fit quality was observed by attempting to graft nonzero Cbb′ terms onto
existing cation-oxygen potentials. Physically, oxygen is larger and more polarisable than the metal
cations in HEO, and should therefore have the strongest dipole-dipole interaction [45]. There are 22
unknowns left after making Assumption 4: ten cation-oxygen Buckingham parameters {A, ρ}, and
two shell model parameters {Y, k} for each of the six ions in HEO.

3.2 The General Utility Lattice Program (GULP)

GULP is a classical lattice dynamics program designed to run a variety of simulations on zero-
dimensional (i.e. isolated molecules) up to three-dimensional (bulk) materials [39]. In this thesis,
GULP was used use to fit the Buckingham/shell model potentials introduced in Sects. 2.1.5 and 3.1
to experimental data on the parent binary oxides MgO, CoO, NiO, CuO, and ZnO. The precise way
in which this was done is explained in Sect. 3.4. GULP was also used to diagonalize the dynamical
matrix of HEO supercells and extract its eigenfrequencies/vectors, from which the various probes
for vibrational mode localization in Sect. 4.3 were calculated.

To run a GULP simulation, the user must input the crystal structure (i.e. lattice parameters and
internal coordinates) as well as all relevant interatomic potentials for the material under consid-
eration. The user must also specify in the keyword section what properties they are interested in
calculating. If phonon properties are requested, as here, GULP includes an option to write any of
the eigenfrequencies/vectors, VDOS, dispersion, dynamical matrix, and/or force constants to file.

3.3 The Need for New Potentials

Anand et al. [18] and Chen et al. [19] have previously applied GULP to HEO to study its thermo-
dynamics and the mechanical effects of Li dopant, respectively. Both have taken the Zn–O, Co–O,
and Ni–O potentials from Table 1 of Lewis & Catlow [43]; Chen et al. have derived Mg–O and
Cu–O potentials by fitting to the binary oxides’ elastic and dielectric constants, while Anand et al.
have adopted the Cu–O potential from a lattice-dynamical study of Hg-based superconductors [46].
Anand et al. are not clear about which Mg–O potential they use.

None of these sets of potentials are entirely appropriate for a lattice-dynamical study of the
vibrations in HEO. The Lewis & Catlow (Table 1) cation-oxygen potentials were derived by assuming
a constant value of ρ and determining A from a fit to the binary oxides’ lattice constants. They do
not take into account additional experimental data (i.e. dielectric constants and phonon frequencies)
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which are available for ZnO, CoO, and NiO. The Cu–O potential from Anand et al. was derived
by fitting to the structural data available for select Hg-based superconductors and may not be
transferable to other materials. Lastly, it can be rigorously shown [47] that central potentials lead
invariably to the Cauchy relation C12 = C44 between elastic constants which is violated by the
binary oxides; see Table 3.1 for experimental data. The Mg–O and Cu–O potentials from Chen et
al. are therefore too simplistic to quantitatively reproduce the binary oxides’ elastic constants. It
is conceivable during the course of fitting to experimental data that too much weight was poured
into the elastic constants at the expense of other MgO and CuO obsrvables.

Oxide Ref. C11 C12 C44 C12/C44

MgO [48] 296.03± 0.13 95.35± 0.13 155.89± 0.05 0.6116

CoO [49] 255.6± 1.1 143.6± 1.5 80.5± 0.5 1.78

NiO
[49] 270± 13 125± 28 105± 21 1.24
[50] 344.6± 1% 40± 10% 141± 5% 0.28

Table 3.1: Elastic constants of rocksalt binary oxides in HEO. All values are reported in units of
GPa. The last column gives a sense of how far C12, C44 deviate from the Cauchy relation.

3.4 Potential Fitting

Let Ocalc denote an observable calculated by GULP in the course of a least-squares fit and O denote
its value as determined by experiment. Then the 22 outstanding parameters {A, ρ, Y,K} described
in Sect. 3.1 are determined by minimizing the expression

χ2 =
∑
{O}

W (O) [O −Ocalc]
2 (3.2)

where the sum is taken over all observables used in the fit and W (O) is the weight accorded
to observable O. The fact that W (O) is not unique implies an infinity of equally valid solutions
(i.e. values of the undetermined parameters) to the least-squares problem. To select out one possible
solution, the GULP manual proffers the following advice regarding a sensible choice of W :

1. It should be inversely proportional to O2. This ensures χ2 is dimensionless and does not
depend on the units in which O is measured.

2. It should be inversely proportional to the uncertainty in O. Observables which are known
more precisely are therefore assigned a larger weight.

These considerations motivated the following form of W :

W (O) = η × w(O)/N(O)
w(Or)/N(Or)

w(O) = 1

|σO/O|
× 1

O2
(3.3)

where η is a constant to be defined below, σO is the uncertainty in O, Or is a ‘reference’ observable
(taken to be the lattice constant of MgO), and N(O) counts the number of observables in the
same class as O. Thus if O is one of the 16 phonon frequencies used to fit the MgO parameters
(see Appendix A), then N(O) = 16. Four classes of observables were used in the fitting process:
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structural data (i.e. cell lengths/angles and internal coordinates), static/high-frequency dielectric
constants, and phonon frequencies.

The auxiliary function w accounts for the advice given in the GULPmanual. Note that the relative
uncertainty (and not e.g. the absolute uncertainty) appears in w to keep Eq. 3.2 dimensionless. In
the function W , division by w(Or) ensures all observables are weighted on the same scale when the
binary oxides are merged to fit the oxygen shell model (see below). Division by the number of like
observables N(O) ensures all oxides are weighted similarly regardless of the relative abundances
of experimental data. For instance, only 11 phonon frequencies were available to fit the CoO
parameters, whereas 24 were used to fit the ZnO parameters (see Appendix A). The constant η
simply controls the numerical size of χ2 and was set to η = 104. This choice led to χ2 ∼ 102.

Once the weight function has been specified, GULP minimizes χ2 by adjusting the values of the
outstanding fit parameters. The relax keyword was specified in the input files to force GULP to
perform a structural relaxation after every fit iteration. This ensures the phonon frequencies are
fitted at a minimum in the internal energy. Otherwise, they are ill-defined [51]. See Sect. 3.5 for
more details on structural relaxation.

The manual cautions against allowing many parameters to vary simultaneously in a fit. To avoid
this, the fit was performed in the following sequence of steps:

1. Optimize the cation-oxygen {A, ρ} and the cation {Y, k} for each oxide separately, leaving the
O–O and the oxygen shell model parameters fixed at the Lewis & Catlow values.

2. Merge all oxides into a single file and optimize the oxygen shell model parameters, leaving all
cation-oxygen and cation shell model parameters fixed at the values determined in step 1.

3. Fix the oxygen shell model parameters at the values determined in step 2 and re-optimise the
cation-oxygen and cation shell model parameters.

4. Iterate steps 2 and 3 until no significant changes are observed in χ2. Two iterations were
deemed sufficient in the actual fit, each iteration after which χ2 decreased by less than one
part in 650.

The final values of the parameters are shown in Tables 3.2 and 3.3. Since all cations are equipped
with a shell model, in contradistinction to Chen et al. [19], we refer below to the new potentials
as the ‘all-shell model’, or ASM. Popov et al. have previously found reasonable agreement with
the experimental phonon frequencies of CuO by using two Buckinhgam potentials to describe the
inter/intraplanar Cu–O shell-shell interactions [52]. Their approach is adopted here.

As a test of the ASM, the calculated crystal structures, dielectric constants, and phonon fre-
quencies of the binary oxides are compared to values from experiment and from Chen et al. in
Appendix B. All MgO and CuO observables calculated from the ASM are in much better agree-
ment with experiment as compared to those calculated using the Chen et al. potentials. Agreement
between the experimental and ASM dielectric constants of Co–O, Ni–O, and Zn–O is also superior
to the Lewis & Catlow potentials used by Chen et al. With the one exception of ZnO, the ASM
generally provides better agreement with the experimental phonon frequencies.

3.5 Structural Relaxation

Let x be a vector in the space of the cell lengths, cell angles, and internal coordinates of a given
material. In addition to the Buckingham and shell model parameters, the potential energy Eq. 2.6 is
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A (eV) ρ (Å) C (eV Å
6
) rmin (Å) rmax (Å)

O – O 22,764 0.149 27.88 0 12

Mg – O 1266.7 0.301 0 0 8

Co – O 1244.3 0.305 0 0 8

Ni – O 1794.8 0.283 0 0 8

Cu – O
2054.7 0.269 0 0 2.3
558.23 0.360 0 2.3 8

Zn – O 571.82 0.353 0 0 8

Table 3.2: Buckingham shell-shell cation-oxygen interactions in HEO.

Y (e) k (eV Å
−2
)

O -2.88 70.52

Mg 2.77 137.3

Co 3.20 66.51

Ni 3.68 95.45

Cu 3.82 85.37

Zn 2.19 19.12

Table 3.3: Shell model parameters of the ions in HEO.
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also an implicit function of x, since the force constants Eq. 2.4 are to be evaluated at the equilibrium
configuration x0.

For a simple, ordered solid such as MgO, x0 can be straightforwardly inferred from e.g. x-ray
diffraction measurements. For HEO, however, although there is long range crystalline order, atoms
may be locally displaced from the ideal rocksalt positions due to differences in ionic radii. Hence it
is not clear a priori exactly what x0 is for a supercell of HEO. The problem is even worse in α-Si,
where there is structural disorder.

Suppose the material in question is in a configuration x which is not too far from x0; that is, x
can be decomposed into x = x0 + δx, where δx is small compared to x0. Then the potential energy
can be expanded in a Taylor series of δx as

Φ(x) = Φ(x0) +
∑
i

∂Φ

∂xi

∣∣∣∣
0

(δx)i +
1

2

∑
ij

∂2Φ

∂xi∂xj

∣∣∣∣
0

(δx)i (δx)j + . . .

which can be expressed in vector form as

Φ(x) = Φ(x0) +∇Φ · δx+
1

2
(δx)T Hδx+ . . . (3.4)

where H is the Hessian matrix. In this work terms up to quadratic order in δx were retained in
Eq. 3.4. This is known as the ‘Newton-Raphson’ procedure. By differentiating both sides of Eq. 3.4,
the displacement δx from the current configuration x to the minimum x0 is

δx = −H−1∇Φ (3.5)

Eq. 3.5 is exact for a harmonic energy surface; i.e. it is possible to go from x to x0 in a single step.
For a realistic energy surface, it must be applied iteratively.

A structural relaxation therefore consists of systematically varying δx to find a local minimum
in Φ(x). Physically, the cell lengths, cell angles, and internal coordinates are adjusted until the
lattice energy (forces) change by no more than 10−5 (10−3) of the initial value after each iteration.

Inverting the Hessian in Eq. 3.4 is the most computationally expensive step in the structural
relaxation. It is actually inefficient to recalculate H−1 after each iteration, since it often varies
slowly. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm was used to update the existing
Hessian using the forces calculated in the previous iteration1. The updating formulae are shown
explicitly on pg. 46 of the GULP manual [25].

3.6 Dielectric Function

The dielectric function is calculated within GULP as [25]

εαβ(ω) = ε∞αβ +
4π

V

∑
s

Ωαβ(s)

ω2 − ω2
s + iωγ

(3.6)

where V is the volume of the unit cell, ω is the frequency of the applied field, ωs is the frequency
of the sth eigenmode, γ = 4 cm−1 is a mode-independent broadening factor chosen to match the

1The Newton-Raphson procedure, the tolerances in the discussion below Eq. 3.5, and the BFGS updating scheme
are the default settings in GULP.
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resolution of FTIR experiments [15], and Ωαβ is the mode oscillator strength defined by

Ωαβ(s) =

(∑
b

Qαγ(b) εγ(b; s)√
mb

)(∑
b

Qβγ(b) εγ(b; s)√
mb

)
(3.7)

Note that Eq. 3.6 is just the Lorentz model for the dielectric function, with the {Ωαβ(s)} playing
the roles of plasma frequencies. The {Qαβ(b)} are elements of the Born effective-charge tensor

Q = Z −DcsD
−1
ss Y (3.8)

where the matrices on the right-hand side have been defined in Sects. 2.1.4 and 2.1.5. Physically, Q
defines the effective charges of the ions in the system by considering the change in the total dipole
moment µ with respect to atomic perturbations [25]. Since µ is a quantum-mechanical observable,
the Born effective charges can be calculated ab initio from density functional theory.

3.7 Supercell Generation

Atom probe tomography experiments on HEO reveal no short-range cation ordering down to an
atomic resolution of 1–3 Å [53]. To this end, supercells of HEO were generated by randomly
distributing equiatomic ratios of Mg, Co, Ni, Cu, and Zn throughout the cation sublattice.

Results are also shown (in Sects. 4.2.1 and 4.3.1) for a single, 4096-atom supercell of ‘high-entropy
sulfide-oxide’ (HESO), which was generated by randomly doping half of the oxygen sublattice in
HEO with sulfur ions. The cation-sulfur potentials are identical to the cation-oxygen Buckingham
potentials, and the sulfur-sulfur and sulfur-oxygen potentials are identical to the oxygen-oxygen
potential. The sulfur and oxygen shell models are also identical. Thus HESO adds only mass
disorder, and not force constant disorder, to HEO. The purpose of simulating HESO is to investigate
the importance of additional mass disorder on the creation of localized vibrational modes. It
must be noted that HESO has not been observed experimentally, although high-entropy oxyflorides
crystallizing in the rocksalt structure were recently synthesized in 2020 [54].

For the sake of comparison, results are also presented for a single, 1000-atom supercell of α-Si.
The cell lengths, cell angles, internal coordinates, and interatomic potentials were adapted from
Barkema et al. [55].
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Chapter 4

Results

4.1 Model Validation

In this section, the simulated lattice parameters, bond lengths, and optical conductivity of HEO are
compared to experiment. All GULP results have been averaged over 50 disorder realizations. Each
realization was structurally relaxed (see Sect. 3.5) before any properties were calculated.

Frequent comparison is made to the paper by Anand et al. [18], who have previously applied
classical lattice dynamics to HEO in order to study its thermodynamics. Details regarding the
interatomic potentials employed by Anand et al. were discussed in Sect. 3.3.

4.1.1 Lattice Parameters

The lattice parameters of HEO are shown in Table 4.1. The cell angles are all correctly equal to
90◦ within error. The cell lengths are in pairwise agreement but slightly underestimate the value
from x-ray diffraction (XRD) measurements by 0.03 Å ∼ 1%. By averaging over O(104) disorder
realizations of 2000-atom supercells, Anand et al. [18] report an average cation-oxygen distance
of 2.08 Å, corresponding to an even shorter cell length of 4.16 Å.

XRD [15] Anand et al. [18] This work

α (◦) 90 – 90.000(3)

β (◦) 90 – 90.000(2)

γ (◦) 90 – 90.000(2)

a (Å) 4.236(1) 4.16 4.2058(8)

b (Å) 4.236(1) 4.16 4.2058(8)

c (Å) 4.236(1) 4.16 4.2058(8)

Table 4.1: Optimised lattice parameters of HEO. Anand et al. do not report error estimates.

4.1.2 Bond Lengths

The distributions of first nearest-neighbour cation-oxygen distances (‘bond lengths’) in HEO are
shown in Fig. 4.1. All distributions are composed of a main peak and a shoulder in the right
tail. Anand et al. [18] have reported a bimodal distribution of Cu–O bonds and concluded that
the experimentally-observed local lattice distortion in the vicinity of Cu cations may be due to a
combination of the Jahn-Teller effect [13] and differences in ionic radii. They do not mention whether
or not the other cation-oxygen bonds are similarly distributed. The median bond lengths are listed
explicitly in Table 4.2 and are compared to results from extended x-ray absorption fine-structure
spectroscopy (EXAFS). Our results agree with the experiment of Sushil et al. [56].



Chapter 4. Results 31

 20

 40

 60

 80

 100

 120

 140
Mg - O

 20

 40

 60

 80

 100

 120

 140
Co - O

 20

 40

 60

 80

 100

 120

 140

F
re

q
u
e
n
cy

Ni - O

 20

 40

 60

 80

 100

 120
Cu - O

 0

 20

 40

 60

 80

 100

 2  2.05  2.1  2.15  2.2  2.25

Bond Length (Å)

Zn - O

Figure 4.1: Distribution of first nearest-neighbour cation-oxygen distances (bond lengths) in HEO.
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Rost et al. [57] Sushil et al. [56] Anand et al. [18] This work

Mg–O – – 2.088(3) 2.10(2)

Co–O 2.089(9) 2.0906 2.093(3) 2.11(2)

Ni–O 2.084(5) 2.0918 2.080(3) 2.10(2)

Cu–O 2.07(5) 2.0733 2.033(3) 2.06(2)

Zn–O 2.078(9) 2.0984 2.094(3) 2.12(3)

Table 4.2: Bond lengths in HEO. Rost et al. and Sushil et al. are EXAFS studies. Mg–O bonds
were not analysed to due to insufficient energy resolution. Sushil et al. do not report
error estimates. Errors in the results from Anand et al. are taken to be equal to the
width of the data points in their Fig. 4b).

4.1.3 Internal Coordinates

It should be verified that the internal atomic coordinates do not drift too far from the ideal rocksalt
positions in the course of a structural relaxation. Otherwise, GULP may be incorrectly signalling
that HEO is not stable in the rocksalt structure.

Let b, b′ denote the equilibrium position vectors (in fractional coordinates) of the bth atom in
the supercell before and after structural relaxation, respectively. The ‘drift’ vector ∆α(b, b

′) which
respects periodic boundary conditions is then given by

∆α(b, b
′) = (bα − b′α)− floor (bα − b′α) (4.1)

The distribution of ‘atomic drifts’, i.e. the norms of the {∆α(b, b
′)}, is presented in Fig. 4.2. Each

ion drifts ∼ 0.05 Å relative to the ideal rocksalt structure, which is indeed much smaller than the
cation-oxygen spacings of ∼ 2.1 Å in Table 4.2. It is not clear if the secondary features near 0.01 Å
have a physical origin or are artifacts of the structural relaxation.

4.1.4 Optical Conductivity

As discussed in Sect. 1.1.2, the real part of the optical conductivity σ′(ω) of HEO has previously been
extracted from FTIR reflectance data via Kramers-Kronig analysis [15] and is shown in Fig. 4.3.
Due to the small triclinic distortions in Table 4.1, GULP predicts that the dielectric tensor σ′

αβ(ω) has
nonzero off-diagonal components. However, the smallness of the distortions implies a corresponding
smallness in the off-diagonal components at most frequencies. To make a comparison to experiment,
the average of the diagonal components; i.e. the average of the trace

σ′(ω) ≈ σ′
11(ω) + σ′

22(ω) + σ′
33(ω)

3

is plotted in Fig. 4.3. It may be seen that the GULP model reproduces the weak mode in the
experimental optical conductivity. The agreement between the main peaks near 360 cm−1 is also
satisfactory. The asymmetry in the GULP peak may a result of the Zn–O Buckingham and shell
model parameters underestimating the phonon frequencies in ZnO by ±20%. See also Appendix B.

That the ZnO phonon frequencies are underestimated suggests the ZnO potential is too ‘soft’.
To test this, a second ZnO potential was developed in which Zn and oxygen still interact through
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Figure 4.3: Simulated optical conductivity of HEO. FTIR results at 5 K adapted from [15].

the Buckingham potential, but a harmonic spring was added between nearest-neighbour Zn and
oxygen ions to stiffen the potential. In doing so the asymmetry was eliminated and the strong
mode frequencies agreed within error. However, the weak mode frequency was overestimated by
50 cm−1. It was decided not to proceed with the modified set of potentials on the grounds that:
a) the existence of localized vibrational modes was independent of the potentials used, and; b)
qualitative agreement between the simulated and experimental optical conductivity was achieved
without the addition of the harmonic spring.

4.1.5 Elastic Constants

The GULP manual recommends testing new potentials against observables not used in the fitting
process. Calculated observables which are unphysical likely indicate an error in the potentials [25].

The elastic constants of HEO have previously been calculated by Pitike et al. from density
functional theory (DFT) [58] and are compared to the GULP calculations in Table 4.3. As discussed
in Sect. 3.3, central potentials cannot correctly describe solids (such as HEO and its parent binary
oxides) which violate the Cauchy relation C12 = C44 between elastic constants. Nonetheless, the
GULP model does predict C11 ∼ 2C12, which agrees roughly with the DFT result, and satisfies the
following conditions for mechanical stability in a cubic crystal [58]

C44 > 0; C11 > |C12|; C11 + 2C12 > 0
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C11 C12 C44

GULP 354.3(3) 168.37(9) 167.31(3)

DFT 303 124 88

Table 4.3: Elastic constants of HEO from GULP compared to DFT. All values are in units of GPa.
No error estimates are reported in [58].

4.2 Characterization of Vibrational Modes

In this section the nature of the vibrational modes in HEO is examined. All phonon calculations in
Sects. 4.2 and 4.3 have been performed at q = 0 only.

4.2.1 Engagement

Let B denote one of the six ionic species in HEO. Then the ‘engagement’ of species B in the
eigenmode s is defined by

E(B; s) =
∑
b∈B

∑
α

|εα(b; s)|2 (4.2)

where
∑

b∈B is taken over all atoms in the supercell belonging to the species B, and
∑

α is taken
over all Cartesian directions. The quantity defined by Eq. 4.2 does not appear to have a standard-
ized name in the context of vibrational mode localization; it is referred to by Carvalho et al. [59]
as the ‘relative amplitude’ and by Thienprasert et al. [60] as the ‘localization’ itself. The name
‘engagement’ is preferred here, as E(B;ωs) ∼ 1 if species B is strongly ‘engaged’ in the motion at
eigenfrequency ωs and E(B;ωs)≪ 1 otherwise. It follows from the orthonormality Eq. 2.14 of the
phonon eigenvectors that ∑

B

E(B; s) =
∑
b

∑
α

|εα(b; s)|2 = 1

and thus the engagement is only useful for crystal structures with multiple atomic species per unit
cell; otherwise, it is trivially equal to one for all frequencies. The engagements of the ions in a
4096-atom configuration of HEO are shown in Fig. 4.4. Each dot represents a single eigenmode.
At low frequency the engagements of the cations are high, while as frequency increases the cation
engagements fall and the oxygen engagement rises to a value near unity. This agrees with the
intuition that ω2 ∼ k/m; at low frequency the heavier cations vibrate most intensely, and conversely
for oxygen at high frequency. See Table 1.1 for a list of the atomic masses. A transition from cation-
to oxygen-dominated motion occurs near 300 cm−1, where the engagement curves cross.

At 150 cm−1 the Zn and oxygen engagements simultaneously obtain a global maximum and
minimum, respectively. This suggests that the corresponding peak in the optical conductivity (see
Fig. 4.3) is driven by the motion of Zn ions against a stationary oxygen sublattice. This is further
supported by Lorentz oscillator fits to FTIR reflectance data, which show that the plasma frequency
of the 150 cm−1 mode is smallest when Zn (and not Mg, Co, or Cu) is removed from HEO [15].

While the engagement might explain the origin of the 150 cm−1 mode, it does not explain the
role played by disorder. In pure ZnO there is also a crossover in the engagement between cation-
and oxygen-dominated motion, yet no weak mode appears in its optical conductivity. From the
fact that the GULP model senses the weak mode at all, it follows that the mode does not originate
from anharmonic effects (since GULP operates under the harmonic approximation) or cation-cation
interactions (which were excluded from the model; see the assumptions in Sect. 3.1).
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Figure 4.4: Engagements of ions in a 4096-atom configuration of HEO.
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Figure 4.5: Engagements of ions in a 4096-atom configuration of HESO.
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One may wonder if the mode is driven by short-range correlations. Denote by (Zn)max the Zn
ion with the largest eigenvector component at a given frequency. The distribution of second and
fourth nearest-neighbour cations (abbreviated ‘2NN’ and ‘4NN’, respectively) surrounding (Zn)max

is shown in Fig. 4.6. The histogram has been averaged over fifty 4096-atom disorder realizations. For
each realization, an additional average has been performed over 100 eigenmodes with frequencies
closest to the 150 cm−1 peak in the Zn engagement. There is no strong preference for any one
species of cation as a second or fourth nearest-neighbour. Fig. 4.7 compares the distributions of
nearest-neighbour Zn–O bond lengths surrounding (Zn)max to the bulk distribution of Zn–O bond
lengths from Fig. 4.1. The same averaging procedure just described was also used to generate the
‘1NN’ curve in Fig. 4.7. There is a slight shift in weight towards shorter Zn–O bond lengths about
(Zn)max, but the peaks of the two distributions agree within error [2.12(3) Å for bulk ZnO from
Table 4.2; the same results for (Zn)max]. It is therefore unlikely that the weak mode in the optical
conductivity is caused by short-range order.

It is worthwhile noting that the weak mode also appears in the ternary series Co1−xZnxO, as
shown in Fig. 4.8. Observe that as x decreases, the strong Zn peak appears to split into two low-
intensity peaks near 150 cm−1 and 250 cm−1. It is conceivable that a similar splitting of the Zn peak
in HEO leads to the weak mode in the optical conductivity. The nature of the mechanism which
causes the splitting, however, remains unclear. No experimental reports on rocksalt Co1−xZnxO
were found in the literature.

Finally, the engagements of HESO are shown in Figs. 4.5. These will be discussed in Sect. 4.3.1,
in connection with the participation ratio. See Sect. 3.7 for the definition of HESO.
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4.2.2 Phase Quotient

The phase quotient introduced by Bell and Hibbins-Butler [35] is defined by

ϕs =

∑
⟨bb′⟩

∑
α εα(b; s) εα(b

′; s)∑
⟨bb′⟩ |

∑
α εα(b; s) εα(b

′; s)|
(4.3)

where
∑

⟨bb′⟩ denotes a double summation over all atoms b and over all nearest-neighbours {b′} of b.
Eq. 4.3 generalizes acoustic and optical phonons to disordered media: when nearest-neighbours
vibrate in-phase, ϕs = 1; conversely, when nearest-neighbour vibrations are out-of-phase, ϕs = −1.

The phase quotient of a 4096-atom configuration of HEO is shown by the series marked ‘1NN’
(shorthand for ‘first nearest-neighbour’) in Fig. 4.9. As in crystalline solids, the vibrations near
zero frequency are all acoustic; as frequency increases, the vibrations change character to optical-
like modes. Near the 150 cm−1 weak mode in the optical conductivity, the vibrations are strongly
acoustic. Hence the engagement curves in Fig. 4.4 reveal that Zn dominates the motion at 150 cm−1,
while the phase quotient reveals that Zn and oxygen vibrate in-phase. It is also interesting to note
that the phase quotient peaks to zero near 500 cm−1, just as the oxygen (cationic) engagement
attains a maximum (minimum) in Fig. 4.4. Vibrations at this frequency are ‘halfway’ between
acoustic and optical modes, since only the oxygen sublattice vibrates.

Fig. 4.9 also presents modified phase quotients with the summation taken over nearest-neighbours
in the cation and oxygen sublattices separately. No vibrational coherence is maintained throughout
the oxygen sublattice at any frequency.
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Figure 4.9: Phase quotient of a 4096-atom configuration of HEO.
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4.2.3 Polarizations

In Table 2.1 it was noted that the vibrational eigenvectors of a propagon are spatially coherent
while the eigenvectors of a diffuson or locon are randomly-oriented. This was observed by Allen
et al. [37] in α-Si and should be verified for HEO. Following Yao et al. [61], the eigenvectors are
projected onto the unit sphere according to

εα(b; s)→
εα(b; s)∑

α εα(b; s) εα(b; s)
(4.4)

The polarizations of select modes in a 4096-atom configuration of HEO are shown in Fig. 4.10.
Each of the 4096 dots represents the arrowhead of a vector indicating the direction a given atom is
oscillating in the mode. The 0 cm−1 mode (upper left) is one of the three Goldstone modes in HEO;
i.e. a mode in which the supercell is rigidly translated at zero energy cost. Observe that there is a
single dot corresponding to the singular direction in which all atoms are oscillating. The 50 cm−1

mode (upper right) is the tenth-lowest frequency mode in HEO. The dots sweep out a larger solid
angle compared to the Goldstone mode, but they are not randomly-distributed over the surface of
the unit sphere. Thus the 50 cm−1 modes is believed to be a propagon. The remaining modes in
Fig. 4.10 occur at higher frequencies and appear to exhibit a random distribution of dots. This
suggests that these modes are either diffusons or locons.

The polarizations of atoms in the z = 1/2 plane (fractional coordinates) can be seen explicitly in
Fig. 4.11. The z-components of the oscillations are not shown for ease of visualization. As expected,
all atoms vibrate in the same direction in the Goldstone mode. No spatial coherence is apparent
in the diffuson or locon modes. Vortex-like structures appear in the polarization of the propagon
mode. Intuitively, these are slowly spatially-varying deformations of the Goldstone mode, and thus
occur at lower energies than the diffuson or locon modes.

4.3 Localized Vibrational Modes

In this section several diagnostics for vibrational mode localization are extracted the eigenfrequencies
and eigenvectors.

4.3.1 Participation Ratio

The participation ratio P defined by

P (s) =
1

N
×
[∑

b

∑
α |εα(b; s)|

2]2∑
b

[∑
α |εα(b; s)|

2]2 (4.5)

where N is the number of atoms in the supercell, is an order parameter for Anderson localization in
disordered systems. To see this, suppose that in a particular vibrational mode only a single atom b′

is oscillating. Then
∑

α |εα(b; s)|
2 = δbb′ and P = N−1. Conversely, suppose that in another mode

every atom vibrates with roughly the same intensity, so that the vibration is extended over the
supercell; i.e.

∑
α |εα(b; s)|

2 ∼ const. ≡ ε20. In this case

P (s) ∼ 1

N
× [
∑

b ε
2
0]

2∑
b ε

4
0

=
1

N
× N2ε40

Nε40
= 1



Chapter 4. Results 41

w = 0 cm
-1

P = 0.72

w = 50 cm
-1

P = 0.49

w = 147 cm
-1

P = 0.08

w = 299 cm
-1

P = 0.03

w = 400 cm
-1

P = 0.35

w = 622 cm
-1

P = 0.02

Figure 4.10: Polarizations of select eigenmodes in a 4096-atom configuration of HEO. The frequen-
cies and participation ratios (see Sect. 4.3.1) of the modes are listed in the upper-left
corners.
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Figure 4.11: Polarizations in the z1/2 plane (fractional coordinates) of select eigenmodes in a 4096-
atom configuration of HEO. The frequencies and participation ratios (see Sect. 4.3.1)
are listed in the upper-left corners. Refer to Fig. 1.1 for the colour scheme.
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Thus the numerical size of P can be used to distinguish between extended and localized modes.
In practise, participation ratios of the order N−1 likely do not occur and previous studies have
chosen e.g. P < 0.1 or P < 0.2 as the cutoff for localized modes [62]. A cutoff of P < 0.05 is used
throughout the remainder of this thesis1.

Fig. 4.12 compares the participation ratios of HEO, HESO, and α-Si. See Sect. 3.7 for the
definition of HESO. Each system exhibits a high-frequency ‘mobility edge’ separating the localized
from the extended modes. At frequencies beyond the mobility edge, the participation ratio falls
rapidly towards zero. The highest-frequency mobility edge occurs in HEO, where the average atomic
mass is lightest.

Consider the cluster of modes near 300 cm−1 in HEO below the locon cutoff of P < 0.05. Given
that these modes occur at the same frequency as the engagement curve crossings in Fig. 4.4, it
is reasonable to conclude that they originate from a transition from cation- to-oxygen dominated
motion. Further support for this idea follows by noticing that the engagement of sulfur ions in
HESO (see Fig. 4.5) reaches a maximum at 300 cm−1. Hence the motion of sulfur ions interpolates
between the low- and high-frequency regimes of cation- and oxygen-dominated motion, and there
is no well-defined transition from one regime to the other. Consequently, there is no 300 cm−1

minimum in the participation ratio of HESO.
At this stage, it must be remarked that a transition from cation- to oxygen-dominated motion

is not sufficient to guarantee the existence of localized modes. Rather, the results of the following
sections all indicate that the modes near 300 cm−1 in HEO are diffusons despite satisfying P < 0.05.
This makes clear the arbitrariness in the locon cutoff and suggests that no one test for localization
is definitive evidence for localized modes.

The preceding discussion also makes clear that, if it is desired to engineer a high-entropy material
containing a significant fraction of localized modes, it is not enough to combine masses at random.
The legend entries in Fig. 4.12 count the fraction of modes which fall below the threshold of P < 0.05.
That this number is identical in HEO and HESO implies that HESO ‘transfers’ the 300 cm−1 cluster
of modes in HEO to higher frequencies, beyond its mobility edge. Both HEO and HESO support
an order-of-magnitude fewer locons than α-Si, which suggests that structural disorder favours the
creation of localized modes more strongly than mass- or force constant-disorder.

The dip in the participation ratio of α-Si at 250 cm−1 has a very different origin and was proposed
by Allen et al. [37] to arise, in analogy with crystalline silicon, from a transition from TA-like modes
to LA-like modes. See also Fig. 2.3 and the discussion in Sect. 2.2.2.

4.3.2 Bubble Plots

In Fig. 4.13 each atom b in a 4096-atom configuration of HEO is represented by a sphere with
diameter proportional to

∑
α |εα(b; s)|

2; i.e. the norm of the bth eigenvector component in mode s.
Thus a larger sphere indicates an atom which is vibrating more intensely, and vice-versa. For
ease of visualization, periodic boundary conditions have been invoked to shift the atom with the
largest eigenvector norm to the centre of the supercell. In addition, all atoms are located at the
ideal rocksalt positions2. It is clear that the 200 cm−1 mode is delocalized. This agrees with the
prediction of the participation ratio, since P = 0.250 is well above the locon cutoff of 0.05. The

1The location of cutoff is arbitrary. The choice P < 0.05 was partly made to exclude the modes near the 150 cm−1

minimum in the participation ratio (Fig. 4.12), which would be locons according to P < 0.1 but are actually diffusons
according to the results of subsequent sections.

2This does not significantly affect the visualization of the modes – from Fig. 4.2, the ions drift only ∼ 0.05 Å from
the ideal rocksalt lattice, or ∼ 2% of the cation-oxygen spacings.
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Figure 4.12: Participation ratios of 4096-atom configurations of HEO and HESO, and a 1000-atom
configuration of α-Si. The legend entries count the fraction of modes in each system
falling below the locon threshold of P < 0.05.
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same is true of the 150 cm−1 mode; however, it should be noted that this would be considered a
locon on the basis of P < 0.1, as is common in the literature [62].

4.3.3 Localization Lengths

Allen et al. [37] observed that the eigenvector components of locons α-Si decay exponentially as

|ε(b; s)| ∝ exp

(
−|b− bmax|

ξs

)
(4.6)

where b is any atom in the supercell, bmax is the atom with the largest eigenvector component,
and ξs is the localization length of mode s, which should be much smaller than the lattice constant
of the supercell a ∼ 33 Å.

Visual inspection of Fig. 4.13 suggests that modes near 300 cm−1 and 620 cm−1 may be localized.
This was investigated by checking if Eq. 4.6 gives a reasonable fit to the {|εα(b; s)|}. The fit was
performed by:

1. Identifying the atom bmax with the largest eigenvector component in the mode s.

2. Calculating the distances from all other atoms {b} to bmax modulo periodic boundary condi-
tions. The formula used to calculate these distances is identical to Eq. 4.1 used to calculate
the atomic drifts in Sect. 4.1.3.

3. Sorting the distances into 60 uniformly-spaced bins spanning 0–30 Å. The height of each bin
is taken to be the average of the eigenvector norms it contains.

Fig. 4.14 shows the eigenvector decay profiles for a 622 cm−1 mode in a 4096-atom configuration
of HEO. The curve marked ‘linear’ was obtained by taking the logarithm of the binned data and
performing a linear fit. On the other hand, the curve marked ‘exp’ was obtained by fitting the data
directly to Eq. 4.6. If the data were truly exponential, the same fit parameters should be obtained
irrespective of the fitting scheme used; i.e. irrespective of whether the points are weighted linearly
or exponentially [63]. Thus a figure-of-merit for the error in the localization length is the difference
between the two {ξ} in Fig. 4.14. This gives ξ ∼ 2.2(4) cm−1 which is indeed much smaller than
the supercell lattice constant.

The decay profiles of 299 cm−1 mode are shown in Fig. 4.15. Observe that the localization length
varies by an order of magnitude between the two fitting schemes. Under exponential weighting, the
fit is dominated by the first two or three data points. A possible interpretation of this is that Eq. 4.6
is an inadequate model; the eigenvector components do not decay as a simple exponential, and the
299 cm−1 mode is therefore not localized.

It is worth mentioning that the data in Fig. 4.15 is better described by a sum of two exponentials,
plus a DC offset to account for the downturn of the data near the supercell boundary. This is shown
in Fig. 4.16. That two exponentials are required is interpreted as there being two localization
processes: one which acts over a very short distance, and decays rapidly thereafter; and a second,
weaker process which persists over much longer distances [63]. This can be seen in Fig. 4.13, where
there is a cluster of intense oxygen vibrations at the centre of the cell, and weaker clusters scattered
elsewhere.

Finally, the decay profiles of 147 cm−1 and 400 cm−1 modes are shown in Fig. 4.17. It is apparent
from visual inspection and by comparison with Fig. 4.15 that these are extended modes.
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Figure 4.13: Bubble plots of select eigenmodes in a 4096-atom configuration of HEO. Refer to
Fig. 1.1 for the colour scheme.
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Figure 4.14: Eigenvector decay profiles of a 622 cm−1 mode in HEO.
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Figure 4.15: Eigenvector decay profiles of a 299 cm−1 mode in HEO.
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Figure 4.16: Multiexponential fit to the decay profile in Fig. 4.15.
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Figure 4.17: Eigenvector decay profiles of 147 cm−1 and 400 cm−1 modes in HEO.
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4.3.4 Local Environment

It is interesting to ask why the 622 cm−1 locon forms on the particular oxygen ion that it does in
Fig. 4.13. Denote by (O)max the oxygen ion with the largest eigenvector component in the highest-
frequency eigenmode (in the particular configuration shown in Fig. 4.13, this is a frequency of
622 cm−1). The distribution of first, third, and fifth nearest-neighbour (denoted ‘1NN’, ‘3NN’, and
‘5NN’, respectively) cations surrounding (O)max is shown in Fig. 4.18. The distribution has been
averaged over 50 disorder realizations of 4096-atom HEO. Observe that there is a strong preference
for Mg cations as first nearest-neighbours. By the fifth nearest-neighbour shell, the distribution is
nearly uniform; i.e. there is short-range ordering which persists over a distance

√
5a/2 ∼ 4.7 Å.

Physically, the locon is situated in a ‘cage’ of lighter Mg ions. There then must be an excess of Zn
and heavier cations at distances from (O)max greater than the fifth nearest-neighbour shell, which
insulate the vibration from the remainder of the supercell.

The median first nearest-neighbour cation-oxygen bond lengths surrounding (O)max were also
investigated, but were identical within error to the bulk results reported in Table 4.2.
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Figure 4.18: Distribution of cations surrounding the oxygen ion with the largest eigenvector com-
ponent in a ω = 622 cm−1 mode. The dotted lines correspond to various nearest-
neighbour shells and are guides to the eye.

4.3.5 Level Statistics

Define by {ϵ} the differences between nearest-neighbour eigenvalues of a random matrix (the ‘level
spacings’). For vibrations in HEO or disordered media in general, these are the differences between
adjacent squared eigenfrequencies; i.e. the eigenvalues of the dynamical matrix. According to
random matrix theory (RMT) [64], the {ϵ} of a delocalized system are distributed according to the



Chapter 4. Results 50

Wigner-Dyson distribution

P (ϵ) =
π ϵ

2
exp

(
−πϵ2

4

)
(4.7)

while for a localized system, they are distributed according to the Poisson distribution

P (ϵ) = exp(−ϵ) (4.8)

Thus a window of frequencies which produces level spacings conforming to the Poisson distribution
would provide additional evidence for the existence of localized vibrational modes in HEO. Indeed,
J. Fabian has previously shown that diffusons and locons in α-Si conform to the Wigner-Dyson and
Poisson distributions, respectively [65].

The connection between localization and the eigenvalues of a random matrix is directly related to
the phenomenon of ‘level repulsion’: for a delocalized system, the chance of finding two eigenvalues
which are arbitrarily close together is vanishingly small. This follows by taking the ϵ → 0 limit
of Eq. 4.7. Physically, since the eigenmodes are extended and mutually orthogonal, they “cannot
have the same frequency given that they overlap in space” [66]. Conversely, locons are confined to
a region of finite spatial extent and their frequencies are uncorrelated [66].

The predictions of RMT are valid for systems having a constant density-of-states [29]. It is
immediately apparent from Fig. 4.19 that HEO does not fall into this category. Thus, before
the level statistics can be calculated, the eigenfrequencies of HEO must first be ‘unfolded’ onto
a constant density-of-states. This procedure is non-unique, and in this thesis, it consisted of the
following four steps:

1. To increase the number of data points, the dynamical matrices of an additional eight 8000-
atom supercells were diagonalized. The squared eigenfrequencies of 28 disorder realizations
(20 configurations of 4096-atom HEO, plus the eight just discussed) were collected into a single
file and sorted in ascending order. A plot of {ω2} versus ‘mode number’ (i.e. the position
of each frequency in the sorted list) generates the ‘staircase function’, or cumulative density
function C(ω2) shown in Fig. 4.20. Note that Fig. 4.20 has been normalized by the total
number of modes.

2. Fit C(ω2) to some phenomenological function which reproduces the staircase function. Poly-
nomials are common in the literature. Motivated by the shape of Fig. 4.20 as a sum of
‘smoothed steps’, the following function was chosen:

C(ω2) =
3∑

i=1

aiSi(ω
2) Si(ω

2) = 1− 1 + exp[−ω2/Ω2
i ]

1 + exp[(ω2 − ω2
i )/Ω

2
i ]

(4.9)

subject to the constraints

ai ≥ 0 ∀ i
3∑

i=1

ai = 1 (4.10)

Here the index i runs over the number of ‘steps’ in the fit; visual inspection of Fig. 4.20
suggested three steps was sufficient. The fit parameters {ai,Ωi, ωi} represent, repspectively,
the height, width, and zero-crossing of each step. This particular form of C(ω2) satisfies:

(a) C(0) = 0

(b) C(ω2 →∞) = 1
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(c) C(ω2) is monotonically increasing

which guarantee C(ω2) is a bona fide cumulative density function for all values of the fit
parameters. This is not in general true of a polynomial fit or a spline interpolation.

Due to the constraint Eq. 4.10, attempting to directly fit Eq. 4.9 to the eigenfrequencies
was not successful. Instead, the following procedure was developed to gradually incorporate
Eq. 4.10 into the fit. Excellent agreement with the {ω2

s} was thus obtained.

(a) By process of trial-and-error, find a reasonable set of {ai,Ωi, ωi} and fit C(ω2) to the
{ω2

s}, allowing all 9 parameters to vary. Once the fit is complete, the sum
∑

i ai should
not deviate too far from its requisite value of unity (it was observed

∑
i ai = 1.03).

(b) The constraint equation in Eq. 4.10 is now used to eliminate one of the {ai}. The
parameter a3 was chosen in the actual fit and will be singled out for explanatory purposes.
The goal is to reduce

∑
i ai down from its current value of 1.03 to one. Fix a3 =

1.02− a1 − a2 and perform a second fit using as initial guesses for the other parameters
the optimised values determined in (a).

(c) Fix a3 = 1.01 − a1 − a2, where a1, a2, and the remaining parameters are set to the
optimised values determined in (b). Perform another fit. This process is iterated a final
time using a3 = 1 − a1 − a2. If at any point a fit does not converge, a3 can be brought
down to unity in smaller increments.

3. The unfolded mode numbers {ns = C(ω2
s)} and level spacings {ϵs = ns−ns−1} were calculated

from C(ω2) for each of the frequency ranges shown in the upper panel of Fig. 4.21. The level
spacings were normalized according to {ϵs → ϵs/ ⟨ϵs⟩}, where ⟨ϵs⟩ was taken to be the mean
spacing in each range, then sorted into bins of width 0.25 (in units of ⟨ϵs⟩).

4. The foregoing three steps generated 28 histograms, one for each disorder realization of HEO.
A disorder average of these histograms was performed for each frequency range. The resulting
averaged histograms are presented in the bottom panel of Fig. 4.21.

Before discussing any results, it is very important to emphasize that the Wigner-Dyson and
Poisson distributions (as well as the level spacing ratio distributions to be discussed shortly) are
derived assuming an entire window of frequencies. Here, except for the diffusons, eigenmodes
have been selected on the bases of both frequency and participation ratio. This was done out
of necessity: no agreement between the (alleged) locon modes and the Poisson distribution was
observed by selecting according to frequency only. The locon level spacings should be treated with
caution.

From Fig. 4.21, the level spacings of the modes with eigenfrequencies between 350–400 cm−1 are
in excellent agreement with the Wigner-Dyson distribution. Given that these modes are far above
the locon threshold of P > 0.05, and should therefore be delocalized, this is to be expected. More
surprisingly, the modes between 100 cm−1 and 200 cm−1 also follow the Wigner-Dyson distribution
despite satisfying P < 0.1. As discussed in Sect. 4.3.3, this suggests a cutoff of P < 0.1 is too
relaxed for HEO and partially motivated the choice P < 0.05.

The cluster of modes at 300 cm−1 are in reasonable agreement with the Poisson distribution and
should therefore be localized. The agreement between the high-frequency modes past the mobility
edge and the Poisson distribution is, however, not satisfactory. It is conceivable that there are too
few data points in this region to obtain good statistics: each 4096-atom configuration contains only
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Figure 4.19: Vibrational density-of-states (VDOS) of a 4096-atom configuration of HEO normalized
to unit intensity.
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Figure 4.20: Cumulative density function (CDF) of the squared eigenfrequencies of HEO. The fit
to Eq. 4.9 is shown by the dashed line.
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∼ 15/12, 288 of these high-frequency modes, compared to O(103) diffusons between 350–400 cm−1.

Let rs = ϵs/ϵs−1 be the ratio of consecutive level spacings. Recent papers have proposed that
localized and extended systems can be distinguished from the distribution P (r) of the {r} [67].
Unlike the pure level spacings, the quantity P (r) has the advantage of not requiring an unfolding
scheme.

Analogues of the Wigner-Dyson and Poisson distrbutions exist for P (r). The level spacing ratios
for a localized system should be distributed according to

P (r) =
1

(1 + r)2
(4.11)

while for an extended system in the Gaussian Orthogonal Ensemble

P (r) =
27

8

(r + r2)

(1 + r + r2)5/2
(4.12)

The level spacing ratio distributions are shown in Fig. 4.22. The colors of the points correspond to
the frequency windows in the top panel of Fig. 4.21. Observe that modes between 350–400 cm−1

conform to Eq. 4.12 and are therefore diffusons. This agrees with the predictions of the pure level
statistics and the participation ratio. In contradistinction to the pure level spacings, however,
Fig. 4.22 suggests that modes near 300 cm−1 are diffusons. It further suggests that modes past the
mobility edge are localized, the caveat discussed above notwithstanding.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Level Spacing Ratio

100<w<200  (PR<0.10)
250<w<350  (PR<0.05)

350<w<400
w>600  (PR<0.05)

Localized
Extended

Figure 4.22: Level spacing ratio distributions in HEO. The colors correspond to the frequency win-
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Eqs. 4.11 and 4.12, respectively.
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4.3.6 Wavepacket Dynamics

The wavepacket dynamics were studied by embedding a 1728-atom supercell of HEO in the centre
of an 8000-atom environment. See Sect. 2.3 for the theoretical background on wavepacket dynamics.
The correlation amplitude Eq. 2.52 of several eigenmodes3 is shown in Fig. 4.23. Observe that the
correlation amplitude of the 617 cm−1 mode remains close to unity for all time; i.e. the state of
the system at later times always closely resembles the initial state. This suggests, in agreement
with the tests previously discussed, that there are locons in HEO at high-frequency. The remaining
modes in Fig. 4.23 decohere quickly and are therefore delocalized.

The diffusion coefficients Eq. 2.27 are shown in Fig. 4.24. The functional dependences of the
diffusion coefficients on the time do not appear to agree with the predictions of Table 2.2. It is
ultimately difficult to disentangle localization from finite-size effects. Possible improvement with the
theory of Sect. 2.3 might be attained by embedding the 1728-atom cluster in a larger environment.

3It will be noted that the highest-frequency mode studied in all the tests so far has been 622 cm−1. In Figs. 4.23
and 4.24, however, it is only 617 cm−1. This is because the highest-frequency mode occurs at larger frequencies in
the 4096-atom cells than the 1728-atom cell used here.
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Chapter 5

Conclusions

It has been shown that the optical conductivity, bond lengths, and crystal structure of HEO are well-
reproduced by a) a shell model description of the ions, and; b) parametrizing the short-range cation-
oxygen interactions with the Buckingham potential. The weak mode in the optical conductivity
reported by Afsharvosoughi and Crandles [15] is ascribed to a low-frequency, acoustic-like vibration
of Zn ions against the stationary oxygen sublatttice. The combination of the participation ratio,
mode polarization, level statistics, and correlation amplitude provide strong evidence for diffusons
at frequencies between 350–400 cm−1. Similarly, the participation ratio, eigenvector decay curves,
and correlation amplitude suggest HEO supports high-frequency locons beyond the mobility edge
in its vibrational density-of-states. Modes near 300 cm−1, where the engagements transition from
cation- to oxygen-dominated motion, are localized according to the participation ratio, but extended
according to all other pieces of available evidence. It is likely that these modes are diffusons.

Insofar as this thesis employs the assumptions of Lewis and Catlow [43], and models HEO as
a ‘superposition’ of its parent binary oxides, it is similar to previous lattice-dynamical studies by
e.g. Anand et al. [18] and Chen et al. [19]. The new contributions to the literature are a) the
introduction of interatomic potentials optimised for vibrational and dielectric properties, and; b)
confirmation from numerous tests that localized vibrational modes do indeed exist in HEO.

The memory requirements of exact diagonalization limit the size of supercells GULP can handle
to the order of 104 atoms. Future work might therefore include an application the kernel polynomial
method [68] to calculate the spectrum of much larger supercells. It is conceivable that the greater
pool of eigenvalues thus obtained will improve the agreement between the level statistics and the
Poisson distribution. In addition, the existence of localized vibrational modes must still be verified
by experiment. Theoretically, this could be done as follows: consider FTIR transmission/reflectance
from an HEO thin film. The infrared spot size is made as small as possible. If a 400 cm−1 source is
used to excite diffusons, the reflected intensity should not change significantly as the spot is swept
across the sample. Conversely, if a 620 cm−1 source is used, a significant variation in intensity is
expected wherever the source impinges upon a localized mode.
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Appendix A

Experimental Data

In the tables below are presented the measured crystal structures, dielectric constants, and phonon
frequencies used to fit the interatomic potentials for MgO, CoO, CuO, NiO, and ZnO. All measure-
ments were performed at room temperature, unless otherwise indicated. For explicit reciprocal-space
coordinates of the high-symmetry Brillouin zone points in Tables A.5 through A.9, refer to the kvec
utility on the Bilbao Crystallographic Server [69, 70, 71, 72].

Abbreviation Definition

COD Crystallographic Database ID

SG Space group (international notation)

INS Inelastic neutron scattering

Ellips. Ellipsometry

Cap. Capacitance

Table A.1: List of abbreviations used in this appendix.

Oxide Ref. SG COD
Cell Parameters

a (Å) b (Å) c (Å) α (◦) β (◦) γ (◦)

MgO [73] 225 9006784 4.2128(2) 4.2128(2) 4.2128(2) 90 90 90

CoO [74] 225 – 4.2614(3) 4.2614(3) 4.2614(3) 90 90 90

NiO [75] 225 4329323 4.1786(2) 4.1786(2) 4.1786(2) 90 90 90

CuO [76] 15 7212242 4.6837(5) 3.4226(5) 5.1288(6) 90 99.54(1) 90

ZnO [77] 186 2300112 3.24931(2) 3.24931(2) 5.20571(4) 90 90 120

Table A.2: Conventional cell parameters and space groups. With the exception of β for CuO, all
angles are exact by symmetry.
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Oxide
A O

x y z x y z

MgO 0 0 0 1⁄2 1⁄2 1⁄2

CoO 0 0 0 1⁄2 1⁄2 1⁄2

NiO 0 0 0 1⁄2 1⁄2 1⁄2

CuO 1⁄4 1⁄4 0 0 0.418(1) 1⁄4

ZnO 1⁄3 2⁄3 0 1⁄3 2⁄3 0.382(1)

Table A.3: Atomic coordinates in the primitive unit cell. Entries marked ‘0’ or which are pure
fractions are exact by symmetry. Entries which are decimal values were taken from the
COD files listed in Table A.3.

Oxide Ref. Method
Component

xx xy xz yy yz zz

MgO
[78] IR ϵ∞ 2.9(2) 0 0 2.9(2) 0 2.9(2)
[79] Cap. ϵ0 9.96(5) 0 0 9.96(5) 0 9.96(5)

CoO
[80] IR ϵ∞ 5.3(1) 0 0 5.3(1) 0 5.3(1)
[81] Cap. ϵ0 12.9(1) 0 0 12.9(1) 0 12.9(1)

NiO
[82] Ellips. ϵ∞ 4.97(1) 0 0 4.97(1) 0 4.97(1)
[81] Cap. ϵ0 11.9(1) 0 0 11.9(1) 0 11.9(1)

CuO [83] IR ϵ∞ 7.3 0 -0.8 5.9 0 6.8

ZnO [84] Ellips.
ϵ∞ 3.70(1) 0 0 3.70(1) 0 3.78(5)
ϵ0 7.77(3) 0 0 7.77(3) 0 8.91(9)

Table A.4: Static and high-frequency dielectric constants. Entries marked “0” are identically equal
to zero by symmetry. No values of ϵ0 for CuO were found in the available literature.

MgO

Γ Ref. Method X Ref. Method L Ref. Method

ωTA1 0 – – 299(8) [85] INS 288(8) [85] INS

ωTA2 0 – – 299(8) [85] INS 288(8) [85] INS

ωLA 0 – – 422(8) [85] INS – –

ωTO1 396.6(5) [78] IR 443(8) [85] INS 369(8) [85] INS

ωTO2 396.6(5) [78] IR 443(8) [85] INS 369(8) [85] INS

ωLO 724(6) [78] IR 554(8) [85] INS – – –

Table A.5: Phonon frequencies of MgO. Frequencies at X,L points adapted from Table 3 in Schutt
et al. [85], who digitized the INS work of Sangster et al. [22]. The error in all X,L
frequencies is estimated to be 8 cm−1, which is the largest experimental error reported
by Sangster et al.
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CoO

Γ Ref. Method X Ref. Method L Ref. Method

ωTA1 0 – – 151(8) [86] INS 172(8) [86] INS

ωTA2 0 – – 151(8) [86] INS 172(8) [86] INS

ωLA 0 – – 240(8) [86] INS – – –

ωTO1 335.7(3) [87] IR – – – – – –

ωTO2 335.7(3) [87] IR – – – – – –

ωLO 562.1(3) [87] IR – – – – – –

Table A.6: Phonon frequencies of CoO. Errors from Kant et al. [87] assumed equal to the one-half
of the instrument resolution of 0.5 cm−1 (Bruker IFS 66v/s and IFC 113v IR spectrom-
eters). Sakurai et al. [86] do not estimate errors in their INS frequencies, but do claim
0.15 THz “is well below the experimental resolution”. Therefore, the same error esti-
mate in the X,L frequencies as was used for MgO is adopted for CoO, the Sangster et
al. [22] and Sakurai papers being contemporaneous.

NiO

Γ Ref. Method X Ref. Method L Ref. Method

ωTA1 0 – – 181(3) [88] INS 203(2) [88] INS

ωTA2 0 – – 181(3) [88] INS 203(2) [88] INS

ωLA 0 – – 275(3) [88] INS 332(3) [88] INS

ωTO1 392.9(4) [82] Ellips. 430(5) [88] INS 337(7) [88] INS

ωTO2 392.9(4) [82] Ellips. 430(5) [88] INS 337(7) [88] INS

ωLO 593.9(5) [82] Ellips. 477(7) [88] INS 544(7) [88] INS

Table A.7: Phonon frequencies of NiO.
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Mode No.
CuO

Γ Ref. Method A Ref. Method

1 0 – – 62(3) [89] INS

2 0 – – 62(3) [89] INS

3 0 – – 108(5) [89] INS

4 148.0(6) [90] IR 108(5) [89] INS

5 163.4(7) [90] IR 230(12) [89] INS

6 297.7(2) [90] Raman 230(12) [89] INS

7 320(3) [90] IR 367(18) [89] INS

8 345.9(6) [90] Raman 367(18) [89] INS

9 401(11) [90] IR 440(22) [89] INS

10 481(5) [90] IR 440(22) [89] INS

11 557(5) [90] IR 633(32) [89] INS

12 630(6) [90] Raman 633(32) [89] INS

Table A.8: Phonon frequencies of CuO.

Mode No.
ZnO

Γ Ref. Method A Ref. Method H Ref. Method

1 0 – – 80 [91] INS 102 [91] INS

2 0 – – 80 [91] INS 102 [91] INS

3 0 – – 80 [91] INS 170 [91] INS

4 102(1) [84] Raman 80 [91] INS 170 [91] INS

5 102(1) [84] Raman 182 [91] INS 257 [91] INS

6 259 [91] INS 182 [91] INS 257 [91] INS

7 379(2) [84] Raman 427 [91] INS 448 [91] INS

8 410(2) [84] Raman 427 [91] INS 448 [91] INS

9 437(1) [84] Raman 427 [91] INS 508 [91] INS

10 437(1) [84] Raman 427 [91] INS 508 [91] INS

11 552 [91] INS 562 [91] INS 542 [91] INS

12 573 [91] INS 562 [91] INS 542 [91] INS

Table A.9: Phonon frequencies of ZnO. Errors from Serrano et al. [91] assumed equal to the one-
half of the instrument resolution of 32 cm−1 (IN1 triple axis spectrometer, Institut Laue
Langevin, Grenoble, France). INS frequencies were acquired at 10 K; however, “the
effect of temperature on the phonon frequencies is completely masked by the energy
resolution” [91]. Only the Γ, A frequencies were used during fitting.
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Appendix B

Interatomic Potential Comparison

In this Chapter, the observables calculated from the interatomic potentials developed in Sect. 3.1
are compared to existing potentials used by Chen et al. [19]. All cell lengths a, b, c and internal
coordinates u are measured in Angstrom. All cell angles α, β, γ are measured in degrees. All phonon
frequencies are measured in wavenumbers.

MgO

Expt. Chen et al. [19] This work

a 4.2128(2) 4.1329 4.2127

ϵ∞ 2.9(2) 2.3 3.0

ϵ0 9.96(5) 26.53 9.91

ωΓ4 396.6(5) 237.2 396.1

ωΓ5 396.6(5) 237.2 396.1

ωΓ6 724(6) 797.7 718.5

ωX1 299(8) 253.8 303.4

ωX2 299(8) 253.8 303.4

ωX3 422(8) 398.8 448.3

ωX4 443(3) 398.8 448.3

ωX5 443(8) 473.9 464.0

ωX6 554(8) 566.5 555.6

ωL1 288(8) 213.9 285.1

ωL2 288(8) 213.9 285.1

ωL3 369(8) 256.9 347.4

ωL4 369(8) 256.9 347.4

ωL5 – 598.0 564.7

ωL6 – 664.6 601.3

Table B.1: Comparison of MgO observables to experiment and Chen et al. [19]. Both sets of po-
tentials incorrectly predict the LA and TO branches cross at the X point.
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CoO

Expt. Chen et al. [19] This work

a 4.2614(3) 4.2446 4.2638

ϵ∞ 5.3(1) 2.2 4.8

ϵ0 12.9(1) 17.8 13.2

ωΓ4 335.7(3) 242.9 336.1

ωΓ5 335.7(3) 242.9 336.1

ωΓ6 562.1(3) 688.6 557.9

ωX1 151(8) 185.9 194.0

ωX2 151(8) 185.9 194.0

ωX3 240(8) 266.0 276.9

ωX4 – 370.7 399.3

ωX5 – 370.7 399.3

ωX6 – 561.8 494.5

ωL1 172(8) 145.2 180.0

ωL2 172(8) 145.2 180.0

ωL3 – 273.9 301.8

ωL4 – 273.9 340.2

ωL5 – 414.6 340.2

ωL6 – 590.6 595.4

Table B.2: Comparison of CoO observables to experiment and Chen et al. [19].
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NiO

Expt. Chen et al. [19] This work

a 4.1786(2) 4.1786 4.1862

ϵ∞ 4.97(1) 2.28 5.02

ϵ0 11.9(1) 20.6 11.6

ωΓ4 392.9(4) 231.9 388.8

ωΓ5 392.9(4) 231.9 388.8

ωΓ6 593.9(5) 695.7 591.4

ωX1 181(3) 184.3 201.2

ωX2 181(3) 184.3 201.2

ωX3 275(3) 264.3 296.6

ωX4 430(5) 371.9 435.8

ωX5 430(5) 371.9 435.8

ωX6 477(7) 567.7 506.8

ωL1 203(2) 143.6 204.2

ωL2 203(2) 143.6 204.2

ωL3 332(3) 269.5 326.7

ωL4 337(7) 269.5 382.7

ωL5 337(7) 423.4 382.7

ωL6 544(7) 595.9 612.5

Table B.3: Comparison of NiO observables to experiment and Chen et al. [19].
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CuO

Expt. Chen et al. [19] This work

a 4.6837(5) 6.3851 4.8659

b 3.4226(5) 2.8539 3.1936

c 5.1288(6) 6.3851 5.0180

u 0.418(1) 0.250 0.373

β 99.54(1) 126.90 100.79

ϵ∞xx 7.3(1) 1.9 6.4

ϵ∞xz -0.8(1) -2.5 -0.6

ϵ∞yy 5.9(1) 28.7 5.0

ϵ∞zz 6.8(1) 30.7 6.1

ωΓ4 148.0(6) 77.5 117.9

ωΓ5 163.4(7) 96.2 143.3

ωΓ6 297.7(2) 130.2 290.8

ωΓ7 320(3) 137.3 312.5

ωΓ8 345.9(6) 181.1 365.6

ωΓ9 401(11) 224.7 393.4

ωΓ10 481(5) 365.7 458.3

ωΓ11 557(5) 580.0 592.2

ωΓ12 630(6) 662.9 646.9

ωA1 62(3) 40.5 95.0

ωA2 62(3) 40.5 95.0

ωA3 108(5) 87.5 101.9

ωA4 108(5) 87.5 101.9

ωA5 230(12) 150.3 232.2

ωA6 230(12) 150.3 232.2

ωA7 367(18) 184.4 314.0

ωA8 367(18) 184.4 314.0

ωA9 440(22) 249.0 420.5

ωA10 440(22) 249.0 420.5

ωA11 633(32) 627.3 632.8

ωA12 633(32) 627.3 632.8

Table B.4: Comparison of CuO observables to experiment and Chen et al. [19].



Appendix B. Interatomic Potential Comparison 66

ZnO

Expt. Chen et al. [19] This work

a 3.24931(2) 3.26761 3.28381

c 5.20571(4) 5.07402 5.13173

u 0.382(1) 0.392 0.390

ϵ∞xx 3.70(1) 1.90 3.65

ϵ∞zz 3.78(5) 1.92 3.83

ϵ0xx 7.77(3) 6.43 7.82

ϵ0zz 8.91(9) 8.74 10.71

ωΓ4 102(1) 140.0 122.6

ωΓ5 102(1) 140.0 122.6

ωΓ6 259(16) 303.3 203.1

ωΓ7 379(2) 305.7 261.4

ωΓ8 410(2) 367.2 305.2

ωΓ9 437(1) 383.5 342.9

ωΓ10 437(1) 383.5 342.9

ωΓ11 552(16) 570.7 446.8

ωΓ12 573(16) 674.8 530.7

ωA1 80(16) 102.5 94.3

ωA2 80(16) 102.5 94.3

ωA3 80(16) 102.5 94.3

ωA4 80(16) 102.5 94.3

ωA5 182(16) 196.2 159.5

ωA6 182(16) 196.2 159.5

ωA7 427(16) 374.8 324.2

ωA8 427(16) 374.8 324.2

ωA9 427(16) 374.8 324.2

ωA10 427(16) 374.8 324.2

ωA11 562(16) 618.6 481.9

ωA12 562(16) 618.6 481.9

Table B.5: Comparison of ZnO observables to experiment and Chen et al. [19].
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