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Summary 1 

It has become clear that sleep after learning has beneficial effects on the later retrieval of newly 2 

acquired memories. The neural mechanisms underlying these effects are becoming increasingly 3 

clear as well, particularly those of non-REM sleep. However, much is still unknown about the 4 

sleep and memory relationship: the sleep state or features of sleep physiology that associate with 5 

memory performance often vary by task or experimental design, and the nature of this variability 6 

is not entirely clear. This paper describes pertinent features of sleep physiology and provides a 7 

detailed review of the scientific literature indicating beneficial effects of post-learning sleep on 8 

memory retrieval. This paper additionally introduces a hypothesis which attributes these 9 

beneficial effects of post-learning sleep to separable processes of memory reinforcement and 10 

memory refinement whereby reinforcement supports one’s ability to retrieve a given memory 11 

and refinement supports the precision of that memory retrieval in the context of competitive 12 

alternatives. It is observed that features of non-REM sleep are involved in a post-learning 13 

substantiation of memory representations that benefit memory performance; thus, memory 14 

reinforcement is primarily attributed to non-REM sleep. Memory refinement is primarily 15 

attributed to REM sleep given evidence of bidirectional synaptic plasticity in REM sleep and 16 

findings from studies of selective REM sleep deprivation.  17 
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  1 

Abbreviations 

EEG electroencephalography 

PGO ponto-geniculo-occipital 

LTP long-term potentiation 

NREM non-REM 

SR2 sleep reinforcement and refinement 

 

Glossary of terms 

Declarative memory Memory for past events and facts 

Half-night paradigm Experimental paradigm in which the effects of early-night sleep 

relatively rich in slow wave sleep are compared to the effects of 

late-night sleep relatively rich in REM sleep.  

Hippocampal theta rhythm Neural oscillation of 5–8 Hz observed in the hippocampus of rats 

during active exploration and REM sleep 

Long-term depression Relatively long-lasting decrease in synaptic strength resulting from 

synaptic activity 

Long-term potentiation Relatively long-lasting increase in synaptic strength resulting from 

synaptic activity and consisting an early and late stage  

Memory consolidation Process through which memories are transformed from an initial 

labile state to a more stable and longer lasting state integrated with 

existing memories. 

Memory reactivation Reoccurrence during sleep of specific patterns of neural activity 

that were present during learning 

Memory representation The neural changes underlying a memory; also referred to as a 

memory trace or engram. 

Procedural memory Memory for acquired skills and habits 

P waves Biphasic field potential generated in the pons and present during 

REM sleep; also termed ponto-geniculo-occipital waves when the 

lateral geniculate nucleus and occipital cortex are involved 

Sharp wave ripples Composite neural events in the hippocampus consisting of a large 

deflection (sharp wave) followed by high-frequency oscillations 

(ripple) 

Slow waves Term for 0.5–4 Hz activity that is present in N2 NREM sleep and 

dominates N3 NREM sleep; includes both surface slow 

oscillations (<1 Hz) and delta waves (1–4 Hz). 

Spindle  Burst-like sequences of 10–16 Hz sinusoidal activity appearing in 

EEG during N2 and N3 NREM sleep 
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Memory performance benefits from sleep relative to wake have been observed across 1 

many paradigms and memory tasks. For example, sleep improves cued recall of word pairs [1,2] 2 

and promotes performance gains in newly learned skills [3,4]. Sleep may even promote 3 

forgetting of some superfluous memories and associations [5,6]. The complexity of the sleep–4 

memory relationship may in part be attributed to the multifaceted nature of sleep physiology. 5 

This review outlines sleep physiology and existing hypotheses regarding sleep and memory 6 

before introducing a new hypothesis concerning the effect of sleep states on memory 7 

performance. Following these introductions, the literature connecting sleep to memory retrieval 8 

is discussed. 9 

Sleep Physiology 10 

In humans, sleep is composed of stages marked by patterns of brain activity, eye 11 

movements, and muscle tone, measured via electroencephalography (EEG), electrooculography, 12 

and electromyography, respectively. Rapid eye movement (REM) sleep, scored as stage R, is 13 

distinct from multiple stages of non-rapid eye movement (NREM) sleep scored as stages N1, N2, 14 

and N3 [7]. In healthy adult sleep, these stages appear in a predictable and cyclical pattern [8,9]. 15 

A typical night of sleep starts with a brief period of stage N1 sleep and progresses into this cycle 16 

with deeper NREM stages of N2 and then N3 followed by a brief period of REM sleep before 17 

returning to NREM sleep to complete the roughly 90-min cycle. Brief returns to wakefulness and 18 

stage N1 notwithstanding, this cycle continues throughout the night although the relative 19 

durations of N2, N3, and REM sleep within the cycle change over the night. In the first half of 20 

the night (i.e., the first 2–3 cycles), there is a relative abundance of N3 sleep over REM sleep. In 21 

the second half of the night, there is more REM sleep and N3 sleep may not be observed at all. 22 

N2 sleep is present throughout the night and constitutes roughly 50% of sleep duration. 23 
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The major patterns of neural activity that define NREM sleep are spindles and slow 1 

waves. Spindles are burst-like sequences of approximately 10–16 Hz sinusoidal activity 2 

appearing in surface EEG and generated by neuronal oscillations in the thalamus of sleeping 3 

mammals [10,11]. Within individual humans, there are slow (≈10 Hz) and fast (≈13 Hz) 4 

spindles; however, there considerable individual differences in the frequency of slow and fast 5 

spindles [10,12]. The functions of spindles, fast or slow, are not certain, but fast spindles have 6 

been frequently linked to memory processing [13–17]. Slow wave activity in surface EEG is a 7 

definitive factor in N3 sleep, or slow wave sleep, and consists of 0.5–4 Hz activity, often divided 8 

as surface slow oscillations (<1 Hz) and delta waves (1–4 Hz) [11]. Slow waves in surface EEG 9 

reflect the oscillation of populations of cortical neurons between an “up” state of cellular 10 

membrane depolarizing and neuronal firing and a largely silent “down” state of cellular 11 

membrane hyperpolarization with both intracortical and thalamocortical circuits mediating the 12 

patterns of this oscillation [18]. Notably, the amount of slow wave activity appears to be 13 

determined in a local, use-dependent manner such that, for example, immobilization of an arm 14 

during the day reduces slow wave activity observed in the contralateral sensorimotor cortex [19]. 15 

NREM sleep in mammals also includes sharp wave ripples, which occur in the CA1 region of the 16 

hippocampus and consist of a large 40–100 ms deflection followed by fast oscillations [20]. 17 

Structurally similar events occur in other brain regions, including sharp waves and ripples in the 18 

olfactory cortex and amygdala and the neocortical K-complex with spindle [20]. Of importance 19 

to sleep and memory, hippocampal ripples have been identified as a source of memory replay 20 

during NREM sleep as both neocortical and hippocampal neuron firing patterns surrounding 21 

these events resemble a temporally compressed version of the patterns observed in recent 22 

learning in rats [21–23]. Critically, disrupting hippocampal replay has been shown to lead to 23 
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memory deficits, specifically for memories corresponding to neuronal ensembles targeted by the 1 

disruption procedure [24]. The timing of sharp wave ripples, memory reactivations, slow waves, 2 

and spindles are highly linked and appear to be coordinated by the up and down states of 3 

intracortical slow oscillations as part of a hippocampal-thalamic-neocortical circuit [25–29]. 4 

REM sleep electrophysiology includes theta activity and biphasic potentials termed 5 

ponto-geniculo-occipital (PGO) waves (P waves when only the pontine element is identified), 6 

although both features are more evident and well studied in rodents than in humans. The 7 

hippocampal theta rhythm is a neural oscillation generated in the brainstem that is observed 8 

during active exploration, prominent during REM sleep, and implicated in learning and memory 9 

[30–32]. Coherent theta activity has been observed in the rat amygdala and prefrontal cortex 10 

[33–35]. The hippocampal theta rhythm in small mammals such as rats has a 5–8 Hz frequency, 11 

but, in humans, there is evidence for a ≈3 Hz analog [36–38]. PGO waves are waveforms 12 

generated in the pons that propagate through the lateral geniculate nucleus of the thalamus and 13 

potentially to multiple cortical regions; they have been identified in REM sleep of mammals, 14 

including cats, rats, and non-human primates, but, due to ethical and practical barriers associated 15 

with the required invasive recordings, there is only limited and suggestive evidence of similar P 16 

in humans[39–43]. In rats, P waves are typically phase-locked with the hippocampal theta 17 

rhythm [44,45]. Both PGO waves and the hippocampal theta rhythm have been implicated in 18 

synaptic change. Blocking PGO waves in kittens impairs developmentally beneficial reductions 19 

in plasticity of the lateral geniculate nucleus [46]. In the rat hippocampus, the effect of 20 

hippocampal cell stimulation on synaptic strength is bidirectionally modulated by the phase of 21 

the theta rhythm, increasing strength when stimulation occurs during peaks and decreasing 22 

strength when it occurs during troughs [47–49]. 23 
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Hypotheses of Sleep and Memory 1 

Concepts of Memory 2 

Memory function consists of the encoding of events into neural representations, or 3 

engrams, to create memory traces that can be subsequently expressed as thoughts or behaviours 4 

through the process of memory retrieval. Hypotheses of sleep and memory often address how 5 

sleep contributes to memory consolidation, the process by which a memory is transformed from 6 

a labile, temporary state into a more stable, long-lasting state that is integrated with existing 7 

memories [50]. Hypotheses of sleep and memory have also valued distinctions between memory 8 

systems; the declarative memory system includes episodic memory, referring to memories that 9 

are autobiographical and linked to a temporal or spatial context, and semantic memory, referring 10 

to general knowledge, whereas non-declarative memory systems include, among others, 11 

procedural memories for acquired skills and habits [51]. 12 

Memory retrieval is assumed to involve the reactivation of encoded memory traces via 13 

internal or external cues; thus, the retrievability of a memory depends on both the integrity of the 14 

engram (i.e., its “availability”) and its accessibility via cue [52,53]. Of course, memory traces do 15 

not exist in isolation. Interference refers to situations in which retrieval of a given memory is 16 

impaired by the presence of one or more additional representations that may be associated with 17 

the same retrieval cues [54]. Interference can result in a failure of retrieval or, when the quality 18 

of retrieval is measured on a continuous scale, reduced fidelity of memory retrieval. An emphasis 19 

on the fidelity or precision of retrieval is prominent in research on visual working memory, and a 20 

role for interference in retrieval precision has been explained [55]. Memory retrieval may take 21 

various forms depending on the task (cued recall, free recall, recognition, or the execution of 22 

movements), or, within recognition memory, whether contextual information from the learning 23 
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event also retrieved, termed recollection, or not retrieved, termed familiarity.   1 

Memories are thought to be acquired through long-term potentiation (LTP) and long-term 2 

depression, which respectively refer to long-lasting increases and decreases in synaptic strength 3 

typically induced by stimulation [56,57]. LTP consists of an early stage independent of protein 4 

synthesis and a late stage requiring protein synthesis. Long-term depression can involve protein 5 

synthesis and can occur de novo or after LTP, in which case it is referred to as depotentiation. 6 

The formation and alteration of dendritic spines are thought to be important in the experience-7 

dependent synaptic plasticity underlying learning and memory [58]. The density and size of 8 

dendritic spines and hence the number of synapses and synaptic strength generally increase with 9 

LTP and decrease with long-term depression [58]. 10 

Existing Hypotheses 11 

One approach to understanding the role of sleep in memory has been to associate 12 

different sleep states to different types of memory in variations of a “dual process” hypothesis. 13 

Investigation of dissociable NREM and REM sleep effects has included use of the half-night 14 

paradigm in which researchers compare the effects of an early-night sleep retention period 15 

naturally rich in deep NREM sleep to the effects of a late-night sleep retention period naturally 16 

rich in REM sleep. To this end, researchers have also used selective deprivation of REM sleep 17 

both in rodents—by placing subjects in an apparatus in which REM sleep onset muscle atonia 18 

causes awakenings after falling into water—and in humans—by waking participants upon 19 

polysomnographic signs of REM sleep. Although details varied by account and evidence 20 

considered, the emergent notion from research with these paradigms was that new declarative 21 

memories preferentially benefit from NREM sleep, typically slow wave sleep, and new non-22 

declarative, especially procedural, memories preferentially benefit from REM sleep [59–62].  23 
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However, a dissociation of NREM and REM sleep serving different memory systems is 1 

incongruent with many findings. For example, simple procedural memory tasks were seen to be 2 

more dependent on stage 2 NREM sleep than REM sleep [63,64]. Conversely, REM sleep was 3 

implicated in memory for prose [65,66] and learning a second language [67]. It may be that both 4 

sleep states support declarative and procedural memory, and REM sleep has specific benefits for 5 

new memories in “complex” tasks, although the defining features of a complex task are 6 

undetermined [64,68]. Genzel et al. [69] argued that REM sleep supports emotional or 7 

“amygdala-related” memory processing whereas NREM sleep is important for cortically based 8 

memories. Indeed, REM sleep has been implicated in emotionally charged memory while REM 9 

sleep connections with other material is less conclusive [69,70], but this hypothesis has received 10 

little direct testing. 11 

Considering the sequential nature of sleep cycles led to the development of the sequential 12 

hypothesis which emphasizes the importance of slow wave sleep to REM sleep sequences in 13 

memory processing. The sequential hypothesis proposes that NREM sleep contains selective 14 

processes that weaken non-adaptive memories before REM sleep stores the surviving memories 15 

and integrates them with preexisting memories [71,72]. This hypothesis is supported by studies 16 

relating overnight retention of words to the integrity of NREM-REM sleep cycles [73,74]. There 17 

is evidence for adaptive selectivity in memory processing over sleep and for sleep involvement 18 

in the integration of new memories with existing knowledge [75]; however, it is inconclusive 19 

whether NREM sleep and REM sleep provide these benefits specifically and respectively.  20 

The active systems consolidation hypothesis similarly proposes that NREM and REM 21 

sleep work together in memory processing, and it is especially focused on the neural mechanisms 22 

mediating sleep-dependent memory processing [76,77]. This hypothesis states that events of 23 
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wake are encoded across cortical networks and bound together by the medial temporal lobe; 1 

then, during slow wave sleep, neuronal replay originating from the hippocampus consolidates 2 

memory via hippocampal-neocortical information transfer and the strengthening of cortico-3 

cortical connections. NREM sleep features, including slow waves, spindles, and ripples, are 4 

thought to facilitate the required reactivation of neuronal ensembles. REM sleep is thought to 5 

subsequently stabilize changes acquired in NREM sleep. The active systems consolidation 6 

hypothesis is supported by many findings, including memory benefits from externally-induced 7 

reactivations during NREM sleep [e.g., 78], reported evidence of hippocampal-to-neocortical 8 

information transfer via precise triple-coupling of slow oscillations, spindles, and ripples [79], 9 

and increased expression of genes associated with synaptic plasticity in the cortex during REM 10 

sleep [80]. An alternative contextual binding model of episodic memory attributes benefits of 11 

sleep for memory not to hippocampal-neocortical information transfer but to a relative absence 12 

of contextual interference that otherwise is incurred during wakefulness and impairs memory 13 

performance [81]. This proposal is backed, in part, by evidence that sleep preferentially benefits 14 

forms of associative memory [1,82–84]. 15 

Alternative distinctions for the roles of NREM and REM sleep have also been proposed. 16 

Poe et al. [85] proposed that NREM sleep slow wave activity is important for converting early 17 

LTP into long-lasting LTP, in part because late LTP requires protein synthesis [86,87] which is 18 

increased during slow wave sleep [88,89]. Poe et al. [85] proposed that REM sleep is an 19 

opportune time for bidirectional synaptic change given that relatively high cholinergic activity 20 

[90] favours induction of LTP [91] and that low norepinephrinergic activity [92] is essential for 21 

depotentiation [93,94]. Theta activity of REM sleep has been proposed as a potential vehicle for 22 

selective strengthening and weakening of memories [95]. This proposal is founded on the 23 
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previously noted phase-dependent bidirectional synaptic plasticity associated with the 1 

hippocampal theta rhythm in rats [47–49] and evidence that rat hippocampal neurons activity 2 

during exploration fired on theta rhythm peaks during post-exploration REM sleep and then on 3 

theta rhythm troughs after the explored setting became familiar [95]. Seibt and Frank [96] 4 

proposed a similar model. They propose that REM sleep selectively strengthens and weakens 5 

memory traces marked for these actions by NREM sleep through memory reactivation and 6 

oscillatory activity within circuits primed for such action through transient neuronal changes 7 

induced by waking experience. 8 

Synaptic weakening, long-term depotentiation, or forgetting during sleep has been 9 

considered important in preventing the saturation of memory systems and increasing energy 10 

demands that would result from unchecked learning of patterns and associations during wake. 11 

Crick and Mitchison [5] proposed that REM sleep served to eliminate the unwanted memories or 12 

“parasitic modes” that would result from continuous modifications by experience. Giuditta [97] 13 

similarly proposed that sleep preserved adaptive memories while trimming them of irrelevant or 14 

competing traces, but attributed the weakening of the non-adaptive traces to slow wave sleep. 15 

The influential synaptic homeostasis hypothesis [98] argues that system saturation is prevented 16 

by an activity-dependent down-selection process largely associated with the oscillating up and 17 

down states of cortical neurons during NREM sleep. This process is proposed to benefit memory 18 

performance by increasing signal-to-noise ratios. Poe [6] expanded upon her earlier model that 19 

REM sleep is an opportune time for bidirectional synaptic change, proposing that targeted 20 

depotentiation of synapses during sleep would contribute to forgetting, a reduction of noise in 21 

perceptual and memory systems, schema development, and synaptic pruning during 22 

development. Poe [6] proposed that the inactivity of norepinephrine-providing locus coeruleus 23 
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neurons during REM sleep and during the second preceding spindles [92] makes these two 1 

periods ideal for the targeted forgetting of somatosensory and hippocampal memories. Poe [6] 2 

further proposed that reduced extracellular dopamine during slow wave sleep [99] provides a 3 

similar opportunity for the targeted forgetting of dorsal striatal-dependent memories, including 4 

motor and procedural memories. 5 

Hypotheses proposing complementary functions for NREM and REM sleep are supported 6 

by a few studies showing that improvements in visual texture discrimination, a learned 7 

perceptual skill, are best promoted by sleep containing both slow wave sleep and REM sleep 8 

[100–102]. However, studies of sleep and memory often implicate either NREM sleep or REM 9 

sleep and rarely both for the same memory task. Identification of a precise role for REM sleep in 10 

memory processing has been particularly elusive [70], and it remains undetermined whether 11 

sleep promotes active and selective forgetting. Multiple existing models account for research into 12 

memory processing during sleep; however, plenty of questions remain regarding the effects of 13 

sleep on memory performance, such as in what situations and with what measures will memory 14 

performance associate with properties of NREM sleep, in what situations and with what 15 

measures will measures of performance associate with properties of REM sleep, and what 16 

specific effect on memory performance is granted by each of these sleep states? 17 

Sleep Reinforcement and Refinement Hypothesis 18 

Here a new hypothesis is presented in which sleep is proposed to support later retrieval of 19 

newly acquired memories through reinforcement and refinement. In this sleep reinforcement and 20 

refinement (SR2) hypothesis1, memory reinforcement is primarily attributed to NREM sleep, and 21 

memory refinement is primarily attributed to REM sleep. NREM sleep memory reinforcement is 22 

 
1 The SR2 hypothesis was formulated by K. MacDonald through his doctoral dissertation. 
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proposed to maintain or potentially increase the retrievability of memories by supporting both 1 

the integrity of the engram and its links to retrieval cues. REM sleep memory refinement is 2 

proposed to support the precision of memory retrieval through selective preservation of dominant 3 

memory traces and weakening of competing memory traces that may impair the quality and 4 

reliability of memory retrieval. In this context, a dominant memory trace is the one which 5 

corresponds to the memory that is most likely to be retrieved in a given context, whereas 6 

competing memory traces are those which share internal or external retrieval cues to the 7 

dominant trace and may alternatively be retrieved. Such dominance may be indicated by synaptic 8 

strength. NREM and REM sleep are considered primary for reinforcement and refinement, 9 

respectively; however, it is acknowledged that a perfect dissociation is unlikely and that features 10 

of sleep physiology characteristic of a specific sleep state but not exclusive to it may also 11 

contribute to reinforcement and refinement in ways beyond this proposed dissociation (e.g., a 12 

reduction in norepinephrine also linked to spindles [92]). Reinforcement and refinement offer 13 

separable contributions to retrieval, and their effects are considered compatible and synergistic 14 

such that the greatest benefit to retrieval is assumed to result from alternating periods of 15 

reinforcement followed by refinement as would occur in a typical sleep cycle. General 16 

reinforcement without subsequent refinement may benefit retrievability but impair the precision 17 

of memory retrieval because both dominant and any competing memory representations are 18 

reinforced. A depiction of the effects of learning, reinforcement, and refinement on the formation 19 

and processing of memories is provided in Figure 1. 20 

This hypothesis may be expressed using terms of signal detection theory. It is assumed 21 

that a dominant memory trace (signal) exists within noise from highly related and competing 22 

memory traces (interference) and from random or external sources. It is proposed that NREM 23 
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sleep reinforces memories by further raising signal and interference levels above random and 1 

external noise. This effect may occur through application of gain to new memory traces, an 2 

attenuation of random and external noise, or both. It is proposed that REM sleep refines 3 

memories by applying signal gain and attenuating interference, increasing both the signal-to-4 

noise and signal-to-interference ratios. It may be that NREM sleep gain or attenuation is 5 

multiplicative such that levels of stronger and weaker or interfering memory traces are 6 

differentially affected, but selective processing in REM sleep is thought to be more critical in 7 

separating signal and interference traces and contributing to memory fidelity. 8 

Potential mechanisms should be considered. NREM sleep memory reinforcement is 9 

thought to occur through repeated experience-dependent offline memory reactivations 10 

coordinated by slow wave activity, sharp wave ripples, and spindles. These features are thought 11 

to maintain the retrievability of a newly acquired memories by converting the early LTP of 12 

transient memory traces into long-lasting LTP via protein synthesis, perhaps while also engaging 13 

in a relative downscaling of synapses external to the reactivated memories. REM sleep 14 

refinement is thought to occur through bidirectional action on these and competing memory 15 

traces, including additional potentiation within dominant memory traces and depotentiation of 16 

weaker memory traces, perhaps through phase-dependent firing on low frequency REM sleep 17 

oscillations.  18 

In what circumstances will the effects of reinforcement or refinement be most apparent? 19 

Performance benefits of reinforcement during sleep would be expected for situations in which 20 

there are subsequent (i.e., after sleep) challenges to the availability or accessibility of memories, 21 

including decay over time and the acquisition of new memories associated with the same 22 

retrieval cues. Performance benefits of refinement during sleep would be expected for situations 23 
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in which one is tested on their ability to reliably retrieve a dominant memory among highly 1 

competitive alternative memories that were likewise acquired before sleep. Such situations 2 

would include testing one’s performance of difficult motor routines (for which slight errors could 3 

be considered an example of retrieving a highly competitive alternative memory), or, for 4 

declarative memory, testing one’s retrieval of details for which interference from other 5 

associations or schema are likely (e.g., details from a passage of prose). Effects of refinement 6 

may also include the impaired retrieval of non-dominant memories that would be weakened in 7 

favor of dominant memory representations. Respectively attributing these reinforcement and 8 

refinement processes to NREM and REM sleep allows one to predict whether a memory tasks 9 

will be sensitive to manipulations of and association with each sleep state. Many experimental 10 

designs, including those testing recall of word lists, do not result in substantial competition 11 

between alternative memory representations acquired before sleep and thus would not be 12 

expected to be sensitive to the effects of refinement processes during REM sleep.  13 

The SR2 hypothesis is informed by and compatible with previous hypotheses of sleep 14 

and memory. The reinforcement of newly acquired memories during NREM sleep may be 15 

considered a product of the systems consolidation process described in the active systems 16 

consolidation hypothesis [76,77], and this reinforcement may occur as a result of or alongside the 17 

activity-dependent down-selection of synaptic strength proposed in the synaptic homeostasis 18 

hypothesis [98]. Memory refinement through REM sleep is consistent with proposals of 19 

bidirectional synaptic change during sleep [85,95,96]. Hypotheses claiming that selectivity in 20 

memory consolidation occurs through NREM sleep, Giuditta’s [72] sequential hypothesis for 21 

example, are not inconsistent with the notion of REM sleep refinement. Although the SR2 22 

hypothesis indicates REM sleep as the primary state of bidirectional synaptic change, it may be 23 
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that this refinement simply enacts changes selected for during previous periods of NREM sleep, 1 

a prospect already proposed by Seibt and Frank [96]. The SR2 hypothesis is also consistent with 2 

the notion that complex memory tasks are more sensitive to manipulations of REM sleep [64,68] 3 

given that these tasks (e.g., tracing figures through a mirror) are more likely than their simpler 4 

counterparts (e.g., direct tracing) to meet the criteria for refinement effect sensitivity described 5 

above. 6 

With these hypotheses of sleep and memory introduced, the past research investigating 7 

the effects of sleep on the retrieval of newly acquired memories will be reviewed in detail. 8 

Sleep and Memory Relationship 9 

Memory Change Over Sleep 10 

Sleep-dependent memory consolidation has often been studied by comparing the effect of 11 

retention periods with sleep to retention periods of wake, sometimes involving sleep deprivation 12 

with or without recovery sleep. Sleep results in greater memory performance for studied verbal 13 

material, including syllable or word pairs or word lists [1,2,65,103–111] and educational 14 

passages of prose [109], an effect that may be most prominent for associative memory rather 15 

than item memory [1,82] and when interfering material is learned after the sleep or wake period 16 

[112,113, but see 114] but reduced when participants are asked to first retrieve the material 17 

without feedback before sleep [109,110]. Sleep also results in greater memory performance for 18 

knowledge of a map [62], recollection (but not familiarity-based recognition) of pictures [84], or 19 

the locations of objects [115] or faces [116]. For recognition tasks, sleep For procedural 20 

memories, sleep results in greater visual texture discrimination [117,118] and better performance 21 

of a learned finger tapping sequence [3,4,119] and structurally complex gross motor tasks [120], 22 

but these benefits may not extend to all procedural memory tasks [121]. An important study from 23 
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Yang et al. [122] examined memory consolidation at the cellular level by measuring postsynaptic 1 

dendritic spine formation in the motor cortex of mice after training to run on a rotating rod. 2 

Trained mice showed progressive increases in spine formation relative to untrained mice from 6 3 

to 48 hr after rotarod training. Spine formation was both branch-specific in that it was driven 4 

specifically by neuronal branches with a relatively high spine formation and task-specific in that 5 

later training on backward rotarod running induced spine formation on the branches with 6 

previously low spine formation. Critically, 7-hr sleep deprivation after training impaired 7 

performance at one and five days post training and reduced both spine formation and new spine 8 

survival on high formation branches whilst having no effect on spine formation on low formation 9 

branches or spine elimination. 10 

Researchers have used the half-night paradigm to compare the relative effects of NREM 11 

slow wave sleep and REM sleep. Early-night sleep rich in slow wave sleep has been found to 12 

benefit memory of word pairs [2,61,108], object locations [62], picture-colour associations [123], 13 

and visual texture discrimination [100] whereas late-night sleep rich in REM sleep enhances 14 

mirror tracing skill [61], memory for prose [especially emotional prose, 124], and the recognition 15 

preference for emotional over neutral pictures [123]. Early-night sleep, but not late-night sleep 16 

has also been shown to particularly benefit explicit recollection-based memory in word list item 17 

recognition and not familiarity-based recognition that does not require associative memory [83]. 18 

However, the half-night paradigm cannot firmly dissociate NREM and REM sleep contributions 19 

because both states occur in both halves of the night and the design may be confounded by other 20 

circadian differences. 21 

NREM Sleep and Memory 22 

A role for NREM sleep in memory is supported by evidence that time spent in post-23 
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learning slow wave sleep has been positively correlated with cued recall of word pairs [107], 1 

visuospatial memory [125], and recognition of learned faces and houses [126], and more stage 2 2 

sleep in nap was associated with offline improvements in a finger tapping motor sequence task 3 

[127]. Furthermore, suppression of slow wave sleep by acoustic stimulation reduced offline 4 

benefits in visual texture discrimination [128] and a visuomotor task [129]. Short naps containing 5 

only NREM sleep were beneficial for memory of word pairs and word lists [106,130].  6 

More has been learned about the role of NREM sleep in memory processing by 7 

examining how learning and memory relate to the previously described concert of spindles, slow 8 

waves, sharp wave ripples, and memory reactivation. NREM sleep is affected by learning 9 

experience as evidenced by the reoccurrence during post-learning NREM sleep of specific 10 

neuronal activity patterns present during learning in the rodent hippocampus [21–23,131], 11 

neocortex [21,122,131,132], and ventral striatum [133], and in human EEG both at the scalp 12 

[126] and intracranially [134,135]. Furthermore, there is evidence of increased spindle activity 13 

after learning declarative material [136–138] and procedural material [139–143], increased slow 14 

wave activity after learning procedural material [143,144], and increased sharp wave ripples in 15 

the rat hippocampus after learning declarative material [145,146]. Greater post-learning spindle 16 

activity in task-related regions has been associated with greater retention of words learned before 17 

sleep [136,147], improved mirror tracing skill [147], and improved motor sequence performance 18 

[127]. Greater post learning slow wave activity has been associated with greater word list 19 

retention and mirror tracing [147]. Finally, learning-related increases in spindle activity 20 

[138,143], slow wave activity [129,143,144,148], and evidence of spontaneous memory 21 

reactivation [126] have all been associated with better memory performance. Notably, these 22 

learning-related sleep alterations and correlations with performance occur in task-related regions 23 
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of the brain. Thus, learning appears to induce changes in NREM sleep physiology that, in turn, 1 

relate to better performance outcomes. 2 

Causal evidence for memory reactivation in NREM sleep benefitting performance comes 3 

from an experimental technique known as targeted memory reactivation. Rasch et al. [78] had 4 

participants learn a procedural finger tapping task and a series of paired two-dimensional object 5 

locations (i.e., card matching) while exposed to a rose odour. Re-exposure to the odour during 6 

nocturnal slow wave sleep improved performance on the location memory task compared to 7 

those not re-exposed, and there was no effect of odour exposure during sleep alone or re-8 

exposure during REM sleep. Odour re-exposure during slow wave sleep results in a significant 9 

blood oxygenation level-dependent response in the left anterior hippocampus and protects 10 

visuospatial memories from retroactive interference [78,149]. TMR has also benefitted 11 

visuospatial memory performance in a within-subjects design in which distinct audio cues were 12 

used to cue some memories during the slow wave sleep of a nap [150]. Although Rasch et al. 13 

[78] found no procedural memory benefit of cue re-exposure, at least three studies have reported 14 

a benefit: Antony et al. [151] did using a design that had participants tap patterns to different 15 

melodies and then had one of those melodies played covertly during slow wave sleep; Schönauer 16 

et al. [126] did using auditory cues associated with presses of finger tapping sequences presented 17 

during the first 2 hr of a sleep period; and Laventure et al. [152] did using a design similar to that 18 

of Rasch et al. [78] but with odour re-exposure during stage 2 NREM sleep rather than slow 19 

wave sleep. Belal et al. [153] recently found that, after pairing separate motor sequences with 20 

separate audio cues, EEG pattern classification could reliably identify the cue presented during 21 

NREM sleep based on patterns in sleep EEG following the cue, indicating that memories were 22 

indeed reactivated in TMR. 23 
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Manipulations of slow waves, spindles, and sharp wave ripples have also been shown to 1 

affect memory performance. Online identification and blocking of hippocampal sharp wave 2 

ripples in rats were found to reduce daily memory improvements in a radial maze [154]. Ngo et 3 

al. [155] found that auditory stimulation timed to positive peak of surface slow oscillations in 4 

human slow wave sleep induced a prolonged train of surface slow oscillations, increased 5 

amplitude of the surface slow oscillations, increased 12–15 Hz fast sigma power during the 6 

positive peak of the surface slow oscillation, and, critically, increase retention of word pairs 7 

learned before sleep relative to sham control. In rats, electrical stimulation designed to reinforce 8 

coordination between slow waves, spindles, and sharp wave ripples led to improved memory 9 

measured via object discrimination [156]. Furthermore, Latchoumane et al. [157] found that 10 

optogenetic induction of spindles in phase with the up state of cortical slow oscillations increased 11 

triple coupling of slow oscillations, spindles, and ripples and, critically, improved consolidation 12 

of contextual fear memory, whereas optogenetic suppression of in-phase spindles impaired 13 

consolidation of contextual fear memory. These findings support the abundance of correlational 14 

data and further demonstrate a causal link between synchronous oscillations of NREM sleep and 15 

memory performance. 16 

The effect of NREM sleep on memory can also be studied at the cellular and molecular 17 

level. The low cholinergic activity during slow wave sleep [90] limits induction of LTP during 18 

slow wave sleep [158,159] as evidenced by an absence of plasticity-related immediate early gene 19 

EGR-1 expression during NREM sleep in rats even after exposure to an enriched environment or 20 

induction of hippocampal LTP during wake [160,161]. However, slow wave sleep is associated 21 

with increased synthesis of proteins [88,89], including actin [162], which is involved in 22 

maintenance of LTP and the modulation of dendritic spines [163]. Yang et al. [122] who 23 
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reported sleep deprivation to reduce branch- and task-specific dendritic spine formation in the 1 

mouse motor cortex also investigated memory reactivation. Reducing post-running sleep activity 2 

of neurons associated with forward-running (i.e., memory reactivation) via either N-methyl-D-3 

aspartate receptor blocker MK801 or backward treadmill running halfway through the sleep 4 

period also reduced branch-specific dendritic spine formation. Notably, selective deprivation of 5 

REM sleep did not disrupt branch-specific spine formation after rotarod training. Thus, there is 6 

support for the notion that NREM sleep memory reactivation reinforces memory traces, in part 7 

through a stabilizing early LTP into late-LTP, as proposed by Poe et al. [85] and endorsed by the 8 

SR2 hypothesis. 9 

REM Sleep and Memory 10 

In rodents [164,165] and in humans [166–168], there have been reports of increased 11 

REMs or REM sleep after periods of learning, although this effect appears to be less robust in 12 

human studies [139,140,142]. The amount of post-learning REM sleep has been positively 13 

associated with performance outcomes in learning a second language [169], Morse code [166], 14 

and a finger tapping sequence [3]. There is also some evidence of disruptions to typical memory 15 

benefits of sleep in people taking antidepressants known to supress REM sleep [170,171, but see 16 

172]. However, greater REM sleep duration has also been associated with overnight forgetting of 17 

low-value items in a visuospatial memory task [173] and overnight decrements in learning how 18 

to ride a bicycle with reversed handlebars [174]. In a visual discrimination task of perceptual 19 

learning, only naps containing REM sleep reduced the impairing effects of interference 20 

introduced before the nap and the extent to which interference impairments were reduced was 21 

positively correlated with REM sleep duration in this subgroup [175]. These findings highlight a 22 

complex relationship in which REM sleep may be involved in both learning and forgetting [6], 23 
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or, in terms of the SR2 hypothesis, the refining of dominant memories through reducing 1 

interference caused by existing highly-competitive representations. 2 

Much of the evidence for REM sleep involvement in memory comes from studying the 3 

effect of selective deprivation of REM sleep after learning. Early work in animal models, 4 

primarily avoidance learning in rodents, showed that REM sleep deprivation impairs 5 

performance particularly for more complex, two-way avoidance tasks and when the deprivation 6 

technique is applied in time windows in which there would otherwise be a post-learning increase 7 

in REM sleep [176]. Studies of selective REM sleep deprivation in humans have yielded mixed 8 

results, which could be the result of their typically small sample sizes or important differences in 9 

their memory tasks. For overnight retention of verbal declarative memory, impairments from 10 

REM sleep deprivation, relative to concurrent or matched NREM awakenings or slow wave 11 

sleep deprivation, have been observed for memory of prose [65,66] and words associated with 12 

previous personal failure [177] but not neutral word lists [65,178] and word pairs [179,180]. For 13 

procedural memories, Karni et al. [117] found overnight improvements in visual discrimination 14 

to be blocked by selective deprivation of REM sleep, and Smith and colleagues [reviewed in 64] 15 

identified relative overnight impairments from REM sleep deprivation in tapping implicitly 16 

learned sequences, mirror tracing, and the Tower of Hanoi puzzle but not in many declarative 17 

memory tasks, direct tracing, or the pursuit rotor task. Combined with findings that late-night 18 

sleep benefits performance in mirror tracing, but not word pairs or object locations [2,61,62,108], 19 

these results are largely consistent with the SR2 hypothesis notion that REM sleep offers 20 

memory refinement that is observable in tasks for which target memory representations must be 21 

distinguished from highly competitive alternatives (e.g., a direct tracing motions instead of 22 

mirror tracing motions or schema-based assumptions instead of details from prose).  23 
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Although the mechanisms are less understood than those for NREM sleep, neural 1 

oscillations and neuronal firing patterns of REM sleep have been linked to memory processing. 2 

Post-training increases in P wave density or P wave generator activity are observed following 3 

two-way avoidance training [181,182] and fear extinction training [183], and post-learning 4 

increases in P wave density predict retention of avoidance [181] and extinction [183] training. In 5 

the rat hippocampus, Louie and Wilson [184] found the neuronal firing patterns during path 6 

running to be reproduced in subsequent REM sleep; however such evidence neuronal replay in 7 

REM sleep is not reliably detected [e.g., 185]. Not full neuronal replay of firing patterns from 8 

wake, but Kumar et al. [186] found evidence suggesting critical memory reactivation occurs in 9 

REM sleep within young adult-born neurons (i.e., those formed from adult neurogenesis) in the 10 

dentate gyrus. Kumar et al. [186] found that neurons active post shock in a conditioned fear 11 

paradigm were more likely to be active during post-learning REM sleep than those not active 12 

post shock and that optogenetic inhibition of this reactivation impaired memory consolidation 13 

without affecting sleep architecture of EEG power spectra. As previously indicated, whether rat 14 

hippocampal cells active during waking exploration of novel and familiar locations fire during 15 

the peak or trough of the hippocampal theta rhythm (respectively associated with LTP and long-16 

term depression [47–49]) during REM sleep, was found to depend on the novelty of the 17 

associated waking experience with theta peak firing most common for cells which preferentially 18 

fired for novel locations and theta trough firing most common for cells which preferentially fired 19 

for familiar locations [95]. Boyce et al. [187] provided more causal evidence of theta activity 20 

involvement in memory processing, showing that post-learning optogenetic inhibition of the 21 

hippocampal theta rhythm in mice impaired subsequent expression of object place recognition 22 

and conditioned fear. Indeed, theta rhythm phase specific firing may be critical for consolidation 23 
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of fear memories as Kumar et al. [186] found that inducing random activation of young adult-1 

born neurons during REM sleep, not just inhibiting their firing altogether, also impaired memory 2 

consolidation. In humans, REM sleep theta power has been associated with recognition of 3 

schema-consistent melodies learned before sleep [188] and selectivity of memory for paired 4 

associates [189].  5 

REM sleep has been proposed to be an opportune time for synaptic change [76,80,85], a 6 

proposal in part due to cholinergic tone being at near-waking levels during REM sleep and 7 

substantially higher than during NREM sleep [90]. High cholinergic activity has been shown to 8 

support late LTP in the medial prefrontal cortex of anesthetized rats [190], support long-term 9 

depression in slices of rat visual cortex [191], and activate plasticity-related immediate early 10 

genes, ARC in rats [192], and EGR-1 in human cell cultures [193]. Indeed, there is increased 11 

ARC and EGR-1 expression during REM sleep in rats following exposure to novel stimuli 12 

[80,160], induced hippocampal LTP [161], or shock avoidance learning [182] and in response to 13 

cholinergic activation of P waves [194]. Post-learning increases in ARC are associated with post-14 

learning increases in P wave density [182] and are abolished by elimination of P wave generating 15 

cells [194]. In addition, blocking cholinergic activity during post-training REM sleep impairs 16 

later performance in a habit-based version of a radial arm maze in rats [195,196]. In humans, 17 

blocking cholinergic activity during post-learning late-night sleep, but not wake, reduced offline 18 

gains on a newly learned finger tapping task [197], and increasing acetylcholine availability 19 

increased offline gains in mirror tracing ability [198].  20 

An understanding of the role of REM sleep in synaptic plasticity and memory processing 21 

is greatly informed by a study from Li et al. [199] measuring dendritic spine formation and 22 

elimination in the mouse motor cortex. Groups of mice subjected to selective REM sleep 23 
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deprivation by gentle handling, compared to no deprivation and similar NREM sleep 1 

interruptions, showed reduced elimination of spines that were newly formed after rotarod 2 

training whilst there were no differences observed between groups for elimination of existing 3 

spines. Newer spines formed after subsequent training on a reversed direction rotarod tended to 4 

form near where REM sleep spine elimination occurred, and mice deprived of REM sleep had 5 

lower spine formation after reversed rotarod training and impaired performance on the reversed 6 

rotarod compared to non-deprived mice, suggesting REM sleep pruning of spines is important 7 

for subsequent learning. Of the persistent spines that survived initial pruning, a greater number 8 

showed continued survival four days post training in groups with REM sleep compared to mice 9 

deprived of REM sleep, an effect attributable to a post-training REM sleep-dependent increase in 10 

persistent spine size. Thus, Li et al. [199] found REM sleep to not only prune some newly 11 

formed spines but also strengthen other newly formed spines, and both actions were dependent 12 

on calcium spikes on apical dendrites during REM sleep. Critically, mice deprived of REM sleep 13 

showed less performance improvement over time than mice with REM sleep even 12 hr after 14 

recovery from the deprivation manipulation, indicating that optimal memory performance relies 15 

on a REM sleep-dependent selective strengthening and weakening of newly formed spines. 16 

These findings and others support the notion that REM sleep is a time of bidirectional synaptic 17 

change [85,95,96]; here it is proposed that such bidirectional synaptic change results in refined 18 

memory traces and greater precision of memory retrieval during performance. 19 

Conclusion 20 

Over a century of research on sleep and memory has made it clear that sleep provides 21 

benefits for newly acquired memories. NREM sleep likely acts on memories in part through 22 

reactivations of recent experiences within a coordinated concert of neural oscillations. An 23 
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associated increase in protein synthesis during NREM sleep may support late LTP within 1 

reactivated memory circuits. The mechanisms of REM sleep memory processing are less clear, 2 

but REM sleep appears to be a time of bidirectional synaptic change with impacts on learning 3 

and memory. These mechanisms may be understood to benefit newly acquired memories, but 4 

their precise effects on memory performance are not yet fully understood.  5 

 The SR2 hypothesis is an attempt to complement previous hypotheses largely focused on 6 

mechanisms by articulating how post-learning sleep affects memory retrieval behaviour, that is 7 

to say, benefitting the extent to which newly acquired memories can be retrieved and the 8 

precision of that memory retrieval through respective processes of reinforcement and refinement. 9 

In line with evidence for memory consolidation during NREM sleep and bidirectional synaptic 10 

plasticity of REM sleep, reinforcement is primarily attributed to NREM sleep and refinement is 11 

primarily attributed to REM sleep. Plausible neural correlates of NREM sleep reinforcement and 12 

REM sleep refinement have been provided by research on synaptic plasticity, particularly work 13 

linking NREM sleep to task-specific dendritic spine formation [122] and work linking REM 14 

sleep to selective strengthening and weakening of newly formed dendritic spines [199].  15 

Multiple considerations may improve investigation into the effects of sleep on memory 16 

retrieval and lead to greater clarity of the precise effects of sleep on cognitive function. Many 17 

behavioural effects discussed in this review are based on single or few research studies, some 18 

with a concerningly low sample size. This practice is a concern as such effects, even those which 19 

are well-cited and shape hypotheses, may fail to replicate [e.g., 114]. To better understand sleep 20 

and memory relationships, the field needs to adopt greater standards of practice for 21 

reproducibility of science, pre-register protocols and analyses when possible, and place greater 22 

value on attempts to replicate results of previous work [200].  In addition, greater attention to the 23 
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demands of memory retrieval may better our understanding of the effect of sleep on later 1 

retrieval of newly acquired memories. Whether a task challenges the retrievability of a memory 2 

via opportunity for decay or new learning and whether a task challenges the precision of memory 3 

retrieval via the presence of highly competitive alternative memories may dictate whether 4 

NREM or REM sleep contributes significantly to retrieval performance. Continued investigation 5 

into not only the mechanisms underlying sleep and memory relationships but also the 6 

behavioural impact of sleep on memory retrieval is important for understanding the functional 7 

consequences of insufficient or disordered sleep. As NREM sleep and REM sleep may be 8 

differently obtained or affected, a greater understanding of specific contributions afforded by 9 

these stages would be valuable.  10 

 11 

Research Agenda 

1. Systematic investigation into how different memory tasks demands can result in 

different effects of post-learning sleep on memory retrieval will better inform our 

understanding of the limits and parameters of the effects of sleep on memory. 

2. The use of memory tasks which test the precision of memory retrieval (e.g., 

performance of difficult motor routines or recall of fine details from prose) may 

uncover subtle effects of post-learning sleep and may be key to understanding the 

contributions of REM sleep. 

3. The development and use of memory tasks with high ecological validity or 

questionnaires probing daily memory demands and performance could be instrumental 

in building a greater understanding of memory retrieval deficits resulting from even 

subtle sleep deficiencies.  

4. Greater adoption of research practices favouring reproducibility, greater use of pre-

registration, and greater valuing of replication attempts will allow for greater clarity 

regarding the true effects of sleep on memory performance.  
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  4 

Practice Points 

1. The concert of neural oscillations and memory reactivations characteristic of post-

learning non-REM sleep contributes to improved memory performance in many 

conditions, perhaps by increasing or maintaining the retrievability of newly acquired 

memories. 

2. The conditions for which REM sleep aids memory performance are not yet clear, but 

post-learning REM sleep appears to be most critical for memory performance when 

there are demands for precision at retrieval, such as when one must select a target 

memory among highly competitive alternatives. 

3. Contributions of post-learning non-REM and REM sleep to memory performance may 

be complementary in nature; thus, sufficient quantities of both may be required for 

optimal memory cognitive function.  
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Figure 1. Depiction of the effects of learning, reinforcement, and refinement on the formation 

and processing of memories. In part 1, three components in the system that will hold the formed 

memories are identified as not connected before learning. In part 2, the dashed lines connecting 

A to B and A to C respectively indicate A-B and A-C memories acquired during learning. The 

darker line connecting A to B identifies the A-B memory as a more dominant memory relative to 

the A-C memory formed by the lighter dashed line. Both memories compete for retrieval, and 

each may be retrieved, but the dominant A-B memory would have a greater likelihood of 

retrieval. In step 3, it is shown that reinforcement has substantiated both the A-B and A-C 

memories, as indicated by the now solid connecting lines. In step 4, it is shown that refinement 

has selectively strengthened the dominant A-B memory, as indicated by the thickening of the 

connecting line, and weakened the A-C memory to the point of elimination. Retrievability of the 

A-B memory is ensured due to its substantiation in the system, and the A-B memory will be 

reliably retrieved due to the elimination of the competing A-C memory. 


