
AdaBoost And Its Variants: Boosting
Methods For Classification With Small
Sample Size And Brain Activity In

Schizophrenia

Brittany Perry
Brock University

May 3, 2023

Abstract

AdaBoost is an ensemble method that can be used to boost the perfor-
mance of machine learning algorithms by combining several weak learners to
create a single strong learner. The most popular weak learner is a decision
stump (low depth decision tree). One limitation of AdaBoost is its effective-
ness when working with small sample sizes. This work explores variants to
the AdaBoost algorithm such as Real AdaBoost, Logit Boost, and Gentle Ad-
aBoost. These variants all follow a gradient boosting procedure like AdaBoost,
with modifications to the weak learners and weights used. We are specifically
interested in the accuracy of these boosting algorithms when used with small
sample sizes. As an application, we study the link between functional network
connectivity (as measured by EEG recordings) and Schizophrenia by testing
whether the proposed methods can classify a participant as Schizophrenic or
healthy control based on quantities measured from their EEG recording.

Keywords: AdaBoost , decision trees, small sample size, gradient boost-
ing, Schizophrenia

2

Contents

1 Introduction 1
1.1 Decision Trees . 1
1.2 Boosting . 4
1.3 AdaBoost . 5

2 Literature Review 6
2.1 Forward Stagewise Additive Modelling 6
2.2 Relation between AdaBoost and Forward Stagewise Additive Modelling 8
2.3 Gradient Boosting . 10
2.4 Variants of AdaBoost . 11

2.4.1 Real AdaBoost . 11
2.4.2 Gentle AdaBoost . 12
2.4.3 Logit Boost . 13

3 Simulation Study 14
3.1 Data Generation Process . 14

3.1.1 Number of Observations . 14
3.1.2 Number of Classes . 15
3.1.3 Nonlinear Data . 15

3.2 Results . 16
3.2.1 Binary Linear Model . 16
3.2.2 Multi Class Linear Model . 16
3.2.3 Binary Nonlinear Model . 17
3.2.4 Multi Class Nonlinear Model 17

3.3 Logistic Regression vs. Boosting Models 18

4 Application 19
4.1 Data . 20
4.2 Results . 20

5 Conclusions 21

6 References 22

7 Appendix 23

3

1 Introduction

1.1 Decision Trees

Decision trees are a type of machine learning methods that are often used today,
given the fact that they provide an intuitive visual output and are effective in their
predictions. They are a type of supervised machine learning algorithm that predict
the target outcome for a given data set, based on a recursive splitting procedure of
the data. Decision tree algorithms can be used for both classification and regression
problems. For the purpose of this project we will be focusing on decision trees
used for classification problems, as well as adjusting this to regression decision trees
when necessary. Decision trees are constructed by splitting the input space into parts
(referred to as leaves or nodes) using a set of conditions until a stopping criteria
is met. This stopping criteria could be a specific number of splits, or when the
prediction accuracy is no longer changing. In general, finding the optimal partition
is a difficult problem so decision trees simplify this by using a recursive splitting
procedure, where each split is based on a single input. The input space is split into
parts and a constant function y = f̂ (x) is estimated within each part. This function
is estimated as the following,

f̂ (x) =
M∑

m=1

ĉm · IRm (x)

where given a partition {Rm}, we can estimate ĉm as the average of the observations
in the mth part,

ĉm =

∑n
i=1 IRm (xi) · yi∑n
j=1 IRm (xj)

.

In this case, we have the set of parts Rm for m = 1,...,M where M is equal to the
total number of parts the input space is split into. The function IRm (x) represents
an indicator function equal to 1 when an observation falls in the mth part and 0
otherwise, n is equal to the total number of observations in the given part, and xi

and yi are the values of the x and y variables corresponding to the ith observation.
Thus, for a given part Rm, ĉm is estimated as the average y value for the mth part
and f̂ (x) estimates the sum of these average values for each new x observation that
falls in the mth part.

When working with decision trees, the root node represents the full data set before
any splits occur and branches split and create new nodes until a stopping criteria
is met. The nodes in which no more splits occur after are known as leaf nodes
(or leaves) and the nodes followed by another split are called interior nodes. This
is where decision trees get their name from, as when visualizing this algorithm it
resembles a tree-like structure growing downward. Another important term to men-
tion is a decision stump, which is a decision tree consisting of only one split with a
root node and two leaves.

To determine where each split should occur, decision trees use a measure called
purity. The goal when measuring the impurity of a node is to maximize classification
accuracy. A natural choice for determining each split is to use the mis-classification

1

rate, however this measure is only based on the majority class in the node and does
not take into account the distribution of the other classes. In terms of purity, a
pure node is one where all observations belong to the same class, so classification
accuracy is 100%. A node is considered 100% impure if there is an even 50/50
split and any impurity reduces classification accuracy. Thus we want to minimize
impurity and it is based on the distribution of the classes within the nodes resulting
from a split. In practice, to determine where the optimal split occurs, one would
need to compute the purity of nodes for all possible splits. To compute the purity
of a node, two of the most popular measures of impurity used are entropy and Gini
impurity index. Gini impurity index and entropy both contain values between the
interval range [0,1] and the optimum split occurs where the measure of impurity is
minimized in both cases. The following formulas are used to compute the impurity
of a given node, where Q (p) represents the measure of impurity using entropy and
Gini impurity index respectively,

Q (p) = −
k∑

i=1

pi · log2 pi

Q (p) = 1−
k∑

i=1

p2i

where pi is the probability estimated from the data that an observation is of class
i in the given node, and k is the number of classes (for our case k = 2). We will
be focusing specifically on using entropy as our measure of impurity for the purpose
of this project. We will use the entropy formula on the following sample data to
determine the best possible split,

Table 1: Sample Dataset

Class X Class X

1 1 -1 5
1 2 -1 6
-1 3 -1 7
1 4 1 8

For the purpose of this example we will look at two possible splits, however as
mentioned, in practice one should consider all possible splits.The first split we will
calculate the entropy for is the split with the first four observations (X = 1,2,3,4)
in one node and the last four (X = 5,6,7,8) in the other node. For this split, there
are 3 observations from one class and 1 observation from the second class in each of

2

the nodes. Using the entropy formula we have,

Q1 (p) = −
k∑

i=1

pi · log2 pi

= −
((

3

4

)
· log2

(
3

4

)
+

(
1

4

)
· log2

(
1

4

))
= −

(
−0.31125− 1

2

)
= 0.8113

Similarly, we can obtain Q2 (p) = 0.8113 since the distribution of the classes is the
same in the two nodes. Taking the average across the nodes, we have an entropy of
0.8113 for our first potential split.
Next, we will look at splitting the first five observations in one node (X = 1,2,3,4,5)
and the remaining three observations (X = 6,7,8) in the other node. For this split,
there are 3 observations from one class and 2 observation from the second class in
the first node. The second node contains the remaining observations - 1 belonging
to the first class and 2 from the second class. Using the same formula as above,

Q1 (p) = −
((

3

5

)
· log2

(
3

5

)
+

(
2

5

)
· log2

(
2

5

))
= − (−0.4422− 0.5288)

= 0.971

In this case, the distribution of the classes is not the same in the two nodes so we
will re-calculate the entropy for the second node the same way,

Q2 (p) = −
((

1

3

)
· log2

(
1

3

)
+

(
2

3

)
· log2

(
2

3

))
= − (−0.5283− 0.39)

= 0.9183

Taking the average across the nodes, we have an entropy of 0.9447 for our second
potential split. When looking at these two splits only, the first split is optimal since
its entropy is the minimum of the two.

In the above example we proceeded with each observation having an equal weight
of 1

8
, but we can also find an optimal split when observations are weighted unequally.

This will be a critical component later on in this project when we begin to implement
boosting algorithms. We will use our previous example and the first potential split
to demonstrate how adjusting the distribution of weights can affect the entropy and
purity of a node. Previously, each of our two classes accounted for 50% of the total
weight. We will update the weights such that the four observations from the first
class account for 80% of the total weight and the four observations from the second
class account for 20% of the total weight. Table 2 shows the distribution of weights
for a single observation in each class - both the original and adjusted weight.
This time we will use the class weights and the sum of the weights to calculate the
entropy for each node as follows,

3

Table 2: Updated Weights

Class Original Weight Updated Weight

1 12.5% 20%
-1 12.5% 5%

Q1 (p) = −
K∑
k=1

(∑n
i=1 wik∑N
i=1wi

· log2
∑n

i=1wik∑N
i=1wi

)

= −
((

0.20 + 0.20 + 0.20

0.65

)
· log2

(
0.20 + 0.20 + 0.20

0.65

)
+

(
0.05

0.65

)
· log2

(
0.05

0.65

))
= −(−0.1066− 0.2846)

= 0.3912

Since we have unequal distributions of weights within the nodes for this case, we
need to re-calculate the entropy for node 2 as well,

Q2 (p) = −
((

0.20

0.35

)
· log2

(
0.20

0.35

)
+

(
0.05 + 0.05 + 0.05

0.35

)
· log2

(
0.05 + 0.05 + 0.05

0.35

))
= −(−0.4614− 0.5239)

= 0.9853

Taking the weighted average across the nodes, we obtain a new entropy value of
0.6883 with our adjusted weights. When comparing this to our equally weighted
example, we can see the entropy has decreased from 0.8113 to 0.6883. This shows
why it is important to consider adjusting the weights of the classes as the purity
of the node could be improved on. This was a simple example using only decision
stumps with one split, and later in this project we will explore how combining such
simple models can be used to produce a relatively effective final model.

1.2 Boosting

Boosting is a machine learning methods that works by combining a set of weak learn-
ers into a single strong learner. This is an example of a class of machine learning
methods known as ensemble methods. Ensemble methods are a family of machine
learning methods that use a number of base learners to create one final model. In
the case of boosting, the base learners are what are referred to as weak learners. A
weak learner is defined as a model with an accuracy slightly better than could be
achieved by flipping a coin.

A model using M weak learners can be thought of as follows,

f̂ (x) = g
(
f̂1 (x) , f̂2 (x) , ..., f̂M (x)

)
where the final model is a function of all the weak learners. This is how one would
combine several weak learners to form a single strong learner and improve the effec-
tiveness of the model. It is difficult to simultaneously fit M weak learners, so we use

4

boosting algorithms to do so sequentially. The meta model (final model consisting
of a combination of the weak learners) of a boosting algorithm is the weighted sum
of its weak learners,

f̂ (x) =
M∑

m=1

α̂m · f̂m (x)

When working with decision trees, we can use trees consisting of a single decision
node and two prediction leaves, also know as a stump, since they are weak learners.
In theory, boosting can be used to significantly reduce the error of any weak learning
algorithm that can generate classifiers only slightly better than random guessing
(Schapire, 1990; Freund, 1995; Freund & Schapire, 1996). By combining such weak
learning algorithms to form a single strong learner, one can significantly improve the
effectiveness of the model. Boosting can been applied to problems such as object
detection, computer vision, or behaviour analysis (Appel et al., 2013).

1.3 AdaBoost

AdaBoost, short for Adaptive Boosting, is an example of such a boosting algorithm
built off of decision trees and known as the first practical boosting algorithm, pro-
posed by Fruend and Schapire in 1996 (Freund & Schapire, 1997). The general idea
for the AdaBoost algorithm is to start with a single weak learner consisting of equal
weights for each observation, and iteratively repeating this process until a certain
stopping criteria is met. This stopping criteria could be a specified number of weak
learners M or a threshold of the change in prediction error between iterations. For
each iteration, the weights for observations that were incorrectly predicted are in-
creased and the weights that were accurately predicted are decreased or ”pushed
down”. Once the stopping criteria is met, the weak learners are combined all with
their own weights (depending on the accuracy of each specific model) to form one
final strong learner. In other words, the final classifier is a weighted average of all
the weak classifiers. AdaBoost is the first algorithm to adjust adaptively to the
errors of the hypotheses returned by the weak learning algorithm, hence where its
name comes from. It is referred to as the ”best out-of-the-box classifier”, because it
has the ability to create a strong final model with a relatively high accuracy using
weak learners, with little to no intervention by the user.

The AdaBoost algorithm can be run as follows (Friedman et al., 2017):

1. Initialize the observation weights wi =
1
n
, i = 1,2,...,n. Here wi is equal to the

weight of the ith observation and n is equal to the total number of observa-
tions in the training data set.

For m = 1 to M, repeat steps 2-5:

2. Fit a classifier fm (x) to the training data using corresponding weights wi.

5

3. Compute the weighted error of this new classifier as

errm =

∑N
i=1wi · I (yi ̸= fm (xi))∑N

i=1 wi

where m denotes the mth weak learner, yi represents the class of the ith
observation, fm (xi) represents the mth classifier on the ith observation and
I (yi ̸= fm (xi)) is an indicator function taking the value of 0 when a prediction
is correct and 1 when a prediction is incorrect.

4. Compute

αm = log

(
1− errm
errm

)
which corresponds to the weight given to fm (x) in producing the final classifier
f (x).

5. Update the individual weights of each of the observations for the next iteration
by setting

wnew
i = wold

i · exp (αm · I (yi ̸= fm (xi))) , i = 1, 2, ..., n.

6. Repeat the above Steps 2 - 5 for m = 1 to M or until a specified stopping
criteria is reached. The stopping criteria can be either a specified number
of weak learners or a threshold of the change in prediction error between
iterations. Lastly, output

f (x) = sign

(
M∑

m=1

αm · fm (x)

)
.

The above outlines the AdaBoost algorithm when the base classifier fm (x)
returns a discrete class label. If the base classifier instead returns a real-valued
prediction (such as a probability mapped to the interval [−1, 1]), AdaBoost
can be modified accordingly.

Throughout this paper we will explore modifications to this base AdaBoost algo-
rithm to compare and determine strategies that might improve the accuracy of the
model when working with a small sample size of data. We will then apply these
modified algorithms to a small data set to analyze the effectiveness of them com-
pared to the original AdaBoost model. First, gradient boosting will be introduced
and discussed in the next chapter, as well as its relation to AdaBoost.

2 Literature Review

2.1 Forward Stagewise Additive Modelling

As discussed in the previous chapter, AdaBoost has the ability to increase the per-
formance of even a very weak classifier - weak meaning the output is only slightly
better than random guessing. The weak learners used in AdaBoost are decision
stumps and the algorithm works by weighting the observations, giving more weight

6

to the cases incorrectly classified in the previous iteration and less to the cases that
were classified correctly. New weak learners are added sequentially, increasing the
weight each time on the cases which are more difficult to classify, until a specified
stopping criteria is met. The final classifier is a weighted average of all the weak
classifiers, where the weights depend on the accuracy of each model.

Boosting, in general, is an ensemble method that combines many weak learners
to produce a strong final model. The final model of a boosting algorithm is the
weighted sum of its weak learners. In other words, boosting is a way of fitting an
additive expansion in a set of elementary ‘basis’ functions, where the basis functions
are the individual weak classifiers fm (x) ∈ {−1, 1} (Friedman et al., 2017). The
general form for an additive expansion is,

f (x) =
M∑

m=1

βmb (x; γm)

where in the case of boosting, b (x; γm) is the m-th weak learner fm (x) outputting
−1 or 1. The coefficients βm are the corresponding weights associated to each weak
learner fm (x) and the final output f(x) is a weighted summation of all the learners.
Ideally, additive models are fit by minimizing a loss function averaged over the
training data,

min
{βm,γm}M1

N∑
i=1

L

(
yi,

M∑
m=1

βmb (xi; γm)

)
.

However, this method is not feasible due to the computational power required to
solve this numerical optimization problem for most loss functions and/or basis func-
tions. Often a simple alternative referred to as forward stagewise additive modelling
(or forward stagewise boosting) can be used where instead we solve the subproblem
of fitting just a single basis function,

min
β,γ

N∑
i=1

L (yi, βb (xi; γ)) .

This simplifies the above problem as now we only need to fit a single model at a time.

Forward stagewise modelling works by consecutively adding new basis functions to
the expansion without adjusting the functions that have already been added. By
using this approach, the model is able to approximately minimize the overall loss
function averaged over the training data - without changing the parameters or co-
efficients of previously added basis functions for each new iteration.

The algorithm for forward stagewise boosting is outlined as follows (Friedman et
al., 2017):

1. Initialize f0(x) = 0

2. For m = 1 to M :

(a) Compute

(βm, γm) = argmin
β,γ

N∑
i=1

L (yi, fm−1 (xi) + βb (xi; γ)) .

7

(b) Set fm(x) = fm−1 (x) + βmb (x; γm) .

For each iteration m, the parameters βm and γm are computed such that the up-
dated model fm (x) achieves minimum loss on the training dataset. The basis func-
tion b (x; γm) and corresponding coefficient βm are added to the current expansion
fm−1 (x) to produce fm (x). This process is repeated M times and previously added
terms are not modified.

Multiple different loss functions can be implemented when using the boosting
method of forward stagewise additive modelling. Next, we will demonstrate how
the AdaBoost algorithm previously presented is equivalent to the forward stagewise
boosting algorithm when using an exponential loss function.

2.2 Relation between AdaBoost and Forward Stagewise Ad-
ditive Modelling

We will prove that AdaBoost is equivalent to forward stagewise additive modelling
when using the following exponential loss function,

L (y, f (x)) = exp (−yf (x)) .

From 2(a) of the forward stagewise boosting algorithm, we have the following pa-
rameters to calculate:

(βm, γm) = argmin
β,γ

N∑
i=1

L (yi, fm−1 (xi) + βb (xi; γ)) .

In the case of AdaBoost, the basis functions are the individual classifiers Gm (x)
returning output −1 or 1. Using the exponential loss function and the formula
above, we have:

(βm, Gm) = argmin
β,G

N∑
i=1

exp [−yi (fm−1 (xi) + βG (xi))]

= argmin
β,G

N∑
i=1

w
(m)
i exp (−βyiG (xi))

with w
(m)
i = exp(−yifm−1(xi)). At each iteration, we are solving for the classifier

Gm and corresponding coefficient βm. For any β > 0, Gm should minimize the
weighted error rate. Otherwise, the loss could always be lower for the same value of
β. The weight w

(m)
i is dependent of fm−1(xi), but independent of β and G(x), and

thus the values of the individual weights change with each new iteration. Since Gm

should minimize the weighted error rate in order to achieve minimum loss, we have
the following solution:

Gm = argmin
G

N∑
i=1

w
(m)
i I (yi ̸= G (xi)) .

8

Now that we have solved for Gm, we can use this to solve for βm:

βm = argmin
β

N∑
i=1

w
(m)
i exp (−βyiGm (xi)) .

Note that when yi = Gm(xi), the exponent will simplify to −β. Similarly, when
yi ̸= Gm(xi), the exponent will simplify to β. Thus, we can express the formula
presented above as:

βm = argmin
β

e−β ·
∑

yi=Gm(xi)

w
(m)
i + eβ ·

∑
yi ̸=Gm(xi)

w
(m)
i

= argmin

β

[(
eβ − e−β

)
·

N∑
i=1

w
(m)
i I (yi ̸= G (xi)) + e−β ·

N∑
i=1

w
(m)
i

]
.

The second equation is simply a different way to write the formula — when sim-
plified this is equivalent to the first expression as the e−β terms will cancel out for
the observations where yi ̸= Gm(xi). In order to find the β that will minimize the
above formula, we will take the derivative with respect to β and set it equal to 0:

(
eβ + e−β

)
·

N∑
i=1

w
(m)
i I (yi ̸= G (xi))− e−β ·

N∑
i=1

w
(m)
i = 0

⇒
(
eβ + e−β

)
·

N∑
i=1

w
(m)
i I (yi ̸= G (xi)) = e−β ·

N∑
i=1

w
(m)
i

⇒
(
e2β + 1

)
·

N∑
i=1

w
(m)
i I (yi ̸= G (xi)) =

N∑
i=1

w
(m)
i

⇒ e2β =

∑N
i=1w

(m)
i∑N

i=1 w
(m)
i I (yi ̸= G (xi))

− 1.

Letting errm =
∑N

i=1 w
(m)
i I(yi ̸=G(xi))∑N
i=1 w

(m)
i

, which is the same rated error rate as in Ad-

aBoost, we have:

e2β =
1

errm
− 1

=
1− errm
errm

.

Now, taking the log of both sides and solving for β to get the solution for βm:

2β = log

(
1− errm
errm

)
⇒ β =

1

2
log

(
1− errm
errm

)
.

Thus, we now have the solution for βm, the coefficient for learner Gm. Note that
in the AdaBoost algorithm, αm is of the same form - specifically αm = 2βm. The

9

difference between the two solutions is a constant of 2. Updating the current model,
we have:

fm(x) = fm−1 (x) + βmGm (x)

with the weights for the next iteration as follows:

w
(m+1)
i = w

(m)
i · exp [−βmyiGm (xi)] .

Now, we can use the fact that αm = 2βm and −yiGm (xi) = 2 · I (yi ̸= G (xi)) − 1
and sub this into the above formula:

w
(m+1)
i = w

(m)
i · exp [αmI (yi ̸= G (xi))] · exp [−βm] .

When comparing to the AdaBoost algorithm, we see that there is an extra term
exp [−βm]. However, this term is applied to all samples and multiplies all weights
by the same value, meaning it has no effect. Thus, this weight update is equal to
the weight update method used in AdaBoost. We can conclude that the AdaBoost
algorithm can be derived via a forward stagewise additive modelling approach when
using an exponential loss function. Details of this proof can be found in Friedman
et al. (2017).

As mentioned, forward stagewise additive modelling is a general framework used
for boosting. We have demonstrated that when using an exponential loss function,
we can derive the AdaBoost algorithm with this framework. Next, we will introduce
gradient boosting, which is one way to solve forward stagewise boosting models using
various different loss functions and considering the loss as a numerical optimization
problem.

2.3 Gradient Boosting

The framework for gradient boosting originated from Breiman (1999) when he
first referred to the idea as ‘Arcing’ algorithms, which is an acronym for Adaptive
Reweighting and Combining. He observed that AdaBoost and related algorithms
can be interpreted as an optimization algorithm which minimizes some loss function.
Each step in an arcing algorithm consists of a weighted minimization followed by a
recomputation of [the classifiers] and [weighted input] (Breiman, 1999). This frame-
work was further developed by Friedman (1999) into gradient boosting machines,
later referred to as gradient boosting, which are described as numerical optimiza-
tion problems where the goal is to minimize the loss of a model by using a gradient
descent like procedure to add weak learners at each step. For the purpose of this
project, we will be focusing specifically on gradient tree boosting algorithms.

The gradient tree boosting algorithm can be viewed as a forward stagewise addi-
tive model as one new weak learner is added at a time in a given model and the
existing weak learners are left unchanged. Gradient boosting is one specific way to
solve forward stagewise boosting models, where the loss is viewed as a numerical
optimization problem rather than considering the loss itself as a whole piece. In this
case, each new added learner follows the gradient of the previous learner.

Below the generic gradient tree-boosting algorithm is shown, however different loss
criteria L (y, f (x)) must be entered in order to obtain a specific algorithm. The

10

gradient tree-boosting algorithm, using regression trees as the base learners and as
shown in Friedman et al. (2017), is run as follows:

1. Initialize f0(x) = argminγ

∑N
i=1 L (yi, γ)

2. For m = 1 to M :

(a) For i = 1, 2, .., n compute

rim = −
[
∂L (yi, f (xi))

∂f (xi)

]
f=fm−1

.

(b) Fit a regression tree to the targets rim giving terminal regions Rjm, j =
1, 2..., Jm.

(c) For j = 1, 2, ..., Jm compute

γjm = argmin
γ

∑
xi∈Rjm

L (yi, fm−1 (xi) + γ) .

(d) Update fm (x) = fm−1 (x) +
∑Jm

j=1 γjmI (x ∈ Rjm).

3. Output f̂ (x) = fM (x).

For each iteration m, at line 2(a) the pseudo residuals r are computed, referring
to the negative gradient based on the specific loss function used in the algorithm.
At line 2(b), Rjm represents the j th region or node in the decision tree for the
mth iteration and is computed using the pseudo residuals r in order to minimize
these residuals and therefore improve model accuracy. Next, the coefficient γjm is
computed using y for each region Rj at the mth iteration such that the updated
model fm (x) achieves minimum loss on the training dataset. The current model is
updated and this process is repeated M times where previously added terms are not
modified. Lastly, the estimator f̂ (x) is outputted as the final model computed in
the M th iteration.

2.4 Variants of AdaBoost

Now that we have generalized AdaBoost and introduced gradient boosting in order
to handle a variety of loss functions, we will look at multiple different variants
to the original AdaBoost algorithm. Note that the standard AdaBoost algorithm
presented in the previous chapter can also be referred to as Discrete AdaBoost,
as the base classifier Gm (x) returns a discrete class label. As noted earlier, the
algorithm shown is used for binary data in the two-class classification setting, and
the following variants are algorithms that can be used on binary data as well.

2.4.1 Real AdaBoost

The Real AdaBoost algorithm was first introduced by Schapire and Singer (1999)
and it can be viewed as a generalization of (Discrete) AdaBoost. The algorithm for
Real AdaBoost uses real-valued “confidence-rated” classifiers where the weak learn-
ers return class probability estimates rather than the [−1, 1] of AdaBoost. This real

11

value can be seen as the probability that a given input belongs to a specific class,
while also accounting for the current weight distribution of the dataset.

The Real AdaBoost algorithm is presented below (Friedman et al., 2000):

1. Initialize the observation weights wi =
1
n
, i = 1,2,...,n. Here wi is equal to the

weight of the ith observation and n is equal to the total number of observations
in the training data set.

2. For m = 1 to M :

(a) Fit the classifier to obtain a class probability estimate pm (x) = P̂w (y = 1 | x) ∈
[0, 1], using weights wi on the training data.

(b) Set fm (x) = 1
2
log pm(x)

(1−pm(x))
∈ R.

(c) Update the weights: wi = wi exp [−yifm (xi)] for i = 1, 2, ..., N , and
renormalize so that

∑
i wi = 1.

3. Output the classifier,

f (x) = sign

(
M∑

m=1

fm (x)

)
.

When comparing the two, we can see the main differences between Real AdaBoost
and AdaBoost are in lines 2(a) and 2(b). In the Real AdaBoost algorithm, these
steps consist of computing and assessing the probability, or degree of confidence,
that each data sample belongs to the predicted class. The standard AdaBoost
algorithm classifies the data samples and computes the weighted error rate (Ferreira
& Figueiredo, 2012).
Another difference is in Freund and Schapire’s (1997) standard AdaBoost algorithm,
weak models are restricted to the range [−1,+1] whereas in Real AdaBoost, the weak
models have range over R. This is demonstrated in step 2(b) where the original
range [−1,+1] is converted to R by taking half of the the log of the odds ratio of
the probability found in 2(a). If the probability is greater than 0.5, the output will
be positive, and if less than 0.5, the output will be negative. The final classifier is
based on the sum of these positive or negative values — if the total sum is positive,
this corresponds to the +1 class, and if the total sum is negative, this corresponds
to the −1 class. This confidence rating method could be useful as the harder to
classify cases will have less of an effect on the final classifier. For example, a class
probability estimate of 0.51 will provide a just slightly positive fm(x) value, thus
having little effect on the final sum. A highly probable estimate of 0.99 will have a
relatively extreme positive value, emphasizing the degree of confidence in the data
belonging to that class.

2.4.2 Gentle AdaBoost

The Gentle AdaBoost algorithm can be viewed as a modified and improved version
of Real AdaBoost by using adaptive Newton steps, rather than exact optimization,
providing a more reliable ensemble by putting less emphasis on outliers. The second
derivative of the expected log-likelihood is used to compute the update, which could

12

provide a faster convergence than the optimization method used for the updates
in the previous two algorithms. The algorithm is considered gentle because it is
viewed as more stable than the Real AdaBoost algorithm (Ferreira & Figueiredo,
2012). The main difference between Gentle AdaBoost and the Real AdaBoost is how
the estimates of the weighted class probabilities are used to perform each update.
Note that a regression decision tree stump is used for this variant, as a regression
model is required for the weak learners.

The Gentle AdaBoost algorithm is shown below (Friedman et al., 2000):

1. Initialize the observation weights wi =
1
N
, i = 1,2,...,N. Here wi is equal to the

weight of the ith observation and N is equal to the total number of observations
in the training data set. Start with f (x) = 0.

2. For m = 1 to M :

(a) Fit the regression function fm (x) by weighted least-squares of yi to xi

using weights wi.

(b) Update f (x) = f (x) + fm (x).

(c) Update the weights: wi = wi exp [−yifm (xi)] for i = 1, 2, ..., N , and
renormalize so that

∑
i wi = 1.

3. Output the classifier

f (x) = sign

(
M∑

m=1

fm (x)

)
.

The updates in line 2(b) of the algorithm above have a strong similarity to those
in the Logit Boost algorithm, since both algorithms use adaptive Newton steps.

2.4.3 Logit Boost

The Logit Boost variant uses adaptive Newton steps to fit an additive logistic re-
gression model by directly optimizing the Bernoulli log-likelihood in a stagewise
manner. Instead of minimizing the exponential loss as in AdaBoost, Logit Boost
minimizes the logistic loss. Again, a regression model is required for the learners
and a regression tree stump is used.

Focusing on the binary case, y∗ represents the response and the probability that
y∗ = 1 is represented by p (x). Here,

p (x) =
ef(x)

ef(x) + e−f(x)
.

Using this formula, the Logit Boost algorithm runs as follows (Friedman et al., 2000):

1. Initialize the observation weights wi = 1
N
, i = 1,2,...,N. Here wi is equal

to the weight of the ith observation and N is equal to the total number of
observations in the training data set. Start with f (x) = 0 and probability
estimates p (xi) =

1
2
.

13

2. For m = 1 to M :

(a) For i = 1, 2, .., N compute the working response and weights

zi =
y∗i − p (xi)

p (xi) (1− p (xi))
,

wi = p (xi) (1− p (xi)) .

(b) Fit the function fm (x) to the regression tree stump by a weighted least
squares regression of zi to xi using weights wi.

(c) Update f (x) = f (x) + 1
2
fm (x) and p (x) = ef(x)

ef(x)+e−f(x) .

3. Output the classifier,

f (x) = sign

(
M∑

m=1

fm (x)

)
.

3 Simulation Study

A simulation study was conducted in order to test the algorithms present in the
context of low sample sizes.

3.1 Data Generation Process

The five input variables of the model, the X ′
is, are simulated independently and

identically from the standard normal distribution, as many real world scenarios
follow this distribution. Each initial data set is simulated with 1000 observations.
The target variable is created using a multiple logistic regression formula, as follows,

π (x) =
eX·β

1 + eX·β .

π (x) represents the probability that the outcome is 1 out of the two possibilities 1
or −1. A uniform random number is compared to the probability - if it is less than
or equal to the probability, the target variable y = 1 and if it is greater than the
probability then y = −1. For simplicity, β0 was set to zero but this parameter can
be adjusted. Similarly, the remaining β values will be set to 1 to start but may be
adjusted.

This paper explores many different variations to the base simulated data set in
order to analyze how the algorithms perform in each case.

3.1.1 Number of Observations

The first variation will investigate how the number of observations or sample size of
the data set affects the performance of the models. Data sets are simulated with 50,
100, 250, 500, and 750 observations, and compared with the base data set consisting
of 1000 observations, in order to explore the impact that a smaller sample size has
on the results.

14

3.1.2 Number of Classes

Another variation that will be explored is the number of classes and how extending
our algorithms past binary classification will affect the outcomes and performance
of the models. By looking at data sets simulated with 3 possible classes, it will
be interesting to see if we have a different model outperforming the rest than the
optimal model found for binary classification.

For the multi class linear data, logistic regression method will be used again to cal-
culate the class probabilities. For non-binary data, these probabilities are modelled
as

π (y = k | x) = eX·βk

1 +
∑K−1

k=1 eX·βk

,

for k = 1...K − 1, and

π (y = K | x) = 1

1 +
∑K−1

k=1 eX·βk

.

Again, a uniform random number is compared to the probabilities to determine if
the target variable y is equal to 1, 2, or 3. Here, K = 3 classes.

3.1.3 Nonlinear Data

The last variation to look at is simulated data that follows a nonlinear link func-
tion, rather than a linear model - logistic regression in this case. Our input vector
X is still simulated such that it is independently and identically distributed from
the normal distribution. The class outcome variable y is simulated by first using a
decision tree split to separate the data into 8 different nodes. For each of the nodes,
a different link function is used with different probabilities of the outcome being
equal to 1.

In order to simulate data with a nonlinear link, the data will be split into 4 dif-
ferent parts following a decision tree structure. The first split is observations where
X1 <= 0.99, the second split is based on if X2 +X3 > 0.6, the third split is obser-
vations where X0 < X1, and the last split is the remaining observations. Once the
data is split into these four sections, the probabilities that y = 1 are simulated using
a different variation to the logistic regression formula (used for the linear method)
for each section. These variations include adjusting the β parameters, squaring or
cubing some of the X variables, and/or adding in correlation between the indepen-
dent variables. The last step is comparing a uniform random number to π (x) to
determine if y = 1 or y = −1.

To simulate multi class nonlinear data, the method used to simulate binary non-
linear data is combined with the method used to simulate multi class linear data.
The data will follow the same decision tree structure as the binary nonlinear in
order to be split into four different sections or nodes. Once split, the probabilities
are modelled similar to the non-binary logistic regression method described in sec-
tion 3.1.2. Again variations are added that range from adjusting the β parameters,
adding exponents to some of the X variables, and/or adding in correlation between

15

the independent variables. Lastly, a uniform random number is compared to these
probabilities to determine if the target variable y is equal to 1, 2, or 3 where K = 3.

3.2 Results

A total of 50 data sets were simulated for each combination of sample size and
algorithm. The optimal M, or number of weak learners, was selected for each model
based on the highest 5-fold cross validated accuracy when testing values from 5 to
60. The full data sets were then re-simulated 50 times using this optimal M value.
The results shown in the figures throughout this section are the average or expected
accuracy of the 50 simulated data sets of full sample size.

3.2.1 Binary Linear Model

We can see that both the Real AdaBoost and Logit Boost algorithms outperform
the AdaBoost algorithm for all sample sizes. However, the Gentle AdaBoost algo-
rithm stands out as having a much higher accuracy than the other three algorithms
throughout. The standard deviation of the accuracy is shown by the dotted lines,
and decreases as the sample size increases for both algorithms.

Figure 1: Comparison of the expected accuracy for different sample sizes across 50
iterations, using the four algorithms and binary, linear data.

As the sample size increases, the difference between the accuracy of the algorithms
shrinks slightly.

3.2.2 Multi Class Linear Model

From Figure 2 it is clear that Gentle AdaBoost still outperforms the remaining al-
gorithms, however the difference is less.

16

Figure 2: Comparison of the expected accuracy for different sample sizes across 50
iterations, using the four algorithms and multi class, linear data.

Using 3 possible classes, the above figure shows that for AdaBoost, Real AdaBoost,
and Gentle AdaBoost, higher expected accuracies occurs at the smaller sample sizes.
For Logit Boost, the highest average accuracy occurs at a sample size of 500.

3.2.3 Binary Nonlinear Model

Comparing Figure 3 with Figure 1, it is evident that Gentle AdaBoost is much closer
in accuracy to the other three algorithms when using a nonlinear data simulation.

Figure 3: Comparison of the expected accuracy for different sample sizes across 50
iterations, using the four algorithms and binary, nonlinear data.

We can see that Real AdaBoost, and Logit Boost perform much better when using
nonlinear data vs linear data. The expected accuracies for the models are above
80% among all sample sizes, whereas the accuracies for the linear model were much
lower, ranging from 65% to 72%. Alternatively, Gentle AdaBoost only increases its
accuracy slightly when using nonlinear vs linear data.

3.2.4 Multi Class Nonlinear Model

Extending the nonlinear model to multi class does not provide different results or
model performance, much like when we extended the linear model to multi class.

17

Figure 4: Comparison of the expected accuracy for different sample sizes across 50
iterations, using the four algorithms and multi class, nonlinear data.

Figure 4 shows that Gentle AdaBoost still has the highest prediction accuracy
compared to the other three models. When using the nonlinear models, the other
three algorithms are closer in accuracy to the Gentle AdaBoost algorithm, suggesting
that if we were to further increase the nonlinearity of the data, Real AdaBoost or
Logit Boost could potentially surpass Gentle AdaBoost in accuracy.

3.3 Logistic Regression vs. Boosting Models

Next we will compare the four boosting algorithms to a logistic regression model.
For the linear data generation methods, this is the true model of the generated data,
so it can be expected that the logistic regression model will outperform the boosting
models. We will also investigate how the models compare when using the nonlinear
data generation methods.

Comparing the logistic regression model below to the four boosting models, the only
boosting model that outperforms it using binary linear data is the Gentle AdaBoost
model. Specifically at the smaller sample sizes of 50 and 100, the Gentle AdaBoost
algorithm performs much better.

Figure 5: Plot of the expected accuracy for different sample sizes across 50
iterations, using a logistic regression model and the four AdaBoost algorithms with

binary, linear data.

18

Looking at the smaller sample sizes of the logistic regression model below, using
binary, nonlinear data, there is an accuracy of 81.13% with a sample size of 50 and
82.37% with a sample size of 100.

Figure 6: Plot of the expected accuracy for different sample sizes across 50
iterations, using a logistic regression model and the four AdaBoost algorithms with

binary, nonlinear data.

Comparing this to the Real AdaBoost, Logit Boost, and Gentle AdaBoost models,
which have an accuracy of 82.20%, 82.08%, 87.44% respectively at a sample size
of 50, the logistic regression model performance is slightly worse than the Real
AdaBoost and Logit Boost models with a more significant difference to the Gentle
AdaBoost model. At a sample size of 100, Real AdaBoost has an accuracy of 84.02%
and Logit Boost has an accuracy of 83.42%, which both have a better performance
than the logistic regression model again — something we did not see with the linear
data.

4 Application

The boosting methods explored in this paper will now be applied to real-world data
in order to determine if they could be useful in predicting a categorical outcome. The
context of this problem is classifying the subject condition in a sample of individuals
based on which parts of the brain are activated while performing different tasks. We
are interested in predicting y, where y is a binary categorical variable classified into
the control vs patient group in this case. The control group is individuals with
a brain classified as healthy or normal, and the patient group is individuals who
have been diagnosed with schizophrenia. There are 16 inputs in total we will be
considering, which are based on 4 different frequency bands and 3 tasks for each,
plus the variance across tasks. The values given in the data are a measure called the
Small World Propensity (SWP) from the estimated function networks. We want to
see if the data shows a link between patterns of neural interactions in the brain and
classifying whether a brain is healthy or not. We will be using the group variable
as our output (control or patient) to see if we can accurately predict it using the
boosting algorithms discussed in this paper and the other variables in the data set
as the inputs.

19

4.1 Data

The data set comes from an EEG test conducted for 81 individuals, each in either
the control or patient group. An EEG test is a way of investigating the neurons
working together in the brain by measuring the electric potentials at the scalp. The
neurons working together will show up as oscillations in signals where the speed
of the oscillations depends on the type of neurons. The oscillations and how in
sync they are will determine when two brain regions are communicating and can
be observed from the electric potentials at the scalp. Once the test is conducted,
the oscillations are used to estimate a graph of connections among electrodes. SWP
measures if the resulting graph has something called the ‘small world’ property, and
if it does, this may be referred to as a small-world graph. This type of graph has
two important characteristics — high clustering and short path lengths between
nodes. Thus, the measure given in the data quantifies the small world-ness of the
resulting graph for each specific frequency band and activity. These quantities are
measured within four different frequency bands for resting, listening to music, and
watching a screen to determine which parts of the brain an individual was using for
each task. The variance between the tasks is also calculated for each frequency band.

As mentioned, we will use subject group as the output and we will use the 16 vari-
ables as the inputs. The inputs are taken from four frequency bands in the brain
represented by δ, θ, α, and β. Roughly, the δ brainwaves correspond to a sleep
state, the θ brainwaves correspond to a creative, meditative state (i.e. between α
and δ waves), the α brainwaves correspond to a daydreaming, relaxed state, and the
β brainwaves correspond to an active state. As well as this, each frequency band
was measured while the individual was partaking in different activities to determine
which area of the brain was activated for each activity.

There are 39 observations for the control group and 42 observations for the patient
group - stratified k-fold cross validation will be used to keep this proportion of ob-
servations. As mentioned, the resting/auditory/visual measures for each frequency
band represent a quantity called the small world propensity (SWP) of a graph, and
the variance is the variance of the SWP across the three tasks.

4.2 Results

The accuracy shown is computed based on the average testing accuracy using 5-fold
cross validation, where the optimal M is chosen based on the training data. Unlike
our simulation study, the data is limited here and our average accuracy is based
only on one data set.

20

Figure 7: Comparison of the expected accuracy for different algorithms against the
number of weak learners used. Accuracy is computed based on the average testing

accuracy across 5 folds.

Based on Figure 7, when using the EGG data, Logit Boost and Real AdaBoost
both outperform Gentle AdaBoost — a different result than what the results of
the simulation study showed. The accuracies are also much lower overall, with the
highest accuracy of Logit Boost being 67.5% with 10 weak learners.

The differences in our results here vs the simulation study could be explained by
the differences in the data. This data set contains 16 input variables while our simu-
lated data worked with only 5 inputs. Our data was also simulated using identically
and independently normally distributed inputs, while it is unlikely our application
data follows this same distribution. We can assume the inputs corresponding to
the same frequency band are correlated with each other, specifically the variances.
Lastly, although the nonlinearity of the data was increased from the original logistic
regression model, it is unknown to what extent the nonlinearity was actually in-
creased. Using a different method to simulate the data and provide more nonlinear
links between the inputs and target variable could potentially affect the results, and
may explain why our application does not follow the same conclusions.

5 Conclusions

This research explored three variants to the standard AdaBoost algorithm — Real
AdaBoost, Gentle AdaBoost, and Logit Boost — and provided evidence to suggest
that all three variations outperform the original model. Based on our simulation
study, Gentle AdaBoost is the optimal algorithm and provides the highest prediction
accuracy for normally distributed data, while our application suggests that Real Ad-
aBoost and Logit Boost perform better in other circumstances. Further exploration
into how these variants perform when increasing nonlinearity of the data or using
a different distribution could be beneficial in determining more clearly which model
works best for each situation.

21

6 References

Appel, R., Fuchs, T., Dollár, P., & Perona, P. (2013, May). Quickly boosting deci-
sion trees–pruning underachieving features early. In conference on machine learning
(pp. 594-602). PMLR.

Breiman, L. (1999). Prediction games and arcing algorithms. Neural computation,
11 (7), 1493-1517.

Ferreira, A. J., & Figueiredo, M. A. (2012). Boosting algorithms: A review of
methods, theory, and applications. Ensemble machine learning, 35-85.

Freund, Y. (1995). Boosting a weak learning algorithm by majority. Information
and computation, 121 (2), 256-285.

Freund, Y., & Schapire, R. E. (1996, July). Experiments with a new boosting al-
gorithm. In icml (Vol. 96, pp. 148-156).

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of computer and system sciences,
55 (1), 119-139.

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting ma-
chine. Annals of statistics, 1189-1232.

Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: a
statistical view of boosting (with discussion and a rejoinder by the authors). The
annals of statistics, 28 (2), 337-407.

Friedman, J.H., Hastie, T., & Tisbshirani, R. (2017). The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer.

Schapire, R. E. (1990). The strength of weak learnability. Machine learning, 5 (2),
197-227.

Shahraki, A., Abbasi, M., & Haugen, Ø. (2020). Boosting algorithms for net-
work intrusion detection: A comparative evaluation of Real AdaBoost, Gentle Ad-
aBoost and Modest AdaBoost. Engineering Applications of Artificial Intelligence,
94, 103770.

22

7 Appendix

Import necessary packages

import pandas as pd

from numpy.random import seed

from numpy.random import normal

from numpy import mean

from numpy import std

import matplotlib.pyplot as plt

import numpy as np

import math

from sklearn.ensemble import AdaBoostClassifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import accuracy_score

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import StratifiedKFold

from sklearn import tree

Code to simulate data

#binary linear data simulation

def simulate_data(n, beta0):

#Inputs:

#n: number of observations generated

#beta0: logistic regression beta0 parameter

#Ouputs:

#X: nx5 matrix of X values or inputs

#y: nx1 output y vector

X = np.zeros((n, 5))

for i in range (0, n):

mu,sigma = 0, 1

for j in range(0, 5):

X[i, j] = np.random.normal(mu, sigma, 1)[0]

y = [None] * n

p = [None] * n

for k in range(0,n):

p[k] = math.exp(beta0 + X[k, 0] + X[k, 1] + X[k, 2] + X[k, 3] + X[k, 4]

)/(1 + math.exp(beta0

+ X[k, 0] + X[k, 1] + X[k, 2] + X[k, 3] + X[k, 4]

))

num = np.random.uniform(0, 1, 1)

if num <= p[k]:

y[k] = 1

elif num > p[k]:

23

y[k] = -1

return X, y

##

#binary non-linear data simulation

def simulate_data_nl(n, beta0):

#Inputs:

#n: number of observations generated

#beta0: logistic regression beta0 parameter

#Ouputs:

#X: nx5 matrix of X values or inputs

#y: nx1 output y vector

X = np.zeros((n, 5))

for i in range (0, n):

mu,sigma = 0, 1

for j in range(0, 5):

X[i, j] = np.random.normal(mu, sigma, 1)[0]

y = [None] * n

p = [None] * n

for k in range(0,n):

num = np.random.uniform(0, 1, 1)

if X[k, 1] <= 0.99:

p[k] = math.exp(beta0 + 0.2*X[k, 0] + X[k, 1] + 6*X[k, 2] + X[k, 3] +

(-0.7)*X[k, 4])/(1 + math.exp(beta0

+ 0.2*X[k, 0] + X[k, 1] + 6*X[k, 2] + X[k, 3] + (-0.7)*X[k, 4]))

if num <= p[k]:

y[k] = 1

elif num > p[k]:

y[k] = -1

elif X[k, 2] + X[k, 3] > 0.6:

p[k] = math.exp(beta0 + X[k, 0] + np.square(X[k, 1]) + X[k, 2] +

0.8*np.square(X[k, 3] + X[k, 4]))/(1 + math.exp(beta0

+ X[k, 0] + np.square(X[k, 1]) + X[k, 2] + 0.8*np.square(X[k, 3]

+ X[k, 4])))

if num <= p[k]:

y[k] = 1

elif num > p[k]:

y[k] = -1

elif X[k, 0] < X[k, 1]:

p[k] = math.exp(beta0 + np.power(X[k, 0] + X[k, 1], 3) + X[k, 2]

24

+ np.square(X[k, 3]) + X[k, 4])/(1 + math.exp(beta0

+ np.power(X[k, 0] + X[k, 1], 3) + X[k, 2] + np.square(X[k, 3])

+ X[k, 4]))

if num <= p[k]:

y[k] = 1

elif num > p[k]:

y[k] = -1

else:

p[k] = np.random.uniform(0, 1, 1)

if num <= p[k]:

y[k] = 1

elif num > p[k]:

y[k] = -1

return X, y

##

#multiclass linear data simulation

#using for multi class data

def simulate_data_multi(n, beta0):

#Inputs:

#n: number of observations generated

#beta0: logistic regression beta0 parameter

#Ouputs:

#X: nx5 matrix of X values or inputs

#y: nx1 output y vector

X = np.zeros((n, 5))

for i in range (0, n):

mu,sigma = 0, 1

for j in range(0, 5):

X[i, j] = np.random.normal(mu, sigma, 1)[0]

#X[i, j] = np.random.poisson(3, 1)[0]

#X[i, j] = np.random.binomial(1, 0.6, 1)[0]

y = [None] * n

p1 = [None] * n

p2 = [None] * n

p3 = [None] * n

for k in range(0,n):

p1[k] = math.exp(beta0 #+ X[k, 0] + X[k, 1] + X[k, 2] + X[k, 3] + X[k, 4]

)/(1 + 2*math.exp(beta0

+ X[k, 0] + X[k, 1] + X[k, 2] + X[k, 3] + X[k, 4])

)

25

p2[k] = math.exp(beta0 + X[k, 0] + X[k, 1] + X[k, 2] + X[k, 3] + X[k, 4]

)/(1 + 2*math.exp(beta0

+ X[k, 0] + X[k, 1] + X[k, 2] + X[k, 3] + X[k, 4]

))

p3[k] = 1 - p1[k] - p2[k]

#generate a uniform random number

num = np.random.uniform(0, 1, 1)

if num <= p1[k]:

y[k] = 2

elif num > p1[k] and num <= (p1[k] + p2[k]):

y[k] = 1

elif num > (p1[k] + p2[k]):

y[k] = 0

return X, y

##

#multiclass non linear data simulation

#using for multi class data

def simulate_multi_nl(n, beta0):

#Inputs:

#n: number of observations generated

#beta0: logistic regression beta0 parameter

#Ouputs:

#X: nx5 matrix of X values or inputs

#y: nx1 output y vector

X = np.zeros((n, 5))

for i in range (0, n):

mu,sigma = 0, 1

for j in range(0, 5):

X[i, j] = np.random.normal(mu, sigma, 1)[0]

#X[i, j] = np.random.poisson(3, 1)[0]

#X[i, j] = np.random.binomial(1, 0.6, 1)[0]

y = [None] * n

p1 = [None] * n

p2 = [None] * n

p3 = [None] * n

for k in range(0,n):

num = np.random.uniform(0, 1, 1)

if X[k, 1] <= 0.99:

p1[k] = math.exp(beta0

)/(1 + 2*math.exp(beta0

+ X[k, 0] + X[k, 1] + X[k, 2] + X[k, 3] + X[k, 4])

)

26

p2[k] = math.exp(beta0 + X[k, 0] + X[k, 1] + X[k, 2] + X[k, 3] +

X[k, 4])/(1 + 2*math.exp(beta0

+ X[k, 0] + X[k, 1] + X[k, 2] + X[k, 3] + X[k, 4]

))

p3[k] = 1 - p1[k] - p2[k]

if num <= p1[k]:

y[k] = 2

elif num > p1[k] and num <= (p1[k] + p2[k]):

y[k] = 1

elif num > (p1[k] + p2[k]):

y[k] = 0

elif X[k, 2] + X[k, 3] > 0.6:

p1[k] = math.exp(beta0

)/(1 + math.exp(beta0

+ X[k, 0] + X[k, 1] + X[k, 2] + X[k, 3] + X[k, 4])

+ math.exp(beta0 + X[k, 0] + np.square(X[k, 1]) + X[k, 2]

+ 0.8*np.square(X[k, 3] + X[k, 4])

))

p2[k] = math.exp(beta0 + X[k, 0] + np.square(X[k, 1]) + X[k, 2] +

0.8*np.square(X[k, 3] + X[k, 4]))/(1 + math.exp(beta0

+ X[k, 0] + X[k, 1] + X[k, 2] + X[k, 3] + X[k, 4])

+ math.exp(beta0 + X[k, 0] + np.square(X[k, 1])

+ X[k, 2] + 0.8*np.square(X[k, 3] + X[k, 4])

))

p3[k] = 1 - p1[k] - p2[k]

if num <= p1[k]:

y[k] = 2

elif num > p1[k] and num <= (p1[k] + p2[k]):

y[k] = 1

elif num > (p1[k] + p2[k]):

y[k] = 0

elif X[k, 0] < X[k, 1]:

p1[k] = math.exp(beta0 + np.power(X[k, 0] + X[k, 1], 3) + X[k, 2] +

np.square(X[k, 3]) + X[k, 4]

)/(1 + math.exp(beta0

+ np.power(X[k, 0] + X[k, 1], 3) + X[k, 2] + np.square(X[k, 3]) +

X[k, 4]) + math.exp(beta0 + 0.2*X[k, 0] + X[k, 1] +

(-1.3)*np.square(X[k, 2]) + X[k, 3] + X[k, 4])

)

27

p2[k] = math.exp(beta0 + 0.2*X[k, 0] + X[k, 1] +

(-1.3)*np.square(X[k, 2]) + X[k, 3] + X[k, 4]

)/(1 + math.exp(beta0

+ np.power(X[k, 0] + X[k, 1], 3) + X[k, 2] + np.square(X[k, 3])

+ X[k, 4]) + math.exp(beta0 + 0.2*X[k, 0] + X[k, 1] +

(-1.3)*np.square(X[k, 2]) + X[k, 3] + X[k, 4])

)

p3[k] = 1 - p1[k] - p2[k]

if num <= p1[k]:

y[k] = 0

elif num > p1[k] and num <= (p1[k] + p2[k]):

y[k] = 1

elif num > (p1[k] + p2[k]):

y[k] = 2

else:

p1[k] = math.exp(beta0)/

(1 + math.exp(beta0 + (-2)*X[k, 0] + X[k, 1] + 0.8*X[k, 2] + X[k, 3] +

np.square(X[k, 4])) + math.exp(beta0 + X[k, 0] + np.power(X[k, 1], 3)

+ X[k, 2] + (-0.1)*np.square(X[k, 3] + X[k, 4])

))

p2[k] = math.exp(beta0 + (-2)*X[k, 0] + X[k, 1] + 0.8*X[k, 2] + X[k, 3]

+ np.square(X[k, 4]))/(1 + math.exp(beta0

+ (-2)*X[k, 0] + X[k, 1] + 0.8*X[k, 2] + X[k, 3] + np.square(X[k, 4]))

+ math.exp(beta0 + X[k, 0] + np.power(X[k, 1], 3) + X[k, 2] +

(-0.1)*np.square(X[k, 3] + X[k, 4])

))

p3[k] = 1 - p1[k] - p2[k]

if num <= p1[k]:

y[k] = 2

elif num > p1[k] and num <= (p1[k] + p2[k]):

y[k] = 1

elif num > (p1[k] + p2[k]):

y[k] = 0

return X, y

Functions to use for simulation

##

clf = DecisionTreeClassifier(criterion = "entropy", max_depth=1)

r1, r2 = 5, 60

28

def createList(r1, r2):

return np.arange(r1, r2+5, 5)

get a list of models to evaluate

def get_models():

models = dict()

define number of trees to consider

n_trees = (createList(r1,r2))

#using one vs rest classification and adaboost

for n1 in n_trees:

models[str(n1)] = OneVsRestClassifier(AdaBoostClassifier(clf, n_estimators

= n1, learning_rate = 1/n1, algorithm = ’SAMME’))

return models

#same thing for Real AdaBoost

def real_models():

models = dict()

define number of trees to consider

n_trees = (createList(r1,r2))

#using one vs rest classifcation and real adaboost

for n1 in n_trees:

models[str(n1)] = OneVsRestClassifier(AdaBoostClassifier(clf, n_estimators

= n1, learning_rate = 1/n1, algorithm = ’SAMME.R’))

return models

#same thing for Logit Boost

def logit_models():

models = dict()

define number of trees to consider

n_trees = (createList(r1,r2))

#using one vs rest classification and logit boost

for n1 in n_trees:

models[str(n1)] = OneVsRestClassifier(LogitBoost(DecisionTreeRegressor

(max_depth=1), n_estimators = n1, learning_rate = 1/n1))

return models

evaluate a given model using cross-validation

def evaluate_model(model, X, y):

define the evaluation procedure

#10 fold stratified k fold cross validation

cv = StratifiedKFold(n_splits=10)

evaluate the model and testing accuracy using cross validation

scores = cross_val_score(model, X, y, scoring=’accuracy’, cv=cv, n_jobs = -1)

return scores

Functions for Gentle AdaBoost

#Accuracy function

29

Accuracy

def Accuracy(y, preds):

Inputs:

y: vector of datasets y-values

preds: model of interests predictions

#

Outputs:

accuracy: accuracy of model

Initialize count of correct predictions and length of dataset

count = 0

n = len(y)

Determine number of correct predictions

for obs in range(0, n):

if y[obs] == preds[obs]:

count = count + 1

else:

count = count

Divide correct predictions by number of observations

accuracy = count/n

return(accuracy)

##

#Gentle AdaBoost algorithm

def GentleAdaBoost(X_train, y_train, X_test, y_test, n_trees = 50):

Inputs:

X-train: matrix of x-values in training set

y-train: vector of y-values in training set(must be binary classification)

X-train: matrix of x-values in testing set

y-train: vector of y-values in testing set(must be binary classification)

n_trees - define number of trees or weak learners to consider

#

Outputs:

final_f: final prediction of observation classes

Initialize dataset length and data point weights among other measures needed

#for Gentle AdaBoost

n_test = len(y_test)

n_train = len(y_train)

w = [1/n_train] * n_train

preds_train = [None] * n_trees

preds_test = [None] * n_trees

new_w= [None] * n_train

f = [0] * n_test

Run the AdaBoost algorithm ’n_trees’ times (default = 50)

30

for i in range(0, n_trees):

#add an intercept point since default does not include

X_train = sm.add_constant(X_train)

X_test = sm.add_constant(X_test)

Fit weak learner (weighted least squares) and make predictions

model = sm.WLS(y_train, X_train, w, hascosnt = True)

model_fit = model.fit()

#get predictions for training to update weights and testing for predicting

#accuracy

preds_train[i] = model_fit.predict(X_train)

preds_test[i] = model_fit.predict(X_test)

for k in range(0, n_train):

new_w[k] = w[k] * math.exp(-y_train[k] * preds_train[i][k])

for l in range(0, n_train):

w[l] = new_w[l] / sum(new_w)

for j in range(0, n_test):

f[j] = f[j] + preds_test[i][j]

comment out for multi class

Determine final class predictions based on sign of predictions

final_f = [0] * n_test

for b in range(0, n_test):

if f[b] >= 0:

final_f[b] = 1

else:

final_f[b] = -1

return final_f

##

For binary classification running 50 times

#Create StratifiedKFold split with 10 folds

skf = StratifiedKFold(n_splits=10, shuffle=True)

exp_accuracy_gentle = []

std_accuracy_gentle = []

for size in (50, 100, 250, 500, 750, 1000):#, 10000):

total_accuracy = []

n = size

for it in range(0,50):

31

X, y = simulate_data(n,beta0)

results = list()

#testing M values using k fold cross validation

for n1 in n_trees:

scores = list()

for train_index, test_index in skf.split(X, y):

x_train_fold, x_test_fold = X[train_index], X[test_index]

y_train_fold, y_test_fold = np.array(y)[train_index],

np.array(y)[test_index]

Fit weak learner and make predictions

model = GentleAdaBoost(x_train_fold, y_train_fold, x_test_fold,

y_test_fold, n1)

accuracy = Accuracy(y_test_fold, model)

scores.append(accuracy)

results.append(mean(scores))

total_accuracy.append(max(results))

#take expected value and std of 50 iterations

exp_accuracy_gentle.append(mean(total_accuracy))

std_accuracy_gentle.append(std(total_accuracy)/math.sqrt(n))

##

#For multi class classifiation running 50 iterations

exp_accuracy_gentle = []

std_accuracy_gentle = []

for size in (50, 100, 250, 500, 750, 1000):#, 10000):

total_accuracy = []

n = size

for it in range(0,50):

#X, y = simulate_data(n,beta0)

X, y = simulate_multi_nl(n, beta0)

results = list()

#testing M values using k fold cross validation

for n1 in n_trees:

scores = list()

for train_index, test_index in skf.split(X, y):

x_train_fold, x_test_fold = X[train_index], X[test_index]

y_train_fold, y_test_fold = np.array(y)[train_index],

np.array(y)[test_index]

32

y_train_0 = [0] * y_train_fold

y_train_1 = [0] * y_train_fold

y_train_2 = [0] * y_train_fold

#y_train_3 = [0] * y_train_fold

for i in range(0, len(y_train_fold)):

if y_train_fold[i] == 0:

y_train_0[i] = 1

elif y_train_fold[i] == 1:

y_train_1[i] = 1

elif y_train_fold[i] == 2:

y_train_2[i] = 1

elif y_train_fold[i] == 3:

y_train_3[i] = 1

y_test_0 = [0] * y_test_fold

y_test_1 = [0] * y_test_fold

y_test_2 = [0] * y_test_fold

#y_test_3 = [0] * y_test_fold

for i in range(0, len(y_test_fold)):

if y_test_fold[i] == 0:

y_test_0[i] = 1

elif y_test_fold[i] == 1:

y_test_1[i] = 1

elif y_test_fold[i] == 2:

y_test_2[i] = 1

elif y_test_fold[i] == 3:

y_test_3[i] = 1

Fit weak learner and make predictions

model0 = GentleAdaBoost(x_train_fold, y_train_0, x_test_fold,

y_test_0, n1)

model1 = GentleAdaBoost(x_train_fold, y_train_1, x_test_fold,

y_test_1, n1)

model2 = GentleAdaBoost(x_train_fold, y_train_2, x_test_fold,

y_test_2, n1)

#model3 = GentleAdaBoost(x_train_fold, y_train_3, x_test_fold,

y_test_3, n1)

model = [0] * y_test_fold

for num in range(0, len(y_test_fold)):

if max(model0[num], model1[num], model2[num]) == model0[num]:

model[num] = 0

elif max(model0[num], model1[num], model2[num]) == model1[num]:

model[num] = 1

elif max(model0[num], model1[num], model2[num]) == model2[num]:

33

model[num] = 2

else:

model[num] = 3

accuracy = Accuracy(y_test_fold, model)

scores.append(accuracy)

results.append(mean(scores))

total_accuracy.append(max(results))

#take expected value and std of 50 iterations

exp_accuracy_gentle.append(mean(total_accuracy))

std_accuracy_gentle.append(std(total_accuracy)/math.sqrt(n))

Run the Simulation 50 times

#change depending on algorithm (AdaBoost, Real AdaBoost, and Logit Boost)

exp_accuracy = []

std_accuracy = []

beta0 = 0

for size in (50, 100, 250, 500, 750, 1000):#, 10000):

accuracy = []

n = size #testing 50 sample size for LogitBoost

for i in range(0, 50):

#change depending if linear/ non linear and binary/ multiclass

X, y = simulate_multi_nl(n,beta0)

#using get_models for discrete AdaBoost, real_models for Real_AdaBoost,

logit_models for Logit Boost

models = get_models()

evaluate the models and store results

results, names, means = list(), list(), list()

for name, model in models.items():

#accuracy

scores = evaluate_model(model, X, y)

results.append(scores)

#number of weak learners

names.append(name)

#mean accuracy

means.append(mean(scores))

print(’>%s %.3f (%.3f)’ % (name, max(means)))

#taking optimal m

accuracy.append(max(means))

34

#change depending on algorithm

exp_accuracy.append(mean(accuracy))

std_accuracy.append(std(accuracy)/math.sqrt(n))

35

	Introduction
	Decision Trees
	Boosting
	AdaBoost

	Literature Review
	Forward Stagewise Additive Modelling
	Relation between AdaBoost and Forward Stagewise Additive Modelling
	Gradient Boosting
	Variants of AdaBoost
	Real AdaBoost
	Gentle AdaBoost
	Logit Boost

	Simulation Study
	Data Generation Process
	Number of Observations
	Number of Classes
	Nonlinear Data

	Results
	Binary Linear Model
	Multi Class Linear Model
	Binary Nonlinear Model
	Multi Class Nonlinear Model

	Logistic Regression vs. Boosting Models

	Application
	Data
	Results

	Conclusions
	References
	Appendix

