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Abstract 

The primary purpose of this research was to examine the feasibility of using remote sensing 

data to improve efficiency of zonal vineyard management. To achieve this goal, correlation 

analysis between the significant vineyard management variables and different remote sensing data 

analysis tools were undertaken. The variables included leaf water potential, soil moisture, canopy 

size, vine health, vineyard yield, and fruit composition, which further impacts wine quality. The 

remote sensing data analysis tools included normalized difference vegetation index (NDVI), and 

other indices extracted from electromagnetic reflectance data of grapevine leaves and canopies. In 

each site, sentinel vines (i.e., 72-81) were identified in a grid form. GPS-based geolocation was 

carried out for six Cabernet Franc vineyards in Ontario's Niagara wine country. 

Even though remote sensing data analysis tools were not associated with several other 

important variables for quality grape production, this research still confirmed that remote sensing 

data analysis has significant potential to differentiate specific zones of canopy size, water stress, 

yield, some superior fruit compositions, and the resulting wine sensory attributes within a single 

vineyard site. This study also confirmed that the mechanism of plant defense systems against biotic 

stress could have impacts on the spectral behaviour of grapevine leaves and hyperspectral remote 

sensing technologies could be applied as a tool to identify the spectral behaviour changes due to 

stress.  

Overall, this study verified the feasibility of remote sensing technologies to enhance the 

efficiency of vineyard management in the correlation of data from various remote sensing data-

analysis techniques and viticulturally important variables for plant health and growth, and fruit 

and wine quality. As a first step to develop a site-specific crop management (SSCM) model for 



vineyard management, it also proposes future research opportunities to test and develop an 

efficient vineyard management decision making model.  

 

Key words: zonal vineyard management, precision viticulture, remote sensing, selective 

harvesting, NDVI, grapevine virus detection, remotely piloted aircraft system (RPAS), 
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Figure 5.2. Comparison of wine analysis results from 2016 and 2017 Low vs High NDVI in in 

the six vineyard sites. * p-values of significantly different between the treatments (p<0.05). 
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difference. 
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clustering dendrogram. 
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low NDVI vs high NDVI, middle: PCA results of colour and mouthfeel sensory descriptors for 

low NDVI vs high NDVI, and right: Sensory sorting results in the agglomerative hierarchical 

clustering dendrogram. 

 

Figure 5.12. Significance of difference in the concentrations (μg/L) of key odor active aroma 

compounds from sorted NDVI replicates in the 2016 Cabernet franc wines using a t-test with two 

samples: * significant p-values (95% confidence). 

 



Figure 5.13. PLSR analysis results of Cabernet Franc wines from low and high NDVI zone at 

the six vineyard sites in 2016 based on sensory attributes from DA and key odor active aroma 

compounds concentration from GC-MS. The p-values represent a significant difference in value 

of variables for low and high NDVI (P≤0.05 in bold). 

 

Figure 6.1. The series of electromagnetic spectra from healthy and GLRaV-3 infected Cabernet 

franc leaves measured by hand-held spectrometer at site 1. 

 

Figure 6.2. The series of electromagnetic spectra from healthy and GLRaV-3 infected Cabernet 

franc leaves measured by hand-held spectrometer at site 2. 

 

Figure 6.3. Comparison of mean reflectance (%) of EM spectrums of green, red, red edge, and 

NIR peaks from healthy (n=25) and GLRaV-3 infected (n=50) Cabernet Franc leaves measured 

by hand-held spectrometer in both site 1 and site 2 using a t-test with two samples: * significant 

p-values (95% confidence). 

 

Figure 6.4. The series of electromagnetic spectra from healthy and GLRaV-3 symptomatic and 

asymptomatic Cabernet franc leaves measured by hand-held spectrometer at site 1. 

 

Figure 6.5. The series of electromagnetic spectra from healthy and GLRaV-3 symptomatic and 

asymptomatic Cabernet franc leaves measured by hand-held spectrometer at site 2. 

 

Figure 6.6. Comparison of mean reflectance (%) of EM spectrums of green, red, red edge, and 

NIR peaks from healthy (n=25), asymptomatic (n=25) and symptomatic (n=25) GLRaV-3 

infected Cabernet franc leaves measured by hand-held spectrometer at site 1 using a t-test with 

two samples: * significant p-values (95% confidence). 

 

Figure 6.7. Comparison of mean reflectance (%) of EM spectrums of green, red, red edge, and 

NIR peaks from healthy (n=25), asymptomatic (n=25) and symptomatic (n=25) GLRaV-3 

infected Cabernet franc leaves measured by hand-held spectrometer at site 2 using a t-test with 

two samples: * significant p-values (95% confidence). 

 

Figure 6.8. The series of the first derivative values of electromagnetic spectrums in red and red 

edge regions from healthy and GLRaV-3 symptomatic and asymptomatic Cabernet franc leaves 

measured by hand-held spectrometer at site 1. 

 

Figure 6.9. The series of the first derivative values of electromagnetic spectrums in red and red 

edge regions from healthy and GLRaV-3 symptomatic and asymptomatic Cabernet franc leaves 

measured by hand-held spectrometer at site 2. 

 

Figure 6.10. The series of relative reflectance change (ΔRn) of EMS in red and red edge regions 

from healthy and GLRaV-3 symptomatic and asymptomatic Cabernet franc leaves measured by 

hand-held spectrometer at site 1. 

 



Figure 6.11. The series of relative reflectance change (ΔRn) of EMS in red and red edge regions 

from healthy and GLRaV-3 symptomatic and asymptomatic Cabernet franc leaves measured by 

hand-held spectrometer at site 2. 

 

Figure 6.12. PCA results for GLRaV-3 presence vs. remote sensing indices including green, red, 

red edge, NIR, NDVI, NDRE, GNDVI, GRVI, MTCI, and RTVI core. Abbreviations: NIR= 

Near infrared, NDVI= Normalized difference vegetation Index, NDRE= Red edge normalized 

vegetation index, GNDVI= NDVI green, GRVI= Green-red vegetation index, MTCI= MERIS 

terrestrial chlorophyll index, RTVI core= Core red edge triangular vegetation index. 
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Table A1. Quality report of RPAS remote sensing data processing by Air-Tech Solutions, 

Inverary, ON (please double click the image). 

 

Table A2. End-point PCR results in GRBV presence for three virus infected sites: – and +: 

negative and positive respectively in the PCR. 

 

Table A3. Pearson's correlation results between GRBV presence and remote sensing indices in 

the two virus infected vineyards. Those variables with significant (95% confidence) were listed 

in bold, with blank cells representing no correlation: blue boxes= positive relationship, red 

boxes= negative relationship. Abbreviations: NIR= Near infrared, NDVI= Normalized difference 

vegetation Index, NDRE= Red edge normalized vegetation index, GNDVI= NDVI green, 

GRVI= Green-red vegetation index, MTCI= MERIS terrestrial chlorophyll index, RTVI core= 

Core red edge triangular vegetation index. 

 

Figure A1. PCA results for GRBV presence vs. remote sensing indices including green, red, red 

edge, NIR, NDVI, NDRE, GNDVI, GRVI, MTCI, and RTVI core. Abbreviations: NIR= Near 

infrared, NDVI= Normalized difference vegetation Index, NDRE= Red edge normalized 

vegetation index, GNDVI= NDVI green, GRVI= Green-red vegetation index, MTCI= MERIS 

terrestrial chlorophyll index, RTVI core= Core red edge triangular vegetation index. 
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Introduction and objectives 

1.1.1 Introduction  

The primary objective of this research was to examine the feasibility of using remote 

sensing data to improve efficiency of zonal vineyard management. To accomplish this objective, 

remote sensing data analysis tools, such as normalized difference vegetation index (NDVI), along 

with classic viticultural data (vine performance, yield, and fruit chemistry) were applied in 

detecting vineyard spatial/temporal variability and relationships elucidated. Precision viticulture 

(PV) endeavours to manage the variability within a vineyard, resulting in greater consistency with 

respect to yield and quality.[1] 

 PV depends on the factors responsible for determination of the spatial variation, possibility 

of zoning the variation, and possibilities of managing the zonal parameters.[1] The detection of 

spatial variations in vineyards needs to comprise a combination of different supporting 

technologies for acquiring and analyzing data. Geospatial technology can be described as a tool 

used to acquire and analyze data that has a reference to the earth, including remote sensing, 

geographic information systems (GIS), global positioning systems (GPS), and information 

technology.[2] PV has evolved with the development of spectral sensor technologies and geospatial 

technologies. Research has been conducted to investigate various types of remote sensing for use 

in vineyard variation detection, and advanced remote sensing technologies are constantly being 

introduced. In particular, this includes progress in the application of spectral sensor technologies 

to carrier platforms like remotely piloted aircraft systems (RPAS)[3], satellite and Trimble 

GreenSeeker[4,5], and in the improvement of spatial resolution of sensors[4,6,7]. Further 
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application of variable rate technology (VRT) based on remote sensing data also brings 

opportunities for site-specific fertilizing and spraying management.[8]  

This study was conducted to examine the performance of remote sensing technologies 

recently introduced and determine if their application can enhance the health and sustainability of 

Niagara vineyards by providing scientific and evidence-based support. In addition, the ability to 

separate vineyard zones based on measurable quality attributes will provide a more efficient and 

intelligent way of managing vineyard variability to produce high quality vines and grapes. 

 

1.1.2 Precision viticulture in zonal management 

A significant increase in research for application of PV to vineyard management has 

occurred for decades. Spatial maps of soil and airborne images have been applied to demonstrate 

a usefulness of remote sensing technologies[9,10], and  zonal management at the field level[11]. 

Zonal harvesting of grapes also proved to bring significant profits to the growers.[12,13] 

Furthermore, PV also brought many environmental benefits from the better use of farm resources  

such as minimizing the use of fertilizer and pesticides.[14,15] 

Even though PV research has addressed zonal management in vineyards, which is 

demonstrated as subfield regions of different vine physiology, yield, and fruit quality,[16-18]  many 

grape growers tend to perform  uniform management in a single vineyard block but various 

environmental and biological aspects can have effects on quality and productivity of grapevines in 

a single block.[19,20] Researchers have demonstrated an existence of significant variabilities in 

quality and productivity of grape in accordance to the different vine physiologies (canopy size, sun 

exposure, water status) within individual vineyard blocks.[9,21-33] Sensory attributes of wines 

produced from different water stressed grapevines in a single vineyard block were also 



3 

 

differentiated from one another through sensory analysis.[25,34-38] To adopt PV, it must be possible 

to have distinct spatial variability coupled with long term stability. Many researchers have also 

investigated the temporal stability of viticulturally important variables such as canopy area, vine 

size, soil moisture, leaf water status, yield, and fruit quality.[9,39-44]  

Additionally, an environment at individual vineyard block level can influence quality and 

productivity of grapevines. For example, vineyard soils can vary within a block in accordance with 

soil composition and nutrients level.[45-47] Researchers have also demonstrated the effects of 

variabilities in soil and nutrient on grape quality and quantity in single vineyard blocks of 

Riesling[38] and Cabernet franc[48].  

Even though the grapevines are biologically identical, yield and grape quality are 

influenced by various physiological and environmental factors in the viticulture system such as 

canopy size, disease pressure, soil type, microclimate, sun exposure, nutrition availability, and 

water status.[9,21-33] Many researchers in PV have mainly focused on refining methods to identify 

the spatial variations of these factors in a single vineyard block, such that if the spatial variations  

can be identified, grapes can be managed differently in these subfield regions to maximize fruit 

quality and/or vine health or possibly harvest fruit into different lots based on this spatial variation 

to maximize wine quality.[40,49] 

 

1.1.3 Detecting vineyard variability with remote sensing technology 

Conventional methods of detecting vineyard variability involve direct ground surveys by 

well-trained personnel or specialized equipment. Limitations associated with these methods range 

from being time-consuming and labour-intensive, to requiring elaborate field and laboratory 

procedures and expertise, and measurement accuracies, depending on the plant variable under 

investigation.[50,51] For these reasons, conventional detection methods of vineyard variabilities 
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are not viable options for processing large numbers of plant samples due to the time and labour 

involved in their proper execution.[50] Despite the utility of traditional ground surveys, there 

remains a high demand for an efficient method for rapid detection of plant stress.[52] A solution to 

this demand could be in the use of remote sensing technologies. 

 

1.1.4 Thesis goal and objectives 

The main goal of this research is to examine the feasibility of using remote sensing data to 

improve efficiency of zonal vineyard management. The goal has been achieved through these 

short-term objectives. The first short-term objective was to examine the feasibility of using remote 

sensing NDVI to detect important vineyard variations that affect the viability of vineyards such as 

leaf water potential, soil moisture, canopy size, and LT50. We hypothesize that remote sensing 

NDVI will correspond to local variations in several vineyard variables that affect the viability of 

vineyards, and the correlations would be temporally stable. The second short-term objective was 

to examine the feasibility of using remote sensing technologies to monitor yield and fruit quality. 

We hypothesize that remote sensing data-analysis (NDVI, thermal, other indices) would correlate 

with yield and berry composition and vegetative growth in different stages of growing season 

could have different impact on yield and fruit quality. The third short-term objective was to 

investigate the zonal effect of remote sensing NDVI on wine sensory and chemical attributes. It 

was hypothesized that if vineyard blocks were harvested based on zones corresponding to low and 

high NDVI, resulting wines would differ in their chemical and sensory attributes. The last short-

term objective was to examine the effects of grapevine leafroll-associated virus 3 (GLRaV3) 

infection and its symptoms on electromagnetic reflectance of grapevine leaf. We hypothesized that 
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the presence of grapevine virus and its infected leaves have unique electromagnetic signatures 

which could be detected by a narrow-band, hyperspectral spectrometer. 

 

1.2 Literature review 

1.2.1 Precision viticulture (PV) and site-specific crop management 

The identification of variability and its subsequent responding within an individual 

vineyard block is one of the important concepts of PV. Site specific crop management (SSCM) is 

an integrated information-based farming management system that is designated to incorporate 

spatial variability into a farming decision-making system at the field or farm level. Spatial 

variability within a farming block can be better managed in farming operations using a SSCM 

system. For example, adapting crop inputs, such as fertilizers and chemicals, to a field's varying 

conditions would improve production efficiency and minimize environmental damages. 

Additionally, information about factors that affect crop growth and yield at a specific site would 

also improve the efficacy and profitability of production.[53] SSCM needs to comprise systems 

that combine remote sensing, GPS/GIS, variable rate technologies and data analysis to maximize 

production by accounting for variability and uncertainties in a field.  GPS has become more 

accurate, portable, and rapidly developed, making georeferenced measurements now more 

relevant to apply for SSCM. A range of commercial sensors linked to GPS systems could be 

suitable for measuring the spatial and temporal evolution of crop parameters within a field.[54]  

  For an SSCM system to be proven useful for vineyard management, a model would first 

need to be established using input data collected from the vineyard that captures all the vineyard 

variability, and then that model would need to be tested in a subsequent year for making decisions 

in vineyard management.  As a first step to developing that model, variations in the field such as 
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a spatial and temporal variation of crop quality and quantity are required.[12] Similarly, precision 

viticulture (PV) focuses on this concept within the context of vineyard variability. Grapevine 

physiological changes, productivity and quality are variables that can be affected by the crop and 

the conditions in the field.[55] However, in the absence of accurate methods for analyzing varietal 

differences, vineyards are more likely to be managed homogeneously.[49] PV faces several 

challenges with regards to gaining a proper knowledge of the spatial variation and distribution in 

a single vineyard site. Multiple sources can contribute to variability, so identifying this variance 

and determining its significance for agriculture is essential. Monitoring vineyard performance and 

associated attributes are the first step of PV implementation, and interpretation and evaluation take 

place once these data have been collected.[56,57]  

 

1.2.2 Vineyard zoning 

As part of the PV application, fields are grouped into homogeneous subregions, typically 

referred to as management zones.  However, a complex system of interconnections and spatial 

variability in the agricultural environment makes determining the management zones 

complicated.[58] A vineyard block is subdivided into homogeneous zones based on the extent of 

spatial variation seen in the block, the spatial distribution, as well as their persistence through 

time.[59] To differentiate vineyard zones, three different  segmentation algorithms have been 

widely used.[60] First, in the statistical approach, the region shape and the region’s content are 

analyzed jointly.[61] Second, methods of splitting and merging zones are also widely used; 

however, they have a tendency to favour rectangular regions despite their simplicity. A further 

concern is that there is high sensitivity to boundaries applied to calculate uniformity and similarity 

of the areas.[62] The last approach is the region growing method. The use of this method is well 
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suited for delineating a unique region on a map.[63] Mixture of the methods by using Gabor filters 

to characterize vine rows and a region-growing algorithm and by using a categorization strategy 

according to the visual interpretation of vine rows can be implemented.[60] 

Variability in vineyard yields and fruit composition can be managed to create wines with 

distinct qualities or wine products with a variety of price points to target different consumer 

segments. Wine products can be significantly different when harvested from different crop areas, 

which can be economically beneficial and result in unique final products.[13] Analyses of sensory 

content in two Pinot noir wine samples from Oregon involving vines of differing vigour zones 

revealed both anthocyanin levels and different pigmented polymer compositions.[64] Also, 

descriptions demonstrated different levels of intensity for various characteristics, for instance, 

wines from low NDVI areas exhibited high levels of heat, astringency, and earthiness than wines 

from high NDVI areas.[65] Existing research studies indicate that vineyard variance is related to 

various factors, including water level, soil structure, and vine size, all influencing the chemistry 

and taste of fruit and wine.[4,13,40,45,49,66,67] 

Precision viticulture management is believed to enhance resource efficiency and quality 

control by identifying distinct and uniform management zones in a field.[68] Direct in-situ 

sampling for yield and quality is a common method of delineating management zones despite 

several challenges and limitations with the method[69], which is why the use of remote sensing 

technology has become increasingly common to establish zonal vineyard management. GIS, GPS, 

and other technologies also provide many new possibilities for mapping vineyard spatial 

variability. Through remote sensing software, unique zones can be identified and then linked to 

variables, including leaf water potential, soil moisture, canopy size, vine nutrition status, vineyard 

yield, and fruit composition.[70-75] 
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There has been evidence that remote sensing can detect different attributes of wine in 

vineyard zones and researchers examined the effectiveness of multispectral aerial imaging for 

vineyard management and winemaking using remotely sensed vigour zonation.[16,76-80] The Plant 

Cell Density Index (NIR/red) was utilized for measuring canopy vigour using multispectral remote 

sensing imagery[11] and the zonation of two Sangiovese vineyards was also determined by using 

multispectral data combined with soil conductance data [81]. Commercial scale vinification utilized 

multiple vigour zones, and untrained panelists could distinguish wine from certain vineyard areas 

by tasting it, but only to a limited degree from certain vineyard areas.[45] In nine vineyard plots in 

France, multispectral remote sensors were also used to identify different vineyard zones of abiotic 

stress, vegetative and reproductive growth, but differing berry compositions were not found in the 

zones.[9] Despite substantial research undertaken to investigate the use of remote sensing vine 

vigour data to detect vineyard variations across a range of grapevine and crop variables, the 

effectiveness of these technologies in optimizing vineyard management and selective harvesting 

needs further study.  

 

1.2.3 Vineyard variation and temporal stability 

1.2.3.1 Viticulturally important vineyard variability 

In the environment, natural systems display periodic or structured variation in time and 

space (i.e., temporal or spatial dependence). The viticulture system is yet another example where 

patterns develop due to variations in microclimate, soil, water status, and vine physiology.[82] The 

quality and production of grapes can be significantly affected by the spatial variation of vineyard 

blocks.[45-47] A significant glacial activity in the Niagara Region has created soils with a high 

degree of variability.[83,84] Water status in grapevines can be directly impacted by differences in 

soil hydrology in vineyard soils.[85] A drought can negatively affect the growth of individual vines 
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and their photosynthesis[86,87] while an excessive amount of water can lead to a greater risk of 

disease [88], poor root growth[89], and leaching nutrients from the soil[90]. Vineyard soil moisture 

(SM) can differ significantly within a vineyard block[91] and differences in vine water status can 

be seen throughout the growing season[92]. Different soil types and vine vegetative growth are 

responsible for the variations in vine and vineyard water stress levels.[9,93] 

Vineyards can also vary in vegetative growth. Plant stress levels can be influenced by the 

vegetation status of plants depending on their environment. In addition to water stress, plant 

chlorophyll level can be affected by plant life cycle, air contamination, nutrient status, and 

pathogens.[94] Stress in vegetation can be attributed to many factors.[51] Geospatial data associated 

with canopy features or data about an area designated as a water resource [4], disease detection[95] 

and canopy characterization[96-98] can be tracked efficiently and effectively. Vineyard canopy 

characterization by remote sensing is an improvement over manual characterization of the canopy,  

ensuring high levels of  accuracy, efficiency and reliability.[56]  

Another important vineyard variation, especially in northern viticulture areas like Ontario, 

is winter hardiness. Grapevine winter hardiness is attributed to cold acclimation, triggered by a 

reduced photoperiod and lower temperatures.[99,100] When the temperatures drop below the 

hardiness level of the vine,  winter injury may occur. Depending on the severity of damage, the 

vine may be impaired in  vegetative and reproductive growth, suffer increased disease pressure, as 

well as reduced yield.[101-103] Understanding the spatial variability of winter hardiness can lead 

to targeting management strategies to less winter-hardy areas, maximizing the effectiveness and 

response of the vineyard. Researchers have rarely attempted to determine the variability in cold 

hardiness in a vineyard block; nevertheless, researchers have demonstrated that the level of 
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hardiness varies significantly with other vineyard factors such as leaf water potential[103,104], vine 

vigour[105] and yield[101,105].  

1.2.3.2 Vineyard variation in yield and fruit composition 

Previous research demonstrated that significant within vineyard variation has been detected 

in berry compositions.[32,106-108] Spatial variability has also been linked to temporal variability, 

where the ripening and maturation of grape berries (Concord and Cabernet franc) showed the 

highest variability early in fruit development and decreased considerably by harvest.[109] Another 

study also demonstrated the spatial pattern of variability in berry compositions for Cabernet 

Sauvignon and Ruby Cabernet were distinct and mostly consistent from year to year.[13] Vineyard 

variation, especially canopy size, can significantly affect fruit quantity and quality. The vine 

canopy largely affects the microclimate within a single vineyard block, resulting in differences in 

light exposure, leaf temperature, air circulation, and moisture.[28,110,111] Sun exposure can lead to 

high sugar content, increases in colour development and aroma compounds, and lowering of acid 

compounds.[31,33,112,113] 

Additionally, grapes are inversely affected by drought stress. As a consequence of water 

stress, yield is decreased mainly due to reduced photosynthesis resulting in decreased carbohydrate 

content, which is detrimental for the development of cluster primordium.[26,114,115] A lack of 

water results in fewer primordia per bud, lower primordia weight, resulting in smaller berries and 

clusters.[26] Increased water stress intensity and prolonged exposure to water stress lead to greater 

yield losses.[27] However, vines that have been stressed by water produce berries with higher sugar 

content, higher colour and aroma compounds, and lower acid compounds.[24-26] Taking the time 

of water stress into account is also very crucial, as water stress at an early stage of the fruit cycle, 

from flowering to pre-veraison, has the largest negative impact on  berry weight.[116] Up to pre-
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veraison, increased water stress shows a negative, linear impact on berry quality whereas  light‐

to‐mild levels of water stress increased berry quality post-veraison.[22] There is a wide range of 

variations within vineyard blocks when it comes to many important variables that impact grape 

productivity and quality which has led to increased interest in precision viticulture and developing 

enhanced methods to accurately detect vineyard variability. 

1.2.3.3 Vineyard variation in wine quality 

In winemaking, harvesting blocks of grapes of differing quality and producing wines from 

those different blocks can result in significantly different final wines, with some wines of 

exceptional quality which may result economic benefits.[13,117] The identification of high-quality 

vineyard blocks/zones based upon vine performance and fruit characteristics identified using 

remote sensing data analyses would help winemakers take advantage of these quality differences 

and support the management decision making process. 

Wines from different areas of a uniformly managed vineyard can have different 

characteristics and it reinforces the notion that 'terroir' differs between vineyards according to its 

spatial characteristics.[11,45] Terroir can be defined as the interaction between environment and 

cultural practices that produce wine characteristics typical of a region.[118] Cultural practices are 

highly influential on the characteristics of wine, but these are themselves ultimately dependent 

upon the local environment. A wine's terroir is the result of a range of climatic, soil, and physical 

factors, which include microclimate, canopy size, biotic and abiotic stresses, and cultural practices, 

making the study of it multidisciplinary and occurring across geographical scales.[11,119] A 

difference in grape quality and quantity may allow varietal wines to be made at different price 

points and market segments. This is often accomplished by harvesting selective zones within a 
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vineyard, in which berries with varying physiological conditions are harvested according to their 

composition and yield.[13] 

As geospatial tools have developed, zonal management has become increasingly studied 

as a way of finding out how vines are spatially distributed and patterned within vineyard 

blocks.[120] Wines from different vineyard zones based on water status were found to be 

distinguishable in aroma, taste, and mouthfeel profiles.[25,35-37,121] Wines from different canopy 

zones were reportedly different in anthocyanin, colour, and sensory attributes as well.[38,64,65]  

Even though identification of high-quality vineyard blocks could help winemakers separate that 

fruit to produce premium-grade wine, the process of identifying and determining zonal variation 

in a vineyard can be complicated. There is, therefore, a requirement for a contiguous set of high-

quality spatial data for selective harvesting and winemaking. A primary tool for collecting such 

data is remote sensing, which has proven to be robust in detecting zones with varying vineyard 

vigour.[122] Many researchers interested in precision viticulture have examined the effects of 

variations in vegetative growth on wine production and developed the remotely sensed vine vigour 

(NDVI) map for that purpose to assess the different zonal distribution of wine sensory 

attributes.[11,45,81,117,122] 

1.2.3.4 Vineyard variation in grapevine health related to virus infections 

Many vineyards around the world suffer economic losses due to virus infections. Grapevine 

leafroll virus (GLRaV-3) is one such virus that commonly affects grape production quality in 

nearly every major grape-growing region.[123,124] According to a study conducted in Ontario, 

grapevine rupestris stem pitting-associated virus (GRSPaV) was a predominant type in vineyard 

blocks, followed by GLRaV-3, with close to 50% overall infection.[125] Previous research 

indicated that GRSPAV did not affect plant development or yield substantially and might even 
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mitigate some environmental stresses.[126-128] However, there is clear evidence that GLRaV-3 

negatively impacts the productivity and grape quality of the infected vines.[129-132] An American 

study found that GLRaV can negatively impact the profitability of grape businesses by up to 

$40,000 per hectare over 25 years in New York.[133] Downward-rolling leaves with red colour and 

greenish veins are the visible phenotypic features of GLRaV-3 in red grapevine varieties.[129] 

Research has reported  that vine damage from GLRaV-3 include significant declining 

photosynthetic ability[131,134], and reduced colour intensity and soluble solid levels in 

berries[131,135]. A significant increase in expression of a sugar transporter gene  was also observed 

in leaves of vines infected with GLRaV-3.[136] 

Grapevine red blotch-associated virus (GRBaV) discovered in 2008 in northern California 

has emerged as a major economic concern for North American wineries.[137] Red varieties of 

grapevines are damaged by this virus, which turns their leaves completely red including their veins 

but it is almost asymptomatic in some white cultivars.[137] Phytochemistry of grapevine leaves 

and development of berries appear to be affected by GRBaV based on the symptoms in red 

cultivars. A recent study also reveals its detrimental impact on vine growth and grape quality 

resulting in reduced vine size and yield, and reduced sugar, pigment, tannin and yeast assimilable 

nitrogen in the berries while increasing berry pH and titratable acidity.[138]   

In most cases, grapevine virus is detected in infected leaf tissue of a vine by amplifying the 

viral genome sequence with the polymerase chain reaction (PCR).[139] However, the main 

diagnostic challenges with the PCR method are that infected vines have uneven symptom 

distribution so not all leaves may contain the virus at the same level, new infections are low in 

virus titer, and multiple viruses can infect grapevines at high rates requiring multiple tests to detect 

all viruses present.[123,125] Sampling grapevines and testing is also time consuming and expensive. 
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Since effective control and treatments for the grapevine virus has not been developed yet, 

recommendations are to remove infected vines before they act as a source of transmission in the 

vineyard. There is an urgent demand to develop an efficient method for the rapid and early 

detection of viruses. 

1.2.3.5 Conventional methods of vineyard variability detection 

Conventional means of vineyard variability detection involve direct ground surveys by well 

trained personnel or specialized equipment. For example, time-domain reflectometry (TDR) for 

measuring soil moisture, pressure bomb for directly measuring leaf water potential, and 

porometers for measuring leaf stomatal conductance are a few such techniques.[140] Manual 

ground scouting of vine size (pruning cane weight), yield (kg), measuring winter hardiness (LT50), 

and visual observation of phenotypical changes can also provide information about viticulturally 

important variations within a vineyard block.[45] 

Often, direct in-situ sampling for yield and quality is used for delineating management 

zones although there remain many problems and limitations with this method as it is time-

consuming, labour-intensive, requires elaborate field and laboratory procedures, and inaccuracy 

of the measurement that are tailored to detect each specific plant variable.[50,51] For these reasons, 

the conventional methods of detecting vineyard variability are not viable options for processing 

large numbers of plant samples.[50] Despite the utility of the traditional ground surveys, rapid, 

sensitive, and affordable methods for detecting plant stress still remain in high demand.[52] A 

solution to this demand could be in the use of remote sensing technologies. 
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1.2.4 Remote sensing 

Remote sensing technologies are used to measure electromagnetic energy reflected by a 

surface, such as plants and soil, to obtain information about the object.[141] A remote sensing 

application for agriculture uses electromagnetic waves to sense soil or plant matter. The majority 

of remote sensing applications involve measuring the reflected radiation instead of the transmitted 

or absorbed radiation.[142] Plant leaves can also emit energy via fluorescence or expulsion of 

heat.[143] 

Photosynthesizing plants, such as Vitis vinifera, require external energy in the form of 

sunlight to execute their photosynthetic activity. Biological pigments absorb energy from photons 

of sunlight, which carry energy proportional to their radiation frequency. These pigment molecules 

are responsible for the colour that we visually perceive from plants, as they interact with specific 

wavelengths in the visible range of the electromagnetic reflectance; absorbing particular 

wavelengths for energy harvesting and reflecting all others.[144-146] Due to the role of pigment 

molecules in plant photosynthesis and productivity, pigment content in leaves is a good indicator 

of plant health and photosynthetic activity.[144] The reductions in a plants' capacity for 

photosynthetic activity due to a stress could be demonstrated through changes in pigment 

quantities and ratios, which can significantly alter the plant’s interaction with electromagnetic 

energy. Stresses such as water, nutrients, and viral infection have demonstrated physical symptoms 

associated with changes in leaf colour and patterns, indicative of changes in their pigment content. 

These changes would further impact the specific wavelengths of light being absorbed and utilized 

by the plant, and those being reflected.[147-151] 

It has been demonstrated that the photosynthetic capacity of a plant depends on abiotic 

stresses, for example water stress and nutrient availability[86,144,152], and that the quantities and 
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ratios of pigments in a leaf can be altered in response to changes in photosynthetic capacity[145]. 

There are a variety of biological pigments found in plants, the most common being chlorophylls, 

which are responsible for a significant portion of energy harvesting from light.[153] Another 

important group of accessory pigment molecules are carotenoids, which are critical in light energy 

absorption and efficiency for several higher order plants.[154] A major function of carotenoids is 

light-harvesting in the spectral region of 450–550 nm. Carotenoids are also important in protecting 

the cell from excess light.[154,155] Another group of pigment molecules that act as secondary 

metabolites and may help in dissipating excess energy are flavonoids.[156] Specifically, 

anthocyanins have been shown to protect leaves from excess light[157] and it was shown that 

flavonoid leaf content in several plants is also higher when grown under various abiotic stresses 

such as water, nutrient, and temperature[158]. 

Several remote sensing technologies are employed in PV research, allowing the mapping 

of a variety of variables, including the detection of vineyard water stress[4,159-161], leaf area index 

(LAI)[41], yield[162], and berry composition[79,108,161]. Despite the multitude of studies 

demonstrating remote sensing’s capability to detect vineyard variations, there is a lack of literature 

regarding its ability to detect certain variables such as winter hardiness, selective harvest, and virus 

infection. The correlation of remote sensing data to berry quality and quantity has been shown to 

be incompatible across vineyards and vintages, and the need for more study of varieties and site-

specific methodologies should be investigated.[34,79,108,161] 

1.2.4.1 Advanced technologies and opportunities for site specific vineyard management 

To distinguish and map high-quality grapes in a vineyard, comprehensive spatial models 

of microclimate, soil structure, and plant physiological characteristics need to be developed, as 

well as how these properties change over time.[163] Various studies are underway comparing 
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different remote sensing methods for detecting vineyard variability as advanced remote sensing 

technologies are developed and advanced. This involves a comparison of remote sensing tools[3], 

sensor capabilities[4,6,7], and vegetation indices used[4,5]. 

Originally remote sensing relied on aerial photography, which were costly and offered 

lower spatial resolution.[3] However, today’s technical developments have made it possible to 

collect data closer to the area being studied with greater spatial resolutions.  These advancements 

have also resulted in easier access to data and are more cost effective.[3,69] As an alternative to 

traditional methods, using local remote sensing tools, such as those available in tractors, off-road 

vehicles, or remotely piloted aircraft systems (RPASs), rapid sampling of large areas is possible.[1] 

Remote sensing devices are mounted on various platforms, with each platform influencing quality 

and processing of the collected data. Because of their close observation, proximity sensors collect 

data about the vine canopy from the sides.[69] A ground-based (proximal) sensor, attached to a 

tractor or other vehicles, avoids many of the complications associated with aerial remote sensing 

and satellite imagery. Due to their close proximity to objects, these sensors can provide higher 

spatial resolutions, do not have to account for soil and ground cover reflection between rows, do 

not require intensive post-acquisition image processing, and provide usable data in real-

time.[162,164] In addition, these sensors can often be equipped with their own light source, which 

makes them less dependent on climate conditions.[162] Data acquisition by proximal sensing, 

however, may take longer depending on the size of the area being examined.[164] NDVI data from 

vine canopies were initially compiled using proximal sensing.[165] Study in Greece showed that 

there was a positive correlation between proximal sensing data and canopy size as well as berry 

colour intensity.[166] A previous study also indicated that proximal sensing NDVI could detect a 



18 

 

plant stress due to limited water uptake and nitrogen input.[167] In addition, the instrument showed 

ability to detect downy mildew in northern Italy.[168] 

RPAS technology also for flights at much lower altitude, enabling the collection of imagery 

at much higher spatial resolutions, in the range of one centimeter/pixel.[169] This type of remote 

sensing platform is gaining scientific interest, and several reports have already been published in 

the literature on its use in precision viticulture. Several promising approaches to mapping leaf 

water potential[4,159] and vegetative growth[77] have been suggested. New generations of 

inexpensive autopilots have been enabled by the compact size of spectral sensors, GPS/GIS tools, 

and built-in computer systems.[170] Portable spectrometers typically carry hundreds of bands and 

proved to have a potential application of hyperspectral remote sensing with many wavebands of 

spectral information.[171] Various crop health parameters are measured, including vegetation 

indexes and diseases detection, by using portable sensors that can be hand-held or mobile for 

continuous and real-time observation.[8] 

The EM reflectance of vegetation in agriculture is measured in multiple wavelength bands, 

mostly the green, red, red edge and near-infrared bands (NIR) and the reflectance is 

computationally transformed to the vegetative indices (Vis).[1] Plants receive radiation on the 

wavelengths of 400-700 nm, which are absorbed by their pigment molecules and utilized for their 

individual energy potentials.[154] Radiation reflected is therefore inversely proportional to its 

absorption of radiation; vascular plants, for example, contain two chlorophyll molecules, a and 

b.[144] Chlorophyll a has a blue-green colour (absorption maxima at 430-433 nm and 660-663 nm) 

and chlorophyll b a yellow-green colour (absorption maxima at 450-455 nm and 643-645 nm).[144] 

There are approximately three times as many chlorophyll a molecules to chlorophyll b 

molecules.[144] There are many other types of key pigment molecules in plants for remote sensing, 
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such as carotenoids[153], flavonoids, and anthocyanins[156]. Moreover, plants reflecting NIR 

wavelengths primarily because of their foliar structure enabled the development of VIs using the 

reflectance from red and NIR components of EM reflectance.[69] 

1.2.4.2 NDVI and other indices to detect vineyard variability 

The vegetative growth of plants can be used to estimate stress levels experienced in their 

surroundings.[94] Chlorophyll is the primary molecule that absorbs light energy and converts the 

energy for photosynthesis and is also a fundamental determinant of a plant vegetation.[172] The 

concept of stressed vegetation involves any event or situation that inversely affects photosynthesis 

and growth of plants.[51] One of the main causes of this stress is a lack of water and subsequent 

decrease in evaporation rates on the surface of leaves.[51] The concentration of chlorophyll could 

also be altered by external conditions such as sunlight, air contamination, insufficient nutrients, 

toxic chemicals, pathogens, and other environmental stresses.[94] Chlorophyll content is 

negatively correlated to the red reflectance peak because chlorophyll strongly absorbs red radiation 

for the electron transitions for photosynthesis at the magnesium component of the photoactive 

site.[172] Previous research has proven that chlorophyll concentration is negatively correlated to 

the red edge and NIR peaks.[173-175] Because of the reduction in chlorophyll concentration in 

stressed leaves, vegetation stress would have negative impacts on red edge and NIR peaks. 

There have been several techniques developed to identify changes in vegetation condition 

using spectra composed of EM spectrum data at each pixel level.[176] As an example, the 

normalized difference vegetation index (NDVI) was based on calculations by transferring 

individual wavelength data into the ratio between near infrared and red reflectance in each 

band[177]: NDVI= [(near infrared)-(red)] / [(near infrared)+(red)]. NDVI provides the benefit of 

not affecting its calculation by the light intensity of the target.[177] As an indicator of vegetative 
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growth, NDVI is correlated to fractional cover, biomass, shaded area, leaf area index (LAI)[41,70], 

and grape quality[178]. Various researchers have also examined how NDVI affects grape yield and 

quality, including LAI, fruit composition, yield, water stress, and vegetative 

expression.[5,38,40,75,79,179-182] Other remote sensing indices in viticulture are also well 

summarized to detect vegetation status in plants.[5]  

Remote sensors have been compared for their capabilities.[55] The range of wavebands 

captured by multispectral imaging and hyperspectral imaging is different.[55] A multispectral 

sensor measures more than one band of wavelengths while a hyperspectral sensor provides a 

narrow spectral resolution down to 1 nm.[7] In hyperspectral imaging, it is possible to analyze 

spectra of highly specific species under certain conditions, corresponding more precisely to their 

spectral signatures.[183] Hyperspectral sensors offer a lot of potential for remote sensing of plant 

stresses and especially for detecting virus infection [184], phylloxera infestation[185], and 

differences in nutrient status and uptake[74]. VIs from hyperspectral imagery were more effective 

at detecting species-specific spectral patterns under various stress conditions than those from 

multispectral sensors.[6] NDVI and other VIs created by multispectral imaging are less effective 

in detecting vineyard variation in fruit quality.[6] 

 

1.2.5 Concluding remarks and impacts 

Grapevines are subjected to many physiological and environmental stresses that influence 

their vegetative and reproductive growth. Water stress, cold damage, and pathogen attacks are 

highly relevant stresses in this research in many grape growing regions including Canada’s cool 

climate production areas.  In single cultivar blocks, there is a considerable amount of vine 

variability due to the stresses on their vegetative and reproductive growth, and site-specific crop 



21 

 

management enables precision viticulture, stratified according to vegetation stress, poor yield, or 

different quality of fruit.  

In addition, the variability in fruit quality from sub-block zones can be incorporated into 

selective harvesting, which can improve economic value of products and winemaking. As PV has 

advantages both economically and environmentally, developing a low-cost, effective, and precise 

way to identify vineyard variation is necessary for it to become widely accepted. There has been 

good progress in using remote sensing technology to detect the spatial allocations and patterns of 

viticulturally meaningful variations in vineyards, yet further research is required to fully evaluate 

their effectiveness in crop- and site-specific ways. 

This study mainly aimed to improve current knowledge about remote sensing applications 

in viticulture and their feasibility in cool climate vineyards as a precision management tool to help 

increase yields, quality or used for selective harvesting based on wine making potential. Through 

an exploration of a wide range of vineyard variables and their relationship with remote sensing 

data, this research will contribute in-depth knowledge about how remote sensing technologies can 

improve vineyard management practices in Ontario’s viticultural areas and other cool climate 

regions.  Many cool climate regions that have cold winters, a wide range of soil types, variable 

growing seasons and presence of viruses may have more inherent vineyard variability with respect 

to vegetative growth, yield and fruit composition which may impact the feasibility of remote 

sensing capabilities.  This may lead to a lack of temporal stability in the vineyard in addition to 

confounding variables that impact remote sensing analyses and their reliability to use as a vineyard 

management tool.  Therefore, research to examine remote sensing feasibility as a potential site-

specific management tool is essential. 
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It is expected that the results of this research will have the following impacts for grape and 

wine industries: 1) validation of remote sensing as a feasible tool for more precise vineyard 

management in Canada; 2) a greater number of distinct vineyard lots will provide the winemaker 

with increased latitude in blending options if separate wines are made from those lots; 3) grapes 

from these individual wine lots might lead to increased quality of wine; 4) getting vineyards zoned 

by spatial data from remote sensing will assist winemakers to wisely manage the variations in wine 

quality; 5) lastly, it will be also anticipated that these findings will help to improve grape growers' 

access to and adoption of precision viticulture. 
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CHAPTER 2: MATERIALS AND METHODS 

 

2.1 Vineyard selection and vineyard GPS-delineation 

2.1.1 Overview 

This project involved six Cabernet franc vineyard blocks located within the Niagara 

Peninsula of Ontario, Canada. Several Niagara sub-appellations were represented in this study, in 

transects from Lake Ontario to the Niagara Escarpment where soils in the region have high 

variation because of large-scale glacial movement. As a result, many vineyards are planted on 

different soil types from moderately-well drained Chinguacousy to poorly-drained Beverly/Toledo 

soils that can differ considerably in soil properties.[1] A variety of cultural practices such as 

training systems, water, floor, canopy management were also observed in the vineyards studied, 

as well as the overall layout of the blocks. Within each vineyard, a grid of geolocated sentinel 

vines (72-81 vines) was plotted in an 8m x 8m grid then its location was pinpointed via a handheld 

GPS receiver (Raven Industries, Sioux Falls, SD).  

Since the manual collection of some variables from the research vines was labour intensive 

and costly, not all sentinel grapevines per site could be sampled, representative vines (15-20 vines) 

were selected per vineyard block for measurements of leaf water potential (Ψ), bud cold hardiness 

(LT50 (°C)), stomatal conductance (Gs), and virus presence. All six vineyard sites were used in 

chapters 3 feasibility study of remote sensing NDVI analysis to manage vineyard variation, chapter 

4 feasibility study of remote sensing technologies to monitor yield and fruit qualities, and chapter 

5 feasibility study of remote sensing NDVI analysis to detect oenologically relevant vineyard 

zones. Only vineyards (site 1 and 2) to contain GLRaV positive vines by Real Time RT-qPCR 
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were used in chapters 6 feasibility study of remote sensing technologies to detect grapevine virus 

presence.  

 

2.1.2 Vineyard description 

2.1.2.1 Site 1 vineyard in the Niagara Lakeshore 

The vineyard is situated in the Niagara Lakeshore sub-appellation, several km south of 

Lake Ontario. Soil series is predominantly Jeddo 8, which is are moderate drained glacial till clay 

loam with moderate sand content.[1] This block planted in 1987 with 3309 rootstock is 0.78ha in 

area with 76 sentinel vines. It has Double Guyot training system with spacing 1.45m between vines 

and 2.8m between rows and drainage-tiled under every second rows with permanent grass for 

between row management. 

2.1.2.2 Site 2 vineyard in the Beamsville Bench 

The vineyard is situated in the Beamsville Bench sub appellation within the glacially 

formed slopes of the Niagara Escarpment. The soils at this site a poorly drained and primarily 

composed of Chinguacousy clay loam till, with some nearby Oneida clay loam deposits.[1] The 

surrounding ridges are scattered with naturally formed limestone caves and underground mineral 

rich spring water. The vineyard has a moderate north facing slope towards the foot of the 

Escarpment that offers excellent air movement and exposure to lake effect breezes. This block was 

planted in 1999 with 101-14 rootstock is 1.54ha in an area with 75 sentinel vines. It has Double 

Guyot training system with spacing 1.45m between vines and 2.7m between rows and drainage-

tiled under every other row with permanent grass for interrow cover-crop. 
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2.1.2.3 Site 3 vineyard in the St. David’s Bench 

The vineyard is situated on the St. David’s Bench sub appellation in Niagara-on-the-Lake. 

The soils at this site are imperfectly drained and primarily composed of Toledo and Beverley clay 

loam till with some Cashel and Peel clay loam.[1] The vineyard has a moderate north facing slope 

from the Niagara Escarpment towards Lake Ontario and benefits from cool lake effect breezes. 

This block planted in 1992 with 3309 rootstock is 2.29ha in area with 80 sentinel vines. It has 

Double Guyot training system with spacing 0.9m between vines and 2.5m between rows. The only 

vineyard block in this study with spur pruning system and with soil cultivated interrow, is every 

row equipped with drainage tiles. 

2.1.2.4 Site 4 vineyard in the Lincoln Lakeshore 

The main vineyard site is situated on the south shore of Lake Ontario west of Vineland, 

ON, and is located in the Lincoln Lakeshore sub appellation. Soil series is primarily Chinguacousy 

14, which is an moderately drained glacial till soil with high sand and stone content.[1] This block 

planted in 1995 with SO4 rootstock is 0.9 ha in area with 72 sentinel vines. It has Double Guyot 

training system with spacing 1.45m between vines and 2.7m between rows and drainage-tiled 

under every other row with permanent grass for interrow cover-crop. 

2.1.2.5 Site 5 vineyard in the Lincoln Lakeshore 

The vineyard site is situated in Beamsville, Ontario on the east side of Tufford Rd, the 

southern portion of the Lincoln Lakeshore sub appellation. Varieties grown are primarily Cabernet 

franc and Cabernet Sauvignon. Soil series is predominantly poorly drained Trafalgar 7, a high clay 

lacustrine clay loam soil.[1] This block planted in 2006 with SO4 rootstock is 1.15ha in area with 

81 sentinel vines. It has Double Guyot training system with spacing 1.72m between vines and 
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2.75m between rows and drainage-tiled under every other row with permanent grass for interrow 

cover-crop. 

2.1.2.6 Site 6 vineyard in the Four Mile Creek 

The vineyard site is situated on Line 2 in Niagara-on-the-lake. Soil series are mainly 

Chinguacousy 14 and 15, which are glacial till soils with high percentages of sand and stones. 

They are considered moderately drained.[1] This block planted in 2000 with 3309 rootstock is 

1.81ha in area with 80 sentinel vines. It has Double Guyot training system with spacing 1.2m 

between vines and 2.5m between rows and drainage-tiled under every other row with permanent 

grass for interrow cover-crop. 

 

2.1.3 Vineyards GPS-delineation 

As sentinel vines, the research vines were selected to be typical vine in the site, were 

healthy, and were situated to the north and the south orientation. Vine flags and Invicta 115 GPS 

receiver (Raven Industries, Sioux Falls, SD) technology were applied to geolocate the sentinel 

vines. The Invicta 115 receiver provides a 1 to 1.4m accuracy, which was improved further with a 

subsequent adjustment with the Port Weller, Ontario base location, resulting in a closing precision 

of 30 to 50 cm. 

 

2.2 Remote sensing data collection 

In this study, three different methods were used to measure electromagnetic reflectance 

and emission from grapevine leaves: first, proximal remote sensing interpreted as ground-based 

remote sensing from a sensor mounted on a mobile platform in the vineyard; second, airborne 
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remote sensing as multispectral digital image collection from a remotely piloted aircraft system; 

and, last, field spectrometry using a hand-held non-imaging spectrometer on individual leaves. 

 

2.2.1 Remotely piloted aircraft system (RPAS) 

RPAS of the eBee Classic from Parrot group, in Switzerland was flown during veraison in 

2015 and 2016 with an altitude of 90 m and a maximum speed of 60 km/h. A set of Sequoia 

multispectral sensors and a set of Sequoia thermomap sensors (Parrot Group, Switzerland) were 

selected for gaining spectral data, the former equipped with an incident light sensor operating at a 

resolution of 1.2 megapixels (1280 x 960 pixels), pixel size of 3.75 μm, representing a resolution 

of 8.47 cm in 90 m altitude in the visible and near-infrared (NIR) region of reflectance with four 

wide bands (green: 530-570 nm, red: 640-680 nm, red edge: 730-740 nm, and the near infrared: 

770-810 nm) and the latter analyzing thermal-infrared spectrum (TIR) range emission covering 

7000 to 16000 nm at a resolution of 0.3 megapixels (640 X 512 pixels), pixel size of 17 μm, 

representing a resolution of 17 cm in 90 m altitude. Additionally, the aircraft featured a GPS 

receiver, radiation monitor estimating inbound radiation, and inertial system for maintaining the 

alignment and positioning of imaging. The RPAS also had an autopilot system that provided a 

visual range of 1000 m and a radio range of 5 km. The vehicle was powered by an electric motor 

with a battery life of 50 minutes. 

Air-Tech Solutions, Inverary, ON, provided a RPAS and its ground control station for real-

time tracking and collection of images over each vineyard patch. The RPAS was equipped with a 

GPS receiver, sunshine sensor measuring incoming radiation, and an inertial station ensured 

verticality and orientation of images by correcting anomalies in flight attitude (i.e., yaw, pitch, and 

roll). Based on the data from the inertial station and radiation sensor, geometric and imaging 
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adjustments were performed for geometry, reflectivity, image distortions, sun exposures, and 

vignetting effects in radiometric. A geometric correction using ground control points (GCPs) was 

performed to adjust the geometry of the image and adjust the bidirectional reflectance for ensuring 

the accuracy and consistency of data. Geometric distortions caused by changes in RPAS attitude 

and altitude were corrected using the information provided by the inertial station. Radiometric 

correction was performed to correct effects of vignetting. Data were also adjusted for the input of 

the sunshine sensor before VI generation. A sample of detailed radiometric and geometric 

calibration information is shown in appendix Table 1. 

NDVI and other indices were calculated from the mosaics assembled from the images 

acquired on each phase of each flight by choosing overlapping pixels near nadir to minimize the 

problems of angle distortion and directional effects during the images acquisition. The RPAS was 

used to collect data presented in chapters 3 feasibility study of remote sensing NDVI analysis to 

manage vineyard variation, chapter 4 feasibility study of remote sensing technologies to monitor 

yield and fruit qualities, chapter 5 feasibility study of remote sensing NDVI analysis to detect 

oenologically relevant vineyard zones, and chapters 6 feasibility study of remote sensing 

technologies to detect grapevine virus presence. 

 

2.2.2 GreenSeeker®  (proximal sensing) 

GreenSeeker®  RT100 (Trimble, Englewood, CO) were attached to the chassis of a 

GatorTM Utility Vehicle (John Deere) with adjusted height to the canopy and with its red and NIR 

range active optical sensors, GreenSeeker®  measures NDVI using the formula (NIR-

red)/(NIR+red). The optical sensors were equipped with electroluminescent diodes (LED) that 

pulse high intensity electromagnetic (EM) radiation at 100 Hz for both 660 ± 10 nm (Red) and 770 
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± 15 nm (NIR) spectrums. The sensors collect 100 scans per second with 60 cm scope (± 0.112 

cm). It also differentiated between natural and pulsed illumination, thereby eliminating any 

interference from outdoor light situations. For adding exact spatial coordinates to each reading, 

they were also enhanced by an AgGPS®  162 dual channel transmitter from Trimble (Englewood, 

CO), with live positioning adjustments. NDVI data was recorded as the GatorTM traveled up and 

down each row (9 ft spacing) and measurements are unaffected by driving speed and direction.[2]  

To filter out any off-boundary readings, the georeferenced data was transferred to Trimble 

Farmworks and ArcMap 10.6 as well as setting a minimum NDVI of 0.40 to eliminate data without 

plant vegetation.[2] The GreenSeeker proximal sensing was used in chapter 4 feasibility study of 

remote sensing technologies to monitor yield and fruit qualities. 

 

2.2.3 Hand-held spectrometer 

With a portable spectrometer model EPP2000C-100 and SpectraWiz software (StellarNet 

Inc., Tampa, FL), the reflectance spectra of the leaves were obtained and analyzed with a 400-850 

nm range and a resolution of 10 nm per pixel. In this experiment, a 5-watt halogen bulb illuminated 

the entire surface of a leaf placed on a dark plate, and a fiber optic cord designed to capture the 

reflected spectra at 45°angle to the leaf surface. An optical spectrum of the white and dark surface 

was referenced frequently at every 10th measurement using a white Teflon®  square and black 

surface pad. This equipment was used in chapters 6 feasibility study of remote sensing 

technologies to detect grapevine virus presence. 

The spectral measurement was performed in September 2017 after the virus presence data 

for three strains of GLRaV-1, 2, and 3 had been obtained from Real-Time RT-qPCR test by 

Molecular biology lab at University of Guelph (Guelph, ON). A total of 150 leaf samples 



46 

 

comprising 75 leaf samples from each site (25 from healthy vines, 25 from asymptomatic vines, 

and 25 from symptomatic vines) were measured from the two different GLRaV3 infected sites and 

were pictured in the photos shown in Figure 2.1.  

 

Figure 2.1. Photos of Cabernet franc leaves: a) GLRaV-3 positive symptomatic leaves, b) 

GLRaV-3 positive asymptomatic leaves, and c) GLRaV-3 negative leaves. 

 

The virus-positive Cabernet franc leaves demonstrated common signs of GLRaV-3 during 

scouting spectral measurements by the hand-held spectrometer in September 2017 [Figure 2.1 (a)]. 

Previous study indicated that a visual symptom of GLRaV infection was distinct at later season.[3,4] 

Therefore, the late growing season measurements were used to distinguish asymptomatic leaves 

from symptomatic leaves. On the leaf blades of infected grapevines, the interveinal spaces 

contained purple pigmentation and veins appeared to have a slight band of greenish tissue on both 

sides. However, some GLRaV-3 positive vines remained asymptomatic [Figure 2.1 (b)]. All 

grapevines that tested negative for GLRaV-3 had healthy leaves without any virus symptoms 
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[Figure 2.1 (c)]. The spectral data were exported to a spreadsheet and further statistical analyses 

were applied to these data (see section 2.9.7). 

 

2.3 Manual data acquisition from traditional methods of monitoring vineyard variation 

The measurements outlined below in section 2.3.1 and 2.3.2 were used in chapter 3, 

feasibility study of remote sensing NDVI analysis to manage vineyard variation, over the three 

years (2015, 2016, and 2017) with exception of LT50 (2015 and 2016) and stomatal conductance 

(2016 and 2017). The measurements in section 2.3.3.1 were tested on leaf samples in 2016 and in 

2.3.3.2 were tested on cane samples in 2018 and both measurements were used in chapter 6, 

feasibility study of remote sensing technologies to detect grapevine virus presence. 

 

2.3.1 Measures of water status 

2.3.1.1 Soil moisture (SM)  

A TDR 300 model from Spectrum Tech. (East Plainfield, IL) in VWC mode, with 

electrodes of 20 cm length, was used to collect SM at the ground near each sentinel vine. A 

common method for measuring SM is time-domain reflectometry (TDR) as it is fast, damage-free, 

and precise in a wide range of soils.[5] With the oscillatory dielectric and electric nature of soil, 

TDR sends pulses of energy to the soil and measures the return speed as negatively correlated with 

the moisture content in soil. The result is a measure of SM in soil as a proportion of moisture to 

the overall soil volume. Within a 10 cm radius of each vine, soil samples were taken from both 

sides and the average values were calculated from three measurements in 2015 and 2016 and two 

measurements in 2017 of berry set, lag phase, and veraison. 
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2.3.1.2 Leaf water potential (LWP, ψ)  

In this study, mid-day LWP was measured with the pressure bomb method. As transpiration 

occurs and water evaporates from the stomata, there is a build-up of water stress in the xylem 

because of drought conditions and an indication of leaf water potential can be obtained by applying 

pressure to a leaf until droplets of water have resurfaced at the petiole tip.[6,7] The study vines 

were chosen within each subset of sentinel vines to establish a rectangular grid layout over the 

sites. LWP was measured from only the selected ~15-20 water status vines per block. To ensure 

consistency, the readings were undertaken at solar noon hours from 10 AM to 2PM each day when 

the sun exposure was full capacity.[8]  

To establish precision and stability of measurements, an average of at least three leaves per 

vine was taken, and leaves were selected from an undamaged primary shoot, mature leaves, mid 

canopies, and fully exposed leaves. The sampled leaf was inserted instantly in the chamber of 

Model 3015G4 pressure bomb (Santa Barbara, CA) with edge of petiole uncovered and a steady 

increase in pressure (bar) was observed as nitrogen was slowly released into the chamber. 

2.3.1.3 Stomatal conductance (Gs)  

Gs was also recorded on selected vines using a porometer; the parameter is highly 

dependent on the plant's photosynthetic capacity and plant water status, and relates to sun 

exposure, turgor and vapor pressure difference, temperature, and atmospheric CO2 

concentrations.[9] Model SC-1 leaf porometer from Decagon Devices Inc (Pullman, WA) assessed 

Gs in mmol/m ² s and it was calibrated with a tool supplied by the producer. To establish accuracy 

and reliability, three leaves of each vine were selected from an undamaged primary shoot, mature 

leaves, mid canopies, and fully exposed leaves. 
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2.3.2 Measure of grapevine performance 

2.3.2.1 Vine size  

During the winter months in each location, weights of pruned canes were recorded per vine 

to determine vine size.[10] A digital hanging scale was used to systematically weigh each vine's 

pruned canes in the field immediately after pruning, providing a weight in kilograms. 

2.3.2.2 Winter hardiness (LT50) 

This study assessed LT50 for the 15 to 20 sentinel vines per site in 2015 and 2016. Two 

selected canes were taken from each vine for later differential thermal analysis, a technique 

commonly used to determine how hard a plant's tissues are to freeze.[11] With an artificially frozen 

bud LT50 method, which identifies the temperature point at which 50% of its primary bud is killed, 

the measurements were conducted at three different stages from January to March. Five healthy 

buds close to the bottom of each collected cane were taken by cutting boundary of cane bark and 

the bud.[11] Each bud was placed on a sample plate and soaked in moist sheets.[11] The plates 

contained a thermometer to measure the average temperature[12] and each unit included a silicon 

thermocouple sensor to measure the exothermic spikes, which occur when it freezes[11]. 

Afterward, the plates filled with buds were placed in computer-controlled freezers which started 

at 4 °C and dropped by 4 °C every hour to -40 °C, and the LT50 was determined for each plate. 

 

2.3.3 Measure of grapevine virus presence 

2.3.3.1 Virus presence for grapevine leafroll-associated virus (GLRaV) 

Three variants of GLRaV-1, 2 and 3 were tested for virus presence. In September 2016, 

three leaves were sampled from three different sections of vine canopy for virus PCR tests at the 

Molecular Biology lab at University of Guelph (Guelph, Ontario). The leaves were powdered and 
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placed in liquid nitrogen and frozen at -80 °C. GLRaV-3 presence was calculated from Real-Time 

RT-qPCR results, where a higher score reflects less virus presence. In this study, actin was applied 

as a reference gene, a reliable marker for grapevines' response to a stress.[13] 

2.3.3.2 Virus presence for grapevine red blotch virus (GRBV) 

The virus presence was measured for a strain of GRBV. Two mature canes from each side 

of the cordon per vine were sampled in December 2018. Virus presence/absence was measured at 

virus testing services, Cool Climate Oenology and Viticulture Institute, Brock University, St. 

Catharines, ON using Endpoint PCR. DNA was extracted from composite cane samples using the 

DNeasy®  kit by Qiagen Inc. (Valencia, CA); The samples were PCR screened using two pairs of 

GRBV-specific primers: GVGF1 and GVGR1 to amplify a DNA fragment containing the V1 and 

V2 genes[14], and GRLaV-4 For and GRLaV-4 Rev to amplify portions of the replicase gene and 

other genomic segments[15]. 

 

2.4 Yield and fruit composition data acquisition 

2.4.1 Yield data 

The yield data was collected in three consecutive years (2015, 2016, and 2017) in chapter 

4, feasibility study of remote sensing technologies to monitor yield and fruit qualities. To capture 

yield data, sentinel grape vines were harvested as close as possible to commercial harvesting dates, 

and all vines were handpicked into plastic containers, and it was recorded how many clusters were 

harvested per vine. The weight of containers from each vine was measured via the mobile scale to 

calculate the amount (kg) of yield per vine. To determine mean berry weight, The sampled clusters 

included 100 frozen berries, which were weighed to determine their weight(g) and stored at -25 

°C to proceed with analysis of the berries. 
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2.4.2 Basic fruit chemistry 

Basic fruit chemistry was tested on all fruit collected in 2015, 2016, and 2017 in the thesis 

in chapter 4, feasibility study of remote sensing technologies to monitor yield and fruit qualities.  

 

2.4.2.1 Brix, pH, and titratable acidity 

In this study, frozen grape samples were heated in the Isotemp 228 heated-water incubator 

from Fisher Scientific (Mississauga, ON) for 30 minutes at 85 °C before a juicer was used to 

squeeze them after filtering the juice to eliminate any particles, the acidity and Brix were 

determined with Model 25 pH meter from Denver Instrument Inc. (Denver, CO) and Abbé 

refractometer model 10450 from American Optical (Buffalo, NY). The centrifuged juice acquired 

from the IEC Centra CL2 from International Equipment Company (Needham Heights, MA) was 

titrated to pH 8.2 with 0.1 NaOH via PC automatic titrator from Man-Tech (Guelph, ON) to 

determine titratable acidity (TA). 

2.4.2.2 Total phenols 

A micro method of Folin-Ciocalteu reagent was applied to calculate the total phenol 

contents in the grape juice samples.[16,17]  After diluting the juice 10 fold, 20μL of this mixture 

were transferred to the solution of 1.58 mL of water with 100μL of Folin-Ciocalteu reagent from 

Sigma Aldrich (St. Louis, MO) and heated for 8 minutes. In the next steps, 300μL of sodium 

carbonate solution (NaCO3) were poured, blended again, and left in the dark at 20 °C for 2 hours. 

The absorbance at 765 nm was then obtained from the solution, and from the standard curve, the 

phenol concentration was calculated. 
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2.4.2.3 Total anthocyanins 

In this study, a pH shift technique was applied to quantify anthocyanins in grape.[18] Juice 

samples were diluted with nine mL of each buffer solution (pH1.0 and pH4.5) and left to 

equilibrate for an hour in the dark prior to measurement with an 2100 pro UV/Vis 

spectrophotometer from Biochrom Ltd. (Cambridge, UK). According to the given formula [18], 

anthocyanin concentration (mg/L) was determined as: A520 (pH 1.0 - pH 4.5) X 255.75. 

 

2.5 Delineate vineyard zone by high and low NDVI data from multispectral sensor on RPAS 

The spatial distribution of NDVI in each site was displayed using ESRI (Redlands, CA)'s 

ArcMap 10.6, and the maps were created via the inverse-distance-weighted (IDW) technique 

discussed in the next section. This study assigned low and high NDVI zones for each site based 

on a different threshold value, with approximately the same numbers of vines in each zone, which 

was randomly selected around the midpoint of the NDVI distribution. 

Each vineyard site was divided into two NDVI zones with three field replicates based on 

the 2016 RPAS NDVI (remote sensing) interpolated maps: high NDVI zone: green colour and low 

NDVI zone: red colour (Figure 2.2). To maintain consistency between the years (2016 and 2017), 

the NDVI zonal maps were the same in both years. This technique was applied to data collected 

in chapters 5, feasibility study of remote sensing NDVI analysis to detect oenologically relevant 

vineyard zones. 
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 Figure 2.2. Maps of different NDVI zones (low and high) from RPAS flights used for Cabernet 

franc winemaking. Maps were created in ArcMap 10.6. Legend: A: site 1 in the Niagara 

Lakeshore; B: site 2 in the Beamsville Bench; C: site 3 in the St. David’s Bench; D: site 4 in the 

Lincoln Lakeshore; E: site 5 in the Lincoln Lakeshore; F: site 6 in the Four Mile Creek. 
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2.6 Harvesting and winemaking 

Wine was made from harvested grapes in 2016 and 2017 as outlined in Chapter 5, 

feasibility study of remote sensing NDVI analysis to detect oenologically relevant vineyard zones. 

Harvested grapes from different NDVI zones (low and high) were brought to Brock research 

winery and the grape-must was extracted by destemming and crushing process. 250 mL samples 

per replicate and treatment were collected for wine chemical analysis. To optimize flavour and 

colour extraction, the musts were chilled at 1 °C for a day with treating 0.05 g/L of Lafase®  HE 

Grand Cru enzyme from Laffort (France), along with 25 ppm of potassium metabisulfite.  

To perform a rehydration of yeast, the must was mixed with 0.4 g/L of Fermol Rouge yeast 

and 0.45 g/L of FermoPlus Energy GLU yeast nutrition from AEB Group (USA). After 

fermentation in the thermally regulated cells at 25 °C was complete, the musts from each site and 

treatments were then pressed into labeled 20 L carboys using a wine bladder press to a high of 2 

bars and allowed to sit for two days at ambient temperature before racking into clean carboys, 

adding 25 ppm of potassium metabisulfite, and chilling to -1 °C to allow cold precipitation for a 

couple of months. Finished wines with 25 ppm of final SO2 addition were filled manually and 

bottled with an automatic corking machine (San Vito, Italy). After being bottled with an additional 

25 ppm of potassium metabisulfite, the finished wines were kept in a climate-regulated wine cellar 

for one and half year for 2016 vintage and half year for 2017 vintages before the sensory sorting 

test. 
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2.7 Wine composition and sensory analysis 

2.7.1 Basic wine chemistry 

Basic wine chemistry was measured for wines produced in 2016 and 2017 presented in 

chapter 5, feasibility study of remote sensing NDVI analysis to detect oenologically relevant 

vineyard zones. The methods to analyze Brix, pH, titratable acidity, total phenols, and 

anthocyanins were given in sections 2.4.2.1 to 2.4.2.3. GC-FID analysis of ethanol was performed 

at CCOVI's analytical services lab using an HP 6890 series gas chromatograph and a Carbowax 

column from Agilent Technologies (Santa Clara, CA). 

 

2.7.2 Sensory sorting test 

Sensory sorting test of wines was performed on wines from 2016 and 2017 vintages 

presented in Chapter 5, feasibility study of remote sensing NDVI analysis to detect oenologically 

relevant vineyard zones. The Research Ethics Board at Brock University approved the study and 

all panelists had provided informed consent before participation and the approval number is REB 

17-013. It is well-documented that sensory sorting tests have been conducted on a wide range of 

alcoholic and non-alcoholic beverages[19-21], and it yields comparable outcomes to other sensory 

evaluation methods without the requirement of panel training[22].  

In September 2018, wine samples from low vs high NDVI vineyard zones were sorted by 

19 panelists from Brock students and staff as well as Niagara wine industry members and both 

2016 and 2017 vintages were tasted simultaneously. All the panelists who were actively engaged 

in the wine sector were regarded as knowledgeable wine drinkers despite their lack of training. 

Both vintages were presented by the same panelists to eliminate the impact of variations among 

panelists on different years, and randomly, the order of site presentations was chosen.  
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Using Compusense®  sensory testing from Compusense Inc. (Guelph, ON), sorting 

sessions were conducted in Brock's wine sensory lab involving six different sites, each with two 

wines of High NDVI and Low NDVI, and their corresponding three wine replicates. 

Compusense®  requested the panelists to sort the wines by the same sensory attribute, without 

specifying what attributes to use and additionally, the sorting task also specified to create at least 

two groups and no more than five groups, to prevent all wines being grouped together nor isolated. 

Each panelist had approximately one to two hours for each session, with mandatory 20-minute 

breaks between each of the first three flights. 

 

2.7.3 Sensory descriptive analysis 

Sensory descriptive analysis of wines was performed on wines from 2016 vintages 

presented in Chapter 5, feasibility study of remote sensing NDVI analysis to detect oenologically 

relevant vineyard zones. The Research Ethics Board at Brock University approved the study and 

all panelists had provided informed consent before participation and the approval number is REB 

17-013. 

Descriptive analysis was conducted on the 2016 Cabernet franc wines with two treatments 

(low and high NDVI) and triplicates from each treatment from February 2019 until April 2019. 

Panelists were recruited from students of the Oenology and Viticulture program, as well as staff 

members from Brock University. The panelists  consisted of undergraduate students, graduate 

students, PhD candidates, and staff, with varying degrees of experience in descriptive analysis 

panels. The panel was formed of nine judges, involving six females and three males. All panelists 

underwent six weeks of training  consisting of six hours total, across six sessions.  
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In the first session, the panelists generated a comprehensive list of descriptive attributes 

found within the wine samples. In the following session, the panelists underwent a group 

discussion to generate a representative list of attributes which best described the wines. During 

sessions three and four, the panelists generated and adjusted aroma standards and terminology. No 

reference standards were prepared for the physical, flavor, and taste attributes. The attributes 

selected for the analysis and the corresponding aroma standard ‘recipe’ can be found in Table 2.1 

and 2.2, respectively. In the final two weeks of training, the panelists were introduced to line 

scaling and Compusense®  sensory testing from Compusense Inc. (Guelph, ON). 

 

Table 2.1. Sensory attributes of the 2016 Cabernet franc wines from different NDVI zones (high 

and low) generated during descriptive analysis. 

Orthonasal Descriptors Retronasal Descriptors Taste Descriptors 

Red Fruit Red Fruit Colour Intensity 

Dried Fruit Dried Fruit Colour Clarity 

Dark Fruit Dark Fruit Acidity 

Floral Vegetal Alcohol 

Vegetal Herbaceous Astringency 

Herbaceous Spice Bitterness 

Spice Earthy Sweetness 

Earthy Tropical   

Tropical     
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Table 2.2. Aroma reference standards used during descriptive analysis of Cabernet franc wines 

from different NDVI zones (high and low).  

Attribute Aroma Standard* 

Red Fruit 10 mL fresh strawberry juice and 10 mL of fresh raspberry juice 

Dried Fruit 80 mL of no name prune nectar, 6 pitted dried prune, and 15 seedless Thompson 

raisins 

Dark Fruit  20 mL of fresh blackberry juice, 10mL of fresh blueberry juice, 25 mL of 

Ribena Concentrated Blackcurrant beverage, 40 mL of OASIS berry 

pomegranate juice 

Floral 100mL of phenyl ethanol and 2 mL of cis-rose oxide  

Vegetal Additional 25 0mL of base wine, 30mL of juice from No Name French cut 

seasoned green beans, and 1 TBS of frozen PC®  small, sweet peas 

Herbaceous 2.8 g of organic cat grass, 4 fresh green beans, 1/4 leaf of fresh mint 

Spice 0.1 g of ground coriander, 0.2 g of ground cloves, 0.05 g of all spice, 0.05 g of 

anise seed, and 0.05 g of cinnamon 

Earthy 25 mL of fresh earth/soil collected from the forest floor, 10 g of wet leaves 

collected from the forest floor, and 5mL of mushroom stock solution ** 

Tropical Fruit 70 g of frozen PC®  mango and peach fruit blend  

* The aroma standards were mixed with standard wine (Cabernet franc) and stored at 4 °C before 

the sensory test 

**500 mL of base red wine with 10 L of 1-octen-3-ol  

 

Using Compusense®  sensory testing, the final descriptive analysis was performed in 

Brock’s wine sensory lab. Panelists evaluated the wines in individual booths, using clear ISO 

glasses. Based on a Williams design, the wines from different NDVI zones were provided to the 

judges with a three-digit blind code in a random order. The panelists underwent six sensory 

evaluation sessions in total. A maximum of six wines were presented in session and there was a 
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mandatory two-minute break after each sample. Filtered water, unsalted crackers and spittoons 

were provided at all sessions. Panelists were reminded at each session to use the aroma standards 

as references. All attributes were scored on a 15 cm intensity scale with anchor terms 0.5 cm from 

each end. The anchor terms  consisted of ‘low’ or ‘absent’ on the 0, and ‘high’ on the 15. 

 

2.8 Wine aromatic compound analysis (GC-MS) 

Wines produced from 2016 and 2017 were evaluated for wine aromatic compounds with 

data presented in chapter 5, feasibility study of remote sensing NDVI analysis to detect 

oenologically relevant vineyard zones.  

 

2.8.1 Sample extraction  

SBSE method, marketed as Twister®  from Gerstel (Baltimore, MD), was used to extract 

volatiles from the aqueous solution of a wine sample. Each wine sample was spiked with 100 g/L 

n-dodecanol in GC-grade dichloromethane as an internal control. 

 

2.8.2 Gas chromatography−mass spectrometry (GC-MS) 

In this study, a gas chromatograph-mass spectrometer model 6890N/5975B with Agilent 

HP-5MS column (30, 0.25 mm and 0.25 μm) from Agilent Technologies (Santa Clara, CA) was 

used to analyze key odor active compounds in wines from different NDVI zones. Helium of purity 

5.0 was used as the carrier gas (Praxair, Mississauga, Ontario) and the matrix scanning mode of 

the MS detector was used for chemical identification and SIM mode of the detector to measure the 

ions on each chemical (Table 2.3). 
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Table 2.3. Key odor active compounds of Cabernet franc wine for GC-MS analysis. 

NO Compound CAS RT/min 
Quantitative 

ion (m/z) 

Qualitative ion 

(m/z) 
Group Group ion 

1 2-Methyl-1-propanol 78-83-1 8.354 43 42,41,74 

1 
41, 43, 55, 56, 

70, 71, 74, 88  

2 Isobutyl acetate 110-19-0 10.155 43 56,73,41 

3 Ethyl butanoate 105-54-4 10.973 71 43,88,41 

4 3-Methyl-1-butanol 123-51-3 11.337 55 42,43,70 

5 Ethyl 2-methylbutanoate 7452-79-1 12.537 57 102,85,74 

2 

43, 45, 55, 57, 

60, 70, 75, 85, 
88, 102 

6 Ethyl 3-methylbutanoate 108-64-5 12.677 88 57,85,60 

7 Isoamyl acetate 123-92-2 13.727 43 70,55,41 

8 Ethyl lactate 97-64-3 14.81 45 43,75 

9 cis-3-Hexenol ((Z)-3-hexenol) 928-96-1 15.864 67 41,55,82 

3 
41, 43, 55, 56, 

57, 60, 67, 82 

10 1-Hexanol 111-27-3 15.946 56 43,41,55 

11 Acetic acid 64-19-7 16.153 43 45,60,42 

12 trans-3-Hexenol ((E)-3-hexenol) 928-97-2 16.31 67 41,69,82 

13 trans-2-Hexenol ((E)-2-hexenol) 928-95-0 16.844 57 41,82,44 

14 cis-2-Hexenol ((Z)-2-hexenol) 928-94-9 17.098 57 41,82,67 

15 Ethyl hexanoate 123-66-0 18.668 88 43,99,60 

4 
43, 55, 56, 57, 

60, 70, 88, 99 

16 Hexyl acetate 142-92-7 19.34 43 56,55,61 

17 1-Heptanol 111-70-6 19.804 70 56,43,55 

18 1-Octen-3-ol 3391-86-4 19.932 57 43,72,55 

19 Benzaldehyde 100-52-7 20.855 77 106,105,51 5 77, 105, 106 

20 3-Methylbutanoic acid 503-74-2 23.074 60 43,41,87 

6 
55, 56, 60, 69, 
70, 71, 87, 91, 

93, 120, 139 

21 Ethyl 2-hydroxy-4-methylpentanoate 53530-26-0 23.258 69 87, 41 

22 cis-Rose oxide 3033-23-6  23.416 139 69,41,55 

23 1-Octanol 111-87-5 23.705 56 55,41,70 

24 trans-Rose oxide 876-18-6 24.114 139 69,41,55 

25 Linalool 78-70-6 24.364 71 93,55,43 

26 Phenylacetaldehyde 122-78-1 24.491 91 92,120,65 

27 Ethyl octanoate 106-32-1 26.771 88 101,57,127 

7 

59, 60, 69, 73, 

93,101, 121, 
139  

28 Diethyl succinate 123-25-1 27.961 101 139,55,73 

29 Hexanoic acid 142-62-1 28.098 60 73,41,87 

30 α-Terpineol 98-55-5 28.639 59 93, 121, 136 

31 Citronellol 106-22-9  30.207 69 95, 123, 138 

8 
69, 91, 92, 93, 
95, 122, 123 

32 2-Phenylethanol 60-12-8 30.486 91 92,62,122 

33 Nerol 106-25-2 30.673 69 93,68,67 

34 Ethyl phenylacetate 101-97-3 31.002 91 65,164,92 

9 
69, 91, 93, 104, 

105, 123, 164 
35 Phenylethyl acetate 103-45-7 31.623 104 43,91,105 

36 Geraniol 106-24-1 31.817 69 41, 93, 123 

37 Ethyl decanoate 110-38-3 34.116 88 101,43,41 

10 

55, 60, 69, 73, 

85, 88, 101, 
121   

38 Octanoic acid 124-07-2 34.23 60 73,43,55 

39 β-Damascenone 23726-93-4 35.202 69 121,41,105 

40 γ-Nonalactone 104-61-0 36.534 85 41,43,55 

41 Eugenol 97-53-0 38.125 164 103,77,149 

11 

55, 69, 91, 164, 

103, 135, 149, 

177 

IS 1-Dodecanol 112-53-8 38.134 55 43,69,56 

42 β-Ionone 79-77-6 38.732 177 91, 135, 178 

43 Syringol 91-10-1 39.366 154 139, 111 

12 

60, 73, 85, 103, 

128, 131, 139, 

154, 176  

44 Ethyl cinnamate 103-36-6 39.634 131 103, 176 

45 Decanoic acid 334-48-5 39.732 60 73,41,43 

46 γ-Decalactone 706-14-9 39.825 85 128 
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2.8.3 Identification and quantification  

Comparing retention times and mass spectra (of the Wiley library) to the reference 

standards provided the means for chemical identification, and the multiple calibration curves were 

tested in synthetic wine to verify accuracy. To quantify a compound, the peak area of the analyte 

was compared with that of the internal standard.  

 

2.9 Mapping and data analysis 

The mapping and correlation analysis in section 2.9.1, 2.9.2, and 2.9.3 were used in chapter 

3, feasibility study of remote sensing NDVI analysis to manage vineyard variation and chapter 4, 

feasibility study of remote sensing technologies to monitor yield and fruit qualities. The data 

analysis in section 2.9.4, 2.9.5, and 2.9.6 was used in chapter 5, feasibility study of remote sensing 

NDVI analysis to detect oenologically relevant vineyard zones. The data analysis in section 2.9.7 

was used in chapter 6, feasibility study of remote sensing technologies to detect grapevine virus 

presence. 

 

2.9.1 Mapping and data extraction  

The spatial distribution of NDVI and other indices in each site was displayed using ArcMap 

10.6, and the maps of the point data collected from the sentinel vines (i.e., yield, berry weight, soil 

moisture, etc..) were created via the inverse-distance-weighted (IDW) interpolation method. In a 

spatially discretized way, IDW uses a linearly weighted set of data points to calculate a point's 

value, where the weighted average of points sampled declines with rising gap from the unsampled 

location.[23] Several trials were made to identify parameters for IDW that created most accurate 

maps but at the same time maintained readable and interpretable maps during this study. For 
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instance, the highest and lowest values of original data were compared to those data from IDW 

and it only created the projected pattern from local variation and did not interrupt any original 

dataset.   

Two major parameters exist in determining the accuracy of the IDW interpolations: power 

and search radius. IDW relies mainly on the inverse of the distance between known and unknown 

locations, raised to a mathematical power, which controls the significance of known points on the 

interpolated values based on their distance from the output point. A higher power puts more 

emphasis on the nearest points, and for this study the default value of 2 was used. The search radius 

controls the input points used in the calculation of each output cell value. For this research, a fixed 

search radius was used as follows: Standard Sector - Four Sectors with 45° offset; minimum 

neighbors: 10, maximum: 15.As a data classification method, Quantile breaks were used, which 

classified the data with the same number of elements in each class, and thereby avoided 

extraordinarily large or empty classes and facilitating the interpretation of the maps. In remote 

sensing applications with dense spatial data, diffusion interpolation with a smaller spatial channel 

enables efficient interpolation and a seamless contour plot using the same class and colour rules 

as IDW method. 

Interpolation spatial methods also enable the extraction of spectral values at the GPS 

coordinated research vines from surrounding sampled data. For all remote sensing indices creation, 

the flight data were imported and displayed in ArcMap 10.6 with World geodetic system 1984 and 

projected in the Universal Transverse Mercator zone 17N. Using the IDW interpolation technique 

and the extract values to point tool, the resultant data were interpolated and further exported to 

Microsoft Excel sheets in which each study vine was associated with its dGPS coordinate points 

as well as data from the remote sensing flight. 



63 

 

 

2.9.2 Global Moran’s I: Spatial autocorrelation 

When evaluating the possibility of applying remote sensing data to measure local variations 

for implementing precision viticulture, it is necessary to investigate a spatial allocation of 

important variables for vineyard management. Spatially clustered variables may be more 

appropriate for precision viticulture applications due to the ease of targeting management to larger 

vineyard clusters/zones rather than sporadically throughout the vineyard. Spatial autocorrelations 

were performed using the autocorrelation tool, Moran's Global Index, determines whether a pattern 

expressed is clustered, dispersed, or random. A z-score or a p-value can be utilized to test if the 

null hypothesis of randomly dispersed data is true or false, and a Moran’s I scores from -1 to +1, 

where plus z-score indicates clustering and minus z-score indicates dispersion.  

 

2.9.3 Correlation-based analyses  

In this study, the correlation statistics were done through XLSTAT v2021. The Shapiro-

Wilk test was applied to each data to verify normality and any outliers were highlighted on 

boxplots after careful evaluation of the data variation. Afterward, Pearson's correlations were 

computed on all vintage and site data at 95% confidence level to find a meaningful relationship 

between remote sensing data and vineyard variable data. Prior to the next step to perform a 

principal component analysis (PCA), data were standardized. With PCA, a complex data set can 

be reduced to simple data that still contains most of the original data, and data correlated with one 

another can be transformed into principal components, starting with the first component describing 

most of the variance in the data. Each value in the first two factors was evaluated using the square 

cosine of the value to determine the level of relationship between the value and the axis, as part of 
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the PCA analysis. Square cosine near zero of short vectors are indicators that the model does not 

adequately explain the relationship. 

 

2.9.4 Wine chemistry data analysis (low NDVI vs high NDVI)  

A two-tailed t-test was calculated with XLSTAT 2021 on the must and wine chemistry data 

such as Brix, pH, TA, total phenols, anthocyanins, and ethanol to determine their correlation with 

different NDVI levels. The difference in treatment means as well as their standard deviations was 

visualized using column charts. An asterix '*' was placed by a p-value that differentiated the two 

treatments significantly (p<0.05). 

 

2.9.5 Sorting group data analysis 

The sensory sorting data analysis was done using the method suggested by Chollet (2014) 

[24] and Alegre (2017) [25]. Cooccurrence scores from the wine sorting test were calculated for 

each panelist and were then summed up to determine an overall similarity score. The results were 

then visualized using multidimensional scaling (MDS) in XLSTAT 2021.[26] Kruskal's stress 

value was used to determine whether the resulting MDS was acceptable.[27] Low values represent 

more similarity between data, and a common standard for stress values is 0.2.[24,25]  

Further analyses of MDS were conducted by using an agglomerative hierarchical clustering 

(AHC) based on Ward's algorithm in XLSTAT 2021. The AHC method is a repeated classifier 

that computes the level of difference across all variables, then groups similar variables together to 

reduce the agglomeration criterion, and continuing until all variables have been grouped 

together.[28] It produces a dendrogram, which  consisted of a grouping diagram rooted in the class 

including all variables and the subsequent hierarchical separation of classes. 
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2.9.6 Key odor active aroma compounds (GC-MS) data analysis 

Statistical analysis of the 2016 wine aroma compounds data was conducted through 

XLSTAT 2021. Differences between the high and low NDVI wines for all key odor active aroma 

compounds were analyzed using a two-sample t-test. An average of the NDVI treatments for the 

chemical components was used due to the presentation of data files from the GC. Partial least 

squares regression (PLSR) analyses were performed to confirm the correlations among the NDVI 

treatments, the key odor active volatile compounds, which showed a significantly different 

concentration level in the two-sample t-test and the aroma attributes from the sensory DA for each 

treatment. 

 

2.9.7 Hand-held spectrometer data analysis 

The line graphs of mean electromagnetic (EM) reflectance for leaves from healthy and 

GLRaV3 infected grapevines were used to display the visual difference between the treatments. 

The two tailed t-tests and column charts of mean value were also conducted to confirm that 

different reflectance levels occurred through visible and NIR wavebands among symptomatic, 

asymptomatic, and healthy leaves. 

Remote sensing indices from the multi-spectral data of the RPAS flight in 2016 were also 

extracted and examined to characterize vine health and GLRaV3 detection (Section 2.10.1). To 

run correlation-based analyses, designated clean vines by Real-Time RT-qPCR were assigned a 

“0” and GLRaV3 infected vines were assigned a “1”. PCA and Pearson’s correlations analysis 

were performed to compare GLRaV3 presence against the extracted remote sensing indices 

(Section 2.10.3). 
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2.10 Methods overview by Chapter 

Summary of chapter-specific methodology are listed in sections below. 

 

2.10.1 Methods for Chapter 3 feasibility study of remote sensing NDVI analysis to manage 

vineyard variation 

The representative vines of the vineyard block were selected (Section 2.1) and geolocated 

(Section 2.1.3) for data collection, and three years (2015, 2016, and 2017) of data collections were 

completed on the same vines. The measurements of leaf water potential (Section 2.3.1.2), stomatal 

conductance (Section 2.3.1.3), and soil moisture (Section 2.3.1.1) were taken at the three important 

physiological phases of grapevine growing season: berry set, lag phase, and veraison. The average 

values from the three different stages were applied to a correlation analysis to reduce any impacts 

of temporary weather events on vine water status. To assess a vine size, the weights of pruned 

canes (Section 2.3.2.1) were measured for the selected vines for three years (2015, 2016, and 

2017). The lethal temperature for 50% of buds (LT50, Section 2.3.2.2) was performed to measure 

the winter hardiness of the selected vines for two years (2015 and 2016). Air-Tech Solutions, 

Inverary, ON performed RPAS flights during veraison in 2015 and 2016 (Section 2.2.1). The 

images from a multispectral sensor attached on the RPAS were further converted to the normalized 

difference vegetation index (NDVI). 

Data were analyzed for correlation statistics using Pearson’s correlations and principal 

component analysis (PCA) for each site and year (Section 2.9.3). The correlations analysis was 

performed to compare all variables against remote sensing data analysis (NDVI). The spatial 

autocorrelation of each variable was determined by Global Moran's I (Section 2.9.2), which shows 
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clustering patterns to evaluate zonal management options. Using interpolation methods, maps were 

also created in ArcGIS 10.6 to visualize the geographical orientations of each vineyard variable 

(Section 2.10.1). 

 

2.10.2 Methods for Chapter 4 feasibility study of remote sensing technologies to monitor yield and 

fruit qualities  

The representative vines of the vineyard block were selected (Section 2.1) and geolocated 

(Section 2.1.3) for yield and berry composition data collection, and three years (2015, 2016, and 

2017) data collections were done on the same vines. The grapes of each representative vine were 

harvested close to the commercial harvest dates and weight of the harvested grapes (kg), number 

of clusters, and weight of 100 berries(g) for each vine were recorded at the sites (Section 2.4.1). 

To analyze basic fruit chemistry, five representative clusters from each vine were brought to the 

laboratory and kept at -25℃. 

A John Deere Gator utility vehicle mounted with Trimble GreenSeeker RT100 sensors 

was driven throughout each vineyard block, collecting real-time NDVI of spectral reflectance from 

the sides of the rows in 2015, 2016, and 2017 (Section 2.2.2). The measurements were taken at the 

three important physiological phases of grapevine growing season (berry set, lag phase, and 

veraison) to investigate impacts of vegetation in different physiological stages on fruit production 

and quality (there was no data collection during the berry set of 2017). 

Further analysis (Section 2.4.2) of Brix, pH, TA, total phenols, and total anthocyanins in 

grapes from each vine was performed and the NDVIs from proximal sensing data in series of 2015, 

2016, and 2017 were compared with the yield and berry composition data using PCA and Pearson’s 

correlations analysis. 



68 

 

The spectral reflectance data from multispectral and thermal sensor on RPAS in 2015 and 

2016 also applied for the correlation analysis with the yield and berry composition data in 2015 

and 2016. The reflectance data were further analyzed to NDVI, Green chlorophyll index (CI green), 

Red edge chlorophyll index (CI red edge), Red edge normalized difference vegetation index 

(NDRE), NDVI green (GNDVI), and Ratio vegetation index (RVI) (Section 2.9.1). PCA and 

Pearson’s correlations analysis were performed to evaluate the correlation between the variables 

(Section 2.9.3). The spatial clustering patterns and correlations of variables were also determined 

by Global Moran's I and spatial map analysis (Section 2.9.1 and 2.9.2). 

 

2.10.3 Methods for Chapter 5 feasibility study of remote sensing NDVI analysis to detect 

oenologically relevant vineyard zones  

The representative zones of different NDVI level in each vineyard block were selected by 

NDVI maps created from the spectral reflectance data of RPAS flight in 2016, and data collections 

and analysis were done on the same NDVI zones in 2017 (Section 2.5). Based on a different 

threshold value, each site was assigned high and low NDVI zones with approximately the same 

number of vines in each zone. Separate harvesting and winemaking were performed from each 

zone and there were three replicates for each of the treatment wines (high and low NDVI, Section 

2.6). 

The analysis of basic wine chemistry of Brix, pH, titratable acidity, total phenols, 

anthocyanins, and ethanol from each zone were performed (Section 2.7.1) and the NDVI zonal 

differences were evaluated by two tailed t-tests. The differences between treatments were 

visualized by column charts of mean and standard deviation (Section 2.9.4).  
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A sensory sorting test for the 2016 and 2017 vintages (Section 2.7.2), and sensory 

descriptive analysis for 2016 vintage (Section 2.7.3) was performed to evaluate the variations in 

odour and flavour intensity between the NDVI zonal wines. Statistical methods of multi-

dimensional scaling (MDS) and agglomerative hierarchical clustering (AHC) for the sorting test 

results were conducted to cluster similarity between the treatments and its replicates (Section 

2.9.5). The principal component analysis (PCA) for the descriptive analysis results was performed 

to investigate correlations between the different NDVI zonal wines and sensory descriptors 

(Section 2.9.3). 

Wine aroma compounds analysis was performed using gas chromatography–mass 

spectrometry (GC-MS) and conducted for 2016 and 2017 vintage wines to better understand 

volatile compound differences between the NDVI zonal wines (Section 2.8) and relate to sensory 

data. The GC-MS results were further analyzed by two tailed t-tests to investigate a difference in 

the level of aromatic compounds between low and high NDVI zones (Section 2.9.6). The partial 

least squares regression (PLSR) for GC-MS and sensory descriptive analysis results was also 

conducted to confirm correlations between sensory descriptors and key aromatic compounds from 

the different NDVI zonal wines (Section 2.9.6). 

 

2.10.4 Methods for Chapter 6 feasibility study of remote sensing technologies to detect grapevine 

virus presence  

The representative vines of the GLRaV3 infected vineyard blocks were selected and 

geolocated for detecting the virus by Real-Time reverse transcription quantitative polymerase 

chain reaction (RT-qPCR) test and for measuring spectral reflectance by a hand-held spectrometer. 
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A random sample was taken of upper, middle, and lower leaves of the vines in September 

2016 and analysis of GLRaV3 presence of all samples were conducted using Real-Time RT-qPCR 

(Section 2.3.3.1). A random sample was also taken two mature canes from each side of the cordon 

per vine sampled in December 2018 and analysis of GRBV presence of all samples were conducted 

using Endpoint PCR (Section 2.3.3.2). 

Spectral measurements of healthy and GLRaV3 infected leaves by the hand-held 

spectrometer were conducted at veraison in 2017 (Section 2.2.3). The measurements were made 

for the subset of 150 leaf samples (50 of healthy leaves, 50 of GLRaV3 infected leaves with 

reddening symptoms, and 50 of GLRaV-3 infected leaves without the symptoms) from the 

GLRaV-3 infected vineyards. Statistical analysis (Section 2,9.7) of the spectral measurements was 

conducted through XLSTAT 2021. 
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CHAPTER 3: RESULTS AND DISCUSSION – FEASIBILITY STUDY OF REMOTE 

SENSING NDVI ANAYSIS TO MANAGE VINEYARD VARIATION 

The objective of this chapter was to examine the feasibility of using remote sensing NDVI 

to detect important vineyard variations that affect the viability of vineyards such as leaf water 

potential, soil moisture, canopy size, and LT50. We hypothesize that remote sensing NDVI will 

correspond to local variations in several vineyard variables that affect the viability of vineyards, 

and the correlations would be temporally stable. 

 

3.1 Results 

NDVI values from remote sensing data from 2015, 2016, and 2017 were compared with 

soil moisture (SM), leaf water potential (LWP, ψ), stomatal conductance (Gs), vine size, and winter 

hardiness (LT50).  

 

3.1.1 Principal component analysis (PCA) 

PCA results were derived from the first two factors, which explained between 50 and 67% 

of the data (Figures 3.1 and 3.2). As shown by Pearson's correlation matrices, PCA models 

illustrated similar configuration between variables. In site 1 2015, 2016, and 2017 (Figure 3.1), 

the analysis described 57.48 %, 51.74%, and 67.30% of the data and demonstrated that remote 

sensing NDVI positively correlated to vine size and soil moisture throughout the three-year period. 

NDVI somewhat negatively correlated to leaf ψ in 2015 and 2016 and to Gs in 2017. In site 2 

2015, 2016, and 2017 (Figure 3.1), the analysis described 53.28 %, 54.49%, and 63.74% of the 

data and demonstrated that remote sensing NDVI negatively correlated to soil moisture throughout 

the three-year period. NDVI also negatively correlated to LT50 in 2015 and 2016 but these were 
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short vectors, and the first two PCAs could not adequately explain them. NDVI somewhat 

positively correlated to vine size and leaf ψ in the three-year period, but this does not appear to be 

clear in the PCA charts.  

 

Figure 3.1. PCA results between remote sensing data and viticulturally important variables in 

site 1, 2, and 3 vineyards from 2015, 2016 and 2017. Abbreviations: NDVI= Normalized 

difference vegetation index, Leaf Ψ= Leaf water potential, Gs= Stomatal conductance, LT50= 

Temperature that kills 50% of the primary buds. 
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In site 3 2015, 2016, and 2017 (Figure 3.1), the analysis described 61.40 %, 54.49%, and 

81.95% of the data and demonstrated that remote sensing NDVI showed an inverse correlation 

with soil moisture and LT50 and a positive correlation with vine size over a three-year period. 

NDVI somewhat positively correlated to Gs and leaf ψ in the three-year period but there does not 

appear to be clear in the PCA chart. In site 4 2015, 2016, and 2017 (Figure 3.2), the analysis 

described 55.66 %, 61.89%, and 63.40% of the data and demonstrated that remote sensing NDVI 

positively correlated to soil moisture, vine size, leaf ψ and Gs in 2015 and 2016. However, due to 

the relatively short vector for NDVI, it was difficult to visually interpret the relationship. All the 

variables were positively correlated to NDVI in 2017. In site 5 2015, 2016, and 2017 (Figure 3.2), 

the analysis described 58.75 %, 59.39%, and 65.82% of the data and demonstrated that remote 

sensing NDVI negatively correlated to soil moisture and positively correlated to vine size 

throughout the three-year period. NDVI somewhat positively correlated to leaf ψ in the three-year 

period but there does not appear to be clear in the PCA charts. In site 6 2015, 2016, and 2017 

(Figure 3.2), the analysis described 49.27 %, 55.82%, and 59.57% of the data and demonstrated 

that remote sensing NDVI positively correlated to vine size throughout the three-year period. 

NDVI somewhat positively correlated to leaf ψ and inversely correlated to soil moisture but those 

had short vectors and thus there does not appear to be clear in the PCA charts. 
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Figure 3.2. PCA results between remote sensing data and viticulturally important variables in 

site 4, 5, and 6 vineyards from 2015, 2016 and 2017. Abbreviations: NDVI= Normalized 

difference vegetation index, Leaf Ψ= Leaf water potential, Gs= Stomatal conductance, LT50= 

Temperature that kills 50% of the primary buds.  
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Overall, observing the short vectors for some variables, Pearson's correlations should be 

used to test whether other factors are adequately explaining some variable. It was found that the 

NDVI and vine size are positively correlated, while the soil moisture is inversely correlated to 

them.  

 

3.1.2 Pearson’s correlation analysis (p-value)  

3.1.2.1 Relationships between NDVI and soil moisture (SM)  

There was an inverse relationship between remote sensing NDVI and SM on three sites 

(site 2, 3, and 5; Table 3.1) throughout three consecutive years (2015, 2016, 2917). However, 

remote sensing NDVI was positively correlated to SM at site 4 in 2015 and 2016 and at site 1 in 

2017. There was no statistically significant correlation between NDVI and SM at site 6.  

 

Table 3.1. Pearson's correlation results between remote sensing data and viticulturally important 

variables in six Niagara vineyards from 2015, 2016 and 2017. Those variables with significant 

(95% confidence) were listed in bold, with blank cells representing no correlation. Abbreviations: 

Leaf Ψ= Leaf water potential, Gs= Stomatal conductance, LT50= Temperature that kills 50% of 

the primary buds. 
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Table 3.2. Summary of the statistical data for remote sensing and viticulturally important variables 

in six Niagara vineyards from 2015, 2016 and 2017. Abbreviations: NDVI= Normalized difference 

vegetation index, MIN= Minimum, MAX= Maximum, SD= Standard deviation, CV%= 

Coefficient of variation. 
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Figure 3.3. Mean growing season (May to September) temperature (°C), total growing season 

rainfall (mm), and average minimum dormant season (December to March) temperature (°C) 

from two Niagara resign locations. Port Weller AUT represented Niagara-on-the-lake vineyards 

and Vineland Research Station represented vineland vineyards. Historical climate normal data 

from St. Catharines A station 1981-2010. 
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The mean SM and its variation differed between sites (Table 3.2). The site with the highest 

SM (three years average) was site 5 (29.0 ± 5.3), followed by site 3 (25.2 ± 5.2), site 2 (23.9 ± 3.8), 

site 4 (23.2 ± 2.7), site 6 (23.0±2.7), with the value drop seen in site 1 (20.8 ± 3.1). The site with 

the highest variation in SM (three years average) was site 3 (CV%=20.6), followed by site 5 

(CV%=18.1), site 2 (CV%=15.1), site 1 (CV%=14.8), with the value drop seen in site 4 

(CV%=11.5) and site 6 (CV%=11.4). The three sites (site 2, 3, and 5) showed the highest variation 

in SM and also showed negative correlation to the remote sensing NDVI in three consecutive years 

(2015, 2016, 2917). Interestingly, the site 4 vineyard showed positive correlation between SM and 

NDVI in 2015 and 2016 and had low variation in SM. site 6 vineyard with no correlation between 

NDVI and SM had low variation in SM. The annual variation in SM level throughout the vineyards 

was also observed. The growing season was hot and dry in 2016 (Figure 3.3), and thus low SM 

was observed in all the vineyard sites in 2016. Overall, remote sensing NDVI could detect variation 

in SM at three out of six sites which had high variation in SM and showed temporal stability 

throughout the three consecutive years. Vineyard remote sensing NDVI had a significant negative 

correlation with soil moisture (SM). 

 

3.1.2.2 Relationships between NDVI and Mid-Day Leaf Water Potential (leaf ψ) 

There was a positive relationship between remote sensing NDVI and leaf ψ in two sites 

(site 3 and 4; Table 3.1) throughout three consecutive years (2015, 2016, and 2017). A positive 

relationship between leaf ψ and NDVI was also observed at site 2 in 2015 and 2017 as well as at 

site 5 in 2017. NDVI and leaf ψ did not show any significant correlation at site 1 and site 6. The 

mean leaf ψ differed between sites (Table 3.2). Previous study classified water stress levels using 
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leaf water potential values: severe level of -1.5 or lower, mild level of -1.5 to -0.9, and no stress 

level ever exceeded -0.9.[1] Water stress was lowest at site 6 with highest average leafψ (-1.08 ± 

0.04), followed by site 4  (-1.09 ± 0.10), site 5 (-1.12 ± 0.05), site 1 (-1.15 ± 0.05), with the value 

drop seen in site 2 (-1.23 ± 0.05) and site 3 (-1.26 ± 0.08). All the sites in 2015 and 2017 fall into 

the mildly water stressed vine category and in 2016, hot and dry year, all the vineyards still 

belonged to the moderately stressed vine category and there was not severely water stressed 

vineyard observed in this research.  

Site with the greatest variation in leaf ψ (three years average) was site 4 (CV%=9.93), 

followed by site 3 (CV%=6.47), with the value drop seen in site 1 (CV%=4.96), site 5 (CV%=4.86), 

site 6 (CV%=4.18), and site 2 (CV%=4.11). The two sites (site 3 and site 4) showed highest 

variation in leaf ψ and showed positive correlation to the remote sensing NDVI in three 

consecutive years (2015, 2016, 2917). However, site 2 vineyard even showed positive correlation 

between leaf ψ and NDVI in 2015 and 2017 had low variation in leaf ψ. NDVI and leaf ψ are 

uncorrelated in site 1 and site 6 vineyards with low variation of leaf ψ.  

The annual variation in leaf ψ level throughout the vineyards had also observed. The 

growing season was hot and dry in 2016 (Figure 3.3), and thus during the year, all the vineyard 

locations showed drought-stressed vines with the low mean leaf ψ. In 2017 with highest 

precipitation level among three years (Figure 3.3), the highest variation (CV%) in leaf ψ had been 

observed throughout all six vineyards. Four out of the six sites showed statistically significant 

positive correlation between remote sensing NDVI and leaf ψ in 2017 while only two vineyards 

had the correlation in 2016. 

Overall, remote sensing could detect variation in leaf ψ at two out of six sites which had 

high variation in leaf ψ and showed temporal stability throughout the three consecutive years. The 
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correlation between remote sensing NDVI and leaf ψ in vineyards was highly significant. 

Interestingly, the highest variation (CV%) in leaf ψ had been observed throughout all six vineyards 

in 2017 with ample precipitation and a positive correlation of remote sensing NDVI with leaf ψ 

was observed in four of six sites in 2017. Therefore, the vineyard sites showed more variation in 

leaf ψ and remote sensing could have more capability of detecting the variation in the year with 

ample precipitation. 

 

3.1.2.3 Relationships between NDVI and stomatal conductance (Gs) 

Only two years (2016 and 2017) of data for Gs was collected for this research. There was 

a positive relationship between remote sensing NDVI and Gs in one site (site 3, Table 3.1) 

throughout two consecutive years (2016 and 2017). NDVI was also positively correlated to Gs at 

site 1 in 2016, at site 4 in 2016, and at site 6 in 2017. However, negative correlation between NDVI 

and Gs observed at site 1 in 2017 and site 6 in 2016. There was no statistically significant 

correlation between NDVI and Gs at site 2 and site 5. Variation existed between sites in their mean 

Gs (Table 3.2), site 6 had highest mean Gs (666 ± 71), followed by site 4 (569 ± 41), site 2 (543 ± 

39), site 5 (482 ± 36), site 1 (477 ± 56) and site 3 (415 ± 60).  

The site with the highest variation in Gs (two years average) was site 3 (CV%=14.89), 

followed by site 1 (CV%=11.39) and site 6 (CV%=10.73), with the value drop seen in site 5 

(CV%=8.05), site 2 (CV%=7.59), site 4 (CV%=7.07). Site 3 showed the highest variation in Gs 

and also showed positive correlation to the remote sensing NDVI in two consecutive years (2016 

and 2917). Site 1 and site 6 with high variation level in Gs also showed correlation between Gs 

and NDVI in two years but the correlations were the opposite direction: one negative and the other 

positive. Site 2 and site 5 vineyards with no correlation between NDVI and Gs showed a minimum 
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variation in Gs across vines. The annual variation in Gs level throughout the vineyards was also 

observed. The growing season was hot and dry in 2016 (Figure 3.3), and thus high water stressed 

vines with a low mean Gs was observed in four out of six vineyard sites in the year and the other 

two sites showed similar level of Gs in 2016 and 2017. 

Overall, remote sensing could detect variation in Gs at one out of six sites which had high 

variation in Gs and showed temporal stability throughout the two consecutive years. Remote 

sensing NDVI and Gs exhibited a significant positive correlation in the vineyard. Remote sensing 

NDVI had less capability of detecting the variation in Gs. The correlation between NDVI and Gs 

varied widely across sites and years. 

 

3.1.2.4 Relationships between NDVI and vine size 

There was a positive relationship between remote sensing NDVI and vine size (Table 3.1; 

site 1, 3, 5, and 6) throughout three consecutive years (2015, 2016, 2917) with only one exception 

of higher p-value at site 2 in 2017. The mean vine size and its variation differed between sites 

(Table 3.2). The site with the highest vine size (three years average) was site 4 (0.70 ± 0.20), 

followed by site 1 (0.69 ± 0.23), site 6 (0.68 ± 0.11), site 3(0.60 ± 0.19), with the value drop seen 

in site 2 (0.52 ± 0.13) and site 5 (0.42 ± 0.13).  

The site with the highest variation in vine size (three years average) was site 1 (CV%=33.4) 

and site 3 (CV%=33.0), then site 4 (CV%=30.7), site 5 (CV%=30.2), with the value drop seen in 

site 2 (CV%=24.7) and site 6 (CV%=17.7). The three sites (site 1, 3, and 5) showed highest 

variation in vine size and showed positive correlation to the remote sensing NDVI in the 

consecutive years while site 6 vineyard had the lowest variation in vine size even though it showed 

positive relationship between NDVI and vine size in three consecutive years (2015, 2016, 2917).  
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The annual variation in vine size level throughout the vineyards was also observed. The 

growing season was hot and dry in 2016 (Figure 3.3), and thus low vine size was observed in all 

the vineyard sites in 2016. Interestingly, both strength of correlation (r) and variation in vine size 

are the highest in 2016, hot and dry year, in three out of the four sites where the positive correlation 

and temporal stability observed. 

Overall, based on three years of data, vine size was consistently correlated with remote 

sensing NDVI (Table 3.1). Remote sensing could detect variation in vine size at four out of six 

sites where three out of the four sites had high variation in vine size and showed temporal stability 

throughout the three consecutive years. An NDVI-based remote sensing analysis of vine size was 

statistically significant in the vineyard. The overall vine vigour at a site does not appear to have an 

impact on its detection by remote sensing, as both positive correlation and temporal stability 

observed in the highest (site 1) and the lowest (site 6) vine vigour sites. Furthermore, there could 

be an impact of annual climate changes (mean temperature and precipitation) on its detection by 

remote sensing. 

 

3.1.2.5 Relationships between NDVI and LT50 (winter hardiness) 

LT50 was examined in 2015 and 2016. There was a negative correlation between remote 

sensing NDVI and LT50 at one site (site 3; Table 3.1) throughout two consecutive years (2015 and 

2016). NDVI was also negatively correlated to LT50 at site 1, 2, and 6. There was no statistically 

significant correlation between NDVI and LT50 at site 4 and 5. Variation existed between sites in 

their mean Gs (Table 3.2), site 3 had the most winter hardy vines with the lowest mean LT50 (-

18.96 ± 0.70), followed by site 4(-18.89 ± 0.72), site 6 (-18.80 ± 0.62), site 5  (-18.64 ± 0.78), site 

2 (18.54 ± 0.75) and site 1 (-17.5 ± 0.79).  
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The site with the highest variation in LT50 (two years average) was site 1 (CV%=4.69), 

followed by site 5 (CV%=4.17), site 2 (CV%=4.12), site 4 (CV%=3.82), site 3 (CV%=3.72), and 

site 6 (CV%=3.35). Site 3 showed relatively low variation in LT50 and only showed negative 

correlation to the remote sensing NDVI in two consecutive years (2015 and 2026). There does not 

appear to be an impact of variability in LT50 and its detection by remote sensing. The annual 

variation in LT50 level throughout the vineyards was also observed. The dormant season was 

colder in 2016 (Figure 3.3), and thus winter hardier vines with the low LT50 were observed in all 

the six vineyard sites in the year. Four out of the six sites showed statistically significant negative 

correlation between remote sensing NDVI and LT50 in 2016 while only two vineyards had the 

correlation in 2015. 

Overall, remote sensing could detect variation in LT50 at one out of six sites where there 

was high variation in LT50, and the site showed temporal stability throughout two consecutive 

years. Gs and remote sensing NDVI showed a significant negative correlation in the vineyards. 

Remote sensing NDVI had less capability of detecting the variation in winter hardiness. There 

could be an impact of dormant season minimum temperature on its detection by remote sensing. 

 

3.1.3 Mapping and spatial autocorrelation analysis 

3.1.3.1 Spatial autocorrelation analysis (Moran’s I) 

The spatial autocorrelation of each variable was determined by z-score (Table 3.3A), which 

shows clustering patterns to measure potential zonal vineyard management options when relating 

remote sensing data to important physiological and vine performance data.[2,3]  
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Table 3.3A. Moran's I analysis (z-score) results for remote sensing data and viticulturally 

important variables in six Niagara vineyards from 2015, 2016 and 2017 (95% confidence): blue 

boxes = clustered, red boxes= random, yellow boxes= dispersed, black boxes= no data collected. 

Abbreviations: Leaf Ψ= Leaf water potential, Gs= Stomatal conductance, LT50= Temperature that 

kills 50% of the primary buds. 

 

 

 

 

 

 

 

Vineyards NDVI Soil Moisture Leaf Ψ Gs LT50 Vine Size

2015 Site 1 

(n=76)
6.0617 7.3609 9.7152 7.7740 5.9185

2016 Site 1 

(n=76)
7.2130 8.4098 6.0652 6.4380 5.0463 7.9313

2017 Site 1 

(n=76)
5.4303 8.5579 5.4995 9.3604 7.8400

2015 Site 2 

(n=75)
4.2681 3.7051 0.8060 2.2951 -0.6489

2016 Site 2 

(n=75)
2.7390 2.6266 -0.9861 5.5516 1.6954 2.2069

2017 Site 2 

(n=75)
2.4997 3.2972 2.2339 0.2787 -0.3724

2015 Site 3 

(n=80)
7.0372 5.1237 8.9125 1.8007 4.4566

2016 Site 3 

(n=80)
6.5482 5.5526 7.5013 5.7734 7.6348 6.2326

2017 Site 3 

(n=80)
6.0927 7.2624 7.9978 9.9429 6.6738

2015 Site 4 

(n=72)
2.2846 7.6145 9.8197 5.1646 4.2952

2016 Site 4 

(n=72)
3.3818 5.9031 8.8435 7.1454 3.5488 5.0668

2017 Site 4 

(n=72)
4.8626 2.0488 8.4388 3.8995 3.1971

2015 Site 5 

(n=81)
3.3973 6.9418 10.3643 7.9988 1.2430

2016 Site 5 

(n=81)
6.2524 5.7277 7.6523 4.6934 11.9723 2.6576

2017 Site 5 

(n=81)
3.8967 7.5388 10.7872 8.4645 2.5611

2015 Site 6 

(n=80)
5.1185 2.9423 5.7679 7.0703 1.0411

2016Site 6 

(n=80)
6.4873 2.4633 4.0385 3.1777 -0.1318 3.1279

2017 Site 6 

(n=80)
2.2967 4.7470 4.8167 10.1531 3.1475
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Table 3.3B. Moran's I analysis (Moran’s Index and p-value) results for remote sensing data and 

viticulturally important variables in six Niagara vineyards from 2015, 2016 and 2017 (95% 

confidence): blue boxes = clustered, red boxes= random, yellow boxes= dispersed, black boxes= 

no data collected. Abbreviations: Leaf Ψ= Leaf water potential, Gs= Stomatal conductance, LT50= 

Temperature that kills 50% of the primary buds. 

 

 

Over the three-year period of measurement, NDVI from remote sensing sites was highly 

clustered across all six sites. The water status across sites were mostly clustered, with SM clustered 

in all six sites in three years, leaf ψ and Gs was clustered in five sites in three years except for site 

2 vineyard where the most spatial data were randomly distributed (Table 3.3A and 3.3B). Data on 

Vineyards NDVI Soil Moisture Leaf Ψ Gs LT50 Vine Size NDVI Soil Moisture Leaf Ψ Gs LT50 Vine Size

2015 Site 1 

(n=76)
0.6284 0.4617 0.6337 0.4670 0.3614 0.0001 0.0001 0.0001 0.0004 0.0004

2016 Site 1 

(n=76)
0.7496 0.4947 0.5589 0.4372 0.2537 0.5531 0.0001 0.0001 0.0001 0.0001 0.0089 0.0001

2017 Site 1 

(n=76)
0.5596 0.5860 0.3860 0.5692 0.5157 0.0001 0.0001 0.0001 0.0001 0.0001

2015 Site 2 

(n=75)
0.5505 0.3919 0.0318 0.4673 -0.1343 0.0001 0.0002 0.7211 0.0001 0.3568

2016 Site 2 

(n=75)
0.2315 0.2484 -0.0485 0.4818 0.1978 0.2107 0.0225 0.0127 0.7858 0.0001 0.0937 0.0395

2017 Site 2 

(n=75)
0.2514 0.2607 0.2285 -0.0404 -0.1101 0.0108 0.0082 0.0244 0.8292 0.4597

2015 Site 3 

(n=80)
0.7447 0.5490 0.7727 0.1782 0.4618 0.0001 0.0001 0.0001 0.1163 0.0001

2016 Site 3 

(n=80)
0.8677 0.5660 0.6529 0.6023 0.6718 0.6101 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

2017 Site 3 

(n=80)
0.7451 0.6723 0.7156 0.8347 0.5936 0.0001 0.0001 0.0001 0.0001 0.0001

2015 Site 4 

(n=72)
0.2412 0.6218 0.9070 0.5803 0.3388 0.0170 0.0001 0.0001 0.0001 0.0016

2016 Site 4 

(n=72)
0.4626 0.4578 0.9176 0.6981 0.5212 0.3591 0.0001 0.0008 0.0001 0.0001 0.0001 0.0005

2017 Site 4 

(n=72)
0.6704 0.2435 0.8917 0.5269 0.4186 0.0001 0.0152 0.0001 0.0001 0.0002

2015 Site 5 

(n=81)
0.3498 0.5167 0.8061 0.7447 0.0803 0.0006 0.0001 0.0001 0.0001 0.3860

2016 Site 5 

(n=81)
0.6561 0.3745 0.6455 0.4187 0.8452 0.2290 0.0001 0.0003 0.0001 0.0002 0.0001 0.0244

2017 Site 5 

(n=81)
0.3797 0.5370 0.7927 0.6935 0.2390 0.0003 0.0001 0.0001 0.0001 0.0182

2015 Site 6 

(n=80)
0.6715 0.2923 0.6217 0.6743 0.1188 0.0001 0.0032 0.0001 0.0001 0.3129

2016Site 6 

(n=80)
0.8527 0.3091 0.5086 0.3138 -0.0637 0.2336 0.0001 0.0026 0.0001 0.0015 0.6922 0.0213

2017 Site 6 

(n=80)
0.2470 0.5225 0.4983 0.7119 0.2945 0.0133 0.0000 0.0001 0.0001 0.0032

Moran’s Index p-value
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vine size was mainly grouped together in five sites in 2016 and 2017, but it was only grouped 

together in three locations in 2015. Winter hardiness data was highly grouped together in all six 

locations in 2015, but four sites were grouped in 2016. In general, remote sensing and all other 

variables were highly clustered variables, whereas leaf ψ and vine size in sit e2 were mostly 

randomly distributed.  

 

3.1.3.2 Spatial analysis of maps 

In site 1 (Figure 3.4), NDVI maps appeared to have similar spatial configurations to those 

of vine size in all three-year period. NDVI maps displayed negative spatial distributions with LT50 

in 2016 and Gs in 2017. The remote sensing NDVI maps were identical to each other throughout 

all the years. In site 2 (Figure 3.4), NDVI maps showed similar distributions and high spatial 

heterogeneity throughout the entire site. Inverted spatial distributions were seen in maps of soil 

moisture over the last three years. NDVI maps appeared to have similar spatial configurations to 

those of leaf ψ in 2015 and 2017.  
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Figure 3.4. Spatial maps of vineyard variables extracted from RS data and viticulturally 

important variables in site 1 and 2 vineyards from 2015, 2016 and 2017. Abbreviations: NDVI= 

Normalized difference vegetation index, Leaf Ψ= Leaf water potential, Gs= Stomatal 

conductance, LT50= Temperature that kills 50% of the primary buds. 
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In site 3 (Figure 3.5), NDVI maps appeared to have close geographical configurations to 

that of vine size, leaf ψ and Gs. There were inverted spatial distributions in maps of soil moisture 

and LT50. The remote sensing NDVI maps were identical to each other throughout all the years. 

In site 4 (Figure 3.5), NDVI maps displayed an odd horizontally striated pattern, which was also 

seen by previous research.[4] This can be attributed to the orientation of vineyard rows in 

conjunction with lines of pixels, and perhaps also to the spatial-resolution utilized. The NDVI map 

showed close geographical configurations to that of leaf ψ, Gs, vine size, and soil moisture in all 

three years of the measurement. Inverted spatial distributions were seen on the map of LT50 in 

2016. 
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Figure 3.5. Spatial maps of vineyard variables extracted from RS data and viticulturally 

important variables in site 3 and 4 vineyards from 2015, 2016 and 2017. Abbreviations: NDVI= 

Normalized difference vegetation index, Leaf Ψ= Leaf water potential, Gs= Stomatal 

conductance, LT50= Temperature that kills 50% of the primary buds 
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In site 5 (Figure 3.6), the maps of vine size and soil moisture showed close geographical 

configuration in all three years of the measurement; however, the soil moisture maps displayed 

inverted spatial distributions. The positive correlation also observed in leaf ψ in 2017. In site 6 

(Figure 3.6), NDVI maps appeared to have close geographical configuration to that of vine size in 

three years. LT50 exhibited inverse geographical configuration in 2015.  
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Figure 3.6. Spatial maps of vineyard variables extracted from RS data and viticulturally 

important variables in site 5 and 6 vineyards from 2015, 2016 and 2017. Abbreviations: NDVI= 

Normalized difference vegetation index, Leaf Ψ= Leaf water potential, Gs= Stomatal 

conductance, LT50= Temperature that kills 50% of the primary buds 
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Even though some sites displayed highly patchy or striped spatial patterns, the temporal 

consistency of spatial patterns was observed in the maps of remote sensing NDVI in most 

vineyards. Other variables like vine size and soil moisture also showed the temporal stability of 

the spatial patterns. With more clearly defined zonal differences in remote sensing variables, 

precision viticulture operations could be more easily conducted at those sites.  

 

3.2 Discussion 

In this study, remote sensing has indicated the ability to identify vineyard variation with 

temporal stability, thereby enabling the analysis of a range of viticulturally relevant variables, 

including water status, canopy size, and winter hardiness. Even though some sites displayed highly 

patchy or striped spatial patterns, the temporal consistency of spatial patterns was observed in the 

maps of remote sensing NDVI in most of the vineyards, as well as the spatial patterns showed 

stability in vine size and soil moisture through time.  

NDVI was most consistently correlated with vine size at five sites each year and 

consistently stable for three years at four sites. This is consistent with the literature that 

demonstrates the feasibility of remote sensing data for detecting vegetative growth such as leaf 

area coefficient[5], total canopy[6], and health of vegetation[3]. In their surface canopy, plants 

incorporate the characteristics of their surroundings and stresses.[7] Thus, grapevine ecological 

condition and its level of stress are reflected in variations in vegetative growth. Additionally, the 

yield-to-pruning weight ratios are used to diagnose fruit quality indirectly based on balance 

pruning.[8] By using NDVI data, grape growers can determine variation in vegetative growth to 

support them in monitoring vineyard balance.[9] A precise projection of canopy size may allow 
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vine vegetative and reproductive balance to be altered through cluster thinning during the growing 

season and afterward through pruning tactics.[10] 

Another interesting observation from this research was the strong inverse correlation with 

temporal stability between NDVI and soil moisture. Remote sensing could detect variation in SM 

at three out of six sites and showed temporal stability throughout the three consecutive years. SM 

values were very high on the sites exhibiting strong variations (CV%) across three years as well 

as visual evidence of water accumulation in some spots mainly caused by heavy clay soil with 

insufficient drainage. Interestingly, in site 4 vineyard, located in the Lincoln Lakeshore sub 

appellation with relatively well drained soil types (glacial till soil with high sand and stone 

content[11]), the NDVI was positively related to SM in 2015 and 2016. There is a possibility of 

using remote sensing to detect SM in sites where water drainage issues or knowingly high clay[12] 

can negatively impact on vegetative growth[13,14]. Remote sensing NDVI also showed inverse 

correlations with soil clay content and water status in the measured area.[15]  

To examine the feasibility of remote sensing data for vineyard water management, it is 

necessary not only to establish a correlation between remote sensing data and vineyard water stress 

but also to survey a map of vineyard soil profiles and its soil drainage capacities since the absolute 

values of soil water status were not correlated to the vine health and stress level. There was a 

weaker correlation observed between NDVI and leaf ψ, exhibiting a positive correlation with two 

of the sites for three years. The level of mean leaf ψ in 2017 with ample precipitation was higher 

than that in 2016 with hot and dry growing season. All the mean leaf ψ in 2017 belong to mildly 

water stressed vine category (-1.2 to -0.9) and that in 2016 belong to moderately water stressed 

vine category (-1.5 to -1.2).[1] This study further observed vineyard variation of leaf conductance 

(Gs) in relationships with NDVI, where three sites had positive correlation in 2016 and two in 
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2017. During the hot and dry growing season of 2016, the lower Gs value sites showed a strong 

correlation between two variables.  

NDVI and leaf ψ/ Gs are correlated positively in general, which is consistent with earlier 

studies.[16] Interestingly, the year 2016 with hot and dry growing season showed that only two 

sites had correlation between NDVI and leaf ψ while in the year 2017 with ample precipitation, 

four cites had positive correlation between the two variables. Furthermore, the highest variation 

(CV%) in leaf ψ also observed in 2017 while the variation (CV%) in leaf ψ, was the lowest in 

2016. Therefore, leaf ψ had more variation and was more correlated to NDVI in the year with 

ample precipitation when higher grapevine water level could be a constraint for vegetation.[3] A 

change in normal stomatal behaviour caused by stress responses is possible and one can generate 

a new water uptake efficiency without greatly reducing biomass yield.[17] This could explain that 

the higher grapevine water level could be a constraint for vegetation. In 2016, the level of water 

stress may change the stomatal rhythm and water use efficiency toward minimizing loss of 

vegetative growth and lead to more uniform canopy size while in 2017, the conventional 

relationship between water availability and plant biomass production was applied: the vegetative 

growth was linearly linked with water supply and lead more variability in canopy size.  

To examine the feasibility of remote sensing technologies in a vineyard for water 

management in terms of vine water status alone is not an easy task. Researchers agree that 

moderate water deficits can enhance vineyard productivity and supplemental water can remarkably 

boost grape production[18-21], however, there is no clear general guideline for what the level of 

leaf ψ belong to the moderate water deficit because it depends on site, variety, and cultural practice 

of specific vineyard. 
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In this study, NDVI correlated less with winter hardiness, exhibiting a negative correlation 

with temporal stability only in site 3. Four out of the six sites showed significant negative 

correlations between remote sensing NDVI and LT50 in 2016, colder dormant season while only 

two vineyards had the correlation in 2015. Winter hardier vines with the low LT50 were also 

observed in all the six vineyard sites in 2016. Water status[22] and pruning weight[23] can influence 

cold acclimation, but the lack of relationships observed in this research could be explained by the 

low vineyard variations in LT50 values (CV%=1.8-6.5%). Remote sensing NDVI had less 

capability of detecting the variation in winter hardiness. There could be an impact of dormant 

season minimum temperature on its detection by remote sensing.  

The last, but not least, an interesting observation from this research was that site 3 vineyard 

was the only site where NDVI and all the viticulturally important variables correlated perfectly 

with temporal stability over all three years. There were three distinct cultural practices at site 3 

different from other vineyards. First, the inter-row management in site 3 was topsoil cultivation 

while other sites planted cover crops between the rows. The inter-row spectral reflection in the 

data was not removed, so the NDVI data extracted from the vineyards could be affected.[4,24,25] 

Secondly, pruning practice and training system in this vineyard were distinct from other vineyard 

sites. A canopy-based NDVI measurement can be greatly affected by a cultural practice such as 

pruning and training systems.[26] The spur-pruned cordon systems with stronger horizontal 

profiles in this site could be more appropriate for airborne monitoring. There would need to be 

further research on the effect of training systems on the performance of remote sensing data. Lastly, 

the application of heavy copper spray was observed through the growing season in site 3. The 

heavy copper spray created a blue colour background layer as the RPAS flight performed to get 
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NDVI data. There would also need to be further research on the effect of background colour on 

the performance of remote sensing data. 

When evaluating the possibility of applying remote sensing data to measure vineyard 

variations, it is necessary to produce reliable and precise maps that illustrate areas of the variables 

to implement precision viticulture. In Moran's I analysis, viticulturally significant variables and 

remote sensing data were highly clustered, and zonal vineyard management such as selective shoot 

thinning or precise spraying based on the clustering across the vineyards, may be feasible.[27] 

However, when vineyards have numerous environmental factors affecting canopy areas, such as 

soil profile[28], micro climate[29], water status[30], nutrient deficiency[31], and other variables, it 

can be challenging to determine the correlations between remote sensing data and the variables. 

Plants often experience multiple stress conditions simultaneously in a field, rather than a single 

stress condition.[32] Stress-induced symptoms can be magnified when these stresses interact, 

impacting plant vegetative and reproductive processes in further ways.[32,33] There is a need for 

further research aimed at understanding how remote sensing data detects these variables as plants 

are stressed in the field under various circumstances. 

 

3.3 Conclusions  

Even though the biological relevance of remote sensing data per site and per vintage should 

still be evaluated through ground truthing of sampled vines and in many cases, it was difficult for 

remote sensing NDVI to detect agriculturally significant variables between sites and vintages, this 

study still verified that remote sensing NDVI could be feasible to detect variations across vineyards 

for several agriculturally relevant variables. The variable that most correlated with remote sensing 

NDVI and the most temporally stable was vine size. The NDVI data can be used to project canopy 
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size accurately and help growers determine an ideal balance of plant vegetation and reproduction, 

which can be adjusted through thinning of clusters during the growing season and pruning 

afterward. The analysis of vineyard variables and remote sensing data can also lead to zonal quality 

management programs such as vine phytosanitary and canopy management, as well as ensuring 

the quality of the finished product. A strong inverse correlation with temporal stability between 

NDVI and soil moisture was also observed. There was evidence in these correlation sites of 

considerable standing water in some spots with inadequate water drainage, indicating SM in areas 

with drainage concerns can be detected by remote sensing.  

Furthermore, site 3 vineyard showed perfect correlation of NDVI and all the viticulturally 

important variables with temporal stability of all three years measurements. There were some 

distinct cultural practices at site 3 different from other vineyards. Further investigation of the 

relationships between the remote sensing detectability and the vineyard cultural practices will 

promote an accuracy and usefulness of remote sensing data to identify variabilities in spectral 

behaviour of grapevine leaves and will expand knowledge of the spatiotemporal dynamics of plant 

physiology in vineyards. 
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CHAPTER 4: RESULTS AND DISCUSSION – FEASIBILITY STUDY OF REMOTE 

SENSING TECHNOLOGIES TO MONITOR YIELD AND FRUIT QUALITIES 

The short-term objective of this chapter was to examine the feasibility of using remote 

sensing technologies to monitor yield and fruit quality. We hypothesize that remote sensing data-

analysis (NDVI, thermal, other indices) would correlate with yield and berry composition and 

vegetative growth in different stages of growing season could have different impact on yield and 

fruit quality. 

 

4.1 Results 

The vineyard canopy reflectance data from GreenSeeker and RPAS flights were 

compared with harvest data (yield, number of clusters, berry weight) and berry composition data 

(Brix, pH, TA, phenols, and anthocyanin). RPAS flights with multispectral and thermal sensors 

were performed at veraison in 2015 and 2016. Proximal sensing (GreenSeeker® ) readings were 

taken at three different times in 2015 and 2016 at the berry set, lag phase, and veraison and, twice 

in 2017 at lag phase and veraison. Basic statistics for RPAS /GreenSeeker data and grape 

yield/quality along with the average values and their variations across the sites and years were 

provided in Table 4.1. 
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Table 4.1. Summary of the statistical analysis of data from the RPAS flight/proximal sensing, 

yield components, and berry composition in six Niagara vineyards from 2015, 2016 and 2017. 

Abbreviations: RPAS= Remotely Piloted Aircraft System, NDVI= Normalized difference 

vegetation index, P-NDVI= Proximal sensing NDVI, MIN= Minimum, MAX- Maximum, SD= 

Standard deviation, CV%= Coefficient of variation. 
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4.1.1 Principal component analysis (PCA) between NDVIs and grape yield/fruit quality 

Principal component analysis (PCA) results for NDVIs and grape yield/quality are 

presented in Figure 4.1 and 4.2. PCA results were built based on the first two factors, which 

explained between 40 to 64% of the data (Figure 4.1 and 4.2). In site 1 2015, 2016, and 2017 

(Figure 4.1), the analysis described 49.80%, 51.38%, and 57.07% of the data and demonstrated 

that NDVIs from proximal sensing and from the RPAS flight positively correlated to phenols and 

berry weight in 2015 but phenols and berry weights were derived from relatively short vectors, so 

visual correlations were difficult to establish. The vector for yield and NDVIs in 2016 and 2017 

were relatively long and showed positive correlation to each other. Other variables like pH, TA, 

Brix, and clusters were also derived from relatively short vectors, so visual correlations were 
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difficult to establish. The NDVIs were clustered together through the years and negatively 

correlated to the thermal in 2015.  

In site 2 2015, 2016, and 2017 (Figure 4.1), the analysis described 51.26%, 46.74%, and 

49.36% of the data and demonstrated that proximal sensing NDVI (P-NDVI) negatively correlated 

to anthocyanins and phenols in the three-year period while NDVI from the RPAS flight was 

derived from relatively short vectors, so visual correlations were difficult to establish. Thermal 

imaging from the RPAS flight was positively correlated to phenols, anthocyanin, Brix, and pH and 

negatively correlated to the NDVIs in 2016.  

In site 3 2016 and 2017 (Figure 4.1), the analysis described 64.37% and 53.51% of the data 

and demonstrated that P-NDVI and NDVI had an inverse relationship with yield, clusters, and 

berry weight and had a positive relationship with anthocyanins, phenols, brix, and pH in 2016. P-

NDVI somewhat positively correlated to berry weight, yield, and clusters in 2017 but the vectors 

for the variables were relatively short and thus there does not appear to be clear in the PCA chart.  

In site 4 2015, 2016, and 2017 (Figure 4.2), the analysis described 45.19%, 51.00%, and 

39.40% of the data and demonstrated that P-NDVIs had a positive relationship with berry weight 

and yield and had an inverse relationship with anthocyanin in 2015 and 2016 while NDVI was 

derived from relatively short vectors, so visual correlations were difficult to establish. In 2017, 

phenols, anthocyanins, and brix were negatively correlated to P-NDVI while yield and berry 

weight were somewhat positively correlated to P-NDVIs but the vectors for the variables were 

relatively short and thus there does not appear to be clear in the PCA chart. Thermal was negatively 

correlated with the NDVIs and positively correlated to anthocyanin, phenols, pH, and Brix in 2016. 

In site 5 2015, 2016, and 2017 (Figure 4.2), the analysis described 48.84%, 50.75%, and 

47.28% of the data and demonstrated that P-NDVIs negatively correlated to phenols, anthocyanins, 
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and brix and positively correlated to yield and clusters throughout the three-year period. NDVI 

showed somewhat similar correlation to P-NDVIs, but NDVI was derived from relatively short 

vectors, so visual correlations were difficult to establish. Thermal had a negative relationship with 

the NDVIs and positively correlated to phenols, anthocyanins, and brix in both years.  

In site 6 2015, 2016, and 2017 (Figure 4.2), the analysis described 46.09%, 50.81%, and 

44.16% of the data and showed NDVI and TA were positively correlated, and an inverse 

correlation between NDVI and pH was found in 2015 and 2016 but those had short vectors and 

thus there does not appear to be clear in the PCA chart. In 2017, there does not appear to be clear 

relationships in the PCA chart, and some vectors were short.  

Overall, observing the short vectors for some variables, Pearson's correlations should be 

used to test whether other factors are adequately explaining some variable. It was found that the 

NDVIs and yield/berry weight are positively correlated, while phenols and anthocyanins level in 

the grapes is inversely correlated to them. 
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Figure 4.1. PCA results among data from proximal sensing and RPAS flight, vineyard yield and 

berry composition in site 1, 2, and 3 vineyards from 2015, 2016 and 2017. No harvest data 

collected at site 3 vineyard in 2015. Abbreviations: NDVI= Normalized difference vegetation 

index, Clusters= Number of clusters, Berry WT= Berry weight, TA= Titratable acidity, P-NDVI 

1= Proximal NDVI at berry set, P-NDVI 2= Proximal NDVI at lag phase, P-NDVI 3= Proximal 

NDVI at veraison, NDVI= NDVI from RPAS flight at veraison, Thermal= Thermal imaging 

from RPAS flight at veraison. 
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Figure 4.2. PCA results among data from proximal sensing and from RPAS flight, vineyard 

yield and berry composition in site 4, 5, and 6 vineyards from 2015, 2016 and 2017. No harvest 

data was collected at site 3 vineyard in 2015. Abbreviations: NDVI= Normalized difference 

vegetation index, Clusters= Number of clusters, Berry WT= Berry weight, TA= Titratable 

acidity, P-NDVI 1= Proximal NDVI at berry set, P-NDVI 2= Proximal NDVI at lag phase, P-

NDVI 3= Proximal NDVI at veraison, NDVI= NDVI from RPAS flight at veraison, Thermal= 

Thermal imaging from RPAS flight at veraison. 
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4.1.2 Pearson’s correlation between proximal sensing and grape yield/fruit quality 

4.1.2.1 Relationships between proximal sensing NDVIs and yield 

Table 4.2 indicated that P-NDVIs were positively correlated to yield in multiple sites 

throughout the consecutive years. The measurement at berry set (P-NDVI 1) showed the most 

correlation with yield. All the sites except for site 2 indicated a positive relationship between P-

NDVI 1 and yield. The P-NDVI measurement at lag phase and veraison also indicated positive 

correlation to the yield but some negative correlation observed between the two variables.  

The mean yield and its variation differed between sites (Table 4.1). The site with the 

highest yield (three years average) was site 4 (4.93 ± 1.35), followed by site 6 (3.32 ± 0.92), site 1 

(3.29 ± 1.23), with the value drop seen in site 5 (2.77 ± 1.07), site 3 (2.77 ± 1.13), and site 2 (2.31 

± 0.84). The site with the highest variation in yield (three years average; Table 4.1) was site 3 

(CV%=40.64), site 1 (CV%=38.87), site 5 (CV%=38.88), and site 2 (CV%=36.10) with the value 

drop seen in site 4 (CV%=28.70) and site 6 (CV%=27.50). 
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Table 4.2. Pearson's correlation results between proximal sensing NDVI vs yield and berry 

composition data in six Niagara vineyards from 2015, 2016 and 2017. Those variables with 

significant (95% confidence) were listed in bold, with blank cells representing no correlation: blue 

boxes= positive correlation with NDVI, red boxes= negative correlation with NDVI, black boxes= 

no data collected. Abbreviations: Clusters= Number of clusters, Berry Wt= Berry weight, TA= 

Titratable acidity. 

 

 

Vineyards Clusters Yield Berry Wt. Brix pH TA Phenols Anthocyanins Vineyards Clusters Yield Berry Wt. Brix pH TA Phenols Anthocyanins

2015 Site 1 0.118 0.055 -0.194 0.330 0.151 -0.125 -0.062 0.437 2015 Site 1 0.310 0.639 0.093 0.004 0.192 0.282 0.592 0.000
2016 Site 1 0.099 0.255 -0.177 0.090 -0.150 -0.266 0.023 0.078 2016 Site 1 0.396 0.026 0.127 0.439 0.196 0.020 0.846 0.501

2015 Site 2 0.064 0.111 0.237 -0.131 -0.325 0.223 -0.487 -0.420 2015 Site 2 0.585 0.342 0.041 0.263 0.004 0.054 0.000 0.000
2016 Site 2 0.060 0.209 0.002 -0.249 -0.346 -0.136 -0.207 -0.244 2016 Site 2 0.607 0.072 0.985 0.031 0.002 0.245 0.075 0.035

2015 Site 3 2015 Site 3

2016 Site 3 0.221 0.416 0.370 -0.317 -0.379 -0.145 -0.178 -0.040 2016 Site 3 0.049 0.000 0.001 0.004 0.001 0.198 0.114 0.724

2015 Site 4 -0.057 0.259 0.403 0.152 0.396 -0.106 -0.337 -0.339 2015 Site 4 0.635 0.028 0.000 0.201 0.001 0.377 0.004 0.004

2016 Site 4 -0.077 0.431 0.256 0.142 -0.147 -0.085 0.243 -0.155 2016 Site 4 0.522 0.000 0.030 0.233 0.217 0.479 0.040 0.194

2015 Site 5 0.396 0.334 0.087 -0.155 -0.353 0.232 -0.197 -0.167 2015 Site 5 0.000 0.002 0.440 0.166 0.001 0.037 0.078 0.135

2016 Site 5 0.359 0.322 -0.108 -0.139 -0.260 -0.047 -0.238 0.008 2016 Site 5 0.001 0.003 0.337 0.215 0.019 0.677 0.033 0.941

2015 Site 6 0.101 0.385 0.369 -0.147 -0.087 0.105 -0.100 -0.114 2015 Site 6 0.371 0.000 0.001 0.194 0.441 0.354 0.379 0.316

2016 Site 6 -0.013 0.200 0.224 0.130 -0.129 0.159 0.018 0.222 2016 Site 6 0.907 0.076 0.046 0.249 0.253 0.160 0.876 0.048

Vineyards Clusters Yield Berry Wt. Brix pH TA Phenols Anthocyanins Vineyards Clusters Yield Berry Wt. Brix pH TA Phenols Anthocyanins

2015 Site 1 -0.211 -0.070 -0.097 0.085 0.052 -0.063 0.065 0.120 2015 Site 1 0.067 0.548 0.404 0.468 0.653 0.589 0.576 0.303

2016 Site 1 0.084 0.362 -0.006 0.018 -0.124 -0.203 0.100 -0.061 2016 Site 1 0.471 0.001 0.960 0.876 0.287 0.079 0.391 0.600

2017 Site 1 0.138 0.402 0.018 -0.085 -0.216 0.173 -0.331 -0.095 2017 Site 1 0.235 0.000 0.875 0.466 0.061 0.136 0.003 0.413

2015 Site 2 0.092 0.166 0.242 -0.222 -0.339 0.321 -0.438 -0.397 2015 Site 2 0.430 0.154 0.037 0.056 0.003 0.005 0.000 0.000

2016 Site 2 -0.018 0.180 -0.002 -0.312 -0.291 -0.125 -0.214 -0.256 2016 Site 2 0.879 0.122 0.985 0.006 0.011 0.285 0.066 0.027
2017 Site 2 0.032 0.119 -0.189 0.028 0.322 -0.220 -0.351 0.026 2017 Site 2 0.788 0.310 0.104 0.813 0.005 0.058 0.002 0.826

2015 Site 3 2015 Site 3

2016 Site 3 0.333 0.545 0.519 -0.383 -0.507 -0.179 -0.292 -0.136 2016 Site 3 0.003 0.000 0.000 0.000 0.000 0.111 0.008 0.228

2017 Site 3 -0.042 -0.082 0.037 -0.166 -0.103 0.258 -0.109 -0.146 2017 Site 3 0.711 0.467 0.744 0.140 0.362 0.021 0.335 0.197

2015 Site 4 0.001 0.172 0.169 -0.097 0.096 0.055 0.128 -0.180 2015 Site 4 0.996 0.148 0.156 0.418 0.423 0.645 0.283 0.131

2016 Site 4 0.059 0.602 0.352 -0.039 -0.250 0.090 0.004 -0.385 2016 Site 4 0.622 0.000 0.002 0.745 0.034 0.454 0.976 0.001

2017 Site 4 0.062 0.140 0.224 -0.162 0.294 0.085 -0.004 -0.113 2017 Site 4 0.604 0.241 0.058 0.175 0.012 0.479 0.972 0.344

2015 Site 5 0.398 0.370 0.104 -0.173 -0.345 0.153 -0.255 -0.274 2015 Site 5 0.000 0.001 0.355 0.122 0.002 0.172 0.022 0.013
2016 Site 5 0.360 0.432 -0.033 -0.113 -0.273 -0.034 -0.191 0.033 2016 Site 5 0.001 0.000 0.772 0.313 0.014 0.763 0.087 0.772

2017 Site 5 0.135 0.099 -0.008 -0.127 0.026 -0.202 -0.242 -0.223 2017 Site 5 0.231 0.380 0.942 0.257 0.815 0.070 0.029 0.046
2015 Site 6 0.058 0.194 0.161 0.064 -0.012 0.025 0.120 0.075 2015 Site 6 0.611 0.084 0.153 0.576 0.914 0.825 0.288 0.509

2016 Site 6 -0.144 -0.019 0.292 0.283 -0.229 0.381 0.229 0.376 2016 Site 6 0.203 0.864 0.009 0.011 0.041 0.000 0.041 0.001
2017 Site 6 -0.201 -0.268 0.093 0.113 0.008 -0.041 0.130 0.303 2017 Site 6 0.074 0.016 0.411 0.320 0.941 0.716 0.251 0.006

Vineyards Clusters Yield Berry Wt. Brix pH TA Phenols Anthocyanins Vineyards Clusters Yield Berry Wt. Brix pH TA Phenols Anthocyanins

2015 Site 1 -0.207 -0.022 0.013 0.012 0.089 0.017 0.089 0.155 2015 Site 1 0.073 0.851 0.914 0.915 0.443 0.886 0.445 0.181

2016 Site 1 0.044 0.267 0.102 0.116 0.094 -0.253 0.225 -0.092 2016 Site 1 0.708 0.020 0.380 0.319 0.420 0.027 0.050 0.431

2017 Site 1 0.291 0.544 0.215 -0.121 0.000 -0.035 -0.421 -0.206 2017 Site 1 0.011 0.000 0.063 0.297 0.999 0.767 0.000 0.075

2015 Site 2 -0.044 0.066 0.171 -0.210 -0.225 0.207 -0.607 -0.384 2015 Site 2 0.705 0.575 0.142 0.070 0.052 0.074 0.000 0.001

2016 Site 2 0.091 0.028 -0.061 -0.059 -0.048 -0.131 -0.033 -0.273 2016 Site 2 0.437 0.811 0.601 0.613 0.684 0.263 0.777 0.018
2017 Site 2 -0.072 0.131 -0.135 0.112 0.377 -0.129 -0.467 0.024 2017 Site 2 0.539 0.263 0.249 0.340 0.001 0.271 0.000 0.836

2015 Site 3 2015 Site 3

2016 Site 3 0.378 0.633 0.582 -0.383 -0.520 -0.314 -0.378 -0.218 2016 Site 3 0.001 0.000 0.000 0.000 0.000 0.005 0.001 0.052

2017 Site 3 0.110 0.216 0.281 0.309 0.508 -0.226 -0.194 -0.014 2017 Site 3 0.331 0.055 0.012 0.005 0.000 0.044 0.092 0.902

2015 Site 4 0.031 0.206 0.375 -0.063 0.131 -0.146 -0.020 -0.355 2015 Site 4 0.796 0.083 0.001 0.597 0.273 0.220 0.843 0.002

2016 Site 4 0.207 0.438 0.232 -0.126 -0.250 0.163 -0.165 -0.297 2016 Site 4 0.081 0.000 0.050 0.290 0.034 0.172 0.166 0.011
2017 Site 4 -0.044 0.138 0.106 -0.064 -0.191 -0.066 -0.159 -0.156 2017 Site 4 0.716 0.246 0.375 0.591 0.108 0.581 0.182 0.192

2015 Site 5 -0.159 -0.002 -0.060 0.087 0.291 -0.082 -0.330 -0.311 2015 Site 5 0.156 0.988 0.596 0.442 0.008 0.469 0.003 0.005
2016 Site 5 0.224 0.332 0.027 -0.152 -0.195 -0.068 -0.272 -0.072 2016 Site 5 0.044 0.002 0.807 0.175 0.081 0.545 0.014 0.524

2017 Site 5 0.272 0.302 -0.019 -0.046 0.356 -0.106 -0.369 -0.237 2017 Site 5 0.014 0.006 0.868 0.685 0.001 0.345 0.001 0.033

2015 Site 6 0.211 0.453 0.312 -0.229 -0.208 0.164 -0.105 -0.151 2015 Site 6 0.061 0.000 0.005 0.041 0.064 0.147 0.353 0.180

2016 Site 6 -0.185 -0.037 0.311 0.284 -0.258 0.356 0.225 0.354 2016 Site 6 0.100 0.742 0.005 0.011 0.021 0.001 0.045 0.001
2017 Site 6 0.028 0.068 0.181 0.071 0.200 -0.121 0.053 0.160 2017 Site 6 0.806 0.547 0.109 0.531 0.075 0.286 0.640 0.157

Proximal Sensing NDVI 3 (Varaison)-p-valuesProximal Sensing NDVI 3 (Varaison)-Correlation matrix

Proximal Sensing NDVI 1 (Fruit Set)-Correlation matrix

Proximal Sensing NDVI 2 (Lag Phase)-Correlation matrix

Proximal Sensing NDVI 1 (Fruit Set)-p-values

Proximal Sensing NDVI 2 (Lag Phase)-p-values
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The annual variation in yield level throughout the vineyards was also observed. The mean 

temperature (°C) and precipitation (mm) data from 2015 to 2017 in Niagara, Ontario were shown 

in Figure 4.3. As illustrated in Figure 4.3, in 2016, the mean temperatures were about 1.5 °C above 

the historical average while the growing season precipitation was about 200 mm below the 

historical average. Both mean temperatures and precipitation were similar to the historical average 

in 2015 and 2017. Interestingly, in the regular growing season (i.e., 2015 and 2017), the yield level 

was consistent but in hot and dry years (i.e., 2016), the yield level shifted to higher yield in site 1 

and 6 while shifted to lower yield in site 2, 3, 4, and 5. 

 

 

Figure 4.3. Mean growing season (May to September) temperature (°C) and total growing 

season rainfall (mm) from two Niagara resign locations. Port Weller AUT represented Niagara-

on-the-lake vineyards and Vineland Research Station represented vineland vineyards. Historical 

climate normal data from St. Catharines A station 1981-2010. 
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Overall, proximal sensing measurement at fruit set could detect variation in yield at five 

out of six sites where three out of the three sites had high variation and showed temporal stability 

throughout the consecutive years. Vineyard yield was positively correlated with NDVI. Detecting 

local yield variation by proximal sensing does not appear to have an impact, because positive 

correlation was observed in low (site 4) and high (site 3 and 5) yield variation sites. However, the 

observation of better positive correlation level between P-NDVI and yield at fruit set stage 

indicated a possible temporal vegetation impact on yield. Furthermore, there could be an impact 

of annual climate changes (mean temperature and precipitation) on yield in the vineyard, but the 

impact could be either positive or negative. 

 

4.1.2.2 Relationships between proximal sensing NDVI and clusters/berry weight 

P-NDVIs were not associated with number of clusters in five vineyards, with only site 5 

vineyards displaying consistent positive correlations through the years (Table 4.2). While P-

NDVIs were not associated with clusters in most sites, NDVI and berry weight were more closely 

correlated. The P-NDVI at fruit set had a positive relationship with the weight of berry in four sites 

(Table 4.2) and three sites showed temporal stability of two consecutive years data. Variation 

occurred across sites in the mean berry weight (Table 4.1), with the largest mean weight per berry 

(g) being in site 4 (1.22 ± 0.14), then site 1 (1.19 ± 0.15), site 6 (1.16 ± 0.10), with the value drop 

seen in site 3 (1.10 ± 0.17), site 2 (1.09 ± 0.11), and site 5 (1.05 ± 0.12). Additionally, the overall 

variability of yield varied between vineyards, with the biggest variation in site 3 (16.00%), then 

site 1 (13.23%), site 4 (11.26%), site 5 (11.24%), site 2 (10.11%), and the least in site 6 (8.54%). 
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Overall, proximal sensing could detect variation in weight of single berry at three vineyard 

sites with temporal stability throughout the consecutive years. The NDVI from the RPAS flight 

and berry weight showed a significant positive correlation. The lowest variation site (site 6) 

showed both positive correlation and temporal stability, but the highest variation sites (site 1) did 

not show any correlation between the two variables. Detecting local yield variation by proximal 

sensing does not appear to have an impact. Higher positive correlation level between P-NDVI and 

yield at fruit set stage was also observed and indicated a possible temporal vegetation impact on 

yield. 

 

4.1.2.3 Relationships between proximal sensing NDVIs and anthocyanins 

P-NDVIs were negatively correlated to anthocyanins in two sites (site 2 and 5; Table 4.2) 

while site 6 site showed positive correlations. The measurements at lag phase (P-NDVI 2) and 

veraison (P-NDVI 3) showed a better correlation with anthocyanins than that of fruit set 

measurement. The average of the P-NDVI also negatively correlated to anthocyanins level. The 

mean anthocyanins level and its variation differed between sites (Table 4.1). The site with the 

highest anthocyanins level (three years average) was site 5 (796 ± 224), followed by site 6 (794 ± 

262), site 3 (730 ± 225), site 2 (631 ± 191), with the value drop seen in site 4 (472 ± 152) and site 

1 (348 ± 152). The site with the highest variation in anthocyanins (three years average; Table 4.1) 

was site 1 (CV%=44.96), followed by site 6 (CV%=33.21), with the value drop seen in site 4 

(CV%=31.89), site 3 (CV%=30.92), site 2 (CV%=30.38) and site 5 (CV%=28.97). The annual 

variation in anthocyanins level throughout the vineyards was also observed. Interestingly, in 

Figure 4.3, the growing season was hot and dry in 2016, and a high anthocyanins level was 

observed in all the vineyard sites in 2016.  
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Overall, proximal sensing could detect variation in anthocyanins level at three out of six 

sites and showed some temporal stability throughout the consecutive years. The level of 

anthocyanins in vineyards was negatively correlated with the NDVI observed from the RPAS 

flights.  The vegetation at lag phase and at veraison (P-NDVI 3) could have more impacts on 

accumulation of anthocyanins level in berry since the P-NDVI measurements at lag phase and 

veraison showed the better correlation with anthocyanins than that of fruit set measurement. There 

does not appear to be an impact of variation of anthocyanins level and its detection by proximal 

sensing, because both negative correlation and temporal stability observed in the high (site 6) and 

the low (site 5) variation in anthocyanins level. As in the case of yield, seasonal differences with 

respect to temperature and precipitation impacted the level of anthocyanins in the berries.  

 

4.1.2.4 Relationships between proximal sensing NDVI and phenols 

P-NDVIs were negatively correlated to phenols with some temporal consistency observed 

through the years (site 2, 3, and 5; Table 4.2). The measurements at veraison (P-NDVI 3) showed 

better correlation with phenols than that of fruit set (P-NDVI 1) and lag phase (P-NDVI 2) 

measurement. The average of the P-NDVI also negatively correlated to phenols level. The mean 

phenols level and its variation differed between sites (Table 4.1). The site with the highest phenols 

level (three years average) was site 5 (2166 ± 623), followed by site 6 (2123 ± 658), site 3 (1993 

± 643), site 2 (1924 ± 534), with the value drop seen in site 1 (1415 ± 541) and site 4 (1401 ± 152). 

The site with the highest variation in phenols (three years average; Table 4.1) was site 1 

(CV%=37.92), followed by site 4 (CV%=36.38), with the value drop seen in site 3 (CV%=32.28), 

site 6 (CV%=31.22), site 5 (CV%=29.02), and site 2 (CV%=27.48). The annual variation in 

phenols level throughout the vineyards was also observed. Interestingly, the growing season was 
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hot and dry in 2016 (Figure 4.3), and a high phenols level was observed in almost all the vineyard 

sites in 2016, which also observed in anthocyanins level in the berries.  

Overall, proximal sensing could detect variation in phenols level at three out of six sites in 

2017 and these relationships were consistent and stable in time. The level of phenols in vineyards 

was negatively correlated with the NDVI from the RPAS flight. There does not appear to be a 

relationship between NDVI from the RPAS flight and the variation in phenol levels. However, the 

observation of better positive correlation level between P-NDVI and phenols at veraison indicated 

a possible temporal vegetation impact on yield. Furthermore, there could be an impact of growing 

season on the total level of phenols, same pattern observed in anthocyanins in the berries. 

 

4.1.2.5 Relationships between proximal sensing NDVI and Brix/titratable acidity (TA)/pH 

There were only weak correlations observed between P-NDVIs and other berry 

composition values (Brix, TA, and pH) and a lack of consistency in the correlations was evident 

throughout the sites and years (Table 4.2). However, P-NDVI measurement at lag phase showed a 

strong negative correlation to the pH in most of sites in 2016, a hot and dry year (Table 4.2). P-

NDVI at fruit set also negatively correlated in three sites in 2016. The site with the highest Brix 

level (three years average; Table 4.1) was site 2 (24.64 ± 0.97), site 3 (24.66 ± 2.19), site 5 (24.62 

± 1.34), site 6 (24.57 ± 1.56), with the value drop seen in site 1 (21.80 ± 2.21) and site 4 (21.32 ± 

1.81).  

The site with the highest variation in Brix (three years average; Table 4.1) was site 1 

(CV%=10.15), followed by site 3 (CV%=8.92), and site 4 (CV%=8.43), with the value drop seen 

site 6 (CV%=6.33), site 5 (CV%=5.47), and site 2 (CV%=3.95). The site with the highest TA level 

was site 4 (7.22 ± 0.65), followed by site 3 (6.79 ± 0.65), site 5 (6.43 ± 0.65), site 6 (6.42 ± 0.50), 
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and site 1 (6.37 ± 0.79) with the value drop seen in site 2 (5.84 ± 0.44). The site with the highest 

variation in Brix was site 1 (CV%=12.47), followed by site 6 (CV%=9.95), site 3 (CV%=9.51), 

site 4 (CV%=9.01), with the value drop seen in site 5 (CV%=7.22), and site 2 (CV%=7.25). The 

site with the highest pH level was site 3 (3.6 ± 0.11), site 2 (3.58 ± 0.08), with the value drop seen 

in site 6 (3.48 ± 0.09), site 1 (3.46 ± 0.16), site 5 (3.44 ± 0.10), and site 4 (3.32 ± 0.08). Site 1 had 

the highest pH variation (CV%=4.67), then in site 3 (CV%=3.08), site 5 (CV%=3.00), site 6 

(CV%=2.96), and with the value drop seen site 4 (CV%=2.34), and site 2 (CV%=2.12).  

Overall, proximal sensing NDVI was least capable of detecting variation in other berry 

compositions (Brix, TA, and pH) in all vineyard sites and years. P-NDVI did not appear to be 

affected by Brix, TA, or pH values for any of the sites, or variations in those values. However, P-

NDVI at lag phase with a strong capability to detect variations in pH in all vineyard sites in 2016 

and P-NDVI at fruit set also negatively correlated in three sites in 2016. Therefore, there could be 

an impact of annual climate changes (mean temperature and precipitation) on its detection by 

proximal sensing in particularly, earlier stage of berry development. Furthermore, there was no 

specific pattern found to show an impact of annual climate changes (mean temperature and 

precipitation) on the level of Brix, TA, and pH of the berry samples. 

 

4.1.3 Pearson’s correlation between NDVI/thermal from the RPAS flight and grape yield/fruit 

quality 

4.1.3.1 Relationships between NDVI/thermal from the RPAS flight and yield (kg)/berry weight(g) 

Table 4.3 indicated that NDVI had a positive correlation with yield in most of sites and site 

5 showed temporal stability throughout the consecutive years. However, there were only weak 

correlations observed between thermal and yield with consistent negative relationships between 
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the two variables in 2016. Interestingly, the annual variation in the correlation matrix between 

NDVI from the RPAS flight and yield throughout the vineyards had indicated with more capability 

of detecting the correlation in the year with hot and dry growing season like 2016 (Figure 4.3), and 

thus the statistically significant positive correlations between the NDVI and yield were observed 

in five of six sites in 2016 while only two vineyards had the correlation in 2015. 

 

Table 4.3. Pearson's correlation results between NDVI/thermal from the RPAS flight vs yield and 

berry composition data in six Niagara vineyards from 2015, 2016 and 2017. Those variables with 

significant (95% confidence) were listed in bold, with blank cells representing no correlation: blue 

boxes= positive correlation with NDVI, red boxes= negative correlation with NDVI, black boxes= 

no data collected. Abbreviations: Clusters= Number of clusters, Berry Wt= Berry weight, TA= 

Titratable acidity. 

 

 

NDVI from the RPAS flight showed a strong positive correlation to the berry weight in 

most of sites and four sites showed temporal stability throughout the consecutive years (Table 4.3). 

Vineyards Clusters Yield Berry Wt. Brix pH TA Phenols Anthocyanins Vineyards Clusters Yield Berry Wt. Brix pH TA Phenols Anthocyanins

2015 Site 1 -0.392 -0.131 0.264 0.129 0.055 -0.272 0.220 -0.222 2015 Site 1 0.000 0.259 0.021 0.267 0.635 0.017 0.056 0.054

2016 Site 1 0.226 0.410 -0.197 0.042 -0.157 -0.247 0.022 0.091 2016 Site 1 0.049 0.000 0.088 0.717 0.177 0.032 0.848 0.435

2015 Site 2 0.049 0.181 0.238 -0.238 -0.002 0.107 -0.053 -0.047 2015 Site 2 0.679 0.120 0.040 0.040 0.984 0.361 0.654 0.687

2016 Site 2 0.243 0.241 0.033 -0.032 -0.064 0.095 -0.047 0.095 2016 Site 2 0.049 0.048 0.781 0.784 0.583 0.420 0.688 0.419

2015 Site 3 2015 Site 3

2016 Site 3 0.304 0.512 0.462 -0.432 -0.513 -0.213 -0.355 -0.220 2016 Site 3 0.006 0.000 0.000 0.000 0.000 0.058 0.001 0.050

2015 Site 4 0.035 0.117 0.328 -0.021 0.131 0.055 -0.181 -0.232 2015 Site 4 0.769 0.328 0.005 0.864 0.274 0.646 0.127 0.049
2016 Site 4 0.252 0.390 0.297 -0.262 -0.195 0.148 -0.176 -0.263 2016 Site 4 0.033 0.001 0.011 0.026 0.101 0.214 0.139 0.025
2015 Site 5 0.137 0.233 0.293 -0.107 -0.294 0.268 -0.384 -0.192 2015 Site 5 0.222 0.037 0.008 0.343 0.008 0.016 0.000 0.086

2016 Site 5 0.134 0.234 0.141 -0.105 0.031 -0.328 0.059 -0.151 2016 Site 5 0.233 0.035 0.210 0.349 0.783 0.003 0.600 0.179

2015 Site 6 0.056 0.309 0.362 -0.162 -0.142 0.089 -0.124 -0.202 2015 Site 6 0.623 0.005 0.001 0.151 0.209 0.433 0.273 0.073

2016 Site 6 -0.220 0.023 0.321 0.164 -0.296 0.512 0.294 0.406 2016 Site 6 0.050 0.837 0.004 0.145 0.008 0.000 0.008 0.000

Vineyards Clusters Yield Berry Wt. Brix pH TA Phenols Anthocyanins Vineyards Clusters Yield Berry Wt. Brix pH TA Phenols Anthocyanins

2015 Site 1 0.300 0.143 -0.083 -0.130 -0.035 0.218 -0.201 0.087 2015 Site 1 0.008 0.217 0.474 0.263 0.762 0.058 0.082 0.455

2016 Site 1 -0.119 0.032 0.352 -0.238 0.247 0.112 0.160 -0.438 2016 Site 1 0.304 0.784 0.002 0.039 0.032 0.334 0.168 0.000
2015 Site 2 0.029 0.053 0.097 -0.090 -0.354 0.124 -0.186 -0.216 2015 Site 2 0.808 0.653 0.408 0.442 0.002 0.289 0.110 0.063

2016 Site 2 -0.085 -0.194 -0.097 0.034 0.485 -0.212 0.254 0.177 2016 Site 2 0.469 0.096 0.409 0.772 0.000 0.068 0.028 0.128

2015 Site 3 2015 Site 3

2016 Site 3 -0.093 -0.348 -0.712 0.233 0.539 0.145 0.196 0.047 2016 Site 3 0.411 0.002 0.000 0.038 0.000 0.198 0.081 0.676

2015 Site 4 -0.106 -0.003 0.096 -0.281 -0.115 0.014 0.155 -0.165 2015 Site 4 0.378 0.979 0.420 0.017 0.334 0.907 0.193 0.165

2016 Site 4 -0.236 -0.451 -0.284 0.167 0.265 -0.095 0.351 0.411 2016 Site 4 0.046 0.000 0.016 0.162 0.025 0.426 0.002 0.000
2015 Site 5 -0.299 -0.171 0.007 0.299 0.310 -0.162 0.094 0.346 2015 Site 5 0.007 0.128 0.948 0.007 0.005 0.150 0.405 0.002
2016 Site 5 -0.381 -0.470 0.004 0.427 0.277 0.162 0.303 0.237 2016 Site 5 0.000 0.000 0.973 0.000 0.012 0.147 0.006 0.033
2015 Site 6 0.056 0.171 0.039 0.180 0.085 -0.118 0.018 -0.015 2015 Site 6 0.620 0.131 0.733 0.109 0.454 0.296 0.875 0.898

2016 Site 6 0.139 0.132 -0.181 -0.184 0.311 -0.337 -0.355 -0.262 2016 Site 6 0.220 0.242 0.109 0.102 0.005 0.002 0.001 0.019

Remote Sensing NDVI (Correlation matrix)

Remote Sensing Thermal (Correlation matrix)

Remote Sensing NDVI (p-values)

Remote Sensing Thermal (p-values)
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There also were only weak relationships found between thermal and berry weight and a lack of 

consistency in the correlations was evident throughout the sites and years (Table 4.3). 

Overall, NDVI could detect variation in yield and berry weight in most of sites where four 

sites showed temporal stability in berry weight throughout the consecutive years. In general, NDVI 

from the RPAS flight and yield were positively correlated. There could be an annual climate impact 

on yield values and its detection by NDVI from the RPAS flight, because significantly more 

correlations between the NDVI and yield were detected in 2016, a hot and dry year, over 2015 

with ample precipitation. Therefore, NDVI from the RPAS flight could have more capability of 

detecting the variation of yield in the year with hot and dry condition. 

 

4.1.3.2 Relationships between NDVI/thermal from the RPAS flight and anthocyanins/phenols 

There were only weak correlations found between NDVI from the RPAS flight and 

anthocyanins/phenols and a lack of consistency in the correlations was evident throughout the sites 

and years (Table 4.3). NDVI was somewhat negatively correlated to anthocyanins and phenols and 

positively correlated between thermal imaging and anthocyanins/phenols. Overall, NDVI and 

thermal from the RPAS flight had low capability of detecting variation in anthocyanins and 

phenols in all vineyard sites and years.  

 

4.1.3.3 Relationships between NDVI/thermal from the RPAS flight and other berry compositions 

(Brix, titratable acidity (TA), and pH) 

There were only weak correlations observed between NDVI/thermal and Brix/TA and a 

lack of consistency in the correlations was evident throughout the sites and years (Table 4.3). 

However, thermal showed a strong positive correlation to the pH in most of sites and site 5 showed 
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temporal stability throughout the consecutive years (Table 4.3). Interestingly, strong positive 

correlations between the two variables were observed throughout the sites (six of six sites) in 2016, 

a hot and dry year, while only one vineyard had the correlation in 2015. 

Overall, NDVI and thermal from the RPAS flight was least capable of detecting variation 

in Brix and TA but thermal data showed a strong capability to detect variations in pH in all 

vineyard sites in 2016, a relatively hot and dry year. Therefore, NDVI and thermal emission data 

were not reliable for detecting variation for primary fruit composition except for pH.  However, 

heat units and precipitation can impact its level of detection, limiting their feasibility. 

 

4.1.4 Correlation analysis between other indices from the RPAS flight and grape yield/fruit quality 

Several vegetation indices (VIs) are applied in viticulture to measure a variety of plant 

characteristics, for example, leaf colour intensity, area index of leaves, plant physiology, and 

nutrient deficiency.[1] Plant canopy VIs, including NDVI, are less effective at identifying 

differences in berry compositions than other indicators responsive to leaf pigments.[2] These 

biochemical indicators were also more closely linked to measures of wine colour intensity.[2] 

Numerous remote sensing indices can be calculated from the green, red, red edge, and NIR regions 

of EM reflectance to detect reproductive growth and potential grape quality. Therefore, this study 

investigated other VIs to detect the variations of plant yield and quality production and to compare 

the correlation results to NDVI from proximal sensing and from the RPAS flight. The feature 

indices (Table 4.4) in the study were referred to the indices to characterize the plant yield and 

quality production according to previous studies.[3-6]  
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Table 4.4. Other vegetation indices (VIs) to characterize the plant yield and quality production. 

 

 

4.1.4.1 Principal component analysis (PCA) of other indices from the RPAS flight and grape 

yield/fruit quality 

PCA results were built based on the first two factors, which explained between 50 to 62% 

of the data (Figure 4.4). In site 1 (Figure 4.4), the analysis described 49.16% of the data and showed 

that NIR and red edge positively correlated to clusters, anthocyanins, and brix and negatively 

correlated to TA and berry weight. Ratio vegetation index (RVI) showed a strong positive 

correlation to the yield and NDVI green (GNDVI) and green chlorophyll index (CI green) also 

positively correlated to vine size. However, due to the relatively short vector other variables, it 

was difficult to visually interpret the relationship. A significant correlation between indices is also 

observed with clustering of green and red; red edge and NIR; red edge normalized difference 

vegetation index (NDRE) and red edge chlorophyll index (CI red edge); RVI, GNDVI, and CI 

green. A slight negative correlation observed between NIR and green/red. 
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Figure 4.4. PCA results among indices from the RPAS flight, vineyard yield and berry 

composition in six Niagara vineyards from 2016. Variables include data in six Ontario vineyards 

in 2016. Abbreviations: Berry WT= Berry weight, TA= Titratable acidity, CI green= Green 

chlorophyll index, CI red edge= Red edge chlorophyll index, NDRE= Red edge normalized 

difference vegetation index, GNDVI= NDVI green, RVI= Ratio vegetation index. 
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In site 2 (Figure 4.4), the analysis described 54.05% of the data and showed that NDRE, 

CI red edge, vine size, yield, clusters, and berry weight were clustered together while green, red 

edge, NIR, anthocyanins, phenols, pH, and Brix were clustered together in the other plane even 

though the vectors for some variables such as TA, Brix, and berry weight were relatively short and 

thus there does not appear to be clear in the PCA chart. NIR and red edge exhibit a strong positive 

correlation. 

In site 3 (Figure 4.4), the analysis described 61.39% of the data and showed that NDRE, 

CI red edge, CI green, GNDVI, RVI, vine size, yield, and clusters were clustered together while 

green, red, red edge, NIR, anthocyanins, phenols, pH, TA and Brix were clustered together in the 

other plane even though the vectors for some variables such as TA, anthocyanins, and clusters 

were relatively short and thus there does not appear to be clear in the PCA chart. A significant 

positive correlation between indices was also observed with clustering of green, red, red edge and 

NIR. 

In site 4 (Figure 4.4), the analysis described 53.30% of the data and showed that NDRE, 

CI red edge, CI green, red edge, NIR, GNDVI, RVI, vine size, yield, clusters, and berry weight 

were clustered together while green, red, anthocyanins, phenols, pH, and Brix were clustered 

together in the other plane even though the vectors for some variables such as phenols, clusters, 

NDRE, and CI red edge were relatively short and thus there does not appear to be clear in the PCA 

chart. A significant correlation between indices observed with clustering of green and red; red edge 

and NIR. A strong negative correlation was also observed between red edge/NIR and green/red.  

In site 5 (Figure 4.4), the analysis described 53.48% of the data and showed that NIR, red 

edge, yield, and clusters were clustered together while no clustering was observed between indices 

from the RPAS flight and berry compositions. Brix, pH, phenols, and anthocyanins were 
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negatively correlated to red edge and NIR. A significant positive correlation between indices was 

also observed with clustering of green, red, red edge and NIR. 

In site 6 (Figure 4.4), the analysis described 55.29% of the data and showed that red 

somewhat positively correlated to yield, clusters, and pH but those had short vectors and thus there 

does not appear to be clear in the PCA chart. On the other plane, RVI, anthocyanins, phenols, TA, 

and Brix were clustered together. Other indices were not correlated to the yield and berry 

compositions. A significant positive correlation between indices was also observed with clustering 

of green, red edge and NIR. 

Overall, yield and vine size indicated a positive correlation with CI green, GNDVI, and 

RVI while these were inversely correlated to green and red in four of six sites. It was observed that 

berry compositions did not correlate well with other indices from the RPAS flight. In site 2 and 3, 

pH and phenols were positively correlated to the green, red, red edge, and NIR. A positive 

correlation was also observed between anthocyanins and green/red edge/NIR in site 2 and between 

anthocyanins and green/red in site 3. The negative correlations observed between anthocyanins 

and green/red edge/NIR in site 2 and between anthocyanins and green/red in site 3. However, pH 

and phenols were inversely correlated to green, red, red edge, and NIR in site 5. As shown in their 

short vectors, berry weight, Brix, pH, and TA could not be well explained by the first two factors. 

Pearson's correlation should be used to confirm relationships. 
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4.1.4.2 Pearson’s correlation analysis of other indices from the RPAS flight and grape yield/fruit 

quality 

i. Relationships between other indices and yield components 

CI green was positively correlated to vine size in all six sites, to yield in five sites, and to 

both clusters and berry weight in two sites in Table 4.5 and 4.6. In site 3 and 4, positive correlations 

were observed between CI green and all four yield components. CI red edge also showed positive 

correlations to yield and vine size in three of six sites while clusters and yield were inversely 

correlated to the CI red edge in site 1. Similar to CI green, strong positive correlations were 

observed between GNDVI and yield components with correlation to vine size in all six sites, to 

yield in five sites. Green was negatively correlated to vine size in five of six sites and to yield in 

four of six sites. Negative correlations were observed between green and all four yield components 

in site 3. 

Green was also negatively correlated to berry weight in three of six sites. Negative 

correlations were observed between red and all four yield components in site 3 while clusters 

positively correlated to red in site 5 and 6. NDRE showed the same pattern of correlations as the 

CI red edge. NIR and red edge indicated some correlation to the yield components. NIR and red 

edge were positively correlated to clusters and yield in site 4 and 5 and to vine size and berry 

weight in site 4 while these were inversely correlated to clusters and yield in site 2 and to vine size 

and berry weight in site 3. Positive correlations were observed between NIR/red edge and all four 

yield components in site 4. RVI had a positive relationship with vine size in five of six sites, with 

berry weight in four sites, and with yield in three sites. In site 3 and 4, positive correlations were 

observed between RVI and all four yield components. 
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Table 4.5. Pearson's correlation results sorted by indices between indices from the RPAS flight 

vs yield and berry composition data in six Niagara vineyards from 2016. The indices from the 

RPAS flight included green, red, red edge, NIR, CI green, CI red edge, NDRE, GNDVI and RVI. 

Those variables with significant (95% confidence) were listed in bold, with blank cells 

representing no correlation: blue boxes= positive correlation with indices, red boxes= negative 

correlation with indices, black boxes= no data collected. Abbreviations: Berry WT= Berry weight, 

TA= Titratable acidity, CI green= Green chlorophyll index, CI red edge= Red edge chlorophyll 

index, NDRE= Red edge normalized difference vegetation index, GNDVI= NDVI green, RVI= 

Ratio vegetation index. 

 

Variables Vineyards Clusters Yield Vine Size Berry Wt. Brix pH TA Phenols Anthocyanins

Site 1 0.059 0.272 0.438 -0.165 -0.002 -0.078 -0.231 0.162 0.017

Site 2 0.222 0.253 0.255 0.025 -0.084 -0.192 0.144 -0.158 -0.042

Site 3 0.314 0.538 0.648 0.472 -0.462 -0.518 -0.186 -0.373 -0.239

Site 4 0.267 0.523 0.437 0.345 -0.242 -0.227 0.118 -0.129 -0.285

Site 5 0.130 0.242 0.438 0.158 -0.073 0.064 -0.338 0.070 -0.129

Site 6 -0.088 0.017 0.501 0.163 0.147 -0.167 0.207 0.159 0.199

Site 1 -0.338 -0.265 -0.008 0.184 -0.021 0.184 0.021 0.218 -0.183

Site 2 0.204 0.308 0.080 0.055 -0.293 -0.385 -0.027 -0.228 -0.440

Site 3 0.227 0.344 0.457 0.169 -0.263 -0.221 -0.048 -0.270 -0.135

Site 4 0.097 0.386 0.449 0.085 -0.093 -0.026 0.061 0.050 -0.060

Site 5 -0.110 -0.070 0.031 -0.035 -0.006 -0.002 -0.004 0.247 0.189

Site 6 -0.047 -0.035 0.305 0.093 0.205 -0.050 0.120 0.159 0.157

Site 1 0.075 0.302 0.455 -0.165 -0.007 -0.084 -0.224 0.176 0.023

Site 2 0.244 0.280 0.277 0.050 -0.052 -0.202 0.124 -0.126 -0.017

Site 3 0.339 0.541 0.655 0.477 -0.441 -0.527 -0.187 -0.371 -0.212

Site 4 0.244 0.474 0.388 0.330 -0.245 -0.216 0.120 -0.111 -0.251

Site 5 0.134 0.234 0.429 0.141 -0.105 0.031 -0.328 0.059 -0.151

Site 6 -0.102 0.011 0.506 0.199 0.179 -0.152 0.217 0.186 0.218

Site 1 -0.035 -0.319 -0.484 0.033 0.138 0.112 0.104 -0.378 0.088

Site 2 -0.368 -0.445 -0.260 -0.212 0.159 0.506 -0.088 0.358 0.385

Site 3 -0.292 -0.520 -0.656 -0.580 0.404 0.613 0.315 0.470 0.228

Site 4 -0.070 -0.289 -0.145 -0.034 0.250 0.210 -0.106 -0.047 -0.098

Site 5 0.111 0.027 -0.266 -0.214 -0.120 -0.219 0.225 -0.249 0.054

Site 6 0.109 -0.003 -0.493 -0.166 -0.161 0.176 -0.191 -0.181 -0.221

Site 1 -0.346 -0.271 -0.011 0.188 -0.023 0.195 0.021 0.222 -0.187

Site 2 0.206 0.312 0.082 0.058 -0.290 -0.394 -0.024 -0.235 -0.436

Site 3 0.225 0.343 0.456 0.170 -0.266 -0.221 -0.050 -0.273 -0.136

Site 4 0.090 0.379 0.443 0.079 -0.100 -0.034 0.067 0.048 -0.060

Site 5 -0.111 -0.073 0.031 -0.042 -0.006 -0.004 -0.004 0.251 0.191

Site 6 -0.052 -0.039 0.306 0.101 0.213 -0.049 0.124 0.167 0.164

Site 1 0.065 -0.018 -0.018 -0.228 0.216 0.045 -0.227 -0.334 0.176

Site 2 -0.233 -0.279 -0.063 -0.200 0.126 0.393 0.030 0.300 0.430

Site 3 0.029 -0.161 -0.324 -0.502 0.104 0.473 0.446 0.435 0.131

Site 4 0.303 0.469 0.452 0.437 -0.157 -0.150 0.083 -0.210 -0.455

Site 5 0.407 0.425 0.205 -0.148 -0.398 -0.364 -0.104 -0.373 -0.166

Site 6 0.080 -0.002 -0.377 -0.039 -0.058 0.205 -0.083 -0.099 -0.162

Site 1 -0.226 -0.455 -0.508 0.133 0.029 0.192 0.196 -0.135 -0.033

Site 2 -0.353 -0.381 -0.308 -0.149 0.109 0.308 -0.100 0.221 0.147

Site 3 -0.238 -0.474 -0.602 -0.570 0.380 0.600 0.349 0.457 0.232

Site 4 -0.209 -0.331 -0.224 -0.197 0.291 0.206 -0.159 0.152 0.154

Site 5 0.294 0.170 -0.106 -0.278 -0.320 -0.425 0.141 -0.333 -0.092

Site 6 0.237 -0.020 -0.509 -0.321 -0.184 0.357 -0.520 -0.326 -0.452

Site 1 0.295 0.189 -0.001 -0.283 0.156 -0.121 -0.160 -0.384 0.245

Site 2 -0.249 -0.311 -0.071 -0.193 0.170 0.439 0.030 0.328 0.475

Site 3 -0.068 -0.293 -0.490 -0.533 0.205 0.531 0.435 0.516 0.180

Site 4 0.276 0.330 0.290 0.414 -0.117 -0.136 0.056 -0.240 -0.434

Site 5 0.418 0.419 0.179 -0.130 -0.373 -0.341 -0.093 -0.437 -0.220

Site 6 0.083 0.019 -0.408 -0.080 -0.148 0.161 -0.119 -0.154 -0.194

Site 1 0.214 0.376 0.423 -0.208 0.036 -0.158 -0.250 -0.004 0.069

Site 2 0.131 0.128 0.211 -0.021 -0.081 -0.016 0.147 -0.100 0.056

Site 3 0.289 0.513 0.591 0.450 -0.453 -0.495 -0.209 -0.359 -0.242

Site 4 0.294 0.482 0.396 0.329 -0.254 -0.216 0.138 -0.214 -0.331

Site 5 -0.050 0.124 0.345 0.259 0.118 0.314 -0.308 0.179 -0.006

Site 6 -0.219 0.038 0.359 0.321 0.158 -0.283 0.486 0.263 0.400

NIR

Red

RedEdge

RVI

Cl green

Cl red edge

GNDVI

Green

NDRE
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Table 4.6. Pearson's correlation results sorted by sites between indices from the RPAS flight vs 

yield and berry composition data in six Niagara vineyards from 2016. The indices from the RPAS 

flight included green, red, red edge, NIR, CI green, CI red edge, NDRE, GNDVI and RVI. Those 

variables with significant (95% confidence) were listed in bold, with blank cells representing no 

correlation: blue boxes= positive correlation with indices, red boxes= negative correlation with 

indices, black boxes= no data collected. Abbreviations: Berry WT= Berry weight, TA= Titratable 

acidity, CI green= Green chlorophyll index, CI red edge= Red edge chlorophyll index, NDRE= 

Red edge normalized difference vegetation index, GNDVI= NDVI green, RVI= Ratio vegetation 

index. 

 

Vineyards Variables Clusters Yield Vine Size Berry Wt. Brix pH TA Phenols Anthocyanins

Green -0.035 -0.319 -0.484 0.033 0.138 0.112 0.104 -0.378 0.088

Red -0.226 -0.455 -0.508 0.133 0.029 0.192 0.196 -0.135 -0.033

RedEdge 0.295 0.189 -0.001 -0.283 0.156 -0.121 -0.160 -0.384 0.245

NIR 0.065 -0.018 -0.018 -0.228 0.216 0.045 -0.227 -0.334 0.176

Cl green 0.059 0.272 0.438 -0.165 -0.002 -0.078 -0.231 0.162 0.017

Cl red edge -0.338 -0.265 -0.008 0.184 -0.021 0.184 0.021 0.218 -0.183

NDRE -0.346 -0.271 -0.011 0.188 -0.023 0.195 0.021 0.222 -0.187

GNDVI 0.075 0.302 0.455 -0.165 -0.007 -0.084 -0.224 0.176 0.023

RVI 0.214 0.376 0.423 -0.208 0.036 -0.158 -0.250 -0.004 0.069

Green -0.368 -0.445 -0.260 -0.212 0.159 0.506 -0.088 0.358 0.385

Red -0.353 -0.381 -0.308 -0.149 0.109 0.308 -0.100 0.221 0.147

RedEdge -0.249 -0.311 -0.071 -0.193 0.170 0.439 0.030 0.328 0.475

NIR -0.233 -0.279 -0.063 -0.200 0.126 0.393 0.030 0.300 0.430

Cl green 0.222 0.253 0.255 0.025 -0.084 -0.192 0.144 -0.158 -0.042

Cl red edge 0.204 0.308 0.080 0.055 -0.293 -0.385 -0.027 -0.228 -0.440

NDRE 0.206 0.312 0.082 0.058 -0.290 -0.394 -0.024 -0.235 -0.436

GNDVI 0.244 0.280 0.277 0.050 -0.052 -0.202 0.124 -0.126 -0.017

RVI 0.131 0.128 0.211 -0.021 -0.081 -0.016 0.147 -0.100 0.056

Green -0.292 -0.520 -0.656 -0.580 0.404 0.613 0.315 0.470 0.228

Red -0.238 -0.474 -0.602 -0.570 0.380 0.600 0.349 0.457 0.232

RedEdge -0.068 -0.293 -0.490 -0.533 0.205 0.531 0.435 0.516 0.180

NIR 0.029 -0.161 -0.324 -0.502 0.104 0.473 0.446 0.435 0.131

Cl green 0.314 0.538 0.648 0.472 -0.462 -0.518 -0.186 -0.373 -0.239

Cl red edge 0.227 0.344 0.457 0.169 -0.263 -0.221 -0.048 -0.270 -0.135

NDRE 0.225 0.343 0.456 0.170 -0.266 -0.221 -0.050 -0.273 -0.136

GNDVI 0.339 0.541 0.655 0.477 -0.441 -0.527 -0.187 -0.371 -0.212

RVI 0.289 0.513 0.591 0.450 -0.453 -0.495 -0.209 -0.359 -0.242

Green -0.070 -0.289 -0.145 -0.034 0.250 0.210 -0.106 -0.047 -0.098

Red -0.209 -0.331 -0.224 -0.197 0.291 0.206 -0.159 0.152 0.154

RedEdge 0.276 0.330 0.290 0.414 -0.117 -0.136 0.056 -0.240 -0.434

NIR 0.303 0.469 0.452 0.437 -0.157 -0.150 0.083 -0.210 -0.455

Cl green 0.267 0.523 0.437 0.345 -0.242 -0.227 0.118 -0.129 -0.285

Cl red edge 0.097 0.386 0.449 0.085 -0.093 -0.026 0.061 0.050 -0.060

NDRE 0.090 0.379 0.443 0.079 -0.100 -0.034 0.067 0.048 -0.060

GNDVI 0.244 0.474 0.388 0.330 -0.245 -0.216 0.120 -0.111 -0.251

RVI 0.294 0.482 0.396 0.329 -0.254 -0.216 0.138 -0.214 -0.331

Green 0.111 0.027 -0.266 -0.214 -0.120 -0.219 0.225 -0.249 0.054

Red 0.294 0.170 -0.106 -0.278 -0.320 -0.425 0.141 -0.333 -0.092

RedEdge 0.418 0.419 0.179 -0.130 -0.373 -0.341 -0.093 -0.437 -0.220

NIR 0.407 0.425 0.205 -0.148 -0.398 -0.364 -0.104 -0.373 -0.166

Cl green 0.130 0.242 0.438 0.158 -0.073 0.064 -0.338 0.070 -0.129

Cl red edge -0.110 -0.070 0.031 -0.035 -0.006 -0.002 -0.004 0.247 0.189

NDRE -0.111 -0.073 0.031 -0.042 -0.006 -0.004 -0.004 0.251 0.191

GNDVI 0.134 0.234 0.429 0.141 -0.105 0.031 -0.328 0.059 -0.151

RVI -0.050 0.124 0.345 0.259 0.118 0.314 -0.308 0.179 -0.006

Green 0.109 -0.003 -0.493 -0.166 -0.161 0.176 -0.191 -0.181 -0.221

Red 0.237 -0.020 -0.509 -0.321 -0.184 0.357 -0.520 -0.326 -0.452

RedEdge 0.083 0.019 -0.408 -0.080 -0.148 0.161 -0.119 -0.154 -0.194

NIR 0.080 -0.002 -0.377 -0.039 -0.058 0.205 -0.083 -0.099 -0.162

Cl green -0.088 0.017 0.501 0.163 0.147 -0.167 0.207 0.159 0.199

Cl red edge -0.047 -0.035 0.305 0.093 0.205 -0.050 0.120 0.159 0.157

NDRE -0.052 -0.039 0.306 0.101 0.213 -0.049 0.124 0.167 0.164

GNDVI -0.102 0.011 0.506 0.199 0.179 -0.152 0.217 0.186 0.218

RVI -0.219 0.038 0.359 0.321 0.158 -0.283 0.486 0.263 0.400

Site 6

Site 1

Site 3

Site 4

Site 5

Site 2
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Overall, CI green and GNDVI showed the most capability of detecting variation in yield 

and vine size in most of sites with statistically significant positive correlation. Green and red also 

showed a good negative correlation to yield and vine size. The relationship between RVI and berry 

weight was also positive in four out of six sites. NIR and red edge showed the least correlation to 

the yield components. Site 3 and 4 showed the most correlation between other indices and yield 

components while other indices in site 6 only showed the significant correlation to berry weight. 

 

ii. Relationships between other indices from the RPAS flight and berry compositions 

There were some correlations observed between other indices from the RPAS flight and 

berry compositions, and only three sites (site 2, 3, and 5) had some correlations between the two 

variables (Table 4.5 and 4.6). Interestingly, green, red edge and NIR were positively correlated to 

pH, phenols, and anthocyanins while these were inversely correlated to yield and clusters in in site 

2. Similar correlations were also seen in site 3 that green, red, red edge and NIR were positively 

correlated to pH, phenols, TA, and anthocyanins while these were inversely correlated to yield 

components. An inverse correlation was shown between CI red edge/NDRE and 

Brix/pH/phenols/anthocyanins in site 2 and between CI green/ CI red edge/NDRE/GNDVI/RVI 

and Brix/pH/phenols in site 3. These indices in both sites also showed positive correlation to yield 

components. In site5, a reverse correlation pattern from site 3 and site 2 was observed that red, red 

edge, NIR were negatively correlated to brix, pH, and phenols while these were positively 

correlated to clusters and yield. Site 4 site with the strong positive correlation between indices 

from the RPAS flight and yield components indicated a negative correlation between CI 

green/GNDVI/RVI and brix/anthocyanins.  
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Overall, CI green, CI red edge, GNDVI, and NDRE were negatively correlated to Brix, pH, 

TA, phenols, and anthocyanins in some sites while the nature of the relationships in the other 

indices varied between sites. The correlations between indices from the RPAS flight and berry 

compositions were site specific and two sites showed an identical correlation between the two 

variables while inverse correlation observed in another site. The other three sites only indicated 

weak correlations between the two variables, which varied between sites. Interestingly, the indices 

were strongly correlated to berry composition such as brix, pH, phenols, anthocyanins in some 

sites while these correlations were inverse pattern to yield components at the same site. 

 

4.1.5 Mapping and spatial autocorrelation analysis 

4.1.5.1 Spatial autocorrelation analysis (Moran’s I) 

The spatial autocorrelation of each variable was determined by z-score (Table 4.7A), which 

shows clustering patterns to measure zonal vineyard management options.[7-9] All EM reflectance 

data analysis (NDVIs and other Vis) and thermal emission data were highly clustered across the 

six sites throughout the years. The number of clusters in 2015 and 2016 showed generally random 

distribution, being clustered at only two sites in each year and clustered only one sites in 2017. 

Dispersed pattern also appeared at site 4 in 2016. Yield was mostly clustered in 2016 with five out 

of six sites being clustered, only site 1 was randomly distributed. However, only two sites showed 

a clustering pattern, and the other sites were randomly distributed or dispersed in 2017. There was 

no clustering pattern observed in 2015, and the yield was randomly distributed in all the vineyards. 

There was a strong clustering of berry weight and basic berry composition across sites. 

Overall, indices from the RPAS flight, berry phenols, and anthocyanin level showed high 

clustering, whereas clusters and yields were predominantly random. There was moderate 
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clustering of berry weight and composition, with spatial orientations relaying strongly on the site 

and year. 

 

Table 4.7A. Moran's I analysis results (z-score) for data from the RPAS flight /proximal sensing, 

yield, and berry composition data in six Niagara vineyards from 2015, 2016 and 2017 (95% 

confidence): blue boxes= clustered, red boxes= random, yellow boxes= dispersed, black boxes= 

no data collected. Abbreviations: NDVI= Normalized difference vegetation index, P-NDVI= 

Proximal NDVI, Clusters = Number of clusters, Berry WT= Berry weight, TA= Titratable acidity. 

 

 

 

 

 

Vineyards NDVI Thermal PNDVI Avg Clusters Yield Berry Wt. Brix pH TA Phenols Anthocyanins

2015 Site 1 (n=76) 6.0617 7.9863 7.1601 2.0338 -0.5719 0.7205 2.4373 0.6190 2.6179 1.9107 5.2621

2016 Site 1 (n=76) 7.2130 4.8483 5.6752 0.8022 0.0027 3.7264 1.8987 0.3316 1.6603 5.7378 2.2707

2017 Site 1 (n=76) 5.4303 2.4816 4.3632 3.4735 2.7145 1.9304 0.5598 2.3823 1.8573

2015 Site 2 (n=75) 4.2681 5.3533 5.2768 -0.5758 0.2740 1.3604 1.9080 3.4863 0.1223 0.7864 0.3780

2016 Site 2 (n=75) 2.7390 5.2274 2.6147 1.0149 1.7665 2.5659 3.9504 3.2227 -1.4321 0.6443 3.7295

2017 Site 2 (n=75) 2.4997 0.4936 0.9892 3.0366 0.8023 1.9965 -0.4950 1.6264 1.1532

2015 Site 3 (n=80) 6.2152 6.4905 6.2152

2016 Site 3 (n=80) 7.0372 6.9643 6.5482 0.6361 2.6756 6.6569 2.7873 3.5517 1.9396 4.5423 1.6671

2017 Site 3 (n=80) 6.0927 0.2710 -0.0867 2.0948 1.0797 3.4308 2.1172 0.0115 0.8964

2015 Site 4 (n=72) 2.2846 5.8056 4.1695 -1.0165 -0.7471 4.4183 1.3093 0.7637 0.2841 0.7014 1.8670

2016 Site 4 (n=72) 3.3818 5.5484 5.2513 -1.6860 2.1123 1.7563 1.7939 1.8991 0.0500 3.3689 4.3048

2017 Site 4 (n=72) 4.8626 0.4881 -1.0049 3.4903 1.2793 0.8943 -0.4684 1.9413 1.0183

2015 Site 5 (n=81) 3.3973 6.4341 2.6433 2.7220 -0.0273 3.5509 3.2872 6.5300 2.0402 1.7011 5.5350

2016 Site 5 (n=81) 6.2524 6.8356 3.5233 4.5448 4.5815 1.9210 6.6947 4.3985 1.8582 2.7014 2.5670

2017 Site 5 (n=81) 3.8967 1.7598 1.3014 0.9018 -0.2729 4.8438 1.9527 6.0737 0.0535

2015 Site 6 (n=80) 5.1185 7.1593 5.8291 -0.2032 0.6685 -0.3805 1.4997 0.1566 -0.4067 2.9453 3.0871

2016 Site 6 (n=80) 6.4873 5.1600 6.7888 2.4548 2.2780 1.2555 -0.1585 0.8938 3.5924 1.6528 3.6199

2017 Site 6 (n=80) 2.2967 -0.4960 -1.6948 -0.2936 1.0437 1.9468 1.3128 -0.1789 3.7179
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Table 4.7B. Moran's I analysis results (Moran’s Index and p-value) for data from the RPAS flight 

/proximal sensing, yield, and berry composition data in six Niagara vineyards from 2015, 2016 

and 2017 (95% confidence): blue boxes= clustered, red boxes= random, yellow boxes= dispersed, 

black boxes= no data collected. Abbreviations: NDVI= Normalized difference vegetation index, 

P-NDVI= Proximal NDVI, Clusters = Number of clusters, Berry WT= Berry weight, TA= 

Titratable acidity. 

 

 

4.1.5.2 Spatial analysis of maps 

It is imperative that reliable maps are produced that show areas of substantial variation to 

determine if data from the RPAS flight will be useful in detecting vineyard variability. Figure 4.5 

indicated maps of NDVIs derived from the data of the RPAS flight and proximal sensing, yield, 

and berry compositions in three consecutive years data and showed maps of other VIs, yield, and 

berry compositions in 2016 at site 4 vineyard. The maps were created by ArcGIS 10.6 (ESRI 

2011). 

Vineyards NDVI P-NDVI Thermal Clusters Yield Berry Wt. Brix pH TA Phenols Anthocyanins NDVI P-NDVI Thermal Clusters Yield Berry Wt. Brix pH TA Phenols Anthocyanins

2015 Site 1 

(n=76)
0.6284 0.7388 0.8308 0.1833 -0.0335 0.0072 0.2353 0.0022 0.2199 0.1478 0.4094 0.0001 0.0001 0.0001 0.0600 0.8480 0.8456 0.0201 0.8088 0.0269 0.1257 0.0000

2016 Site 1 

(n=76)
0.7496 0.5875 0.4990 -0.0170 0.1490 0.2992 0.1879 -0.0114 0.1785 0.4415 0.2608 0.0001 0.0001 0.0001 0.9712 0.1222 0.0030 0.0550 0.9854 0.0660 0.0000 0.0080

2017 Site 1 

(n=76)
0.5596 0.2100 0.3944 0.2743 0.3138 0.1540 0.0080 0.3075 0.0797 0.0001 0.0320 0.0001 0.0066 0.0018 0.1112 0.8395 0.0020 0.3749

2015 Site 2 

(n=75)
0.5505 0.6813 0.6819 -0.1493 0.0088 0.1385 0.1385 0.3476 -0.0120 -0.0640 -0.1030 0.0001 0.0001 0.0001 0.3000 0.2328 0.2233 0.2328 0.0012 0.9905 0.7023 0.4991

2016 Site 2 

(n=75)
0.2315 0.3310 0.6762 0.1013 0.2407 0.3109 0.3583 0.4281 -0.2295 -0.0148 0.2929 0.0225 0.0089 0.0001 0.3799 0.0170 0.0023 0.0004 0.0001 0.0884 0.9923 0.0032

2017 Site 2 

(n=75)
0.2514 0.0040 0.0511 0.3799 0.0478 0.3041 -0.1470 0.1834 0.0860 0.0108 0.8935 0.6243 0.0003 0.6403 0.0032 0.2759 0.1319 0.4488

2015 Site 3 

(n=80)
0.7450 0.7650 0.7829 0.0001 0.0001 0.0001

2016 Site 3 

(n=80)
0.8677 0.8037 0.8585 0.1407 0.2960 0.6133 0.2864 0.3890 0.1844 0.4918 0.2477 0.0001 0.0001 0.0001 0.2182 0.0031 0.0001 0.0032 0.0002 0.1104 0.0001 0.0124

2017 Site 3 

(n=80)
0.7451 0.1016 0.0067 0.2621 0.0524 0.3663 0.2377 -0.0355 0.0500 0.0001 0.3559 0.8754 0.0083 0.5999 0.0002 0.0184 0.8546 0.6133

2015 Site 4 

(n=72)
0.2412 0.5599 0.7988 -0.1248 -0.1096 0.3223 0.0361 0.0390 0.0398 0.0227 0.1677 0.0170 0.0001 0.0001 0.4304 0.4920 0.0022 0.7187 0.7015 0.7015 0.7927 0.1955

2016 Site 4 

(n=72)
0.4626 0.7276 0.7691 -0.3332 0.2435 0.2018 0.1868 0.2503 -0.0765 0.3122 0.3354 0.0001 0.0001 0.0001 0.0230 0.0152 0.1235 0.1529 0.0115 0.6511 0.0021 0.0024

2017 Site 4 

(n=72)
0.6704 0.0203 -0.1928 0.4134 0.0616 0.1763 -0.1156 0.2261 0.0664 0.0001 0.8058 0.2041 0.0002 0.5890 0.1761 0.4631 0.0805 0.5690

2015 Site 5 

(n=81)
0.3498 0.2380 0.6784 0.2277 -0.0273 0.2277 0.3498 0.4994 0.0706 0.1553 0.4684 0.0006 0.0188 0.0001 0.0247 -0.0273 0.0248 0.0006 0.0001 0.4328 0.1167 0.0000

2016 Site 5 

(n=81)
0.6561 0.3452 0.7187 0.2992 0.2986 0.0902 0.3473 0.3050 0.1488 0.3043 0.2330 0.0001 0.0006 0.0001 0.0035 0.0034 0.3378 0.0007 0.0028 0.1300 0.0031 0.0219

2017 Site 5 

(n=81)
0.3797 0.1627 0.1355 0.0491 0.0027 0.3000 0.1512 0.4138 -0.0066 0.0003 0.1011 0.1660 0.5626 0.8867 0.0034 0.1257 0.0001 0.6109

2015 Site 6 

(n=80)
0.6715 0.7540 0.9481 -0.0490 0.0044 -0.1596 0.1275 0.0685 -0.0822 0.4372 0.3143 0.0001 0.0001 0.0001 0.7837 0.8982 0.2698 0.2948 0.5415 0.5984 0.0001 0.0028

2016 Site 6 

(n=80)
0.8527 0.8951 0.6785 0.2690 0.2350 0.1146 -0.0363 0.0296 0.3706 0.1987 0.3235 0.0001 0.0001 0.0001 0.0082 0.0207 0.3377 0.8559 0.7513 0.0001 0.1118 0.0021

2017 Site 6 

(n=80)
0.2470 -0.0877 -0.1688 -0.0495 0.0625 0.1227 0.0607 -0.0508 0.2813 0.0133 0.5732 0.2412 0.6280 0.5700 0.3117 0.5797 0.7724 0.0045

Moran’s Index p-value
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Figure 4.5. Spatial maps of data from proximal sensing and from the RPAS flight, vineyard 

yield and berry composition at site 4 vineyard from 2015, 2016 and 2017. Abbreviations: 

NDVI= Normalized difference vegetation index, P-NDVI1= Proximal sensing NDVI measured 

at fruit set, P-NDVI2= Proximal sensing NDVI measured at lag phase, P-NDVI3= Proximal 

sensing NDVI measured at veraison, TA= Titratable acidity. 
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In site 4 (Figure 4.5), the NDVI maps displayed an odd horizontally striated pattern, which 

was also seen by previous research.[10] This can be attributed to the orientation of vineyard rows 

in conjunction with lines of pixels, and perhaps also to the spatial-resolution utilize. The proximal 

NDVI maps showed different spatial patterns between fruits set and lag phase/veraison in 2015 

while similar spatial patterns to those NDVIs in 2016 and 2017. The proximal NDVI at lag 

phase/veraison and NDVI maps from the RPAS flight were similar to each other throughout the 

years. The thermal emission maps only showed inverse correlation to the NDVI maps from 

proximal sensing and from the RPAS flight in 2016 while it displayed two unusual big circle 

patterns in the middle of the site in 2015. Yield and berry weight indicated a positive correlation 

to the NDVIs through the years. In the 2016 site 4 maps, the yield components had a similar spatial 

cluster pattern to red edge, NIR, CI green, CI red edge, NDRE, GNDVI, and RVI with higher 

values in the south end and the northeastern of the block while yield was inversely correlated to 

green and red with north-south striped pattern. In the berry compositions, the inverted spatial 

distributions to the NDVI maps were also seen in maps of anthocyanins, where the values were 

lower at the southern edge of the map. In the 2016 site 4 maps, the anthocyanins had an inverse 

spatial cluster pattern to red edge, NIR, CI green, GNDVI, RVI while Brix had a similar clustering 

pattern to green and red. 

In site 1, the spatial correlation between the sensing data and berry compositions was weak 

and limited. However, some other VIs like red edge and NIR in the 2016 site 1 map were inversely 

correlated to TA and phenols. In site 2, yield components indicated a weak positive correlation to 

the NDVIs. An inverse correlation of green, red edge, and NIR to yield components was also 

observed while yield showed similar spatial pattern to CI green, CI red edge, NDRE, and GNDVI. 
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There was no temporal stability observed between the berry compositions and NDVIs. In the 2016 

site 2 maps, green, red edge, and NIR indicated a clear spatial clustering and showed positive 

correlation to brix, pH, phenols, and anthocyanins. In site 3, the NDVI maps from the RPAS flight 

and proximal sensing were identical to each other throughout the growing season and years and 

NDVI maps appeared to have close spatial configurations to that of clusters, berry weight and 

yield. In the 2016 site 3 maps, the yield components had a similar spatial cluster pattern to CI 

green, CI red edge, NDRE, GNDVI, and RVI while berry weight and yield had an inverse 

relationship with green, red edge, and NIR. The Inverted spatial distributions to the NDVI maps 

were also found in maps of pH, TA, Brix, phenols, and anthocyanins while brix, pH, and phenols 

were inversely correlated to CI green, CI red edge, NDRE, GNDVI, and RVI. In site 5, yield and 

berry weight indicated a positive correlation to the NDVIs through the years. In the 2016 site 5 

maps, clusters and yield had a similar spatial cluster pattern to red edge and NIR and the similar 

spatial patterns to the thermal emission maps were seen in maps of Brix, pH, phenols, and 

anthocyanins while these had an inverse spatial cluster pattern to green, red, red edge. In site 6, 

there was no temporal stability observed in the yield and berry compositions maps. The maps of 

TA, phenols, and anthocyanins positively correlated to RVI map while inversely correlated to red 

map.  

Overall, the proximal sensing maps at fruit set had similar clustering patterns to yield in 

five out of six sites with showing temporal stability throughout the consecutive years in three sites 

and these clustering also observed in weight of single berry at three vineyard sites with the 

temporal stability. The other proximal sensing maps at lag phase and veraison also showed similar 

clustering patterns to yield and berry wight but no temporal stability observed throughout the 

consecutive years. There were inverse clustering patterns observed between proximal sensing and 
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phenols/anthocyanins in three of six sites with some temporal stability through the consecutive 

years. The proximal sensing maps at lag phase and at veraison indicated more correlations than 

these maps of fruit set thus the vegetation at the latter growing season could have more impacts on 

accumulation of phenols and anthocyanins level in berry. 

As a result of Moran’s I analysis, these maps are less accurate due to the many variables 

showing random distribution results of the spatial analysis and there were only weak correlations 

observed between proximal sensing maps and other berry compositions (Brix, TA, and pH) maps. 

However, proximal sensing measurement at fruit set and lag phase showed a strong negative 

correlation to the pH in most of sites in 2016, hot and dry year. The NDVI maps from the RPAS 

flight indicated similar clustering patterns to yield and berry weight in most of sites where four 

sites showed temporal stability in berry weight throughout the consecutive years while in the berry 

composition maps, ability to compare spatial patterns and relationships across the variables varied 

by site and year.  

The thermal emission maps from the RPAS flight showed less correlation to the yield 

component maps but these indicated better correlation to the berry composition maps. Especially, 

the thermal emission maps showed a strong positive correlation to the pH in most of sites and site 

5 showed temporal stability throughout the consecutive years. CI green and GNDVI maps showed 

the most similar clustering patterns to yield and vine size and a positive relationship also found 

between RVI and berry weight in four of six sites while green and red showed a weak inverse 

correlation to yield and vine size. NIR and red edge showed the least correlation to the yield.  

Maps from site 3 and 4 showed the most correlation between other indices and yield 

components while maps of other indices in site 6 only showed the significant correlation to berry 

weight. The correlations between indices from the RPAS flight and berry compositions were site 
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specific and two sites showed an identical correlation between the two variables while inverse 

correlation observed in another site. The other three sites only indicated weak correlations between 

the two variables, which varied between sites. CI red edge and NDRE had inverse clustering 

patterns to Brix, pH, TA, phenols, and anthocyanins while green, red, red edge, NIR had similar 

clustering patterns to pH, phenols, and anthocyanins in the two sites. The inverse clustering 

patterns were also observed between Brix/pH/phenols and green/red/red edge/NIR in another site. 

The maps of berry composition were inversely correlated to yield components in the sites with the 

high correlations. 

 

4.2 Discussion 

This study demonstrated the viability of using the RPAS flight and proximal sensing 

methods for predicting vineyard productivity and fruit quality in cool-climate Cabernet franc 

vineyards. Neither of the NDVIs were associated with number of clusters in five vineyards, with 

only site 5 vineyard displaying positive correlations in 2016 and 2017 (Table 4.2 and 4.3). This 

result could be caused by cluster thinning practice since all six sites performed cluster thinning in 

the growing seasons and it caused the uniform number of clusters throughout the vineyard. 

However, more relationships were seen between the NDVIs and measure of yield and berry weight. 

Previous studies confirmed the results showed that NDVI positively correlated to yield and berry 

weight.[1,8]  

Interestingly, there could be an impact of annual climate changes (mean temperature and 

precipitation) on yield in the vineyards. In a regular growing season like 2015 or 2017 (Figure 4.3) 

the yield level was consistent. In a hot and dry year (2016, Figure 4.3) the yield shifted to a higher 

level in site 1, 2, and 6 while it shifted to a lower level in site 3, 4, and 5. Furthermore, the annual 
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variation in the correlation matrix between NDVI from the RPAS flight and yield throughout the 

vineyards had indicated more capability of detecting the correlation in a year with a hot and dry 

growing season as in 2016. Thus, lower water content and subsequent stress could be a limiting 

factor for reproductive process.[11] Vine size has been demonstrated to significantly affect berry 

composition and yield in previous studies[12,13] and with stomata operating at full capacity most 

of the time, biomass production is linearly correlated with water consumption[8]. This may explain 

that lower grapevine water status could be a constraint for reproductive process.  

Variations of yield level in different sites were also observed in the dry year. This could 

explain that in some vineyard sites, the presence of water stress may alter the normal cycle of 

stomatal closure, causing an improved performance in water usage, no longer having an impact on 

vegetative and reproductive growth[14] while in the other sites, the conventional relationship 

between water availability and plant reproductive production was applied.  

Another interesting observation in this study is the possibility of seasonal vegetation 

impacts on yield. The proximal sensing measurement at fruit set indicated more correlations than 

measurements at lag phase and veraison, thus the vegetation at earlier growing season could have 

more impacts on the reproductive process. It has been demonstrated that water stress affects yield 

greatly during critical phenological periods.[15] Previous studies also indicated a possibility of 

seasonal water deficit and vegetation impacts on yield that a positive correlation was found 

between NDVI and yield when the site experienced water stress prior to veraison.[15,16] Water 

stress during the early stages of growth can cause canopy reduction, berry cell division, changing 

the source-sink balance, and potentially leading to smaller yield.[17-19] Both NDVIs represented 

an activity of photosynthetic radiation absorbed by the plant and therefore, in early developmental 
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stages, reproductive growth was also influenced by variation in light-induced biomass production 

under water stress.[15] 

In general, there were only weak correlations observed between NDVIs from the RPAS 

flight and from proximal sensing and berry compositions (Table 4.2 and 4.3). Several factors may 

have influenced the lack of temporal stability between NDVI from the RPAS flight and fruit 

quality data in this research, including the variability in harvest dates between blocks and years. 

This lack of stability has been observed in previous research as well.[8,15,20,21] Differences in fruit 

quality from the different NDVI zones fluctuated across years.[8] Brix, TA, pH, and phenol 

concentrations were not related to NDVI data.[20,21] Interestingly, a strong trend for a positive 

correlation between thermal emission data from the RPAS flight and pH was seen throughout the 

sites in 2016 (dry year). Inverse trends were also observed between early developmental stages of 

proximal NDVI measurements and pH. 

Evidence for an inverse correlation between phenols/anthocyanins level and NDVIs was 

also seen, in three sites (site 1, 4, and 5; Table 4.2 and 4.3) throughout three consecutive years 

(2015, 2016, 2917). This result confirms the previous study that berry composition variables, 

especially phenolic accumulation, are inversely impacted by vigorous leaf canopies via fruit 

exposure to sunlight to the flavonoid biosynthesis.[22-24] The annual variation in anthocyanins 

level throughout the vineyards had also observed. Interestingly, the growing season was hot and 

dry in 2016 (Figure 4.3), and a high anthocyanin concentration was observed throughout the sites 

in 2016.  

Furthermore, this study confirms that mild drought stress after veraison did not influence 

the berry compositions but altered phenols and anthocyanins levels of the fruit.[25] Interestingly, 

the proximal NDVI measurements around veraison showed better correlation with phenols and 
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anthocyanins than measurements at fruit set and therefore, the vegetation at the latter growing 

season could have more impacts on accumulation of phenols and anthocyanins level in berries. It 

confirmed a previous finding that by severely reducing water availability from veraison to 

maturity, stress-induced biosynthesis was increased and produced more phenolic compounds.[26]  

Numerous indices from the RPAS flight data can be calculated from the green, red, red 

edge, and NIR regions of EM reflectance to detect reproductive growth and potential grape 

quality.[2] The factors contributing to the different level of reflectance in green, red, red edge, and 

NIR peaks are very diverse. Leaf reflectance in green and red is usually controlled by plant 

pigments while in the NIR range, variations in reflectance might be influenced by alterations in 

leaf structure and/or thickness that affect leaf absorbance and reflectance.[27] The red edge peak is 

in the boundary between visible and NIR spectrums and the peak is employed to determine foliar 

composition such as chlorophyll content.[28] Chlorophyll is the primary molecules that absorb the 

light energy and convert the energy for photosynthesis and is also a critical barometer of the plant 

health and growth.[29] Chlorophyll content is negatively correlated to the red reflectance peak 

because chlorophyll strongly absorbs red radiation for the electron transitions for photosynthesis 

at the magnesium component of the photoactive site.[29] Therefore, red reflectance could be a 

reliable candidate for estimating plant chlorophyll content and photosynthesis activity. However, 

the measurements of red reflectance are very sensitive to the effects of various other variables such 

as solar irradiance, presence of other pigment molecules, background soil, and the geometrical 

arrangement of the scene.[27,30] Reflectance at the red edge is less relying on these variables since 

it marks the boundary between leaf inner cellular scattering in NIR peak and chlorophyll 

absorption in red peak.[31] 
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This study examined the feature indices (Table 4.4) such as green, red, red edge, NIR, 

green chlorophyll index (CI green), red edge chlorophyll index (CI red edge), red edge normalized 

difference vegetation index (NDRE), NDVI green (GNDVI) and ratio vegetation index (RVI) to 

characterize the plant yield and quality production according to previous studies.[3-6]  

From the results of this study, CI green and GNDVI showed the most capability of 

detecting variation in yield and vine size in most of sites with statistically significant positive 

correlation. Both CI green and GNDVI are derived from the ratio of green and NIR portion of the 

electromagnetic reflectance spectra. The formula of CI green is ‘ 
𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛
 – 1’ and GNDVI is 

(𝑁𝐼𝑅−𝐺𝑟𝑒𝑒𝑛)

(𝑁𝐼𝑅+𝐺𝑟𝑒𝑒𝑛)
. There has been extensive evidence that leaf chlorophyll concentrations and nitrogen 

levels of maize are intimately associated, as are nitrogen levels and maize productivity.[32,33] 

Changes in leaf nitrogen concentration alter the photosynthetic membranes that is predominantly 

chlorophyll.[32-34] Many studies found that the green chlorophyll index (CI green) was reliable 

and consistent indicator of canopy chlorophyll and nitrogen levels.[3,6,34-39] GNDVI was another 

key index to monitor the variation in yield and vine canopy. GNDVI and CI green were proved to 

be identical to each other with high Pearson's correlation coefficient (R) values. Green and red also 

showed a good negative correlation to yield and vine size. NIR and red edge showed the least 

correlation to the yield components.  

The correlations between indices from the RPAS flight and berry compositions were less 

significant than these between the indices and yield components. For berry compositions, the 

correlations were also in a random pattern such that two sites showed an identical correlation 

between the two variables while an inverse correlation was observed in another site. CI red edge 

and NDRE indicated the inverse correlation to most of the variables like Brix, pH, phenols, and 

anthocyanins and green, red edge, and NIR were also positively correlated to pH, phenols, and 
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anthocyanins while Brix, pH, phenols, and anthocyanins were negatively correlated to CI red edge 

and NDRE in site 2. Both CI red edge and NDRE are derived from the ratio of red edge and NIR 

portions of the electromagnetic reflectance spectra. In site 3, green and red positively correlated to 

all the berry composition variables and CI green and RVI also showed the high inverse correlations 

to Brix, pH, phenols, and anthocyanins.  

Interestingly, in site 5 vineyard, an inverse correlation-matrix to site 2 and site 3 were 

observed between the indices and berry compositions. Red edge indicated an inverse correlation 

to most of the variables like Brix, pH, phenols, and anthocyanins and red and NIR also showed the 

inverse correlations to Brix, pH, and phenols. CI red edge and NDRE were only positively 

correlated to level of phenols. In site 4, CI green, GNDVI, and RVI were inversely correlated to 

brix and anthocyanins. The formular of CI red edge is ‘ 
𝑁𝐼𝑅

𝑅𝑒𝑑 𝐸𝑑𝑔𝑒
 – 1’ and GNDVI is 

(𝑁𝐼𝑅−𝑅𝑒𝑑 𝑒𝑑𝑔𝑒)

(𝑁𝐼𝑅+𝑅𝑒𝑑 𝐸𝑑𝑔𝑒)
. 

Many previous studies only focused on the relationship between leaf red edge reflectance and 

canopy structure such as leaf chlorophyll and N contents[28,35,40,41] and the negative impacts on 

photosynthesis and plant growth with reduction of red edge peak were observed as of the reduction 

in chlorophyll concentration in stressed leaves[42-44]. However, the prediction of the correlations 

between photosynthetically active biomass with stress and the fruit quality would be difficult since 

in some cases, a mild stress can boost the fruit quality in the vineyard.  

Grape quality, particularly that of red grape varieties, is largely dependent on secondary 

metabolites such as the accumulation of phenols and anthocyanins.[45] Lack of vine water influx 

reduces vegetative and reproductive growth while increases colour intensity.[46,47] However, 

extensive water stress risk production and quality loss[26] and therefore, controlling the balance of 

grapevine vegetative and reproductive growth with limiting the water supply has been a key issue 
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in the vineyard management practice and the balance is in site and time specific manner[19,45,48-

50].  

To examine the feasibility of remote sensing technologies in a vineyard quality 

management program in terms of controlling yield and grape quality is not an easy task. Even 

though many scientists agree that moderate water deficits are beneficial for vineyard productivity 

and additional water with relatively small quantities can boost grape yield significantly [18,51-53], 

there is no clear general guideline for what the level of water stress can be assigned to the moderate 

water deficit because it depends on site, variety, and cultural practice of specific vineyard. 

However, remote sensing technology could be a tool to discover the balanced grapevine water 

level for optimum wine production. Vineyard soil map and its drainage potential are essential since 

a soil type impacts soil and leaf water potential.[45] 

The noteworthy observation from the results were that the yield components and berry 

compositions were inversely correlated to each other in the three sites (site 2, 3, and 5) with high 

correlation rate observed. The other three sites only indicated no or weak correlations between the 

two variables, which varied between sites. These could be explained that application of mild stress 

in the three sites with high correlation limited the vine growth, reduced the yield components and 

increased berry anthocyanins and phenol contents.[46,47] However, the excessive water deficit 

stress applied in the other three sites and lead to yield and quality losses.[26]  

Using remote sensing data to predict grape quality and productivity, it is necessary to 

produce reliable and precise maps that illustrate areas of the variables to implement zonal vineyard 

management. This study found that spatial patterns in the maps indicate a strong relationship 

between remote sensing data and vineyard yield and some quality indicators, resulting in the 

potential use of remote sensing maps to pinpoint target areas in a single vineyard.[54] In Moran's I 
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analysis, yield/berry composition and data from the RPAS flight/proximal sensing were highly 

clustered in 2016 (dry year), and a selective harvesting based on these parameters may be feasible 

in single vineyard blocks. 

 

4.3 Conclusions 

According to the findings of this study, data analysis from the RPAS flight and from 

proximal sensing data have some potential for predicting grape quality and productivity but site 

and variable growing season conditions can limit its reliability. Even though NDVI and other 

remote sensing data analysis tools were not associated with number of variables in quantity and 

quality of grape production, a strong trend of a positive correlation for NDVI from the RPAS flight 

and from early-stage proximal sensing NDVI to yield and berry weight was still seen throughout 

the sites and years. The vegetation earlier in the growing season could have more impact on the 

reproductive process.[15]  

The other strong trend for a positive correlation between thermal emission data from the 

RPAS flight and pH was seen throughout the sites and years, especially in 2016 (dry year), all sites 

showed positive correlation between the two variables, which also indicated that variation in a 

crop canopy temperature could be a key determinant of pH under water stress condition. There 

was also possible inverse correlation between late season proximal NDVI and 

phenols/anthocyanins level in three of six sites and the vegetation at the latter growing season 

could have more impacts on accumulation of phenols and anthocyanins level in berry. One 

important message from the results is that a remote sensing data acquisition timeline could be a 

critical factor to incorporate remote sensing technologies into vineyard management decision 
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making. Further research will be required to confirm the impacts of vegetation in different 

timelines on the fruit yield and quality. 
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CHAPTER 5: RESULTS AND DISCUSSION - FEASIBILITY STUDY OF REMOTE 

SENSING NDVI ANALYSIS TO DETECT OENOLOGICALLY RELEVANT 

VINEYARD ZONES 

The objective of this chapter was to investigate the zonal effect of remote sensing NDVI 

on wine sensory and chemical attributes. It was hypothesized that if vineyard blocks were 

harvested based on zones corresponding to low and high NDVI, resulting wines would differ in 

their chemical and sensory attributes. 

 

5.1 Results 

5.1.1 Vineyard zoning and must analysis 

Each vineyard site was divided into two NDVI zones with three field replicates based on 

the 2016 RPAS NDVI (remote sensing) interpolated maps: high NDVI zone: green colour and low 

NDVI zone: red colour (Figure 2.2). To maintain consistency between the years (2016 and 2017), 

the NDVI zonal maps were the same in both years. The impacts of the different NDVI zones on 

wine chemical and sensory attributes within a site were investigated in this chapter. 

In Figure 5.1, a chemical analysis of the grape-must showed that some berry compositions 

differed significantly between low and high NDVIs (95%). Overall, grape-must composition did 

not vary between treatments, other than anthocyanins, which varied in multiple sites in both years. 

The anthocyanin content of treatment wines differed in all six sites in 2016 and in four sites in 

2017. Remote sensing NDVI had an inverse relationship with anthocyanins in three sites (site 1, 

4, and 5) throughout the consecutive years (2016 and 2017) while site 6 showed positive 

correlations through the years (Figure 5.1).  
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There were some other chemical components showing distinct differences between NDVI 

zones such as brix and phenols. Site 4 and 5 had an inverse relationship between NDVI and phenols 

concentration while site 2 and 6 had a positive relationship between the two variables. Site 5 and 

3 had an inverse relationship between NDVI and Brix while site 2 and 6 had a positive relationship 

between the two variables (Figure 5.1).  

Overall, anthocyanin levels in grape must analysis differentiated for low and high NDVI 

at three out of six sites showed temporal stability throughout the consecutive years. There was 

statistically significant difference with negative correlation between remote sensing NDVI and 

anthocyanins level in the sites. There were some other chemical components showing distinct 

differences between NDVI values, but the degree and direction of differences differed depending 

on the year and the location. 
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Figure 5.1. Comparison of grape must analysis results from 2016 and 2017 Low vs High NDVI 

in the six vineyard sites. * p-values of significantly different between the treatments (p<0.05). 
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5.1.2 Wine chemical analysis  

In Figure 5.2, a chemical analysis of the wines showed that some wine chemistry differed 

significantly between low and high NDVIs (95%) and the pattern of the difference was similar to 

grape must analysis. Overall, wine chemistry did not differ in NDVI variations, other than 

anthocyanins, which varied in multiple sites in both years. The anthocyanin content of treatment 

wines differed in all six sites in 2016 and in four sites in 2017.  Remote sensing NDVI had an 

inverse relationship with anthocyanins in three sites (site 1, 4, and 5; Figure 5.2) throughout the 

consecutive years (2016 and 2017). There were some other chemical components showing distinct 

differences between the NDVI zones such as % alcohol level and phenols. Site 2 and 5 had an 

inverse relationship between NDVI and phenols concentration in 2017. However, site 6 had a 

positive relationship between NDVI and phenols concentration in 2016. In 2017, site 2, 3, and 6 

had a positive relationship between NDVI and % alcohol while in 2016, site 3 and 5 had an inverse 

relationship between NDVI and % alcohol (Figure 5.2).  

There was a significant difference with negative correlation between remote sensing NDVI 

and anthocyanins level in the vineyards. Overall, anthocyanin levels in wine chemical analysis at 

three of six vineyards differentiated by low and high NDVI zones showed temporal stability 

throughout the consecutive years. 
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Figure 5.2. Comparison of wine analysis results from 2016 and 2017 Low vs High NDVI in in 

the six vineyard sites. * p-values of significantly different between the treatments (p<0.05). 
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5.1.3 Sensory sorting test 

In all MDS Kruskal stress tests, the stress score was acceptable levels (<0.2) (Figure 5.3 

and 5.4) and agglomerative hierarchical clustering (AHC) dendrogram for Cabernet franc wines 

from the six sites in Figure 5.5 and 5.6. In four sites, panelists sorted 2016 and 2017 wines by their 

NDVI levels (Figure 5.5 and 5.6). In particular, they were able to group all replicates by NDVI 

levels in 2017. As shown in Figure 5.5, in both years, site 3 considered it to have the lowest sorting 

rate. Overall, the panel was able to sort different NDVI treatments in both years, but it was 

especially successful in 2017, with full sorting of different NDVI treatments in each replicate at 

four out of six sites. 
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Figure 5.3. MDS Kruskal stress test results in Cabernet Franc wines from site 1, 2 and 3 

vineyards. A co-occurrence matrix was generated from the results of the wine sorting test. 
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Figure 5.4. MDS Kruskal stress test results in Cabernet Franc wines from site 4, 5, and 6 

vineyards. A co-occurrence matrix was generated from the results of the wine sorting test.  
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Figure 5.5. AHC results in Cabernet Franc wines from site 1, 2 and 3 vineyards. The 

dendrograms illustrated the hierarchical division of categories according to the level of 

difference. 
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Figure 5.6. AHC results in Cabernet Franc wines from site 4, 5, and 6 vineyards. The 

dendrograms illustrated the hierarchical division of categories according to the level of 

difference. 
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5.1.4 Wine aromatic compounds analysis (GC-MS) 

GC-MS was performed to analyze the levels of major odor active compounds in the 

Cabernet franc wines from two different NDVI zones (low and high NDVI) with triplicates and 

the results showed that the Cabernet franc wines have high concentration of Ethyl lactate and 

Diethyl succinate while cis-Rose oxide, Ethyl cinnamate, and γ-Decalactone were low in 

concentration. From the results of two-sample t-test in Figure 5.7 and 5.8, various odor active 

compounds showed significantly different concentration levels in high and low NDVI throughout 

the vineyard sites.  

In 2016, only site 6 vineyard showed significantly different concentration level of various 

key odor active aroma compounds in high and low NDVI, and other vineyard sites didn’t show 

any significant difference in the level of aroma compounds between low and high NDVI zones 

(Figure 5.7). In 2017, five of the six sites had statistically significant difference in concentrations 

of 1-Heptanol in wines from low and high NDVI zones (Figure 5.8). Levels of cis-3-Hexenol [(Z)-

3-hexenol], 1-Hexanol, Ethyl hexanoate, Diethyl succinate, 2-Phenylethanol, and Eugenol also 

showed the significant difference (four of six sites) in wines from low and high NDVI zones.  

Furthermore, concentration level of terpenes such as α-Terpineol, Geraniol, and Linalool 

showed a significant difference (three of six sites) while Isobutyl acetate, Ethyl butanoate, Isoamyl 

acetate, Acetic acid, Hexyl acetate, Citronellol, β-Damascenone, Ethyl decanoate, Ethyl cinnamate, 

Decanoic acid, and γ-Decalactone showed the least significant difference in wines from low and 

high NDVI zones throughout the six sites. 
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Figure 5.7. Significance of difference in the concentrations(μg/L) of key odor active aroma 

compounds in the 2016 Cabernet franc wines from two different NDVI zones (low and high 

NDVI) using a t-test with two samples: * significant p-values (95% confidence). 
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Figure 5.8. Significance of difference in the concentrations(μg/L) of key odor active aroma 

compounds in the 2017 Cabernet franc wines from two different NDVI zones (low and high 

NDVI) using a t-test with two samples: * significant p-values (95% confidence). 
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A seasonal variation of key odor active aroma compounds between 2016 and 2017 vintages 

was also detected in Figure 5.9 using two-sample t-test. All the six sites had statistically significant 

difference between 2016 and 2017 in concentrations of Diethyl succinate and Citronellol with 

higher concentration in 2016. Levels of Isobutyl acetate, Ethyl hexanoate, and Linalool also 

showed the significant difference (five of six sites) with higher concentration in 2016.  

The other vineyards not showing the significant difference still showed strong seasonal 

variation in Isobutyl acetate (site 3, p-value=0.061) and Linalool (site 2, p-value=0.098) 

concentrations (Figure 5.9). 2-Methyl-1-propanol, 3-Methyl-1-butanol, Ethyl 3-methylbutanoate, 

cis-3-Hexenol ((Z)-3-hexenol), Ethyl octanoate were other distinct aroma compounds with higher 

concentration in 2016 vintages while concentration of 1-Octen-3-ol indicated higher concentration 

in 2017 vintages (significantly different concentration level in four of six sites) (Figure 5.9). 

Concentration of cis-3-Hexenol [(Z)-3-hexenol] in site 1 (p-value=0.076) and site 4 (p-

value=0.080) still showed strong seasonal variation with higher concentration in 2016 vintages 

(Figure 5.9). Concentration of γ-Decalactone also showed strong seasonal variation with higher 

concentration in 2016 vintages (significantly different concentration level in three of six sites) 

(Figure 5.9). The concentration level of Isoamyl acetate, Acetic acid, Hexyl acetate, Benzaldehyde, 

Ethyl decanoate, Octanoic acid, γ-Nonalactone, β-Ionone, and Decanoic acid indicated the least 

significant difference in concentration level between 2016 and 2017 wines throughout the six sites 

(Figure 5.9). 

 



166 

 

 

Figure 5.9. Comparison of mean concentrations (μg/L) of key odor active aroma compounds 

between 2016 and 2017 vintage Cabernet franc wines from the six Niagara vineyards using a t-

test with two samples: * significant p-values (95% confidence). 
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Overall, various key odor active aroma compounds showed significantly different 

concentration level in high and low NDVI throughout the vineyard sites in 2017 include 1-

Heptanol, cis-3-Hexenol ((Z)-3-hexenol), 1-Hexanol, Ethyl hexanoate, Diethyl succinate, 2-

Phenylethanol, Eugenol, α-Terpineol, Geraniol, and Linalool. However, in 2016, almost all 

vineyard sites except for site 6 didn’t show any significant difference in the level of aroma 

compounds between low and high NDVI zones. A seasonal variation of the key odor active aroma 

compounds between 2016 and 2017 vintages was also detected in different concentrations of 

Diethyl succinate, Citronellol, Isobutyl acetate, Ethyl hexanoate, and Linalool.  

 

5.1.5 Sensory descriptive analysis (DA) 

The sensory descriptive analysis for 2016 vintages was performed in spring of 2018, two 

years after the wine was bottled. According to each DA result, the first two factors in PCA 

accounted for between 60 and 72% of the data (Figure 5.10 and 5.11). In site 1, the analysis 

described 64% of the data and presented a similar grouping pattern to the sorting results in aroma 

descriptors, low 1 and low 3 were in the same group as descriptors of dry fruit, dark fruit, vegetal 

and spicy nose, and herbaceous flavor and high 1 and high 3 were closely grouped nearby 

descriptors of floral, earthy nose and vegetal flavor. However, wine colour and mouthfeel 

descriptors were not sorted by different NDVIs in the sorting test, though the low 1 and low 3 were 

still closely grouped near descriptor of colour intensity. In site 2 for aroma descriptors, as with the 

sorting outputs, the low 1 and low 2 were closely sorted nearby descriptive notes of dried fruit, 

spice, and vegetal nose. The colour and mouthfeel descriptors were also as with the sorting outputs. 
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Figure 5.10. PCA results of sensory descriptive analysis (DA) for Cabernet Franc wines from 

site 1, 2, and 3 vineyards. Left: PCA results of orthonasal- and retronasal-sensory descriptors for 

low NDVI vs high NDVI, middle: PCA results of colour and mouthfeel sensory descriptors for 

low NDVI vs high NDVI, and right: Sensory sorting results in the agglomerative hierarchical 

clustering dendrogram. 
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Figure 5.11. PCA results of sensory descriptive analysis (DA) for Cabernet Franc wines from 

site 4, 5, and 6 vineyards. Left: PCA results of orthonasal- and retronasal-sensory descriptors for 

low NDVI vs high NDVI, middle: PCA results of colour and mouthfeel sensory descriptors for 

low NDVI vs high NDVI, and right: Sensory sorting results in the agglomerative hierarchical 

clustering dendrogram. 
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In the site 3, PCA projection in aroma descriptors, as with the sorting outputs, high 2 and 

high 3 were closely sorted nearby descriptive notes of red fruit, dark fruit, and floral nose and the 

low1 and high1 also clustered together in the quadrant near earthy, herbaceous, and vegetal 

descriptors. The colour and mouthfeel descriptors were also as with the sorting outputs. The low 

1 and high 2 were closely grouped nearby high alcohol descriptor and the low 2 and low 3 also 

cluster together with high acidity and high bitterness.  

The PCA result differs from the sorting outputs for sensory descriptors in site 4. According 

to the sorting results, high1/high2 and low1/low2 were grouped together, however they appear a 

long way apart in the PCA map. Despite being close on a PCA map, low 2 and low 3 were far 

apart on the sorting matrix. In the colour and mouthfeel descriptors PCA map; low 2 and low 3 

were closely grouped nearby descriptors of higher colour intensity and bitterness. Interestingly, 

the high1 and high 2 were clustered together separated from other treatment with less intensity for 

all the descriptors.  

In site 5, the model most highly explained the data (75%) and demonstrated similar 

grouping pattern to the sorting outputs in aroma descriptors, low 1 and low 2 were closely sorted 

with descriptive notes of dry fruit, dark fruit, vegetal and spicy nose, and herbaceous flavor and 

high 1 and high 3 were closely grouped nearby the descriptors of vegetal, spicy, and earthy favor. 

However, wine colour and mouthfeel descriptors were not sorted by different NDVIs in the sorting 

test, though the high 1 and high2 were still clustered together in the edge of the quadrant away 

from other treatment with less intensity for all the descriptors. On the PCA map for site 5, 

treatments were categorized with high NDVIs nearby descriptive notes of floral, red fruit, tropical 

fruit, and herbaceous with high acidity, and low NDVIs nearby dried fruit, dark fruit, spicy, earthy, 

and vegetal with higher colour intensity, astringency, and bitterness.  
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In site 6, the model highly explained the data (72%) and demonstrated similar grouping 

pattern to the sorting outputs in sensory descriptors, low 1 and low 2 were closely sorted with 

descriptive notes of dry fruit, dark fruit, and spice and high 2 and high 3 were closely sorted nearby 

the descriptive notes of red fruit, tropical, herbaceous, and earthy. Wine colour and mouthfeel 

descriptors were also sorted by different NDVIs in the sorting test, though the high 1 and high 2 

were clustered together in the edge of the quadrant away from other treatment with less intensity 

for all the descriptors except for the acidity and low1 and low 2 were grouped together with high 

colour intensity and astringency. On the PCA map for site 6, treatments were categorized with 

high NDVIs nearby descriptive notes of red fruit, tropical, herbaceous, and earthy with high acidity, 

and low NDVIs near of dry fruit, dark fruit, and spice with higher colour intensity and astringency.  

Overall, wines with high NDVI were characterized as floral, red fruit, tropical fruit, 

herbaceous, and high acidity, and the majority of the low NDVI wines were characterized as 

vegetable, dry fruit, dark fruit, and spice with high colour intensity, bitterness, and astringency. 

 

5.1.6 Partial least squares regression (PLSR) analyses 

Since there was no significant correlation detected in the level of the key aroma compounds 

between low and high NDVI zones in 2016, the grouping results of sorting test in 2016 (Figure 

5.5 and 5.6) were applied. It was indicated grouping of low 1,3 and high 1,3 in site 1; low 1,2 and 

high 1,2 in site 2; low 1,2 and high 1,2 in site 4; low 1,2 and high 1,2 in site 5; and low 1,2 and 

high 2,3 in site 6. The significant difference in concentration of various key odor aroma compounds 

in high and low NDVI were indicated in Figure 5.12. 

Three of the five sites had statistically significant difference in concentrations of trans-2-

Hexenol ((E)-2-hexenol), Linalool, Geraniol, and Eugenol in wines from low and high NDVI 
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zones. Levels of 3-Methyl-1-butanol, Ethyl hexanoate, Ethyl octanoate, α-Terpineol, and Diethyl 

succinate also showed the significant difference (two of five sites) in wines from low and high 

NDVI zones while concentration level of cis-3-Hexenol ((Z)-3-hexenol), Hexyl acetate, β-

Damascenone, β-Ionone, Decanoic acid, and γ-Decalactone did not show any significant 

difference in wines from low and high NDVI zones throughout the six sites (Figure 5.12). 
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Figure 5.12. Significance of difference in the concentrations (μg/L) of key odor active aroma 

compounds from sorted NDVI replicates in the 2016 Cabernet franc wines using a t-test with two 

samples: * significant p-values (95% confidence). 
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Partial least squares regression (PLSR) analyses were performed to confirm the 

correlations among the NDVI treatments, the key odor active volatile compounds, and the aroma 

attributes from the sensory DA for each treatment and the results are in Figure 5.13. 
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p-

values
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Ethyl 3-methylbutanoate 0.008

Isoamyl acetate 0.049
Ethyl lactate 0.348

cis-3-Hexenol ((Z)-3-hexenol) 0.959
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Variable
p-

values

2-Methyl-1-propanol 0.032

Isobutyl acetate 0.016
Ethyl butanoate 0.437

3-Methyl-1-butanol 0.626

Ethyl 2-methylbutanoate 0.495

Ethyl 3-methylbutanoate 0.465

Isoamyl acetate 0.775

Ethyl lactate 0.584
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Variable p-values

2-Methyl-1-propanol 0.217
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Variable
p-

values

2-Methyl-1-propanol 0.557

Isobutyl acetate 0.166

Ethyl butanoate 0.222

3-Methyl-1-butanol 0.219

Ethyl 2-methylbutanoate 0.051

Ethyl 3-methylbutanoate 0.060

Isoamyl acetate 0.784

Ethyl lactate 0.176

cis-3-Hexenol ((Z)-3-hexenol) 0.073

1-Hexanol 0.041
Acetic acid 0.918

trans-2-Hexenol ((E)-2-hexenol) 0.011

Ethyl hexanoate 0.017
Hexyl acetate 0.492

1-Heptanol 0.118

1-Octen-3-ol 0.054

Benzaldehyde 0.103

cis-Rose oxide 0.444

Linalool 0.354

Ethyl octanoate 0.025

Diethyl succinate 0.015
Hexanoic acid 0.062

α-Terpineol 0.047
Citronellol 0.271

2-Phenylethanol 0.070

Nerol 0.674

Ethyl phenylacetate 0.001

Phenylethyl acetate 0.011
Geraniol 0.301

Ethyl decanoate 0.080

Octanoic acid 0.165
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Variable p-values

2-Methyl-1-propanol 0.097
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Ethyl butanoate 0.669

3-Methyl-1-butanol 0.020
Ethyl 2-methylbutanoate 0.729

Ethyl 3-methylbutanoate 0.724

Isoamyl acetate 0.705

Ethyl lactate 0.017

cis-3-Hexenol ((Z)-3-hexenol) 0.078

1-Hexanol 0.303

Acetic acid 0.119

trans-2-Hexenol ((E)-2-hexenol) 0.049
Ethyl hexanoate 0.836
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1-Heptanol 0.284
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Linalool 0.015
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Figure 5.13. PLSR analysis results of Cabernet Franc wines from low and high NDVI zone at 

the six vineyard sites in 2016 based on sensory attributes from DA and key odor active aroma 

compounds concentration from GC-MS. The p-values represent a significant difference in value 

of variables for low and high NDVI (P≤0.05 in bold). 

 

In site 1, PLSR analysis showed better clustering in the low NDVI wines grouped together 

with descriptors of dry fruit, dark fruit, red fruit and spicy flavor, and dark fruit nose. The low 

NDVI also associated with the aromatic compounds of 3-Methyl-1-butanol, Ethyl 2-

methylbutanoate, Ethyl 3-methylbutanoate, Isoamyl acetate, Acetic acid, Hexanoic acid, γ-

Nonalactone, and Ethyl cinnamate. While the high NDVI wines with more dispersed pattern 

Variable p-values
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grouped together with descriptors of earthy and herbaceous nose, and vegetal and earthy flavor, 

which were correlated with higher levels of Geraniol (Figure 5.13). 

In site 2, PLSR analysis showed a dispersed pattern of clustering in the high NDVI wines 

grouped together with descriptors of herbaceous and floral nose, and dark fruit, vegetal, and 

herbaceous flavor which were correlated with higher levels of 2-methyl-1-propanol and isobutyl 

acetate. The low NDVI wines also showed a dispersed pattern grouped together with descriptors 

of dried fruit nose, and red fruit, spice, and tropical flavor. The low NDVI also associated with the 

aromatic compounds of trans-2-Hexenol ((E)-2-hexenol), Linalool, and Geraniol (Figure 5.13).  

In site 3, PLSR analysis showed a dispersed pattern of clustering in the high NDVI wines 

grouped together with descriptors of floral and herbaceous nose, and red fruit, dark fruit, and 

herbaceous flavor. The high NDVI was also associated with high concentration of Acetic acid. 

The low NDVI wines also showed a dispersed pattern grouped together with descriptors of vegetal, 

earthy, spice and dried fruit nose, and vegetal, earthy, and spice flavor which were correlated with 

higher levels of Hexyl acetate (Figure 5.13). 

In site 4, PLSR analysis showed some clustering in the low NDVI wines grouped together 

with descriptors of dark fruit, tropical and dried fruit nose, and red fruit flavor. The low NDVI also 

associated with the key aroma compounds include 1-Hexanol, trans-2-Hexenol ((E)-2-hexenol), 

Ethyl hexanoate, Ethyl octanoate, Diethyl succinate, α-terpineol, Phenylethyl acetate and Eugenol. 

While the high NDVI wines with more dispersed pattern grouped together with descriptors of 

earthy, floral, vegetal, and herbaceous nose, and vegetal, spice, earthy, dark fruit, dried fruit, and 

tropical flavor, which were correlated with higher levels of ethyl phenylacetate (Figure 5.13). 

In site 5, PLSR analysis showed better clustering in the low NDVI wines closely grouped 

with descriptors of vegetal, dark fruit, and dried fruit nose and vegetal, earthy, dark fruit, and dried 



179 

 

fruit flavor which were correlated with higher levels of 3-Methyl-1-butanol, Ethyl lactate, trans-2-

Hexenol ((E)-2-hexenol), Benzaldehyde, Linalool, Diethyl succinate, 2-Phenylethanol and 

Eugenol. While the low NDVI wines with more dispersed pattern grouped together with 

descriptors of red fruit, floral, tropical, and herbaceous nose and red fruit, tropical, and herbaceous 

flavor with no case of significantly different concentration level of odor active volatile compounds 

(Figure 5.13). 

In site 6, PLSR analysis showed more dispersed clustering in the high NDVI wines grouped 

together with descriptors of herbaceous and tropical nose and red fruit, tropical, earthy, herbaceous, 

and vegetal flavor. The high NDVI associated with almost all key order active volatile compounds 

(except for Acetic acid) with significantly different concentration level of trans-2-Hexenol ((E)-2-

hexenol), Ethyl hexanoate, 1-Heptanol, 1-Octen-3-ol, Ethyl octanoate, α-Terpineol, Cis-rose oxide, 

Linalool, Nerol, Geraniol, Citronellol, Eugenol and Ethyl decanoate. The low NDVI wines showed 

some clustering with descriptors of spice, dark fruit, and dried fruit nose and spice, dark fruit, and 

dried fruit flavor with no case of significantly different concentration level of odor active volatile 

compound (Figure 5.13).  

In general, PLSR indicated better clustering of each treatment than PCA results with 

similar patterns of correlation between NDVI and sensory descriptors as the PCA. Groups of wine 

replicates with low NDVI were frequently described as vegetal, dry fruit, dark fruit, and spice with 

higher concentrations of 3-Methyl-1-butanol, trans-2-Hexenol ((E)-2-hexenol), Linalool, Diethyl 

succinate, and Eugenol. High NDVI wine groups were characterized as floral, red fruit, tropical 

fruit, and herbaceous with higher concentrations of Geraniol. 
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5.2 Discussion 

The vineyard variables such as water status, soil structure, and canopy size affect the 

chemistry and sensory characteristics of fruit and wine. Vegetative growth varies over time, and 

plant stress is determined by the physiological status of vegetation[1], nutrient deficiency, and plant 

disease[2]. Wines from different vineyard zones by water status were distinguishable for its aroma, 

taste, and mouthfeel profiles.[3-7] There was also a noticeable difference between wines from 

different vigour areas with respect to anthocyanin and colour contents.[8-10] Previous research 

indicated that remote sensing NDVI have been positively correlated with vine water status, leaf 

area, vine vigour, and yield while negatively correlated with fruity quality (low brix and aroma 

compounds, high TA).[3-5,7,10,11]  

One hypothesis of this study was that variation in NDVI data from remote sensing would 

correspond to the spatial variation in viticulturally important vineyard variables, yield, and berry 

composition. Additionally, NDVI zonal maps could allow several distinctive wine products in a 

single vineyard block. To confirm the hypothesis, both chemical and sensory analysis of wines 

from two separate NDVI zones (low NDVI vs high NDVI) were performed. 

Primarily, chemical analysis completed on the grape musts and wines found that basic 

chemical compositions did not vary between treatments, other than anthocyanins, which varied in 

multiple sites in both years. The anthocyanin content of treatment wines differed in all six sites in 

2016 and in four sites in 2017. Remote sensing NDVI was negatively correlated to anthocyanins 

in three sites throughout the years.  

Research from previous years has indicated that fruits grown in a variety of vigour zones 

vary in their anthocyanin and colour compounds[8], a descriptive analysis found that low vigour 
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zones had higher sensory profiles than higher vigour zones[9], and differences in the composition 

of berries such as Brix, pH, and TA were not associated with NDVI zones[12].  

While variations in wine chemistry can influence winemaking and sensory attributes, they 

appear to be linked more to volatile aroma compounds than to differences in typical wine 

chemistry.[4,7] The sensory sorting results indicated better differentiation of wines from different 

NDVI levels than that of wine chemical analysis results and In 2017, sorting of NDVI-treated 

wines was more effective than in 2016. In 2017, panelists were able to sort out all three replicates 

together by low and high NDVI in four of six sites and two replicates together by the treatments 

in one site; however, in 2016, this was not the case in 2016 (Figure 5.5 and 5.6) since no complete 

sorting of the three replicates was seen. 

Wine aromatic compounds analysis by GC-MS was also consistent with the wine sorting 

test results. Various key odor active aroma compounds showed significantly different 

concentration level in high and low NDVI throughout the vineyard sites in 2017 while most 

vineyard sites didn’t show any significant difference in the level of aroma compounds between 

low and high NDVI zones in 2016 (Figure 5.7 and 5.8). A vintage variation of key odor active 

aroma compounds between 2016 and 2017 vintages was also detected from all the six vineyard 

sites (Figure 5.9).  

The primary candidates of key order compounds causing the vintage variation were Diethyl 

succinate, Citronellol, Isobutyl acetate, Ethyl hexanoate, and Linalool with higher concentration 

in 2016 while level of 1-Octen-3-ol indicated higher concentration in 2017 vintages. Wine aromas 

have shown to be highly versatile, as evidenced by the seasonal variation of key odor active 

compounds.[13] Previous research suggests that glycoconjugates of aroma compounds in wines 

differ seasonally, especially for volatile compounds.[4] 
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Variations in climate are more likely to be responsible for inconsistent results in sorting 

and aroma compounds analysis between different wine vintages. It was hot and wet in 2016 and 

relatively mild in 2017 during the growing season. Previous studies indicated that different years 

differ in climatic conditions, sun exposure and water status, resulting in different aroma 

compounds accumulation[14,15] and under stress conditions, differences in wine chemistry and 

sensory attributes were more evident in wines made from areas of differing water stress levels[3,4]. 

However, in this study, due to the consistently low rainfall and high temperatures seen in 2016, 

variation in wine quality may have been affected less by water stress since vineyards were more 

evenly stressed. A change in normal stomatal behaviour caused by stress responses is possible and 

one can generate a new water uptake efficiency without greatly reducing biomass yield[16] and 

this could explain that the higher grapevine water level could be a constraint for the variation in 

vegetative and reproductive growth. Interestingly, the previous chapter of the correlation between 

vine vigour (NDVI) and leaf water potential (leaf ψ) indicated the same result that a year with hot 

and dry growing season showed more variations and correlations than a regular growing season. 

From the results, this study assumed that the higher grapevine water level could be a limiting factor 

for variations in vegetative growth, grape and wine quality. 

Another possible explanation of the vintage differences was that 2016 and 2017 vintages 

were aged in bottles differently as the analysis was completed during the same week in both 

vintages. Young wines exhibit vintage characteristics that are altered by bottle aging as they 

develop their particular flavors.[17] During bottle aging, fermentation and fresh fruity notes in wine 

also disappear, resulting in an aging flavor.[18-20] Thus, the loss in fresh fruity aroma and 

development of homogeneous complex aroma compounds during wine bottle aging could strongly 

impact distinguishability between the different vintage wines.  
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Sensory descriptive analysis has been conducted for 2016 vintage wines to better 

understand the variations in odour and flavour intensity between NDVI zonal wines. Based on the 

analysis, a similar sorting pattern emerged compared to the sorting result with low NDVI wines 

describing as vegetable, dry fruit, dark fruit, and spice with higher intensity, bitterness, and 

astringency, and high NDVI wines describing as floral, tropical fruit, and herbaceous with high 

acidity (Figure 5.10 and 5.11). According to a previous study, red wines from higher vegetative 

growth areas had higher intensities of green/vegetable flavors, while those from lower vegetative 

growth areas had stronger fruit flavors.[21] Interestingly, the trend of low NDVI wines having 

higher colour intensity, bitterness and astringency descriptors was consistent with a tendency of 

negative correlation between anthocyanins level and NDVI in the previous chapter. The berry 

composition variables, especially phenolic accumulation (e.g., anthocyanins), are negatively 

influenced by vigorous canopies via fruit exposure to sunlight to the flavonoid biosynthesis.[22-24]  

Aroma developed in wine is a combination of many volatile compounds and rarely comes 

from one substance alone.[25] The volatile compounds can be detected at concentrations between 

a few hundred g/L to smaller concentrations in ng/L.[25] It would be beneficial to compare the 

prime aroma compounds of Cabernet franc wines from different NDVI zones for a better 

understanding of the chemistry behind descriptors of wines. The Cabernet franc wine aromatic 

compound analysis by GC-MS indicated that various key odor active aroma compounds showed 

significantly different concentration level in high and low NDVI throughout the vineyard sites in 

2017 include 1-Heptanol, cis-3-Hexenol ((Z)-3-hexenol), 1-Hexanol, Ethyl hexanoate, Diethyl 

succinate, 2-Phenylethanol, Eugenol, α-Terpineol and Geraniol (Figure 5.8).  

A group of fusel alcohols (1-Heptanol) and ethyl esters (Ethyl hexanoate) are commonly 

recognized as by-products of yeast alcoholic fermentation and Malo-lactic fermentation. Most of 
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the ethyl esters and minor alcohols formed during fermentation are produced by Saccharomyces 

cerevisiae and its related enzyme.[25,26] Fatty acid esters include Diethyl succinate are also a by-

product of Malo-lactic fermentation. Previous researches reported that the concentration of ethyl 

esters like diethyl succinate increased because of MLF.[27,28] During MLF, esters are synthesized 

and hydrolyzed through the metabolism of lactic acid bacteria. A result of the metabolism of 

microbial α-ketoglutarate, diethyl succinate is formed by esterifying succinic acid.[27] Those minor 

alcohol and esters are byproducts of fermentation process, thus the impacts of grapevine vegetative 

status on these aromatic compounds could be limited. However, grape berry aroma compounds or 

compounds produced by precursors such as C6 alcohol, aromatic alcohols, terpenes, and aromatic 

phenols could be important odor compounds distinct from different NDVI levels. 

In this study, four of the six sites in 2017 had statistically significant differences in 

concentration of cis-3-Hexenol ((Z)-3-hexenol) and 1-Hexanol in wines from low and high NDVI 

zones with three sites (site 1, 2, and 3) showing negatively correlated to NDVI and site 6 indicating 

positive correlation (Figure 5.8). The C6 alcohols include cis-3-Hexenol ((Z)-3-hexenol) and 1-

Hexanol have been described as key aroma compounds in Bordeaux red wines and has a 

herbaceous aroma and may enhance green notes in wine.[29] It has been observed that level of cis-

3-Hexenol ((Z)-3-hexenol) significantly decreased during berry ripening while it seems to be 

stable under fermentation conditions.[29-32] Furthermore, it could be assumed that one potential 

source of cis-3-Hexenol ((Z)-3-hexenol) and 1-Hexanol was the polyunsaturated fatty acids in 

grape metabolized via a series of enzymatic complexes, which are commonly observed in plants 

grown under cool climate region due to a close relationship between concentration of unsaturated 

fatty acids and plant cold tolerance.[32-35] Thus, especially cool climate grape growing area like 
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the Niagara region, cis-3-Hexenol ((Z)-3-hexenol) and 1-Hexanol could be a critical odor active 

aroma compound for indicating significant differences in wine quality from different NDVI levels.  

The other compounds distinct from NDVI level were aromatic alcohols (2-Phenylethanol) 

and terpenes (Terpineol and Geraniol). These compounds in lower amounts can be found in 

Bordeaux red grape varieties as well as aromatic grapes.[36] It had been widely reported that the 

sensory thresholds of these terpene compounds are generally at µg/L levels with contributing to 

the fruity and berry flavours of a red wine.[37] In this study, in 2017, concentration of 2-

Phenylethanol showed a significant difference (four of six sites) in wines from low and high NDVI 

with three sites (site 1, 2, and 5) showing negatively correlated to NDVI and site 6 indicating 

positive correlation (Figure 5.8). Level of terpenes (α-Terpineol and Geraniol) also indicate a 

significant difference (three of six sites) in wines with all three sites showing negatively correlated 

to NDVI (Figure 5.8). 

Finally, volatile phenols such as Eugenol (2-Methoxy-4-(2-propenyl) phenol) were found 

to be altered between NDVI treatments and may contribute attractive flavours to a wine's bouquet 

depending on grape variety. In addition to being extracted from burned wood and grape glycosides, 

eugenol is also a product of the shikimic acid process in plants.[25,38] Since no oak was used in 

this research, the difference in Eugenol concentration was only acid degradation, enzyme 

degradation, or bacteria metabolizing hydroxycinnamic acids during fermentation.[39] 

The concentration of Eugenol in wines from low and high NDVI zones differed 

significantly in four of the six sites in 2017 with all four sites showing negative correlation to 

NDVI (Figure 5.8). In 2016, most vineyard sites except for site 6 didn’t show any significant 

difference in the level of aroma compounds between low and high NDVI zones (Figure 5.7). The 

sorting test results indicated that NDVI zonation still influenced wine quality in 2016, even though 
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variations in levels of odour active compounds were not easily detected by NDVI in most cases, 

and there could have been possible spatial links between these variables and other remote sensing 

indices. In 2016 vintages, variation in the key odor aroma compounds between high and low NDVI 

wines would have provided more distinct treatment difference and a significantly different 

concentration level of various key odor active aroma compounds in high and low NDVI were 

indicated in all five sites if some of the field replicates were removed by sorting test results (Figure 

5.12). Concentrations of trans-2-Hexenol ((E)-2-hexenol), Linalool, Geraniol, and Eugenol in 

wines from low and high NDVI zones showed the most significant difference (Figure 5.12). 

Partial least squares regression (PLSR) was performed to determine the links among the 

NDVI treatments, wine odour active compounds, and the sensory profiles from DA for each 

treatment in 2016 vintages and indicated better clustering of each treatment than PCA results with 

similar patterns of correlation between NDVI and sensory descriptors as the PCA. Low NDVI 

wines tend to be characterized as vegetal, dry fruit, dark fruit, and spice associated with higher 

concentrations of 3-Methyl-1-butanol (Isoamyl alcohol), trans-2-Hexenol ((E)-2-hexenol), 

Linalool, Diethyl succinate, and Eugenol. High NDVI wines tend to be identified as floral, red 

fruit, tropical fruit, and herbaceous associated with higher concentrations of Geraniol (Figure 

5.13). As the esters breakdown, 3-Methyl-1-butanol (Isoamyl alcohol) is produced and released 

by Saccharomyces cerevisiae and its related enzyme.[25,26] The diethyl succinate also increased 

as a results of Malo-lactic fermentation (MLF).[27,28] They are by-products of fermentation 

process, thus the impacts of grapevine vegetative status on these aromatic compounds could be 

limited.  

Furthermore, the aromatic compounds which are released directly from fruits or from their 

precursors such as C6 alcohols, terpenes, and aromatic phenols could be important odor 
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compounds distinct from different NDVI levels. Trans-2-Hexenol ((E)-2-hexenol) is an isomer of 

cis-3-Hexenol ((Z)-3-hexenol) and these isomers are resulted from the lipoxygenase (LOX) 

pathway and short-chain alcohols resulted from the LOX pathway are in the Z conformation. 

However, they can be isomerized to the E form by spontaneous isomerization depending on the 

conditions of their environment (pH, temperature) or by a isomerization enzyme.[40] Trans-2-

Hexenol ((E)-2-hexenol) could be the other critical odor active aroma compound for indicating 

significant difference in wine quality from different NDVI levels since it may derive from grape 

polyunsaturated fatty acids through a cool climate specific cascade of enzymatic reactions (LOX). 

Other important odor compounds distinct from different NDVI level in 2016 wines were 

terpenes and eugenol. The results in significantly high concentration level of C6 alcohol, terpenes, 

and eugenol from Low NDVI wines were consistent with the results from the key odor compounds 

analysis of different NDVI wines in 2017 (Figure 5.8). 

 

5.3 Conclusions 

Even though chemical analysis completed on the grape musts and wines found that basic 

chemical compositions did not vary between treatments, the results of sensory analysis were 

clearly discerned the differences between the zonal wines, as a series of sites were sorted separately 

in both years according to the different NDVI levels. The NDVI zone-specific wines have different 

chemical and sensory characteristics. Zonal differences were not significant based on juice 

chemistry but did show differences based on aromatic wine composition. Additionally, the results 

indicate significant year-to-year variations in outcomes of the sorting test and aromatic compounds 

analysis due to the considerable climate alterations between the vintages and variations in wine 

aging. This study also suggested that in cool climate grape growing area like the Niagara region, 
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cis-3-Hexenol ((Z)-3-hexenol) and 1-Hexanol could be critical odor active aroma compounds for 

indicating significant differences in wine quality from different NDVI levels. 

Overall, this study indicated some important findings to develop future research for use of 

remote sensing data to detect oenologically relevant vineyard zones for selective harvest, but it is 

necessary to develop more robust vegetative indices that can be used for selective harvest and 

zonal winemaking in single vineyard blocks.  
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CHAPTER 6: RESULTS AND DISCUSSION – FEASIBILITY STUDY OF REMOTE 

SENSING TECHNOLOGIES TO DETECT GRAPEVINE VIRUS PRESENCE 

The objective of this study was to examine the effects of grapevine leafroll-associated virus 

3 (GLRaV3) infection and its symptoms on electromagnetic reflectance of grapevine leaf. We 

hypothesized that the presence of grapevine virus and its infected leaves have unique 

electromagnetic signatures which could be detected by a narrow-band, hyperspectral spectrometer. 

 

6.1 Results 

6.1.1 Detection of grapevine leafroll associated virus (GLRaV)-1,2,3 infection by Real Time qPCR 

In this study, two Niagara Peninsula Cabernet franc vineyard sites were examined for the 

presence of GLRaV-1, -2, -3. In Table 6.1, no samples were infected by GLRaV-1 and only one 

vine was infected by GLRaV-2 across the sites, so all statistical analyses were confined to 

determining GLRaV-3 presence only. Near the time of the RPAS flight, a random sample was 

taken of upper, middle, and lower leaves of Cabernet franc vines in September 2016. 
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Table 6.1. Real-Time qPCR results in the presence of GLRaV-2 and -3 for grapevine leaf 

samples collected from two study sites. “-“indicated negative result, “+” indicated cycle 

threshold (CT) value in the range of 36 to 38, “++” indicated CT value below 35. 

 

 

6.1.2 Spectral measurements of healthy and GLRaV3 infected leaves by the hand-held 

spectrometer 

A total of 150 leaf samples comprising 75 leaf samples from each site (25 from healthy 

vines, 25 from asymptomatic vines, and 25 from symptomatic vines) were measured from the two 

different GLRaV3 infected sites and were pictured in the photos shown in Figure 2.1. The virus-

positive Cabernet franc leaves demonstrated common signs of GLRaV-3 during scouting spectral 

measurements by the hand-held spectrometer in September 2017 [Figure 2.1 (a)]. Previous study 

indicated that a visual symptom of GLRaV infection was distinct at later season.[1,2] Therefore, 

the late growing season measurements were used to distinguish asymptomatic leaves from 

symptomatic leaves. On the leaf blades of infected grapevines, the interveinal spaces contained 

Site Row Panel GLRaV-2 GLRaV-3 Site Row Panel GLRaV-2 GLRaV-3

3 9 ─ ─ 4 12 ─ ─

3 24 ─ ─ 4 37 ─ +

3 39 ─ ─ 7 37 ─ ─

7 39 ─ ++ 7 22 ─ ─

7 24 ─ + 7 7 ─ ++

7 9 ─ ─ 10 12 ─ ─

11 9 ─ ++ 10 37 ─ +

11 24 ─ ─ 13 37 ─ ─

11 39 ─ + 13 22 ─ +

15 39 ─ + 13 7 ─ ─

15 24 ─ ─ 16 12 ─ ─

15 9 + ++ 16 37 ─ ─

19 9 ─ ─ 19 37 ─ ─

19 24 ─ ++ 19 22 ─ ─

19 39 ─ + 19 7 ─ ─

22 12 ─ ++

22 37 ─ ─

25 37 ─ ─

25 22 ─ ++

25 7 ─ ++

Site 1

Site 2
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purple pigmentation and veins appeared to have a slight band of greenish tissue on both sides. 

However, some GLRaV-3 positive vines remained asymptomatic [Figure 2.1 (b)]. All grapevines 

that tested negative for GLRaV-3 had healthy leaves without any virus symptoms [Figure 2.1 (c)]. 

The series of mean electromagnetic (EM) spectra (n=75) for leaves from healthy and GLRaV-3-

infected grapevines from each site are shown in Figure 6.1 and 6.2.  

 

 

Figure 6.1. The series of electromagnetic spectra from healthy and GLRaV-3 infected Cabernet 

franc leaves measured by hand-held spectrometer at site 1. 
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Figure 6.2. The series of electromagnetic spectra from healthy and GLRaV-3 infected Cabernet 

franc leaves measured by hand-held spectrometer at site 2. 

 

A difference was seen in the reflectance of GLRaV-3-virus infected leaves and healthy 

leaves in four wavelength bands: green (500-600 nm), red (630-700 nm), red edge (701-740 nm), 

and near infrared (NIR) (741-849 nm). In the visible range of the EM reflectance, higher 

reflectance levels were observed in healthy leaves in the green peak region while there was 

minimal difference in the red trough with only a slightly higher reflectance level in GLRaV-3 

infected leaves in site 2 (Figure 6.2).  

Interestingly, GLRaV-3-infected grapevines had a higher level of reflectance at the red 

edge peak. This trend continued extending into the NIR region with a bigger gap between healthy 

and infected vines in both sites (Figure 6.1 and 6.2). The t-test results also confirmed that there 

were significantly different reflectance levels in these peaks between healthy and GLRaV-3 

infected leaves (Figure 6.3). 
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Figure 6.3. Comparison of mean reflectance (%) of EM spectrums of green, red, red edge, and 

NIR peaks from healthy (n=25) and GLRaV-3 infected (n=50) Cabernet Franc leaves measured 

by hand-held spectrometer in both site 1 and site 2 using a t-test with two samples: * significant 

p-values (95% confidence). 

 

To determine if visible symptoms affected the remote sensing indices and wavelength 

bands, the electromagnetic spectrum of symptomatic and asymptomatic GLRaV-3-infected leaves 
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were presented separately. EM reflectance differences between asymptomatic and healthy leaves 

were observed throughout the spectra (Figure 6.4 and 6.5). The different EM reflectance peaks 

were segregated based on the inflection point of each band from Figure 6.4: the green (500-600 

nm), the red (630-700 nm), the red edge (701-740 nm), and the NIR (741-849 nm). The EM 

reflectance differences between symptomatic and asymptomatic leaves were more prominent than 

the differences between symptomatic and healthy leaves in at the green and red wavelengths 

(Figure 6.4 and 6.5). GLRaV-3 asymptomatic leaves also had substantially higher light reflectance 

levels than those of healthy and symptomatic leaves throughout the visible (green and red), red 

edge, and NIR regions (Figure 6.4 and 6.5). The reflectance in GLRaV-3 symptomatic leaves had 

substantially lower light reflectance levels than these of healthy and symptomatic leaves at green 

and red regions. The symptomatic leaves had a reflectance hike at the red edge peak. This trend 

continued extending into the NIR region with a bigger increase (Figure 6.4 and 6.5). The t-test 

results also confirmed that different reflectance levels occurred in these regions among 

symptomatic, asymptomatic, and healthy leaves (Figure 6.6 and 6.7). 

Red edge spectral shifts from these leaf samples were also investigated. Red edge inflection 

point (REIP), also known as red edge position (REP) is the maximum first derivative of red edge 

reflectance and was based on the formula[3-6]: REIP=MAX(nm) 
𝑅(𝑛+1)−𝑅(𝑛)

𝑊𝐴𝑉𝐸𝐿𝐸𝑁𝐺𝑇𝐻(𝑛+1)−𝑊𝐴𝑉𝐸𝐿𝐸𝑁𝐺𝑇𝐻(𝑛)
 

= MAX(nm) 
𝑅(𝑛+1)−𝑅(𝑛)

1
 = Max R(x)’. 

Rn = reflectance value at wavelength n, R(n+1) = reflectance value at wavelength n+1. 

R(x)’ = first derivative of reflectance change (slope of reflectance graph). 
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Figure 6.4. The series of electromagnetic spectra from healthy and GLRaV-3 symptomatic and 

asymptomatic Cabernet franc leaves measured by hand-held spectrometer at site 1. 

 

 

Figure 6.5. The series of electromagnetic spectra from healthy and GLRaV-3 symptomatic and 

asymptomatic Cabernet franc leaves measured by hand-held spectrometer at site 2. 
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Figure 6.6. Comparison of mean reflectance (%) of EM spectrums of green, red, red edge, and 

NIR peaks from healthy (n=25), asymptomatic (n=25) and symptomatic (n=25) GLRaV-3 

infected Cabernet Franc leaves measured by hand-held spectrometer at site 1 using a t-test with 

two samples: * significant p-values (95% confidence). 
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Figure 6.7. Comparison of mean reflectance (%) of EM spectrums of green, red, red edge, and 

NIR peaks from healthy (n=25), asymptomatic (n=25) and symptomatic (n=25) GLRaV-3 

infected Cabernet Franc leaves measured by hand-held spectrometer at site 2 using a t-test with 

two samples: * significant p-values (95% confidence). 
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The REIP results are shown in Figure 6.8 and 6.9, which indicate that both in site 1 and 

site 2, virus symptomatic leaves had the lowest REIP while asymptomatic and healthy leaves 

showed the REIP shifted to higher wavelength. In the red and red edge regions, the maximum 

value of relative reflectance changes (MaxΔRn) was determined for the different treatments to 

observe the rate of change based on reflectance values at each wavelength. The relative reflectance 

change (ΔRn) from one wavelength to another was calculated from the formula[7]:  

ΔRn = 
R(n)′ 

𝑅(𝑛)
  = ln(R(n))’ = 

𝑑𝑙𝑛(𝑅(𝑛))

𝑑𝑛
 = lim

ℎ−1

ln (𝑅(𝑛+ℎ))−ln (𝑅(𝑛))

ℎ
 = ln(R(n+1)) – ln(R(n)). 

 

Figure 6.8. The series of the first derivative values of electromagnetic reflectance spectra in red 

and red edge regions from healthy and GLRaV-3 symptomatic and asymptomatic Cabernet Franc 

leaves measured by hand-held spectrometer at site 1. 
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Figure 6.9. The series of the first derivative values of electromagnetic reflectance spectra in red 

and red edge regions from healthy and GLRaV-3 symptomatic and asymptomatic Cabernet franc 

leaves measured by hand-held spectrometer at site 2. 

 

The MaxΔRn results are shown in Figure 6.10 and 6.11, which indicate a smooth and clear 

trend at the inflection point for all three treatments with the same inflection point at 698 nm in site 

1 and at 697 nm in site 2. Despite the different position of the inflection point between REIP and 

MaxΔRn, the lowest red reflectance peak, where the slopes changed negative to positive, were 

consistent between the two formulae at the wavelength of 676 nm (symptomatic) and 677 nm 

(healthy and asymptomatic) in site 1 and of 670 nm (symptomatic), 683 nm (healthy), and 683 nm 

(asymptomatic) in site 2. 
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Figure 6.10. The series of relative reflectance change (ΔRn) of EMS in red and red edge regions 

from healthy, GLRaV-3 symptomatic and asymptomatic Cabernet franc leaves measured by hand-

held spectrometer at site 1.  

 

Figure 6.11. The series of relative reflectance change (ΔRn) of EMS in red and red edge regions 

from healthy, GLRaV-3 symptomatic, and asymptomatic Cabernet franc leaves measured by hand-

held spectrometer at site 2.  
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Overall, the spectral measurements of EM reflectance found in healthy and GLRaV-3-

infected grapevine leaves showed that the higher light reflectance level in healthy leaves occurred 

in the green peak while GLRaV-3 infected grapevines reflected more light in the regions of red 

edge, and NIR peaks.  

The results from the effect of the visible symptoms of GLRaV-3 infection on the EM 

spectra indicated that GLRaV-3 asymptomatic leaves had higher light reflectance levels than those 

of healthy leaves throughout the visible (green and red), red edge, and NIR spectra. Secondly, 

GLRaV-3 symptomatic leaves had lower light reflectance (high light absorbance) levels than these 

of healthy leaves at the visible (green and red) region, however, it had reflectance spikes at red 

edge and NIR. Thirdly, the virus-symptomatic leaves had lower REIP values than these of 

asymptomatic and healthy leaves in both sites, indicating that the lowest chlorophyll concentration 

occurred in the virus-symptomatic leaves and higher chlorophyll concentrations were found in the 

healthy and asymptomatic leaves.[8-10] Lastly, the relative inflection point (MaxΔRn) was 

consistent at 700 nm throughout the sites and treatments and the relative data indicated that the 

relative reflectance difference between the wavelengths was lower in virus asymptomatic leaves 

than these in virus symptomatic and healthy leaves at the inflection point.  

 

6.1.3 Relationships between remote sensing data and GLRaV-3infection 

6.1.3.1 Remote sensing indices for GLRaV-3 infected vine detection 

From the hand-held spectrometer measurements, healthy plants apparently had higher 

reflectance in the green peak, while virus infected vines indicated higher reflectance in red edge 

and NIR peaks. Consequently, multiple remote sensing indices can be calculated based on the 
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green, red edge, and NIR regions of multispectral imagery to determine whether vines are infected 

with viruses. In Table 6.2, feature indices were constructed using the earlier spectral measurements 

of grape leaves by the hand-held spectrometer with additional indices to characterize virus 

detection according to previous studies.[11,12] 

 

Table 6.2. Remote sensing indices to characterize vine health and virus infections. 

 

 

6.1.3.2 Principal component analysis (PCA) and Pearson’s correlation analysis 

According to Figure 6.12, over 83% of the data for GLRaV-3 detection in each site was 

explained by PCA models based on the first two factors. The GLRaV-3 infection positively 

correlated to NDRE in site 1 and to RTVIcore in site 2 but in both sites, vectors for GLRaV-3 

infection were short, making visual comparisons challenging (Figure 6.12). 

Pearson's correlation analysis did not detect a correlation between the remote sensing 

indices and GLRaV-3 infection (Table 6.3). 
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Figure 6.12. PCA results for GLRaV-3 presence vs. remote sensing indices including green, red, 

red edge, NIR, NDVI, NDRE, GNDVI, GRVI, MTCI, and RTVI core. Abbreviations: NIR= 

Near infrared, NDVI= Normalized difference vegetation Index, NDRE= Red edge normalized 

vegetation index, GNDVI= NDVI green, GRVI= Green-red vegetation index, MTCI= MERIS 

terrestrial chlorophyll index, RTVI core= Core red edge triangular vegetation index. 

 

Table 6.3. Pearson's correlation results between GLRaV-3 presence and remote sensing indices 

in the two virus infected vineyards. Abbreviations: NIR= Near infrared, NDVI= Normalized 

difference vegetation Index, NDRE= Red edge normalized vegetation index, GNDVI= NDVI 

green, GRVI= Green-red vegetation index, MTCI= MERIS terrestrial chlorophyll index, RTVI 

core= Core red edge triangular vegetation index. 

 

Variables Site1 Site2 Site1 Site2

Green -0.449 0.016 0.093 0.948

Red -0.295 0.076 0.286 0.750

RedEdge -0.471 0.272 0.076 0.246

NIR -0.443 0.323 0.098 0.164

NDVI 0.140 0.064 0.618 0.787

NDRE 0.393 0.075 0.147 0.755

MTCI 0.213 0.064 0.445 0.789

RTVI core -0.173 0.258 0.538 0.272

GNDVI 0.190 0.138 0.498 0.561

GRVI -0.014 -0.291 0.962 0.213

Correlation matrix p-values
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6.2 Discussion 

In addition to photosynthesis being drastically reduced[13,14], anthocyanin production and 

soluble solid levels in berries are being affected by GLRaV-3 infection[13,15]. Grapevine virus 

infected leaves expressed up-regulated soluble solid transporters and senescence-associated 

genes.[16] Plants may have biotic stresses that cause spectral differences that can be detected in the 

visible and NIR peaks of the EM reflection. It is possible to determine a plant's virus infection 

using these differences. In previous studies, researchers demonstrated that asymptomatic phases 

of early disease symptoms were characterized by EM reflectance in red edge and NIR peaks based 

on a lower chlorophyll level.[17,18]  

In this study, the results of portable spectrometer readings indicated that the GLRaV-3 

infected grapevines had a higher level of reflectance at red edge peak and this trend continued 

extending to the NIR region with a bigger gap between healthy and the virus infected leaves 

(Figure 6.1 and 6.2). Different factors have a profound impact on the reflectance levels in the 

visible, red edge, and NIR peaks. The visible region of the reflectance is influenced by pigment 

molecules, while changes in NIR spectrum are affected by variations in leaf arrangement and 

density.[19] The red edge peak is in the boundary between visible and NIR spectra and the peak is 

applied to calculate plant composition such as chlorophyll contents.[20] Previous research proved 

that chlorophyll concentration is negatively correlated to the EM reflectance spectra at the red edge 

range and an increase in chlorophyll concentration shifts the inflection point of entering red edge 

region to higher wavelength.[8-10]  

Chlorophylls are the primary molecules that absorb the light energy and convert the energy 

for photosynthesis and also provide a valuable insight into the health of plant vegetation.[21] 
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Chlorophyll concentration is negatively correlated to the red reflectance peak because chlorophyll 

strongly absorbs red radiation for the electron transitions for photosynthesis at the magnesium 

component of the photoactive site.[21] Therefore, red reflectance could be a reliable candidate for 

estimating plant chlorophyll concentration and photosynthesis activity. However, the 

measurements of red reflectance are very sensitive to the effects of various other variables such as 

solar irradiance, presence of other pigment molecules, background soil, and the geometrical 

arrangement of the scene.[19,22] Reflectance at the red edge is less affected by these factors because 

it marks a line that separates the absorption of chromophores in the red peak and leaf inner cells 

dispersing in the NIR peak.[9] Virus infection is predicted to negatively correlate with red edge 

and NIR peaks due to a reduction in chlorophyll in virus-infected leaves and a negative impact on 

photosynthesis and plant growth.[23-25] However, the abnormality between the reflectance of red 

edge/NIR and the virus infection in this study may be caused by disorganization of the structure 

of the mesophyll cell via accumulations of anthocyanins and carbohydrates from plant defense 

responses against GLRaV-3 infections. 

An observation on the phenotypic changes induced by GLRaV-3 infection shows two 

distinct features: late season reddening of foliar tissues and interveinal reddening (primary veins 

remain green). The virus-infected leaves turn red primarily as a result of anthocyanin 

deposition.[13,26] During veraison, grapevines require a substantial transport of photosynthesis 

products from leaves to fruits, and phloem in the inferior vein pass through structural and 

functional modifications to become the major channels of long-range soluble solids transport 

within these leaves.[27] Disease symptoms may appear in the ripening period as a result of source-

sink dynamics that interfere with carbohydrates being transported from the leaves to the berry 

tissues, leading to accumulation of carbohydrates in the leaves.[28,29] Carbohydrate accumulation 
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in mesophyll cells inhibits photosynthesis and promote the accumulation of flavanols and 

anthocyanins for mitigating photo-oxidative damage via upregulated expression of MYB type 

transcription factors.[30,31] Transformation of the vein areas in stressed leaves is also expected 

from the dilution effect of carbohydrate buildup and the accumulation of flavanols and 

anthocyanins in mesophyll cells.  

The leaf reflectance emanates from the three sources: a direct specular refection from the 

surface of the leaf, an internal refraction by the interior leaf tissue pigment, and a diffuse reflection 

by refractive discontinuity in leaf cellular structures.[32] Radiation has a tendency of scattering in 

the leaf cell as it confronts different cellular structures at each refractive discontinuity and an 

diffuse reflectance is the scattered radiation directed back to the leaf surface.[32,33] The reflectance 

in NIR and red edge peaks in leaves is affected by leaf structure, and leaf reflectance arises from 

the orientation of the cell walls, as well as differences in the refractive cell walls and air in the pore 

spaces.[34,35] The cell reorientation results in increased number of cell wall-air interface and 

multiple scattering of radiation and leads a higher reflectance level in red edge and NIR 

peaks.[36,37]  

There is difficulty in identifying organic compounds from leaf spectra due to the overtones 

of photosynthetically active chlorophyll and other pigments in the visible and NIR range, and 

therefore, a correlation between leaf reflectance and chemical concentration in some wavelengths 

may not indicate a sole chemical compound but rather is the result of a strong inter correlation 

between several chemicals.[19,38] Previous studies found that the reflectance and its derivatives 

between red edge and NIR (low 800 nm wavelengths) indicated an evidence of responses related 

to the phenolic concentrations in leaves and the organic matter in soil.[38-40] Therefore, it was 

hypothesized that the results of the reflectance spikes at red edge and NIR spectral regions in the 
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GLRaV-3 infected leaves in this study could be caused by transformation of electromagnetic 

discontinuity and consequent increase in outflux of scattering events of radiation in the vein areas 

due to the high level of carbohydrates and anthocyanins. 

An investigation of the effect of visible symptoms of GLRaV-3 on EM spectra was also 

carried out in this study, and the results indicated that GLRaV-3 asymptomatic leaves had 

substantially higher light reflectance levels than these of healthy and symptomatic leaves 

throughout the visible (green and red), and red edge spectra. Due to the role of pigment molecules 

in plant photosynthesis and productivity, leaf pigment concentration provides an indication of plant 

health and its ability to photosynthesis.[41]  Stresses such as water, nutrients, and viral infection 

have demonstrated physical symptoms associated with changes in leaf colour and patterns, 

indicative of changes in their pigment concentration.[41-43]  These changes would further impact 

the specific wavelengths of light being absorbed and utilized by the plant, and those being 

reflected. Pathogenic attacks initiate biochemical pathways, and the plant defense system responds 

to the threat of infection by pathogens in two different ways.[44]  

First, defenses are initiated by inducible mechanisms when pathogens are perceived as a 

threat and cause induction of defense pathways, even in the undamaged leaves of pest infested 

plants soon after attack.[45] The inducible defenses are still not completely understood, but changes 

and accumulations of papillae are observed as a physical barrier to prevent pathogens from 

accessing the inner cells of the plant.[46] The cell wall associated defense system acts early to stop 

invading pathogens, removing the potential for expensive defense mechanisms, known as the 

hypersensitive response (HR).[44] Cell wall structures like glycoproteins, pectin, and xyloglucans 

are part of the papillae accumulation process, along with callose, lignin, phenolic polymers, and 

reactive oxygen species (ROS).[47] Some of the compounds are considered to form a physical 
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barrier through hardening the wall to prevent degradation from pathogen attacks.[47,48] Plant leaf 

surfaces are at the front line to fight against any biotic stresses with altering its cell wall structure 

and providing a protection against pathogens.[49] The first defense system of plants is induced by 

infection with GLRaV-3, resulting in hardening of leaf surfaces to stop invading pathogens. Hence, 

the odd observation of higher light reflectance in asymptomatic leaves with GLRaV-3 infection in 

this study may be associated with the hardening of the leaf surface walls at an early stage of 

infection, preventing light penetration and absorption.  

Another distinct result from the investigation of the visible symptoms of GLRaV-3 

infection on the EM spectra was that the EM reflectance in GLRaV-3 symptomatic leaves had 

substantially lower light reflectance levels than these of healthy and asymptomatic leaves in the 

visible (green and red) regions where the leaf reflectance is dominated by ability of absorbing light 

energy by leaf pigments.[37] Since the symptomatic leaves indicated the reduction in chlorophyll 

concentration and its negative impacts on absorbing red light for photosynthesis, the higher 

reflectance level was expected in the symptomatic leaves in the red trough.[21] The abnormality 

between the reflectance of red peak and the virus symptomatic leaves in this study could be 

explained by presence of the second mode of plant defense system, known as hypersensitive 

response (HR), in the GLRaV-3 symptomatic leaves. HR is involved in defense mechanisms 

against pathogen infected cells limiting further pathogen multiplication and spread.[50] The 

GLRaV-3 symptomatic leaves were at the later stage of the virus infection and triggered HR 

dominated plant defense response against the virus infection. Stress activates the HR 

predominantly through reactive oxygen species (ROS) that oxidize polyunsaturated fatty acids, 

alter permeability, and alter essential proteins, DNA, and affect the structural integrity of 
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cells.[51,52] In addition, the accelerated cell death in an HR induced by bacteria reduced 

chlorophyll concentration as well.[53,54]  

The leaf reflectance in the visible ranges is mostly affected by direct specular refection 

from the surface of the leaf and internal refraction by the interior leaf tissue pigment.[32] The 

specular reflectance from the leaf surface has a characteristic of linear polarization of incident light 

in visible and NIR ranges and differentiated by leaf surface structures so that there is no interaction 

with pigments or inner cellular structures.[55] The magnitude of the reflectance is determined in 

part by surface undulations, which may cause masking or shadowing of the specular refection.[56] 

The direct specular reflectance on leaf surface is an important element of optical properties at the 

wavebands of high absorption, especially in the red peak.[57] Therefore, the HR may induce a 

structural change at the leaf surface, which diminishes the specular reflectance as each ray of the 

beam encounters different geometric angles in the red region.  

Radiation incident on a leaf may be transmitted into the leaf, reflected at the leaf surface, 

or absorbed in the interior tissue. The conservation of energy by the Kirchoff’s radiation law 

requires that the sum of light reflectance, transmittance, and absorbance should be equal to 1.[58] 

It was also assume that the intra-cellular structural changes induced by HR destroyed the refractive 

discontinuities in the interior leaf and more radiation internally scattered by the leaf transmitted 

through the leaf.[32,33] Previous studies also confirmed that increases in leaf transmittance and 

decreases in leaf absorbance levels in the EM spectrum were observed in the stressed plants.[59,60] 

Therefore, it can be hypothesized that the degradation of chlorophyll and other organ cells on the 

surface and interior of the leaves by HR in the virus symptomatic leaves induced the decline in 

ability to absorb and reflect the light energy and more light energy were transmitted through the 

leaves in the visible EM ranges.  
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Another notable spectral observation of the GLRaV-3 infected leaves was the symptomatic 

leaves had a reflectance hike at the red edge peak. This trend continued extending into the NIR 

region with a bigger increase. Previous studies indicated that chlorophyll fluorescence light 

emission occurs in red edge and NIR peaks[10] and the increasing light emission rate of the 

chlorophyll fluorescence in the virus symptomatic leaves may cause the reflectance increase in red 

edge and NIR regions. Chlorophyll fluorescence is an emitted light energy in photosynthetic 

tissues upon excitation with natural or artificial illumination in the red and red edge peak to 

disperse the excessive photosynthesis energy and to protect the chloroplast from oxidative 

damage.[61,62] Chlorophyll molecules in leaves can either facilitate photosynthesis, release heat or 

emit fluorescence, and these three processes are competitive, such that any increase in output in 

one affects the yield in the other two.[61-64] Therefore, chlorophyll fluorescence is inversely related 

to photosynthetic rates and the symptomatic leaves with severe stress conditions may trigger  

activation of HR and induce a collapse of chlorophyll activity and decrease in photosynthesis 

rates.[65,66] 

The last notable observation of spectral measurements by the hand-held spectrometer was 

from the investigation of changes in the first derivative EM reflectance by GLRaV-3 infection. 

The degradation of chlorophyll in the virus symptomatic leaves was observed by comparing the 

red edge inflection point (REIP) index extracted from the EM reflectance of three virus infection 

treatments.[8-10] The REIP is based on calculation of absolute reflectance changes to get the 

inflection point at the red edge spectrum. The virus symptomatic leaves had the lower REIP value 

than these of asymptomatic and healthy leaves in both sites indicating the lowest chlorophyll 

concentration in the virus symptomatic leaves and the higher chlorophyll concentration in the 

healthy and asymptomatic leaves.[8-10] 
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Effects of relative reflectance changes (ΔRn, rate of changes from the original value) on 

calculation of the inflection point were also investigated. Both REIP and MaxΔRn measured the 

changes in reflectance at red edge peak; however, the nature of the data was different from each 

other. The REIP calculated by an absolute difference between the reflectance per each wavelength 

unit (1 nm) while MaxΔRn calculated by a relative rate change from the original reflectance. 

Mathematically, the former is the slope of the reflectance graph, R(n)′= lim
ℎ−1

𝑅(𝑛+ℎ)−𝑅(𝑛)

ℎ
, and the 

latter is logarithmic reflectance difference between the wavelengths, 
R(n)′ 

𝑅(𝑛)
  = ln(R(n))' = 

𝑑𝑙𝑛(𝑅(𝑛))

𝑑𝑛
 

= lim
ℎ−1

ln (𝑅(𝑛+ℎ))−ln (𝑅(𝑛))

ℎ
 = ln(R(n+1)) - ln(R(n)). Since logarithmic conversion transfers an 

exponential scale into a linear scale, the relative values could be a useful concept to compare 

numerical variables with quantities growing exponentially in the red edge peak.[67] The concept 

of relative difference also allows to understanding of the comparative ratio of two numbers that 

gives us a direct insight into the true scale of difference between the treatments.[67]  

Interestingly, the relative rate changes of reflectance at red edge region were the highest 

(inflection point) at certain wavelength (700 nm) throughout the treatments and sites and one could 

assume that a significant spectral incidence occurred at the inflection point (700 nm) in terms of 

the relative changes for the treatments. Results also indicated that the relative reflectance 

difference between the wavelengths was significantly lower in virus asymptomatic leaves and 

higher in virus symptomatic leaves at 700 nm (Figure 6.10 and 6.11). The significant difference in 

rate increment of reflectance change between the asymptomatic and symptomatic leaves at 700 

nm may be induced by the chlorophyll fluorescence effect. Photosystem II (PSII), a solar energy-

harvesting component in higher plants, is regulated by external environmental factors.[68] 

Nonphotochemical quenching (NPQ) occurs when moderately excess light occurs without 
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damaging PSII reaction centers. Unwanted energy is harmlessly released as heat while the 

photochemical quenching system is engaged.[69] Therefore, chlorophyll fluorescence is inversely 

related to photosynthetic rates in normal condition however, when stress initiated, it can plummet 

even at low photosynthesis rate due to an intensified protective quench. This causes the plant to 

produce more heat to disperse surplus energy, decreasing chlorophyll fluorescence.[70] Moreover, 

if HR is activated, severe stress conditions may reduce PSII functionally, and the chlorophyll 

fluorescence emission rate would increase with decreased NPQ activity.[65,66] In summary, the 

significant high-rate increment of reflectance change at 700 nm in the virus symptomatic leaves 

would lead the assumption that a severe stress condition with activation of hypersensitive response 

(HR) might also induce a collapse of the photosystem II activity, and the emission rate of 

chlorophyll fluorescence would increase with decreasing the NPQ activity and subsequent spike 

of the relative increment rate of EM reflectance observed at the certain peak (700 nm) in red edge 

range. 

Remote sensing indices from the multi-spectral data of the RPAS flight were extracted and 

examined to characterize vine health and virus detection. The correlation coefficient test indicated 

that there were no significant correlations found among any of the RPAS remote-sensing indices 

and the occurrence of the GLRaV-3 virus (Table 6.3). The absence of any correlation between the 

virus infections and remote sensing indices could be caused by limitations of spatial and spectral 

resolution of the multi-spectral sensor measurement from RPAS flight. Multispectral sensors have 

spectrally broad bands with integration of tens of nanometers into one band leaving gaps between 

different bands and therefore, they are not able to reconstruct a detailed continual reflectance of 

plant canopy.[71]  The light weight and low cost, multispectral sensors is a benefit for airborne and 

satellite applications. However, they provide less data complexity and information content than to 
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the spectrometers which corresponds more precisely to the specie's spectral signatures under 

particular conditions.[72] 

This research also examined the correlations between grapevine red blotch associated virus 

(GRBV) infection and remote sensing indices from the multi-spectral data of the RPAS flight since 

the virus became an issue of concern in the region during this study. An end-point PCR test was 

performed on the same blocks in 2019 although the spectral analysis was done a few years prior. 

A total of six Cabernet franc vineyard blocks were analyzed for GRBV contamination in the 

Niagara wine region. However, GRBV infection was not detected at three of these sites, so they 

were excluded from analysis and are not represented in appendix Table A2. In the blocks that were 

evaluated, random samples of two mature canes from the bottom portion of the canopy of the 

Cabernet franc vines were collected in February 2019.  The RPAS flight data were collected in 

September 2016. According to appendix Figure A1, over 81% of the data for GRBV detection in 

each site was explained by PCA models based on the first two factors. In site 1, the PCA model 

demonstrated that GRBV presence negatively correlated to NIR, red edge, and GRVI while red, 

NDRE, and RTVIcore were showing positive correlation but vectors for GRBV infection were 

short, making visual comparisons challenging (Figure A1). Pearson's correlation analysis did not 

detect a correlation between the remote sensing indices and GRBV infection (Table A3). In site 2, 

the virus presence positively correlated to RTVIcore but the vectors for GRBV infection were 

short, making visual comparisons challenging (Figure A1). Pearson's correlation analysis did not 

detect a correlation between the remote sensing indices and GRBV infection (Table A3). In site 3, 

the PCA model demonstrated that red edge, NIR, and GRVI were positively clustered together 

with GRBV infection (Figure A1). However, the correlation coefficient (r) values only showed a 

significant positive correlation between GRBV infection and NIR (Table A3). There was no 
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significant correlation between remote sensing indices and GRBV presence in most of the sites 

(Table A3). Only site 3 showed a positive correlation between GRBV presence and NIR (Table 

A3). The absence of any correlation between the virus infections and remote sensing indices could 

be caused by the temporal gap between the two measurements. There is over a 2-year gap from 

when the RPAS flight data was collected, and when the virus testing was done. This leads to a 

recommendation for further study in the area of application of this technology where the PCR 

testing and spectral analysis are done at the same time.  

 

6.3 Conclusions and recommendations 

Even though there were some experimental challenges such as visual assessment of virus 

symptoms, limited sample size, and time gaps between measurements, this study suggested that 

the response of individual foliar electromagnetic (EM) reflectance may differ due to an absence or 

presence of visible symptoms of infected leaves. The relative rate of reflectance changes at 700 

nm could be an indicator for a dynamic light harvesting mechanism between energy utilization 

and dissipation in different stages of virus infection progress.  

None of the conventional spectral indices investigated were consistent or robust enough to 

predict GLRaV-3 infection from the RPAS multi-spectral data. However, the hyperspectral 

spectrometer data showed consistent and significant differences among the spectra of healthy, 

asymptomatic, and symptomatic leaves. This finding leads to a recommendation for further study 

in a much more comprehensive investigation since there appears to be potential for development 

of a narrow-band hyperspectral index for grapevine virus detection. For instance, a combination 

of hyperspectral sensor and chlorophyll fluorescence sensors may detect changes in leaf 

reflectance and emission from GLRaV-3 infection.  This may warrant to interpolate suspect 
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wavebands into ratios or indices. Concurrent virus titer and reflectance measurements along with 

much larger sample sizes and a more controlled environment would also be required. 
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CHAPTER 7: GENERAL DISCUSSION AND FUTURE RESEARCH OPPORTUNITIES 

 

7.1 General discussion and future research 

The primary objective of this research was to examine the feasibility of using remote 

sensing data to improve efficiency of vineyard management with greater precision and maximizing 

economic and environmental benefits through zonal fruit harvesting and wine quality differences. 

To achieve the goal, remote sensing data analysis tools such as normalized difference vegetation 

index (NDVI) were applied for vineyard data collection and correlation analysis between 

significant vineyard management variables, physiological measurements, and different remote 

sensing data. These variables included leaf water status, soil moisture, canopy size, vine health, 

yield, and berry composition, which further impacts on wine quality. The remote sensing data 

included electromagnetic reflectance data and thermal emission data of a remotely piloted aircraft 

system (RPAS). The data-analysis techniques applied to those data to extract meaningful 

information include the normalized difference vegetation index (NDVI) and other spectral indices. 

Through these studies, relevant vine and vineyard management data were used to determine 

the feasibility of using remote sensing for precision vineyard management and to support future 

research to develop site-specific crop management (SSCM) for the region. SSCM is designated to 

incorporate spatial variability into a farming decision-making system at the field or farm level. Its 

main goal is the better use of farming resources, which can increase production efficiency and 

quality while minimizing environmental impacts and risks.[1] SSCM mainly relies on variations 

in the field, such as spatial and temporal variation of crop quality and quantity.[2]  

In chapters 3 and 4, conventional methods were employed to detect vineyard variability. 

For example, time-domain reflectometry (TDR) for measuring soil moisture, direct measurement 
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of leaf water potential using the pressure bomb, use of a porometer for measuring leaf stomatal 

conductance, ground scouting of vine size, hand harvest yield (kg), winter hardiness (LT50), and 

chemical analysis for grape quality were collected. Since these conventional methods have 

limitations, such as being time-consuming, are labour-intensive requiring elaborate procedures, 

and are restricted to small sample size, there remains a demand for indirect and non-conventional 

methods for rapid detection of vine status based upon remote sensing. Correlation analysis such as 

principal component analysis (PCA) and Pearson’s correlation coefficient elucidated relationships 

between remote sensing data and those data collected through conventional methods. Furthermore, 

analysis of interpolated maps, coupled with Moran’s I spatial analyses, was applied to determine 

the spatial distribution and patterns of relationships among the data. The combination of the 

statistical and spatial analyses allowed the remote sensing data collected to elucidate the variations 

for the viticulturally significant variables. 

In chapter 5, the effects of zonal harvesting based upon remote sensing data on the 

variability of wine quality were investigated. Conventional methods of wine quality analysis such 

as basic chemical analysis, sensory sorting test, descriptive analysis, and aromatic compounds 

analysis were conducted to investigate the variation in wine quality between high and low NDVI 

interpolated maps.  The results of this study show that remote sensing vigour zonation using NDVI 

can be effectively used to detect vineyard zones relating to variables affecting wine quality, as 

demonstrated in earlier studies.[3-7]  

In chapter 6, the effects of biotic stress from virus infections on changes of electromagnetic 

(EM) reflectance spectrum of leaves were examined by hand-held spectrometer measurements. 

Many vineyards around the world suffer economic losses due to virus infections.[8] The 

conventional method for the grapevine virus detection is performed by the polymerase chain 
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reaction (PCR) test[9] with some challenges including high cost, time consuming, and rapid spread 

of the infections[10,11]. Therefore, the development of rapid and early virus detection methods 

would be beneficial to protect wine industries around the wine growing regions. The discovery of 

early-stage spectral signatures of the virus infected leaves is the key resolution to examine the 

feasibility of the remote sensing technologies for early virus detection. In this respect, the effect 

of visible symptoms of virus infection on the EM reflectance was also investigated with 

differentiating EM spectrum of virus asymptomatic leaves (early stage of virus infection) from 

these of healthy and virus symptomatic leaves. 

Results of a correlation study between remote sensing NDVI and viticulturally important 

factors for the precision viticulture indicated that vine size and soil moisture had significant 

correlation to the remote sensing NDVI with temporal stability. This result is consistent with 

previous literature.[12-14] A plant's canopy reflects the effects of its local environment and 

stress.[15] By combining canopy measurements with yield measurements, yield-to-vine size ratios 

can be derived as supplemental indicators of product quality.[16] The vineyard balance can be 

achieved through pruning, leaf removal, and cluster thinning practices.[17] Therein, NDVI data 

can guide growers in monitoring vineyard balance and fruit quality and stratifying wine quality 

management by identifying and manipulating areas of different canopy growth.[18]  

Another notable relationship was that NDVI and soil moisture (SM) had a strong inverse 

correlation at three out of six sites for three consecutive years. The sites with the strong correlation 

clearly presented considerable water retention, presumably due to soils with a clay profile and 

inadequate drain. Interestingly, however, in the vineyard with relatively well drained soil types, 

the NDVI was positively related to SM in 2015 and 2016. The results of previous studies also 

proved the negative correlation between NDVI and soil clay profile and soil water status resulting 
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from soil drainage problems and soil density.[19-21] To examine the feasibility of using remote 

sensing technologies for vineyard water management, it is necessary to survey a map of vineyard 

soil profiles and its soil drainage capacities since the absolute values of soil water status were not 

correlated to the vine health and stress level.  

The indirect measurement of vine water status can be a useful option to develop a link 

between remote sensing data and vineyard water stress, however, a weaker correlation was 

observed between NDVI and leaf water potential (leaf ψ). Interestingly, leaf ψ had more variation 

and was more correlated to NDVI in the year with ample precipitation, which indicated sufficient 

water supply could lead to more variations in vegetative growth and influence the detectability of 

NDVI for vine stress. A previous study indicated that plant water stress improved water use 

efficiency without much loss of biomass production.[22]  These results could guide further research 

to understand the optimum balance of water contents in soil and in grapevine, and its correlation 

matrix to the vegetative growth for quality grape and wine production. The specific investigation 

on the NDVI variation from different soil types or soil drainage will confirm the assumption of the 

impacts of variability in soil drainage on NDVI measurement. To unravel the matrix between plant 

water status and variation in vegetative growth, further research is needed into the measurement 

of NDVI variation in vines of different water status. 

To examine the feasibility of using of remote sensing technologies for vineyard 

management is not an easy task because there is no clear general guideline for the level of 

vegetative growth, leaf ψ or soil moisture for optimum grape and wine production. It depends on 

the site, variety, and cultural practice of specific vineyard. To validate the effectiveness of remote 

sensing data and their suitability for zonal vineyard management, more research data is still needed. 

For example, in this research, only site 3 vineyard showed clear correlations of NDVI and all the 
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viticulturally important variables with temporal stability in all three years. Possible reasons for the 

abnormality of the high correlation rate in site 3 are the differences in row management, training 

system, and spray program. Between the rows in site 3 was purely soil cultivated while the other 

vineyards were covered by sod or cover crops. The training system in site 3 was a spur-pruned 

cordon system while the others were cane-pruned vertical shoot positioning system. The last 

distinct cultural practice in site 3 was the copper application for their pest management program 

through the growing season while no copper spray application observed in other vineyards sites. 

The copper spray created a blue colour background layer as the RPAS flight performed to get 

NDVI data. The effect of vineyard floor management, training systems, and colour of the 

background layer on NDVI detectability needs to be studied further.  

Numerous researchers in viticulture have focused on the concept of “vine balance” and the 

balance between vegetative and reproductive growth as a general guideline to examine quality of 

grape and wine production.[23-26] However, the balance between crop level and crop quality relies 

on cultivar, soil types, climate, and cultural practice.[27-30] There are still many unknowns for 

application and evaluation of the vine balance in many areas including the Niagara Peninsula. In 

chapter 4, this study examined the vine balance using various spectral algorithms of reflectance 

data from the RPAS flight and from proximal sensing technologies and provided scientific and 

evidence-based support to benefit vineyard management, and productivity and quality of Cabernet 

franc grapes in Niagara vineyards. The results confirmed the presence of correlations between 

vineyard canopy reflectance data from the RPAS flight and from proximal sensing, and vineyard 

yield and compositions such as yield, berry weight, pH, berry phenols and anthocyanins level. Site 

yields and their detection by remote sensing NDVI were affected by annual climate. The dryer 

year (2016) showed more variation in yield level and more capability of detecting correlation 
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between the variables than these in regular growing seasons (2015 and 2017). The nature of yield 

variation in dry year could be explained by zonal difference of water use efficiency as described 

in chapter 3. In some vineyard sites, the water stress may induce the high water use efficiency 

without any loss of biomass production and reproductive process[22] while in the other sites, the 

positive conventional relationship between water availability and plant reproductive production 

was applied.  

There was also an inverse correlation between NDVI and soil moisture on three of four 

sites with lower yield shift, indicating a substantial water standing and insufficient water drainage 

on these sites. Thus, water stress may be accompanied by soil drainage that affects the yield of a 

site and its detection by remote sensing NDVI. In previous studies, vegetative growth has been 

shown to affect berry composition and yield[31,32] and the amount of water consumed affects the 

amount of biomass produced by plants[33].  

The impact of seasonal variations in vegetative growth on grape yield was also examined 

using proximal sensing (GreenSeeker® ) at three important berry growth stages: berry set, lag 

phase, and veraison. The proximal sensing measurement at fruit set indicated more correlations to 

yield level than the measurements taken at lag phase and veraison, thus the vegetation at earlier 

growing season could have more impacts on reproductive process. PCA framework for all years 

would be performed to see how the scores move through PCA space and to identify clustering of 

points, which would be useful for effectively characterizing growing conditions within and among 

sites. Interestingly, a strong trend between remote sensing thermal emission data and pH was also 

seen throughout the sites in 2016 (dry year). In addition, the inverse trends observed between early 

developmental stages (fruit set and lag phase) of proximal NDVI measurements and pH. Therefore, 
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variation in remote sensing thermal emission data could be a key determinant of pH under water 

stress in early developmental stage.  

Although NDVI is not the best indicator of variability in fruit composition, an inverse 

correlation between NDVI and phenols/anthocyanins was still observed in this study. Furthermore, 

the proximal NDVI measurements around veraison showed a better correlation with phenols and 

anthocyanins than these of earlier measurements. These results support previous studies that 

phenolic accumulation in berries are inversely correlated to vine canopies via fruit exposure to 

sunlight to the flavonoid biosynthesis[34-36] and the vegetation at the latter growing season could 

have more impacts on accumulation of phenols and anthocyanins level in berry[37].  

Other remote sensing indices extracted from the RPAS’s multi-spectral sensor were also 

examined to detect variabilities in yield components, berry composition, and early virus infections. 

It was proven that other indices, which were sensitive to measure leaf colour compounds, detected 

vineyard variations in grape quality and disease pressure more accurately than NDVI.[38] The 

results indicated that CI green and GNDVI, the ratio of green and NIR, showed the most capability 

of detecting variation in yield in most of sites with significant positive correlation. However, 

different pattern of correlation matrix observed in the correlation analysis for the berry 

composition. CI red edge and NDRE, the ratio of red edge and NIR, indicated negative or positive 

correlation with random patterns to most of the variables like Brix, pH, phenols, and anthocyanins. 

Two sites showed an identical negative correlation between variables while positive correlation 

observed in another site. The interpolated maps between NDVI and the measured variables in this 

study displayed similar spatial correlation pattern to its statistical one, which confirmed the 

compatibility of the spatial map analysis over other statistical tools for correlation basis analysis. 
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Remote sensing maps can be used to pinpoint target areas in vineyards for precision viticulture 

applications, such as selective harvesting, better fruit exposure, and drip irrigation target.[39]  

This study examined the zonal effects of remote sensing parameter on variation in wine 

quality comparing wines from zone of low and high level of remote sensing NDVI. Although 

previous research demonstrated vineyard variation attributed to vegetative growth can influence 

fruit and wine chemistry and sensory attributes[6,40-43], researchers need to conduct more research 

to determine whether remote sensing data can effectively manage vineyards by zones and select 

crops for harvesting. This study demonstrates that NDVI-based remote sensing data has promise 

for guiding selective harvesting and subsequent production of distinct zonal wines. It was found 

that sensory sorting compared well with wine analysis results in differentiating wines from NDVI 

zones, which was consistent with previous studies that found tasting differences between wine 

types were more likely to be influenced by volatile aroma compounds rather than other chemical 

differences.[44,45]  

Wine aromatic compounds analyzed by GC-MS were consistent with the wine sorting test 

results with different levels of various key odor active compounds in 2017. These results suggest 

that in cool climate grape growing areas like the Niagara Peninsula, cis-3-Hexenol ((Z)-3-hexenol) 

and 1-Hexanol could be critical odor active aroma compounds for indicating significant difference 

in wine quality from different NDVI levels. The high levels of cis-3-Hexenol ((Z)-3-hexenol) and 

through a series of enzymatic reactions, 1-hexanol can be synthesized from grape polyunsaturated 

fatty acids, which are commonly observed in plants grown under cool climate region due to a close 

relationship between concentration of unsaturated fatty acids and plant cold tolerance.[46-49] 

There were also vintage variations for detectability of different flavour profiles between 

wines from high and low NDVI zones with high detection rate in 2017 vintage. The different 
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success in the sorting task and the wine aromatic compounds analysis between years could be 

further explained by changes in growing season climate. As precipitation and plant water 

availability levels are high in 2017, water stress in certain spots could limit vegetative growth and 

production quality, while the application of stress signals in a hot and dry year like 2016 may allow 

water to be used more efficiently at a whole vineyard level for uniform vegetative and reproductive 

growth.[22] Climate, sun exposure, and water availability play key roles in affecting the quality of 

grapes and wine aroma compounds over time.[43,50] The amount of water stress can greatly alter 

fruit quality, with mild water deficit vines producing berries with more sugar, anthocyanins, 

phenols and lower acid levels.[45,51,52] Global warming with rising temperature and causing more 

frequency of extreme climatic events has brought many concerns for agriculture-based industries.  

Drought and heat waves have severe consequences for many agricultural regions with more 

frequency of hot dry summers. The results from this study could help future research of the 

utilization of remote sensing technologies in investigating vine-water balance for fruit and wine 

quality, and in detecting heat and water stressed vineyard areas. Analysis of the vegetative and 

reproductive response in vineyard sites to extreme weather conditions will help determine the 

climatic effects of the future.  

To better understand the distinguishing characteristics and the underlying chemistry of 

wines from different NDVI zones, sensory descriptive analysis (DA) and partial least squares 

regression (PLSR) were performed for 2016 vintage wines. The DA resulted in nearly identical 

wine groupings as the sorting test with low NDVI wines classified as vegetable, dried fruit, dark 

fruit, and spice with bitterness and astringency while high NDVI wines were classified as floral, 

red fruit, tropical fruit, and herbaceous with high acids, which is consistent with previous studies 

related to anthocyanin levels.[34-36] The PLSR results indicated that grape berry aroma compounds 
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or compounds produced by precursors such as C6 alcohol, aromatic alcohols, terpenes, and 

aromatic phenols could be important odor compounds distinct from different NDVI level. Trans-

2-Hexenol ((E)-2-hexenol), isomer of cis-3-Hexenol ((Z)-3-hexenol), could be the other critical 

odor active aroma compound for indicating significant difference in wine quality from different 

NDVI levels since it may derive from grape polyunsaturated fatty acids through a cool climate 

specific cascade of enzymatic reactions (LOX). This study indicates some important messages to 

develop future research for utilization of remote sensing technologies to detect oenologically 

relevant vineyard zones for selective harvest, but it is necessary to develop more robust remote 

sensing indices that can be used for selective harvest and zonal winemaking in single vineyard 

block.  

Lastly, the results of portable spectrometer reading for the effect of the visible symptoms 

of GLRaV-3 infection on the EM spectrums indicated that GLRaV-3 asymptomatic leaves had 

significantly higher light reflectance levels than these of healthy and symptomatic leaves 

throughout the visible (green and red), red edge, and NIR spectrums. The possible initiation of 

plant defense systems was induced by perception of pathogen attacks, even in the undamaged 

leaves soon after attack[53] and the hardening of the asymptomatic leaf surface walls at an early 

stage of the GLRaV-3 infection may interfere the penetration or absorption of the light radiation 

and these observed through the whole EM spectrums of the leaves[53-56]. However, the reduction 

of the increment rate of EM reflectance observed at the certain peak (700 nm) in the red edge range 

because of a decline in chlorophyll fluorescence emission and increase in heat production with 

nonphotochemical quenching (NPQ) action.[57-60] 

Another distinct result was significantly lower light reflectance level of GLRaV-3 

symptomatic leaves in green and red peaks. It could be explained that the degradation of 
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chlorophyll and other organ cells on the surface and interior of the leaves by hypersensitive 

response in the virus symptomatic leaves may interfere with the penetration or absorption of light 

radiation through the whole EM spectrum.[61-68] Interestingly, the relative inflection point 

(MaxΔRn) was consistent at 700 nm through the sites and treatments, which was consistent with 

the previous study indicating that the reflectance at 700 nm was primarily controlled by the 

chlorophyll content and was a measure of the red edge shift.[69] The strength of reflectance changes 

at the points was significantly lower in virus asymptomatic leaves than these in virus symptomatic 

and healthy leaves. The low reflectance relative increment rate could be caused by changes in 

chlorophyll fluorescence emission rates.[57-59] In the early or intermediate stages of stress, plant 

cells tend to produce more heat to release surplus energy, which lowers chlorophyll fluorescence 

emission level.[70] However, under severe stress conditions with activation of HR, photosystem II 

might also be severely damaged, leading to an increase in chlorophyll fluorescence with a decrease 

in NPQ activity and following spike of the increment rate of EM reflectance observed at the certain 

peak (700 nm) in red edge range.[71,72] 

A multispectral RPAS data set was not able to predict GLRaV-3 infection based upon 

conventional spectral indices. A hyperspectral spectrometer, however, consistently identified 

significant differences between healthy and symptomatic leaves based on their reflectance spectra. 

Considering the potential for developing a narrow-band hyperspectral index for grapevine virus 

detection, this finding points to the need for further research. A detailed understanding of the 

mechanisms of plant early defense systems and their impact on the electromagnetic reflectance 

and fluorescence emission at the red edge peak, especially at 700 nm wavelength is required.  

Although remote sensing data analysis tools were not associated with several other 

important variables for grape production, the research findings confirmed that remote sensing data 
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have a significant potential to differentiate specific zones of water stress, canopy size, yield, 

superior fruit compositions, and wine quality. Further investigation of elevation mapping derived 

from photogrammetry such as aspect, slope, irradiance would be beneficial to support results of 

this study. There were also some experimental challenges, such as visual assessment of virus 

symptoms, limited sample size, and time gaps between measurements, but this study confirmed 

that the mechanism of plant defense system against biotic stress could have impacts on the spectral 

behaviour of grapevine leaves and remote sensing technologies could be useful to detect the 

spectral behaviour changes from the stress. Even though there were some limitations including 

interruptions from other vegetation impacts between rows and vines, as a first step to develop an 

SSCM model for vineyard management, it also proposes future research opportunities to test and 

develop an efficient vineyard management decision-making model.  
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APPENDICES 

 

Tables 

Table A1. Quality report of RPAS remote sensing data processing by Air-Tech Solutions, 

Inverary, ON (please double click the image). 
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Table A2. End-point PCR results in GRBV presence for three virus infected sites: – and +: 

negative and positive respectively in the PCR. 

 

 

Table A3. Pearson's correlation results between GRBV presence and remote sensing indices in 

the two virus infected vineyards. Those variables with significant (95% confidence) were listed 

in bold, with blank cells representing no correlation: blue boxes= positive relationship, red 

boxes= negative relationship. Abbreviations: NIR= Near infrared, NDVI= Normalized difference 

vegetation Index, NDRE= Red edge normalized vegetation index, GNDVI= NDVI green, 

GRVI= Green-red vegetation index, MTCI= MERIS terrestrial chlorophyll index, RTVI core= 

Core red edge triangular vegetation index. 

 

Site Row Panel GRBV Site Row Panel GRBV Site Row Panel GRBV

3 4 ─ 4 12 + 2 9 +

3 12 + 4 37 ─ 2 21 ─

3 20 + 7 37 + 4 21 ─

3 28 ─ 7 22 ─ 4 9 ─

3 36 ─ 7 7 + 6 9 ─

8 36 ─ 10 12 + 6 21 ─

8 28 ─ 10 37 + 8 21 ─

8 20 ─ 13 37 ─ 8 9 ─

8 12 + 13 22 + 10 9 +

8 4 ─ 13 7 ─ 10 21 ─

13 4 + 16 12 + 12 21 ─

13 12 ─ 16 37 + 12 9 +

13 20 ─ 19 37 + 14 9 ─

13 28 ─ 19 22 ─ 14 21 ─

13 36 ─ 19 7 + 16 21 ─

18 36 + 22 12 + 16 9 +

18 28 + 22 37 ─ 18 9 +

18 20 + 25 37 ─ 18 21 ─

18 12 + 25 22 + 20 21 ─

18 4 + 25 7 + 20 9 ─

Site 1 Site 2 Site 3

Variables Site1 Site2 Site3 Site1 Site2 Site3

Green -0.111 0.126 0.339 0.641 0.597 0.143

Red 0.102 0.202 -0.025 0.668 0.394 0.915

RedEdge -0.298 0.326 0.407 0.201 0.161 0.075

NIR -0.236 0.337 0.446 0.317 0.146 0.049

NDVI -0.164 -0.080 0.168 0.489 0.736 0.480

NDRE 0.284 -0.060 -0.259 0.225 0.801 0.270

MTCI 0.170 -0.075 0.080 0.473 0.752 0.737

RTVI core 0.255 0.184 0.122 0.279 0.437 0.610

GNDVI -0.033 0.024 -0.260 0.889 0.919 0.267

GRVI -0.268 -0.354 0.434 0.254 0.125 0.056

Correlation matrix p-values
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Figures 

 

Figure A1. PCA results for GRBV presence vs. remote sensing indices including green, red, red 

edge, NIR, NDVI, NDRE, GNDVI, GRVI, MTCI, and RTVI core. Abbreviations: NIR= Near 

infrared, NDVI= Normalized difference vegetation Index, NDRE= Red edge normalized 

vegetation index, GNDVI= NDVI green, GRVI= Green-red vegetation index, MTCI= MERIS 

terrestrial chlorophyll index, RTVI core= Core red edge triangular vegetation index. 
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