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Abstract

Machine learning (ML) is a subfield of artificial intelligence (AI) that has al-

ready revolutionised the world around us. It is a widely employed process for

discovering patterns and groups within datasets. It has a wide range of appli-

cations including disease subtyping, which aims to discover intrinsic subtypes of

disease in large-scale unlabelled data. Whilst the groups discovered in multi-view

high-dimensional data by ML algorithms are promising, their capacity to identify

pertinent and meaningful groups is limited by the presence of data variability and

outliers. Since outlier values represent potential but unlikely outcomes, they are

statistically and philosophically fascinating.

Therefore, the primary aim of this thesis was to propose a robust approach

that discovers meaningful groups while considering the presence of data vari-

ability and outliers in the data. To achieve this aim, a novel robust approach

(ROMDEX) was developed that utilised the proposed intermediate graph models

(IMGs) for robust computation of proximity between observations in the data.

Finally, a robust multi-view graph-based clustering approach was developed based

on ROMDEX that improved the discovery of meaningful groups that were hidden

behind the noise in the data.

The proposed approach was validated on real-world, and synthetic data for

disease subtyping. Additionally, the stability of the approach was assessed by

evaluating its performance across different levels of noise in clustering data. The

results were evaluated through Kaplan-Meier survival time analysis for disease

subtyping. Also, the concordance index (CI) and normalised mutual informa-

tion (NMI) are used to evaluate the predictive ability of the proposed clustering

model. Additionally, the accuracy, Kappa statistic and rand index are computed

to evaluate the clustering stability against various levels of Gaussian noise. The

proposed approach outperformed the existing state-of-the-art approaches MRGC,

PINS, SNF, Consensus Clustering, and Icluster+ on these datasets. The find-

ings for all datasets were outstanding, demonstrating the predictive ability of the
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proposed unsupervised graph-based clustering approach.
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Chapter 1

Introduction

The complexity of genomics-related big data has led to the adoption of state-

of-art technologies like artificial intelligence (AI) and machine learning (ML) for

performing out class in healthcare services [1]. These technologies have shown

promise in improving healthcare services by analysing complex molecular data

and guiding tailored treatments for individual patients, resulting in better health

outcomes [2] [3]. Although AI technology has made significant advancements, the

treatment of cancer remains challenging due to the substantial genetic variability

observed among affected individuals. To estimate gene variability, unsupervised

approaches are often employed due to the difficulty of generating labels for such a

vast amount of data [4]. Recently, disease subtyping has emerged as a promising

approach to better understand the molecular basis of cancer by incorporating in-

dividual gene variability and health data into advanced unsupervised clustering

algorithms. This provides crucial insights for better understanding the disease

progression among affected individuals. Furthermore, the field of cancer treat-

ment requires a comprehensive analysis of multi-modal data including clinical,

and other data types acquired through advanced techniques such as genomics,

transcriptomics, proteomics, and metabolomics. These diverse modalities pose

an additional challenge for subtyping algorithms, which must develop effective

integrative approaches to enable their analysis.

While machine learning advancements have accelerated the discovery of data-

driven insights for cancer patients, most existing approaches are limited to single

modalities, leading to underdeveloped methods for integrating multi-modal data

[5]. Leveraging the integration of multiple modalities opens up opportunities to
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advance precision oncology [5]. The integration of multi-modal data presents

inherent challenges; however, it offers a promising avenue for enhancing cancer

risk stratification. Notably, when genomics and clinical imaging data are ef-

fectively combined, the predictive capacity of machine learning models can be

significantly improved [6]. Likewise, the integration of genomic, medical imag-

ing, and histopathologic features holds tremendous promise for improving the

predictive capacity of immunotherapy response [7].

The rest of this chapter is organised as below: This chapter will introduce the

research conducted in this thesis by first discussing the background and context

of the research, followed by the problem statement, the research aims, objectives,

and the significance of the research, followed by the research validation methods,

and finally, the layout of the thesis.

1.1 Background

High-dimensional genomics data is typically generated in large quantities using

omics technologies. This high-dimensional data captures the essence of biological

organisms and their interactions. Unsupervised learning is widely adopted for

genomics data analysis. It carries crucial information about the individual gene

variability which helps in understanding the biological process which is vital for

disease subtyping. For example, integrating genomes and transcriptomics data

together using a full graph model allows clustering algorithms to identify clini-

cally relevant disease subtypes based on proximity and similar gene connection

patterns [8]. This is an important and basic task in molecular biology and preci-

sion medicine. Graph-based techniques have demonstrated promising results in

accurate molecular subtyping using various types of gene interactions [9, 10]. Fur-

thermore, the integrated view of various high-dimensional omics data can provide

important insights for better understanding disease progression [11, 12].

Spectral clustering is a graph-based unsupervised learning algorithm, it has roots

in graph theory and is commonly used to address various aspects of subtyping [13,
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14, 15]. One of the aspects is to use similarity matrices to organise observations

(patients) into coherent groupings [16]. The similarity matrix depicts an affinity

graph of the patients produced from omics data. These similarity matrices are

frequently generated with similarity kernels (SK) and represented by an affinity

network [17, 18]. A similarity kernel takes a pair of observations in Rn and

generates a number value that quantifies the pair’s similarity. That is, K (X, Y)

−→ R, where K is a kernel and X, Y ∈ Rn. The distance function, which computes

the distances between a pair of observations in a given metric space, is a critical

component of the similarity kernel.

By grouping patients based on their genetic or molecular characteristics, physi-

cians can develop tailored treatments that are specific to each patient’s needs,

maximising the chances of success and minimising the risk of side effects. Addi-

tionally, the patient grouping can help to identify common biomarkers that are

associated with particular diseases or conditions, providing valuable insights into

the underlying mechanisms and potential targets for treatment.

1.2 Motivation

Genetic changes within the genome give rise to cancer. When specific genes re-

sponsible for regulating essential functions like cell growth undergo alterations,

they become activated and expressed at unusually high levels. This abnormal

gene expression leads to uncontrolled cell growth, resulting in the formation of

tumours. When gene expression data is visualised through density plots, it be-

comes possible to identify abnormal gene expression values which are located at

the extreme tails of the distribution, significantly distant from the mean. The

clustering of this data provides the capability to detect genetic alterations for

each patient and further classify tumours into more precise subtypes, facilitating

the development of tailored therapies and target drug design. However, clustering

data that includes extreme gene expression values can result in the formation of

spurious clusters. Specifically, these extreme values can have a significant impact
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on the calculation of distances between observations from the data, complicating

the disease subtyping process. To estimate the distance between observations in

data, distance functions often utilise classic statistical functions such as mean and

standard deviation. Whilst, these statistical functions perform well on compact

and isolated clusters, these are sensitive to outliers [19, 20, 21]. Outliers influence

the distance between observations in the interquartile range (IQR) [22, 23]. Even

a single highly influential outlier has a massive impact on these classic statistical

functions [24]. The lack of robustness to outliers restricts these techniques’ ability

to provide a reliable measure for estimation. A possible solution is to eliminate

outliers before computing pairwise distances. Outliers, however, can sometimes

provide useful information about unusual behaviour [24]. As a result, deleting

outliers that contain such valuable information might have a negative impact on

the assessment of data variability and distances. Several distance methods are

available to solve the outlier observation problem. One of them is the average dis-

tance function, which deals with outliers in ”n” dimensions. Others use weights

to provide relative priority to each attribute. However, weights are computed

differently depending on the kind of dataset, and activity [19]. Feature scaling is

another way to combat the robustness of distance-matching functions, but their

disadvantage is that the magnitude of the distance remains constant. Further-

more, while certain ranking-based algorithms are resistant to outliers, they lack

scale, and variability, and neglect the degree of proximity between values. These

approaches, in particular, are unable to determine how much better or worse

one value is than another. As a result, a large quantity of critical information

included in the data is lost [21].

1.3 Problem Statement

Outliers and extreme values are types of data points in scientific research that can

have a significant impact on the results of statistical analysis. They differ, how-

ever, in terms of their fundamental causes. Outliers are data points in a sample
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that differ significantly from the rest of the data. Outliers may occur as a result of

human error, measurement or data entry error, these can indicate unusual or un-

expected behaviour. Extreme values, on the other hand, are data points located

at the extreme ends of the data range. Extreme values, unlike outliers, are not

always erroneous; these might simply indicate the upper or lower bounds of what

is feasible for a certain variable. Extreme values and outliers can significantly

affect statistical analysis by distorting the distribution of data and exerting influ-

ence on measures of central tendency and variability. In the context of genomics

data, which inherently involves complexities such as high-dimensionality versus

limited observations, data variability, and the presence of extreme values and

outliers, the performance of machine learning (ML) algorithms is constrained in

achieving the desired level of robustness for uncovering clinically relevant sub-

types. [25] [26] [27] [28]. These properties of the genomics data present issues

for both supervised ML models (which frequently leads to model overfitting) and

clustering techniques that employ the similarity graph to put observations into

coherent groups. The complexity of genomics data in these circumstances leads

to a sparse patient similarity graph, making it difficult for clustering algorithms

to group some of the patients [29] [30]. The above difficulties impede the identi-

fication of disease subgroups defined by clinical characteristics, such as survival

[31]. Legacy disease subtyping approaches achieve robustness without consider-

ing extreme values and data variability in clustering omics data. The extreme

values need proper attention, otherwise, these will pose a negative impact on the

results. Addressing these characteristics can add extra dimensions to robustness

and provide useful information in molecular subtype discovery. Moreover, dis-

ease subtyping comes with high-dimensional multi-view (gene expression, DNA

methylation, and miRNA) data. It requires integrative analysis to discover sub-

types not only at a single view but as a whole that can take into account facts

from other views [29]. This stresses the need for robust approaches to minimise

the influence of noise (extreme values, data variability) in discovering distinct
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groups.

1.4 Aim and Scope of the Research

In this thesis, robust statistical measures are investigated for unsupervised clus-

tering algorithms to synthesize the structurally relevant observations in omics

data. These robust measures will be introduced to spectral clustering algorithms

for the effective discovery of disease subtypes.

Robust statistical measures are designed to be resilient against the influence of

extreme values and outliers. Robust measures offer reliable and stable estimates

of central tendency and variability, ensuring the accuracy of the analysis even

when extreme values are present in the data.

1.4.1 Aim

The research aims to develop a robust approach to enhance the discovery of

distinct groups in complex high-dimensional data for disease subtyping.

1.4.2 Research Objectives

1. To develop a novel distance function that exhibits robustness. This function

is designed to address the challenges posed by data variability and extreme

values when computing proximity between observations within the inter-

mediate graph models. It ensures reliable and accurate measurements in

high-dimensional spaces, promoting more effective analysis and subtyping.

2. Develop Intermediate Graph Models (IMGs), to enhance the identification

of similarities between pair of samples. These IMGs represent the topo-

logical graph structure of the data, which aids in identifying patterns and

relationships within the dataset. By incorporating IMGs into our approach,

we aimed to improve the performance of distance metrics in accurately mea-

suring the similarities between samples.
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3. To develop a disease subtyping approach based on this robust distance func-

tion to accurately discover disease subtypes defined by clinical differences,

such as survival outcomes. This approach leverages the robustness of the

proposed distance function to enable the precise discovery of distinct disease

subtypes, ultimately leading to aid in personalised treatment strategies.

4. The final objective aim to demonstrate the robustness, accuracy, and effec-

tiveness of the proposed disease subtyping approach across diverse datasets.

Therefore, the proposed disease subtyping approach will be validated using

a range of datasets, including Genomics, Synthetic, and Generic machine

learning datasets. Extensive evaluation will be conducted using various

metrics, such as Cox-proportional hazards (Cox P-value) for survival anal-

ysis, Concordance statistics (CI) to assess the predictive ability of the ap-

proach, and Normalized Mutual Information (NMI) and Clustering purity

to evaluate the clustering performance of the approach. Finally, the stability

of the proposed approach against the noise will be evaluated by introducing

various levels of noise in the data.

1.5 Significance, Contribution and Benefits of

this Research

Clustering analysis plays a vital role in various domains, including pattern recog-

nition, consumer segmentation, and disease subtyping. Particularly, discover-

ing disease subtypes based on similar molecular and clinical characteristics from

multi-view high-dimensional data is crucial for targeted drug design, clinical diag-

nosis, and treatment selection. Therefore, this research contributes to the existing

knowledge in clustering analysis by introducing robust statistical approaches to

effectively discover disease subtypes in complex high-dimensional omics data.

The research makes several significant contributions. Firstly, it develops inter-

mediate graph models (IMG) from omics data, enabling the integration of struc-
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turally meaningful measures into coherent groups for improved subtype separa-

bility. Secondly, a novel robust function (ROMDEX) is proposed, which utilises

IMGs to address the challenges posed by data variability and extreme values when

computing proximity between observations in high-dimensional spaces. This ro-

bust function enhances the accuracy of clustering analysis. Thirdly, the pro-

posed robust function is incorporated into a novel disease subtyping framework,

enabling the accurate discovery of disease subtypes characterised by clinical dif-

ferences, such as survival outcomes. This framework provides valuable insights

for actionable target drug design and personalised treatment strategies. Lastly,

the proposed approach is validated using datasets from genomics, synthetic, and

generic machine learning domains, ensuring its applicability and effectiveness

across different data types and domains.

Beyond the biomedical field, a robust clustering strategy has broad applications

across business organisations. It can optimise operations by offering better con-

sumer segmentation and revealing hidden insights in noisy datasets. The pro-

posed robust clustering approach is generic and can be applied to various do-

mains. For example, in clinical trials, it can aid in evaluating the efficacy of new

medicines.

1.6 Validation of the Research

The evaluation of results on omics data for disease subtyping is based on Kaplan-

Meier survival time analysis, which is validated using statistical tests e.g., Cox-

proportional hazard (Cox p-value). We also included concordance statistics for

evaluating the fitted survival model on five TCGA datasets. The concordance

index (CI) is used to evaluate the predictive ability of the survival model. The

CI values of the fitted survival model for all the datasets are impressive which

demonstrates the predictive ability of the proposed unsupervised graph-based

disease subtyping.
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1.7 Layout of the Thesis

Chapter 2 – Background

In this chapter, the background related to the proposed research is provided.

Chapter 3 – Literature Review

In this chapter, existing machine learning algorithms for disease subtyping are in-

vestigated and their analysis is performed. Also, the limitations of each approach

are discussed.

Chapter 4 – Methodology

In this chapter, the overall multi-view graph-based clustering pipeline is provided

and explained. This is followed by the proposed approach for robust similarity

graph construction. Also, the evaluation metrics are described in detail.

Chapter 5 – ROMDEX

In this chapter, the mathematical background for the proposed approach is pro-

vided. Also, the effect of extreme values and data variability in clustering multi-

view high-dimensional data are reviewed and a novel robust statistical solution is

provided. Also, a novel end-to-end algorithm is proposed for robust graph-based

clustering and disease subtyping.

Chapter 6 – Results

The proposed methodology is validated on real-world and synthetic cancer datasets

in this chapter, and the outcomes were compared to multiple baseline disease sub-

typing approaches.

Chapter 7 – Discussions

In this chapter, the research findings are analysed and interpreted, and the sig-

nificance of the results is explained.

Chapter 8 – Conclusion & Future works

Finally, in this chapter, the conclusion, and future works are discussed.
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Chapter 2

Background

2.1 Introduction

This chapter provides background information on the proposed research. The

chapter begins by defining disease subtyping—it is the process of identifying dif-

ferent types of diseases based on the symptoms, causes, and treatments. It is

a crucial step in the diagnosis and treatment of diseases, as it can help doctors

choose the most effective course of treatment for each patient. To understand

the disease subtyping process, existing approaches and techniques are discussed.

Clustering analysis is commonly used to discover subtypes of diseases. Therefore,

how clustering analysis has been used so far in the study of disease subtypes is

also discussed. Clustering provides insights into the similarities and differences

between different types of diseases. Additionally, clustering analysis can be rel-

atively easy to use and interpret, making it a valuable approach for researchers

and clinicians alike. The backbone of clustering is similarity measures; therefore,

various similarity measures (distance metrics), their limitations, and similarity

kernels are also highlighted at the end of this chapter.

2.2 Dataset Overview

The dataset used for disease subtyping typically encompasses multiple modalities,

such as genomics, transcriptomics, and medical imaging. For our analysis, we

will focus on genomics data, specifically gene expression, DNA methylation, and

MicroRNA. This chapter will concentrate on a single view or modality, namely
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gene expression. In subsequent chapters, we will propose a robust approach

that analyses each individual view separately before integrating all the views to

perform disease subtyping.

Furthermore, we will incorporate clinical data, including survival information, to

evaluate the proposed approach. These clinical variables will provide valuable

insights during the analysis. To illustrate this, the figure (2.1) below displays the

gene expression data extracted from glioblastoma multiforme cancer (GBM).

Figure 2.1: The gene expression data obtained from GBM cancer. In this figure,
rows represent samples and columns represent genes.

The data shown in figure (2.1) has 12042 gene expression values measured on 273

samples. The gene expression data extracted from GBM cancer is unlabelled,

indicating that the true number of clusters or disease subtypes is unknown. To

assess the quality of clusters (disease subtypes) generated from this data, we will

utilise clinical data that includes survival information. The following figure (2.2)

depicts this data.

In the figure (2.2) Survival column denotes the survival time in days while the

Death column denotes the outcome variable of interest. It is worth noting that

the samples in the clinical data figure (2.2) are the same as the samples in the

gene expression data figure (2.1).
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Figure 2.2: The clinical data obtained from GBM cancer samples. In this figure,
rows represent samples and columns represent clinical data.

2.3 Disease Subtyping

Disease subtyping is the process of identifying different sub-types of a disease

within a population [32] [29] [25]. It is a way of further understanding how a dis-

ease progresses and identifying which groups of people are most at risk. Disease

subtypes can be identified using either an expert-driven or data-driven approach

[33]. In the expert-driven approach, domain experts, including clinicians and re-

searchers, utilise their expertise and knowledge to define subtypes based on one

or more criteria. This approach relies on the profound insights and understand-

ing gained through years of clinical experience and scientific research. To classify

patients into subtypes, experts thoroughly examine a vast amount of data in-

cluding clinical records, medical imaging, genetic information, laboratory tests,

and other relevant data sources. However, this manual examination of extensive

data can place a significant burden on experts and may introduce the possibil-

ity of human error. Technological advancements have made it possible to use

large omics data to identify subtypes more accurately [32] [34] [35]. Therefore,

data-driven approaches for disease subtyping are gaining significant research at-
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tention. Data-driven approaches leverage the power of machine learning (ML)

to efficiently integrate and analyse vast amounts of genetic and clinical data for

the discovery of disease subtypes. These approaches have the potential to rev-

olutionise our understanding of diseases. Given a large data set of people with

a certain disease, machine learning algorithms can be used to identify patterns

and group people together based on their similarities [36] [37]. This process can

reveal previously unknown disease subtypes and aid in our understanding of how

the disease progresses.

Data-driven disease subtyping approaches are still in their early stages, but they

have the potential to transform our understanding of diseases and improve our

ability to treat them. These approaches can broadly be categorised based on the

number of datatypes they take into account during subtyping. The approaches

which only consider a single datatype a.k.a, single-view are known as single-view

analysis approaches. On the other hand, the approaches which consider multiple

datatypes simultaneously during the subtyping process are known as integrative

analysis approaches [36]. These approaches are briefly described in the following

section.

2.3.1 Single-view Analysis of Omics for Subtype Discov-

ery

Disease sub-typing datasets often come in multi-view formats such as gene ex-

pression, DNA methylation, and MicroRNA, which are high-dimensional. The

approaches focusing solely on a single view, such as gene expression, for disease

subtyping are referred to as single-view analysis. However, considering multiple

views is important as they offer complementary information, and neglecting their

integration could result in the loss of valuable insights [38] [39]. To address this

challenge, integrative analysis is gaining popularity as these methods consider all

the views during subtyping.
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2.3.2 Integrative Analysis of Omics for Subtype Discovery

An integrative analysis is a type of data analysis that combines information from

multiple sources or views to gain a more complete understanding of a phenomenon

[25]. Integrative approaches can be used to study anything from disease subtypes

to social networks. Integrative approaches have widely been adopted in bioinfor-

matics for subtyping diseases [40] [34] [35]. The integrative analysis is important

as it allows us to see relationships between different data views that we might not

be able to see if we were only looking at one set of data [41] [42]. By combining

data from multiple views, we can get a more complete picture and make better

predictions about future events.

2.4 Clustering Analysis a key driver for Disease

Subtype Discovery

In recent years, doctors have been able to subtype diseases into more and more

specific categories. This has led to better treatments and outcomes for patients

and a greater understanding of the disease itself. In recent years, the introduction

of new high-throughput sequencing technologies has enabled the rapid and low-

cost characterisation of genomes.

Clustering analysis is a machine-learning approach used to group a set of data

points with similar characteristics so that they can be more easily analysed [43].

It is also, widely used in data mining applications to discover patterns in data

that would otherwise be difficult to find [43]. In machine learning, it plays a

significant role in understanding the relationship between different data points.

Clustering is applied in various domains, but in this thesis, we will focus on

clustering from a bioinformatics perspective. One application of clustering in

bioinformatics is disease subtyping [44]. Disease subtyping is the task of divid-

ing a disease into different subtypes based on common characteristics [32] [29].
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Clustering and other statistical methods are used for subtyping to understand

the complex structure of diseases [45]. This helps in finding new disease subtypes

and assists experts to understand how diseases progress. It is also used to pre-

dict patient outcomes and identify possible treatments [46] [47]. Particularly, for

cancer diseases that are caused by multiple factors, and we might be interested in

knowing the most common factors. The clustering of patients based on these fac-

tors can pinpoint the causing factors for specific diseases. Clustering algorithms

that have widely been used for disease subtyping are categorised and included

in the following section. In this thesis, the clustering approaches are broadly

categorised as Partitional-based, Hierarchical, and Consensus-based clustering.

These are briefly reviewed in the following section.

2.4.1 Partitional Clustering

Partitional clustering is a clustering approach that uses similarity to divide ob-

servations within a data set into multiple groups. These approaches require the

number of clusters (k) to divide the observations into k sets of groups. Following

are the partitional-based clustering approaches.

K-Means Clustering

The most common type of clustering algorithm is the k-means algorithm [48]. The

k-means algorithm selects a number of clusters (k) and then assigns each data

point to one of the clusters at random. The centre of each cluster is computed

once all data points have been allocated to a cluster. This is done by taking the

mean of all the data points in the cluster. Each data point is then reassigned to

the cluster whose centre is closest to it. This process is repeated until there are

no more changes in the assignment of data points to clusters. However, extreme

values and outliers can influence the clustering results generated by k-means

algorithm.
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Spectral Clustering

The most popular methods for subtyping disease are methods that use some form

of clustering. There are a variety of different clustering methods, but one of the

most popular for disease subtyping is spectral clustering [16]. Spectral clustering

is a method that uses the eigenvectors of a similarity matrix to group data points

together. The similarity matrix is created using a kernel function, which measures

the similarity between data points. The eigenvectors of the similarity matrix are

used to create clusters, and each data point is assigned to the cluster that is most

similar to it. Spectral clustering has been shown to be effective for subtyping

cancer diseases [49] [13] [50]. The results showed that spectral clustering could

accurately group patients with similar clinical outcomes together and that the

resulting subtypes were clinically meaningful.

Clustering Gene Expression Data using Partitional Clustering

In order to gain a basic understanding of how partitional clustering operates on

the gene expression data (figure 2.1), we applied k-means clustering using the de-

fault settings shown in figure (2.3). Furthermore, to enhance our comprehension

and visualise the clustering outcomes, we focused on two specific genes that are

known to be associated with GBM cancer.

In Figure (2.3), the k-means clustering partitioned the samples into three clusters

based on two selected genes. However, it is evident that this data is challenging to

cluster as some samples are widely separated from the rest. Additionally, deter-

mining the optimal number of clusters, denoted as K, is difficult for this dataset.

Although the number of clusters, K, was provided as an input beforehand, there

are machine learning techniques available that can estimate the potential number

of clusters in the data. These techniques can then be utilised to cluster the data

using any of the clustering algorithms discussed in this chapter. Several of these

techniques will be described in this chapter. Subsequently, we will employ these

techniques to estimate the number of clusters and re-cluster the data accordingly.
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Figure 2.3: The K-means clustering results on the gene expression data (figure
2.1) on two genes namely PTEN, and TP53.

2.4.2 Hierarchical Clustering

Hierarchical clustering can be used to discover subtypes of disease in molecu-

lar data. This method may be used to group data points according to their

symptoms, demographics, or even genetic information. Hierarchical clustering

is a cluster analysis approach that aims to create a hierarchy of data points in

the cluster. [51]. This approach starts with all samples in a single cluster and

then successively splits or merges clusters until a desired level of granularity is

achieved. An advantage to hierarchical clustering is that it visualises the struc-

ture of the data. This can be helpful in understanding the relationships between

different disease subtypes.
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Agglomerative

Agglomerative clustering is a type of hierarchical cluster analysis that produces a

hierarchy of clusters. It is a bottom-up approach, where each data point is treated

as a single cluster, and clusters are then merged together until all points are in

one cluster. This process can be represented by a dendrogram, which shows the

order of merging and the resulting cluster structure. First, a similarity matrix is

computed, which contains the pairwise similarities between all data points. Then,

the algorithm proceeds to merge the most similar pairs of points into clusters,

until all points are in one cluster. The order in which the elements are merged

can have a significant impact on the results of the algorithm, so care must be

taken when choosing an agglomerative clustering algorithm. One advantage of

agglomerative clustering is that it can be used to construct dendrograms, which

can be helpful for visualising the structure of complex data sets. Additionally,

this approach does not require that the number of clusters is specified upfront,

as is necessary with k-means clustering.

Divisive

Divisive clustering is a type of hierarchical cluster analysis that involves the re-

cursive division of a dataset into smaller and smaller clusters. It is a top-down

approach. The divisive clustering algorithm starts by assigning all of the data

points to a single cluster. It then iteratively splits the cluster into two smaller

clusters until each cluster contains only one data point.

Clustering Gene Expression Data using Hierarchical Clustering

To gain a deeper understanding of how hierarchical clustering functions, we ap-

plied it to the gene expression data (Figure 2.1) using the same two gene measure-

ments. The initial step of hierarchical clustering involves generating a dendrogram

as shown in Figure (2.4), which is a tree structure representing the relationships

between data points. Figure (2.4) illustrates this dendrogram with varying lev-
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els. Subsequently, the dendrogram can be utilised to cluster the data points, or

samples, into distinct groups.

Figure 2.4: The dendrogram obtained from the gene expression data (Figure 2.1)
for hierarchical clustering.

To cluster the samples represented in the dendrogram a technique known as

cutree is employed. This technique generates a vector with group memberships

when k or h is a scalar. In this case, each column of the vector corresponds to

the elements of k or h. The parameter k represents the number of clusters, while

h indicates the heights at which the tree should be cut. Figure (2.5) shows the

hierarchical clustering results which are obtained after applying cutree technique

on this dendrogram with k = 2, 3, 4, 5, and Manhattan distance.

To determine the optimal number of clusters, k, various techniques are com-

monly utilised, including the Elbow method [52], average Silhouette [53], and Gap

statistic [54]. These techniques provide valuable insights for selecting the most

appropriate number of clusters in a given dataset. We applied these approaches

to determine the optimal number of clusters on the gene expression data. The
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Figure 2.5: The hierarchical clustering results obtained after using cutree tech-
nique on the dendrogram (Figure 2.4). We used k = 2, 3, 4, 5 and the Manhattan
distance to obtain these clusters.

results produced by these approaches are shown in the following Figure (2.6). In

Figure (2.6) the top-left plot shows the Elbow method which computes the total

within sum of square between the data points and the top-right plot shows the

average Silhouette method while the bottom-left plot shows the Gap statistics.

The Elbow method demonstrates that as the number of clusters increases, the

total within sum of squares (WSS) value decreases. The WSS value reaches its

highest point when K equals 1. By examining the figure, we can see a sharp decline

in the graph as the number of clusters, K, increases, resulting in an elbow-like

shape. The optimal number of clusters, K, is typically determined at the point

where the graph begins to flatten out and move parallel to the X-axis. Although

it can be somewhat challenging to precisely identify this point from this plot

alone, in this case, a possible value for K is six. Similarly, Average Silhouette

suggests K=2, and the Gap statistic method suggests K=4.
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Figure 2.6: The optimum K value determined by Elbow method, Average Silhou-
ette and Gap statistic on gene expression data (Figure 2.1).

2.4.3 Consensus Clustering

Consensus Clustering is a method of combining multiple individual clustering

into a single, robust clustering [55] [56] [57]. It is a form of unsupervised classifi-

cation, which aims to find natural classes or clusters by using data from repeated

clustering runs. It computes how often pairs of samples are grouped together and

then uses the resulting pairwise ”consensus rates” to visualise clusters, compare

the clustering stability, and determine the number of clusters to be created. Con-

sensus clustering is least affected by outliers and it is more robust to changes in

the data than other methods. It has been widely and successfully used for disease

subtyping [58] [59] [60]. To perform consensus clustering, first, it needs to gen-

erate a set of individual clusters. Once a set of individual clusters is generated,

those are then combined using a consensus function. The most popular method

to combine clustering is the plurality rule. The plurality rule simply takes the
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most common label from all of the individual clusters and assigns it as the label

for the consensus clustering. This method is easy to implement and understand,

but it may not always give the best results. Another method that is often used

is called the average linkage rule. The average linkage rule works by finding the

pair of points that are closest together and assigning them to the same group.

In general, for clustering algorithms, it is important to tune their parameters so

that these can work well with the data. For instance, to determine the number

of clusters k. In many cases, the desired number of clusters is known ahead of

time. However, in other cases, it must be determined experimentally. Common

methods for choosing the number of clusters are the Elbow method [52], average

Silhouette [53], and Gap statistic [54] as shown in the Figure (2.6).

2.4.4 Evaluation and Assessment of Clustering

There are a variety of ways to evaluate and assess the performance of a clustering

algorithm [61]. In general, we want to know how well the algorithm has clustered

the data points, and whether or not the clusters make sense from the domain

perspective. One common approach is to use an external criterion, such as ex-

pert knowledge, to compare the clusters generated by the algorithm with known

groupings [61][62]. Another approach is to use a measure of similarity between

data points within a cluster, and between data points in different clusters, to

assess the quality of the clusters. In either case, it is important to have a clear

understanding of the problem that is being tried to solve with clustering, in order

to choose an appropriate evaluation method.

A variety of evaluation metrics have been proposed in the literature, where each

metric evaluates the generated clusters from a different aspect. The widely used

cluster evaluation metrics in biomedical informatics particularly for disease sub-

typing are described in detail at the end of the methodology chapter.

Characteristics of Good Clustering Analysis: a good clustering analysis

should be able to identify different groups of data points with similar characteris-
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tics. It should be able to handle different types of data, including both numerical

and categorical data. The clusters that are generated should be well-defined and

clearly separated from each other. Additionally, the clustering algorithm should

be able to run quickly and efficiently on large-scale and high-dimensional datasets.

2.5 Similarity Measures

Similarity measures play a significant role in clustering. As the Clustering algo-

rithms group data points together based on their similarity. Therefore, similar

data points are more likely to be assigned to the same group or cluster. Firstly, a

similarity metric is selected to measure how similar two data points are. Common

similarity metrics include Euclidean distance, Manhattan distance, and Cosine

similarity [63] [64] [65]. For a similarity measure to be a valid metric, it should

satisfy all the axioms of the metric space. Below in this section, we provide a

formal definition of metric space and it is axioms.

2.5.1 Distance Metrics and the Metric Space

In mathematics, a metric space is a set for which distances between all members

of the set are defined. More specifically, given any two members of the set, there

is a real number associated with their distance that satisfies certain properties

[66]. Distances in a metric space can be measured using any one of a variety of

different distance measures, such as Euclidean distance or Manhattan distance.

Formally, a metric space is an ordered pair (X, d) where X is a set and d is

a metric or distance function defined between every pair of elements of X e.g.,

d : X ×X −→ R+. Suppose we have two observations x, y in n-dimensional space

e.g., x,y ∈ X where x = {xi, i ∈ 1, ..., n}, and y = {yi, i ∈ 1, ..., n}. The distance

function d must satisfy the following properties, called axioms, to be considered

a valid metric.

1. d(x, y) ⩾ 0 ∀ x, y ∈ X (Positive Semi-definite)
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2. d(x, y) = 0 ⇐⇒ x = y (Identity of Indiscernible)

3. d(x, y) = d(y, x) ∀ x, y ∈ X (Symmetry)

4. d(x, z) ⩽ d(x, y) + d(y, z) ∀ x, y, z ∈ X (Triangle Inequality)

The first axiom, non-negativity or Positive semi-definite, states that the distance

between any two points must be greater than or equal to zero. This makes sense

intuitively; the distance between two points can never be negative. The second

axiom, Identity of Indiscernible, states that the distance from a point to itself

must always be zero. The third axiom, symmetry, says that the distance between

two points is the same in either direction. So if the distance from x to y is m,

then the distance from y to x is also m. Again, this makes intuitive sense. The

fourth and final axiom is the triangle inequality. This states that the sum of the

distances of any two sides of a triangle must be greater than or equal to the length

of the third side. So in other words, if you have three points x, y, and z, then the

distance from x to z must be less than or equal to the sum of the distances from

x to y, and from y to z. Intuitively, this just means that it’s never shorter to go

around a corner than it is to go straight ahead. These four axioms define what

it means for a function to be a metric on a set of points. Together they ensure

that the function satisfies all of these axioms. There are many different ways to

measure distances between points in a metric space. The most common distance

measures are Euclidean distance and Manhattan distance. Euclidean distance is

the straight-line distance between two points, while Manhattan distance is the

sum of the absolute values of the differences in the coordinates of two points.

Other common distance measures include Chebyshev distance and Minkowski

distance.

Which distance measure is best to use depends on the specific application. In

some cases, one measure may be more appropriate than another. For example,

Euclidean distance is often used when working with data that lie on a regular grid,

such as an image. Manhattan distance may be more appropriate when working
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with data that is not regularly spaced, or have high dimensions.

Example 1. Let X = Rn and x, y ∈ X where x = {xi, i ∈ 1, ..., n}, and

y = {yi, i ∈ 1, ..., n}, Euclidean distance between these points is defined as follows:

d2(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (2.1)

In the equation above x, y are two points in Euclidean space where xi, yi are

Euclidean vectors denoting the initial point or the origin of Euclidean space and

finally, n denotes the dimensions of the space. Note that the subscript in d2

denotes that the Euclidean distance is L2−norm. It is the most common type of

distance metric and is also known as the L2−norm or simply the Euclidean norm.

There are many ways to measure the distance between data points in space. Eu-

clidean distance is the common metric which is the straight-line distance between

two points [63]. However, this method can be limiting when you’re working with

data that are not evenly distributed. In this thesis, we’ll take a look at another

distance measure called the Manhattan distance [64]. This method is often used

in data clustering, as it can help to accurately group together data points in

high-dimensional spaces [67]. We’ll also explore how the Manhattan distance can

be used to construct robust similarity graphs from high-dimensional data. Other

measures that are sometimes used include cosine similarity and Jaccard similar-

ity. Cosine similarity is a measure of how similar two vectors are and Jaccard

similarity is a measure that tells how many items two sets have in common.

Example 2. Let X = Rn and x, y ∈ X where x = {xi, i ∈ 1, ..., n}, and

y = {yi, i ∈ 1, ..., n}, Manhattan distance between these points is defined as

follows:

d(x, y) = ∥x− y∥L1 =
n∑

i=1

|xi − yi| (2.2)

It computes the distance between two points x, y ∈ X as the sum of the absolute
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differences of their Cartesian coordinates, and it satisfies all of the four properties

of a metric defined above. The Manhattan distance function (L1 norm) is pre-

ferred for high dimensional data compared to the Euclidean distance function (L2

norm) [67]. In general, it is important to choose a distance measure that reflects

the underlying structure of the data. This will ensure that clustering results are

meaningful and interpretable.

Limitations of Distance Measures

There are a few limitations to consider when using distance measures for cluster-

ing. Firstly, the choice of distance measure can be critical and any given measure

may not be appropriate for all data sets. Secondly, even when an appropriate

distance measure is used, the results can be sensitive to outliers. And finally,

clusters found by a distance-based method may not have a clear interpretation.

In addition, the notion of similarity, and distance which is crucial for clustering,

becomes qualitatively less meaningful. In a detailed behavioural examination of

the distance functions (Lk norm) it has been shown that the problem of mean-

ingfulness is sensitive to the value k [67].

2.5.2 Similarity Kernels

Differentiating between different subtypes of diseases is an important task for

both clinicians and researchers. However, it can be difficult to accurately identify

disease subtypes, especially when there are many different types of diseases. One

way to tackle this problem is to use similarity kernels. Similarity kernels are

mathematical tools that can be used to compare two objects and measure their

similarity. In the context of disease subtyping, similarity kernels can be used

to compare different diseases and measure their similarities. There are many

different types of similarity kernels, but we will present a few below in this chapter.

A kernel is a similarity measure between two data points. It quantifies the sim-

ilarity between two data points in terms of a distance metric, such as Euclidean
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distance or Manhattan distance. Kernels are often used in machine learning al-

gorithms, such as support vector machines, to find patterns in data. Kernels can

be classified into two types: linear kernels and nonlinear kernels. Linear kernels

are defined by a dot product between two vectors, while nonlinear kernels are

defined by a transformation of the input vectors. Common examples of nonlinear

kernels include the polynomial kernel and the Radial Basis Function (RBF) ker-

nel. The use of similarity kernels has been found to be very successful in many

machine learning applications, such as image recognition and classification, text

categorisation, and document clustering. In fact, most modern machine learning

algorithms make use of some form of similarity kernel in order to learn from data.

In the following section, both linear and non-linear kernels are reviewed.

Kernel Trick

The kernel trick is a method used in machine learning to implicitly map data into

a high-dimensional space which enables linear models to solve nonlinear problems.

The trick is to compute the inner products of the data points in the new space,

which are then used as features in the standard linear model. This mapping is

done implicitly, meaning that it does not require any explicit knowledge of the

high-dimensional structure of the data. The kernel trick has been shown to be

very effective in practice and has been used to develop some of the most successful

machine-learning algorithms. In order to apply the kernel trick, we need a kernel

function.

Definition 2.1. A kernel function is defined as follows:

K(x, y) = ⟨ϕ(x), ϕ(y)⟩ (2.3)

Here, K is a kernel function, and x, y ∈ χ are data points in χ-dimensional space.

The mapping function ϕ maps the data points x, y from input space χ to another

higher-dimension space υ e.g., ϕ : χ −→ υ. The angle brackets ⟨., .⟩ define a proper
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inner product of the data points which makes this computation efficient.

The most popular kernel functions are the linear, polynomial, Radial Basis Func-

tion (RBF), and KNN kernels. Once the kernel function is selected, then it can

be applied to transform the data points into higher-dimensional space. After this

transformation has been performed, the linear model can be used on the trans-

formed data points to get improved performance. In the following section we

briefly explain the above-mentioned similarity kernels:

Linear Kernel

The linear kernel is one of the most commonly used kernels for support vector

machines SVMs. It works well for data that is linearly separable, which means

that the data points can be separated by a line (or hyperplane in higher dimen-

sions). The linear kernel is also one of the simplest kernels, which makes it easier

to interpret the results of the classification.

A linear kernel is a similarity function that measures the similarity between two

vectors by their dot product. In other words, it measures how much two vectors

are linearly correlated.

The linear kernel is often used in machine learning algorithms that require a

similarity measure particularly, it is commonly used in text classification.

Definition 2.2. The linear kernel is defined as:

K(x, y) = xTy + c (2.4)

The linear kernel is one of the simplest forms of kernels. Here xTy denotes

an inner product of the points x, y with an optional constant parameter c. It

is usually preferred for high-dimensional datasets. Note that the linear kernel is

not mapping the input data points into higher-dimensional spaces and is therefore

used for problems that are linearly separable.
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Polynomial kernel

A polynomial kernel is a type of nonlinear kernel that can be used in machine

learning algorithms. It is a function that takes in two inputs (x and y) and

outputs a value that represents the similarity between the two inputs.

Definition 2.3. The polynomial kernel is defined as:

K(x, y) = (axTy + c)d (2.5)

The degree of the polynomial kernel e.g., d determines how complex the function

is. A higher-degree polynomial kernel will be more complex and will be able to

capture more subtle relationships between the inputs, but it may also overfit the

data. The polynomial kernel can be used with any classification algorithm, but

it is commonly used with SVMs. The polynomial kernel has several advantages

over other kernels, such as the linear kernel. It can model non-linear decision

boundaries, which is important for many applications.

Radial Basis Function (RBF) kernel

The Radial Basis Function (RBF) is also a well-known kernel. The RBF kernel

works by mapping data points onto a higher dimensional space, where they can

be more easily separated into different classes. This makes it ideal for use in

disease subtyping, as it can help to clearly differentiate between the subtypes.

Definition 2.4.

K(x, y) = e(−
∥x−y∥2

2σ2 ) (2.6)

Here, ∥x− y∥ is the Euclidean distance function, and σ is the bandwidth of the

kernel to associate local kNN graph structure. In contrast to other types of

kernels, RBF kernel is widely used for disease subtyping.
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Laplacian Kernel

A Laplacian kernel is a similarity kernel that can be used to measure the similarity

between two data points. The Laplacian kernel has its own advantages over other

similarity kernels. First, it is scale-invariant, meaning that it does not change if

the data points are scaled up or down. Second, it is translation-invariant, meaning

that it does not change if the data points are shifted. Third, it is able to capture

both local and global similarities between data points. Fourth, it has a closed-

form expression, making it easy to compute. Finally, it is differentiable with

respect to both data points, making it possible to use gradient-based optimisation

methods to learn model parameters.

Definition 2.5. The Laplacian kernel is defined as:

K(x, y) = e(−γ∥x− y∥1) (2.7)

Laplacian kernel is a variation of the radial basis function (RBF). Here, ∥x− y∥1

is a Manhattan distance between the input points x, y. These similarity kernels

have the ability to generate fully connected similarity graphs out of the omics

data. These similarity graphs are then used by the various clustering algorithms

to group similar observations to help identify subtypes of diseases.

KNN Kernel

One of the most basic machine learning algorithms is KNN or k-nearest neigh-

bours. It is a non-parametric classification and regression approach. The ap-

proach computes the distance between a new data point and all previous training

data points. The label of the majority of the data point’s neighbours is then

applied to it. Kernels are used in machine learning to transform data so that it

can be more easily separable. This transformation allows for non-linear decision

boundaries, which can improve performance on certain datasets. When using a

kernel with KNN, it is important to choose an appropriate kernel function and

30



set the hyper-parameters correctly.

2.5.3 Similarity Graph

A similarity graph is a mathematical representation of how similar two objects

are to each other. The similarity between two objects is calculated by using a

similarity measure such as a similarity kernel, and the resulting similarity score is

represented as a point on the graph. The closer the two points are to each other,

the more similar the objects are. The similarity graph can be used to compare any

two objects, but it is most commonly used in data mining and machine learning

applications. For example, a machine learning algorithm may use a similarity

graph to calculate the similarity between diseases in a population for subtyping.

Definition 2.6 (Graph). A graph is defined as follows:

G = (V,E) (2.8)

where G is a graph, V is the set of all vertices a.k.a, nodes, and E ⊂ V × V is

the set of edges a.k.a, links between the vertices.

A key element of a similarity graph is a similarity measure e.g., sim(., .) −→ R,

which defines the similarity between the vertices in a graph. This can be achieved

using similarity kernels as these have the ability to compute a similarity value for

every pair of data points (vertices) in a set e.g., sij = sim(vi, vj), where vi, vj ∈ V

and sij is the similarity score between the vertex vi, and vj. The similarity score

between the pair of vertices in a graph can be represented through a weight on the

edge. Thus, we can represent the pairwise similarity between the vertices using

a weighted graph. Where the edge carrying the weight denotes the similarity

between its source and a target vertex.

Definition 2.7 (Similarity Graph). A similarity graph is formally defined as

follows:

G = (V,E,W ) (2.9)
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where the additional W is a set of weights on the edges denoting the similarity

between the pair of vertices e.g., wij ∈ W , denotes the similarity score between

the vertex vi, and vj in the graph.

The similarity graph is represented with a weighted similarity matrix. In the

following, we provide a graphical illustration of the matrix representation of data,

distance, and similarity. These play a key role in graph-based clustering analysis.

We aim to transform the data (omic view) into a distance matrix and this distance

matrix is then transformed into a similarity matrix (similarity graph). The final

similarity graph is used as an input for disease subtyping.

Let’s assume that X is a dataset with m observations and n measurements e.g.,

X −→ Rm×n.

Example 3 (Data Matrix). Lets, for this particular example, take m = 5, and

n = 3 then the data matrix X, can be represented as follows:

X =



x11 x12 x13

x21 x22 x23

x31 x32 x33

x41 x42 x43

x51 x52 x53


(2.10)

where each xij ∈ X, and the subscript i, j denotes the position of the element

in X located on ith row and jth column. Where rows denote the samples a.k.a,

observations or data points, and the columns denote features a.k.a, measurements.

This data matrix can be transformed into a distance matrix using any of the

valid metrics defined above in this chapter e.g., Euclidean distance or Manhattan

distance. When a distance metric is applied, then the data matrix X −→ Rm×n

will be transformed into another matrix D −→ Rm×m e.g., distance matrix. which

has |rows| = |columns| = m, and m is the number of observations in data matrix

X.
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Using Equation (2.1) which represents the Euclidean distance can be used to

transform this data matrix into the following distance matrix. The distance

matrix D is defined as follows:

Example 4 (Distance Matrix).

D =



0

d21 0

d31 d32 0

d41 d42 d43 0

d51 d52 d53 d54 0


(2.11)

where each dij ∈ D, and denotes the distance score between the ith, and jth

sample in X. Here both rows and columns denote the distance between a pair of

observations e.g., data points. Each element denotes a distance score computed

based on the features. Note that the diagonal elements are zero because for a

valid matric a distance from a point to itself is zero e.g., the 2nd axiom of a valid

metric (Identity of Indiscernible). Similarly, the upper diagonal values are empty

this is because of the 3rd axiom (Symmetry) of the valid metric.

This distance matrix D can be transformed into a similarity matrix S using any

of the similarity measures defined above in this chapter. By using Equation (2.6)

which defines the RBF kernel can be used to transform this distance matrix into

a similarity graph which is represented through the following similarity matrix S

as follows:

Example 5 (Similarity Matrix).

S =



1

s21 1

s31 s32 1

s41 s42 s43 1

s51 s52 s53 s54 1


(2.12)
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where each sij ∈ S, and denotes the similarity score between the ith, and jth

sample in X. Here both rows and columns denote the similarity between a pair

of observations e.g., data points. Each element denotes a similarity score. Note

that the diagonal elements are 1 because for this particular example we assume

that the maximum similarity is 1, which naturally occurs with a point and itself.

Similarly, the upper diagonal values are empty this is because of the 3rd axiom

(Symmetry) of the valid metric. With respect to the similarity graph, this matrix

represents a fully connected similarity graph. This similarity graph can be used

as an input to the clustering algorithms to generate clusters or find subtypes of

a disease.

2.6 Summary

Disease subtyping helps to better understand how a disease develops and pinpoint

the populations that are most vulnerable to it. Recent technological developments

have made it possible to use massive omics data more precisely define subtypes

using data-driven methodologies. These approaches have the potential to revolu-

tionise our understanding of diseases. Data-driven disease subtyping approaches

are still in their early stages, but they have the potential to transform our under-

standing of diseases and improve our ability to treat them. The data-driven ap-

proaches that only consider a single view like gene expression to subtype diseases

are known as single view analysis. Whilst these approaches are often simple and

do not need any integration, information can be lost by neglecting other views.

In contrast, data-driven approaches based on integrative analysis combine infor-

mation from multiple sources or views to gain a more complete understanding of

a phenomenon.

Clustering algorithms are used with data-driven disease subtyping to group pa-

tients with similar characteristics together. In the context of diseases, this means

identifying a group of patients who seem to share many common traits. This in-

formation can be helpful for developing more targeted treatments for each disease
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subtype. Similarity measures play a significant role in clustering. A kernel is a

measure of similarity between two data points. The kernel trick is a technique

that allows linear models to solve nonlinear problems by implicitly mapping data

into a high-dimensional space. Kernels measure the similarity of two data points

using a distance metric such as Euclidean distance or Manhattan distance. Dis-

tance measures, on the other hand, can be sensitive to outliers. Furthermore, in

high-dimensional spaces, the concept of similarity and distance, which is critical

for clustering, loses qualitative significance. Similarity kernels produce similarity

graphs which are graphical models that encode the pairwise similarities between

objects in a dataset. The nodes in the similarity graph represent the objects, and

the edges represent the similarities between them. Similarity graphs can be used

to cluster objects into groups.
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Chapter 3

Literature Review

3.1 Introduction

In this chapter, the current state of research on disease subtyping is reviewed.

The chapter begins by providing an overview of the findings from the scientific

literature, organised by topics relevant to the proposed research. By evaluating

the current state of research, this chapter demonstrates how the research findings

relate to each other and what gaps in the research exist. This chapter is not

exhaustive but rather gives an overview of the major approaches, challenges, and

limitations to set the stage for the proposed research on the topic.

The success of clustering depends on the quality of the generated clusters. There-

fore, evaluating the importance of clustering is essential to ensure that the right

groups are being formed and that the process is effective. Therefore, we will

explore evaluation methods both based on external and internal criteria in the

next chapter for assessing the quality of clustering for disease subtyping.

3.2 Current State of Disease Subtyping

Omics technology creates large amounts of high-dimensional data that encom-

pass essential information about biological entities. The integration of generated

omics data into a useful unified model is difficult yet necessary for biological in-

vestigations. In molecular subtyping, for example, integration aids in identifying

specific gene variations in patients across several views.

Nguyen et al. presented perturbation clustering for data integration and sub-
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typing (PINS) to overcome these issues [39]. PINS is based on the notion that

genuine subtypes stay constant even when their dimensions alter slightly. There-

fore, it injected Gaussian noise into data repeatedly and partitioned the patients

using k-means clustering for variable k values. Clustering stability is assessed by

comparing the least impacted partitions to the clusters obtained from the original

omics data. Nonetheless, the PINS architecture has been rigorously verified on a

large number of cancer samples, with outstanding results. However, further work

is needed to reduce its computational time complexity and to develop a technique

for distinguishing between different data kinds in a multi-view dataset.

Similarly, a multi-view robust graph-based clustering (MRGC) is proposed to mit-

igate the influence of noise in omics data [9]. To limit the effect of noise on high-

dimensional individual omics-views, MRGC learns robust latent representations

for each view. Similarity matrices are learned using these latent representations.

Finally, a consensus technique is used to generate a final unified similarity graph

for subtyping molecular diseases. On both general machine learning and omics

datasets, the suggested technique produced excellent clustering results. A case

study is also carried out to highlight the biological importance of the MRGC,

especially in hepatocellular cancer. Despite its strong clustering performance,

the suggested method might be improved in terms of learning appropriate hyper-

parameter values and preserving stability on omics datasets.

A consensus-guided graph auto-encoder (CGGA) is developed to overcome the

integration difficulty [8]. CGGA is made up of two steps. First, it uses graph

auto-encoders to learn a feature matrix for each specific data type. It is a versa-

tile strategy that incorporates structural as well as particular feature information

into the learning process in order to successfully learn clinically important cancer

subtypes. Second, the learnt feature matrices are utilised to generate similarity

matrices, and ultimately, a unified consensus matrix is generated by repeating

the suggested two-step procedure a few times. CGGA showed great improve-

ment in learning cancer subtypes for diverse cancer conditions; nevertheless, per-
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formance may be enhanced further by minimising its reliance on configurable

hyper-parameters.

Molecular disease subtyping algorithms are widely unsupervised; however, Liu

et al. used a supervised approach and suggested a revolutionary survival super-

vised graph clustering (S2GC) methodology [11]. S2GC learns survival analysis

embedding and patient similarity graphs together for molecular subtyping. The

similarity graph is continually adjusted by assessing the survival time as labelled

training data, resulting in an ideal similarity graph for subtyping. S2GC demon-

strated promising findings and outperformed several existing unsupervised sub-

typing algorithms on multi-omics cancer data. However, the benefit comes at the

expense of considerably costly computation and upfront human interaction.

The goal of clustering techniques for disease subtyping in general is to classify

patients into coherent groups based on their underlying commonalities revealed

by omics and clinical data. As a result, creating an accurate patient similarity

graph is critical in molecular disease subtyping. High dimensionality, noise, and

data variability are the obstacles to similarity graph building. As a result, the

spectral clustering and current similarity graph-building algorithms are studied

in the next section.

3.3 Integrative Approach for Disease Subtyping

A data-driven approach for disease subtyping is proposed which effectively inte-

grated motor and non-motor characteristics of Parkinson’s Disease (PD) patients

[31]. It adopted the standard disease subtyping approach and constructed a sim-

ilarity matrix for each characteristic. These similarity matrices represented the

pairwise patient similarity graph based on these clinical characteristics e.g., mo-

tor, and non-motor. Secondly, an optimum single similarity graph is constructed

with a few iterations of the fusion mechanism on the individual graphs. This

integrated graph is then used for the discovery of PD subtypes. Hierarchical

clustering is applied, and subtypes are discovered. The discovered subtypes are
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evaluated by computing the demographic differences, clinical differences, and ge-

netic differences between the subtypes via statistical testing.

Gillenwater et al. proposed the largest multi-omics subtyping pipeline for chronic

obstructive pulmonary disease (COPD) [25]. The approach enlightened the im-

portance of the multi-omics clustering stage. In the proposed approach the multi-

omics profiles were first analysed individually (post-clustering) and later the sub-

types were discovered, secondly all the profiles were integrated and treated equally

(pre-clustering) and the results were analysed. The analysis provided insights into

the clustering stages and found that the post-clustering for the COPD disease

discovered clean subtypes for each omics profile differentiated via unique clinical

signatures. While the pre-clustering approach was unable to find well-defined

subtypes which had obvious clinical differences. Also, the research findings iden-

tified some comorbidity and suggested their inclusion in multi-omics clustering

as these could play a vital role in subtyping.

Yin et al. proposed an unsupervised multi-view clustering approach to discover

subtypes of complex diseases [40]. They proposed an approach to discover sub-

types of complex diseases which has clinical and biological significance. In the

proposed research the genomics data is integrated with clinical phenotypes for

clustering analysis. The key novelty in the proposed research was to use genotype-

predicted gene expression levels rather than raw SNPs for disease subtyping. The

authors claimed that using the gene-based approach as proposed in this research

is faster and requires less memory compared to the SNP-based approaches. Fur-

ther to this, the approach is able to link the functional impact of SNPs to genes

which may help in easier interpretability of the discovered subtypes. Another

advantage of using the gene-based approach is that it is easy to inject expres-

sion levels in various tissues, while it is difficult to achieve the same using the

SNPs-based approaches.

Most of the intermediate integration models proposed for disease subtyping as-

sume full datasets containing complete disease information for analysis. However,
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acquiring full datasets for all patients might not be easy due to various associated

costs. Therefore, the authors proposed NEMO a neighbourhood-based cluster-

ing method that is able to perform subtyping on partially available data [34].

In addition, NEMO is fast compared to the existing integration systems as it

does not require iterative optimisation. Even though NEMO is based on existing

similarity graph-based clustering such as SNF but it has added advantages such

as it is fast and supports partially available data. NEMO is evaluated on full

datasets, partial datasets, and synthetically generated datasets. It is clear from

the results that the NEMO has advantages in terms of simplicity, time efficiency,

and support for datasets with missing data.

In this review, authors emphasised the challenges of learning from heterogeneous

and noisy data [35]. Some of the existing machine learning models proposed for

disease subtyping are based on a single data type or view. However, most of the

data from subtyping come in multiple views e.g., gene expression, DNA methyla-

tion, and MicroRNA, etc. . . as such learning from only a single view will lead to

incomplete understanding or model overfitting. In these scenarios, it is necessary

to consider all the views associated with a disease for a better understanding

of the process. Also, as these views complement each other, therefore, an inte-

grative analysis will eventually infer missing data in one view from other views

consequently it will reduce the noise in data. Therefore, the authors extended

the empirical risk minimisation (ERM) model by introducing Multi-view learning

and proposed Multi-view empirical risk minimisation (MV-ERM). MV-ERM gen-

eralises the modelling and application aspects of the ERM. In MV-ERM authors

introduced the concept of Multi-view learning in ERM in a unified mathematical

framework for a better understanding of complex processes.

Authors in [41] state that existing multi-omics data integration systems rely on

joint statistical modelling and are based on the strong assumption about the data

distribution and feature selection, which makes them sensitive to noise and slight

changes in measurements. To address these challenges a robust approach is pro-
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posed called perturbation clustering for data integration and disease subtyping

(PINSPlus) [41]. PINSPlus optimises two algorithms of the previously proposed

PINS framework. The extension makes it robust to noise and bias. Specifically,

it extends two algorithms of the PINS e.g., a) perturbation clustering and b) sub-

typing omics data. Perturbation clustering continuously adds Gaussian noise to

the data and performs clustering for a variable number of clusters. The clusters

returned by each are examined, and the number of clusters that give the most

stable connectivity is considered optimal. In this way, the slight changes in mea-

surements that occur through noise have the least effect on the final subtyping

results.

To address the integration challenge in multi-omics data for disease subtyping

an integrative network fusion (INF) is proposed [42]. INF is a network-based

subtyping framework that leverages the intermediate results of both early inte-

gration approaches and intermediate integration approaches such as SNF to find

the optimal set of predictive variables. Firstly, INF takes top-ranked features

from the early integration approach by using a classifier. Secondly, it fetches

the highly predictive features from the data integrated by SNF. Finally, the two

sets of top-ranked features are intersected, and a random forest (RF) classifier is

trained on the intersection of two sets of high-ranked features. Through this, INF

achieves an effective way of the multi-omics data integration system. Further-

more, to reduce the computational bottleneck, INF introduces an approximate

data analysis (DAP) pipeline with the least effect on the final results.

A novel hierarchical data fusion and integrative clustering approach called HC-

fused is proposed [68]. HC-fused applies a two-step process to integrate multi-view

datasets. It first creates a network-structured view of the data by clustering each

data type with hierarchical clustering. Then a novel hierarchical data fusion tech-

nique is proposed to effectively integrate the constructed networks. Compared to

other multi-view data integration approaches, HC-fused has the added advantage

of taking into account the contribution of individual omics data in the construc-
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tion of an integrated view. The HC-fused approach generates results that are

transparent, easy to understand and interpret.

Rappoport et al. Proposed a multi-omics clustering by non-exhaustive types

(MONET) [69]. MONET algorithm is designed to discover patient modules from

multi-omics data. It extends the existing MATISSE algorithm which is used

to identify gene modules and further generalises its algorithms to be used for

multi-omics clustering tasks. MONET repeatedly uses a subset of omics data to

discover patient modules, in this way it discovers a common structure among the

patient modules. MONET is successfully used to discover patient modules which

are clinically and biologically relevant. In addition to that, MONET is found

useful in various other biomedical tasks such as discovering gene modules, and

cells from single-cell data.

Kamoun et al. adopted an unsupervised approach and proposed a comprehensive

classification model for the discovery of localised prostate cancer (PCa) subtypes

[70]. The model was applied on three molecular levels e.g., DNA copy number,

DNA methylation, and mRNA expression for subtyping. The proposed approach

identified three molecular subtypes of localised prostate cancer defined by clini-

cal, genomics, epigenomics, and transcriptomics features. Finally, the subtype-

associated risks were measured using survival data extracted from the cohorts

and the Cox regression model.

NEMO is a well-known partial multi-omics data integration approach based on

network embedding. However, NEMO makes the strong assumption of common

omics data for integrating a pair of samples. The assumption results in the

removal of a large number of samples from the dataset. In addition, during

the integration, NEMO takes the average of the individual similarity networks

which results in lower accuracy because of the different scale and edge weights

among the different similarity networks. To address these limitations an improved

version of the NEMO is proposed based on multiple similarity network embedding

called MSNE [71]. Through multiple embedding, MSNE efficiently integrates
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partial omics data for the discovery of disease subtypes. MSNE follows manifold

learning and effectively learns the integrated similarity of samples via a random

walk on multiple sample networks with partially available data. The integrated

similarity is then transformed into a low-dimensional space representation for

improved performance. MSNE is extensively evaluated on synthetic full and

partially available data, and for realisation, it is evaluated on real-world omics

data. MSNE outperforms many existing omics data integration approaches.

3.4 Graph-based Approaches

There is a lot of excitement in the medical community about using a graph-based

approach to disease subtyping. This approach offers many potential benefits, in-

cluding the ability to more accurately identify different subtypes of diseases and

the potential to develop more targeted treatments. One of the key advantages

of this approach is that it can help to identify previously unknown disease sub-

types. By looking at the interactions between different genes, proteins, and other

molecules, researchers can get a better understanding of how diseases develop

and progress. This information can then be used to develop more targeted and

effective treatments. Another advantage of this approach is that it has the poten-

tial to improve our understanding of how different subtypes of diseases respond

to treatment. Currently, many treatments are developed without taking into ac-

count the heterogeneity of disease subtypes. However, by using a graph-based

approach, it may be possible to develop treatments that are more effective against

specific subtypes of diseases.

Overall, the use of a graph-based approach to disease subtyping has a lot of

promise. It helps to better understand diseases and develop more targeted and

effective treatments. In graph-based approaches, a fully connected similarity

graph of observations is constructed prior to the clustering algorithms. This sim-

ilarity graph is then provided as an input to the specified clustering algorithms

to discover subtypes of diseases based on their similarity and connectivity pat-
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terns. These similarity graphs are usually generated using similarity kernels. The

following section highlights some of the similarity kernels that can be used with

clustering algorithms.

3.4.1 Pairwise Similarity Kernels

KNN

Integration Graph 
Laplacian

Eigen 
Decompositi

on
ClusteringEpsilon

Polynomial

RDF Kernel

Clustering
Results

Similarity Kernels

Figure 3.1: Spectral clustering pipeline for disease subtyping.

Similarity Kernels (SK) have been extensively explored in machine learning (ML).

Among others the most frequently used kernels for structured data include the

Laplacian kernel and Gaussian radial basis function (RBF) kernel [72, 17]. The

difference between RBF and Laplacian kernel is that the former uses Euclidean

norm while the latter uses 1-norm [73]. These kernels serve as a good similarity

measure for noiseless data [73]. For noisy data, these kernels might not pro-

duce good similarity results and this is because of the distance metrics such as

Euclidean distance employed in these kernels. These distance functions are not

robust to noise such as extreme values and data variability.

3.4.2 Similarity graph Construction

In existing literature often kernel-based approaches are adopted to model the sim-

ilarity between the objects in the dataset through a pairwise similarity network.

The distance functions used with kernels work well with categorical and normally

distributed, symmetric numerical data. However, on highly skewed continuous

features with different scales and variability, the extreme values dominate the
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smaller values. The distance functions used to generate similarity networks are

not robust to extreme values, variability, and scales. On the other hand, ranking-

based methods resolve the extreme values but suffer from scale and variability.

Moreover, it is not a good similarity measure as it ignores the strength of prox-

imity between values. The majority of these distance metrics are usually based

on central tendency measures (mean, median, and mode) however, for the highly

skewed features we need more information to explain data variability or disper-

sion. Because a single extreme value or an outlier has an unbounded influence

on these central tendency measures [24]. Consequently, these can adversely affect

the estimation of distances.

Below in this section, we present famous approaches for disease subtyping based

on graph-based approaches.

Krishnagopal et al. proposed a novel multi-layer graph-based trajectory cluster-

ing (TC) [29]. The TC algorithm discovers subtypes via variable clusters which

are based on similarities in trajectories. It models a bipartite graph from patient

and variable interactions, which is then used to track patient membership from

multiple layers of co-expressed cluster variables. Finally, similar trajectories are

clustered to discover subtypes. The proposed algorithm is a variable-centric ap-

proach that considers disease progression as a function of the outcome variable.

However, the approach is restricted to the availability of high-quality variables.

Moreover, the approach is not applicable to data with high variability and small

quantity.

Ramazzotti et al. proposed cancer integration via multikernel learning (CIMLR)

[74]. CIMLR is a novel disease subtyping approach that integrates multi-omics

data using multiple kernels for molecular subtype discovery. The proposed ap-

proach learns the similarity between a pair of patients (samples) in multi-omics

data by integrating results from multiple Gaussian kernels defined over each data

type. The final constructed patient similarity matrix contains block structures

that are used for dimensionality reduction and clustering. The authors claim
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that CIMLR is scalable to many other data types, and does not assume equal im-

portance for the datatypes. CIMLR is evaluated on many multi-omics data and

outperformed many existing approaches on speed, accuracy, and survival time

prediction of the patients.

3.5 Spectral Clustering for Disease subtyping

Real-world datasets are often large in dimensions, noisy, and include data variabil-

ity, their integration breaks the condition of data integrity [75, 76, 77]. Further-

more, certain high-dimensional multi-view datasets, such as genomics, contain

complementary disease information [78]. Finding clinically meaningful subtypes

is made more difficult by the integration of complementary information from

these diverse perspectives [78, 38]. Disease subtyping is a critical and challenging

step in precision medicine that divides patients into well-defined risk categories

based on clinical and molecular characteristics [79, 80]. To address these prob-

lems, numerous techniques such as hierarchical clustering, model-based, matrix

factorization, and spectral clustering are being researched in order to discover

the heterogeneity of these diseases [68]. The use of spectral clustering yielded

considerable results in the discovery of subgroups and related survival rates. The

complementary nature of multiple points of view makes spectral clustering a fea-

sible possibility. It seeks to turn multiple views into separate graphs by creating

pairwise similarity matrices using kernels and then integrating these graphs into

a single similarity graph to enhance clustering performance [81, 78]. Figure (3.1)

depicts the many phases of the spectral clustering workflow. The first two steps

play a considerable role in the generation of a holistic view and improvement in

the ultimate clustering performance.

Similarity kernels are widely used with spectral clustering for the transforma-

tion of individual source data into graphs [78, 38]. These individual graphs are

then integrated using similarity fusion to construct a single similarity graph [38].

These kernels create an adjacency matrix by computing pairwise similarity be-
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tween the samples. Each entry in the matrix represents the strength of similarity

between the pairs. For instance, Similarity Network Fusion (SNF) [38] is con-

sidered state-of-the-art in cancer disease subtyping. SNF transforms each view

into a graph using a scaled exponential similarity kernel. These graphs are then

combined with iterative network diffusion before being utilised for subtyping and

survival prediction. Affinity Network Fusion (ANF) [78] is proposed to address

the computational difficulty of SNF. In contrast to iterative diffusion, ANF em-

ploys one and two-step random walks to provide smoothed views, which are then

fused using their weighted average.

Similarity kernels, on the other hand, are unstable and susceptible to changes

in hyper-parameters and numerical measurements [28]. Any modifications to

the type of kernel or its settings will almost certainly result in different cluster-

ing results. One probable explanation is that the kernels are based on distance

functions, which perform better with categorical and normally distributed, sym-

metric data. When used to heavily skewed data, it generates noisy and ineffective

graphs. Because distance functions are not resilient to noise, as a result, data

variability, and extreme values overwhelm the rest when computing pairwise dis-

tances between samples. Therefore, more information is required to explain data

variability and dispersion for the robust construction of the graph.

Spectral clustering techniques are widely used for disease subtyping because these

approaches work well for multi-view complementary datasets. As there are always

limitations for even the best approaches similarly, one of the limitations associated

with the spectral clustering approach is the tuning of hyper-parameters of the

kernels used with these approaches. Therefore, in this article, a fast density-

aware spectral clustering (Spectrum) for disease subtyping is proposed which

self-tunes the kernel parameters [13]. In the proposed approach an adaptive

density-aware kernel is used to compute similarity matrices for each view of the

dataset. This kernel is specifically designed for continuous datasets and for this

to work on multi-view datasets, the data points need to match in different views.
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The advantage of the proposed approach compared to other spectral clustering-

based approaches is that first, it improves the local links between the samples

in higher-density regions, moreover, it self-tunes the kernel parameters for better

results. Finally, the constructed similarity matrix is used to form clusters or

identify subtypes.

Rafique et al. proposed an approach that aims to increase separability among

survival curves of samples. Therefore, proposed a robust approach that assigns

weights to every gene [82]. The weights are assigned using the median absolute

deviation (MAD) of each gene. The MAD score is calculated for every gene and

weights are assigned in such a way that the genes with greater MAD scores re-

ceived higher weights. The idea behind the MAD score was that the genes for

which the samples have greater variability receive a greater MAD score. MAD

holds variability information for every gene which helps the subsequent cluster-

ing algorithm to find better-separated patient clusters. The proposed approach

computes the MAD score in such a way that the gene for which the patients have

greater variability will receive greater weight. The genes having greater weight

scores will help in the upcoming dimensionality reduction and clustering analysis

tasks and consequently help in increasing the separability in survival curves.

3.6 Neural Networks for Disease Subtyping

Deep learning-based approaches for disease subtyping are gaining rising atten-

tion. Mostly, these approaches are based on Neural Networks (NN) following

auto-encoders for low-dimensional feature representation. Autoencoding is a way

of learning dense representations of data. In the context of disease subtyping,

autoencoding can be used to learn a latent representation of disease subtypes.

This representation can then be used for downstream tasks such as classification

and prediction.

Neural networks (NN) are capable of a wide range of tasks such as pattern recog-

nition, classification, and prediction. They’ve been used to solve issues in a
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variety of domains, including medical, finance, and manufacturing. Although the

application of neural networks for disease subtyping is still in its early stages,

initial results have been encouraging. A neural network was employed in one

study to classify breast cancer patients into molecular subgroups. Based on their

gene expression patterns, the neural network was able to effectively categorise

the patients into the correct subtype.

The use of neural networks for disease subtyping has the potential to improve

the accuracy of diagnosis and treatment. as well as provide a more personalised

approach to medicine. For disease subtyping, the neural network-based approach

makes use of auto-encoders for low-dimensional representation. Autoencoders

are neural networks that are trained to encode data into a low-dimensional latent

space. The encoder part of the network learns to compress the data into this latent

space, while the decoder part learns to reconstruct the data from the latent space

back to the original dimensionality.

One advantage of using autoencoders for disease subtyping is that they can be

trained on unlabeled data. This is because the autoencoder only needs to learn a

representation of the data, not necessarily any specific labels. Another advantage

is that autoencoders can learn complex nonlinear relationships in the data. This

is because they are not limited by predefined categories or labels. The downside of

autoencoders is that they can be difficult to train, and sometimes do not converge

on a good solution.

Following are the approaches for disease subtyping based on deep learning.

To tackle the time irregularity challenges in the standard LSTM architecture

for healthcare, a novel T-LSTM architecture is proposed [83]. T-LSTM address

this challenge by considering the time-elapsed between consecutive elements of a

sequence. The proposed approach improved the standard LSTM by considering

the time irregularities. To incorporate the T-LSTM in disease subtyping an

unsupervised approach is proposed utilising the T-LSTM. Temporal patient data

is used to learn a single representation by mapping sequential records of samples
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to a representation capturing the dependencies. The learned representations are

then used to identify patient clusters for disease subtyping.

The authors in [32] argued that existing auto-encoder (AE) based disease subtyp-

ing approaches are not generalised toward other diseases and these are usually

proposed for a specific disease type. Therefore, they proposed a robust auto-

encoder-based approach for disease subtyping which gain information bottleneck

by using both strategies of reducing the number of neurons on the hidden layers

and penalising the activation functions inside the layers [32]. The aforementioned

strategies are utilised to discover the global structure of the multi-omics data by

identifying robust latent space representation of the integrated omics data. The

proposed approach performed survival-based feature selection first, and these fea-

tures are then fed to the AE to learn embedded feature representation. Finally,

spectral clustering is performed on the learned feature representations to dis-

cover disease subtypes. Generalisation is achieved through excessive tuning of

the models’ hyper-parameters. The proposed approach is evaluated on five avail-

able cancer datasets. Finally, a comparative analysis is performed with existing

early-integration, intermediate-integration, and late-data-integration approaches.

Deep learning-based approaches for multi-omics data integration and disease sub-

typing are mostly based on auto-encoder (AE) or variational auto-encoder (VAE).

In the disease subtyping literature, AE and VAE are mostly based on either

single-input (SI) or multi-input (MI) models. The problem with SI modelling of

multi-omics data is that SI ignores the difference between the data distribution

and the number of features that are of vital importance for discovering accurate

subtypes. To address these limitations, MI-based modelling is adopted. MI-based

approaches model each type of omics data individually and then apply statistical

modelling on each type to reveal subtypes. However, modelling multi-omics data

using MI-based approaches is challenging due to the inherent complexity of these

data types.

To resolve these issues, Yang et.al suggested subtype-GAN a generative adversar-
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ial network based on the MI model [36]. subtype-GAN can incorporate a variety

of omics data, including copy number, DNA methylation, gene expression, and

miRNA data. A multi-input multi-output network and a generative adversarial

network are combined in the suggested method. Finally, consensus clustering is

used to determine the number of subtypes and the class label for each observa-

tion. The suggested technique is used for BRCA data to determine its subtypes.

The suggested subtype-GAN is assessed and compared with existing techniques

with outstanding results.

One of the challenges for integrative disease subtyping approaches is the miss-

ing omics data. The multi-view datasets often lack the full set of views which

creates hurdles to integrating multiple datasets having missing data with several

missing patterns. One option to handle the missing data is to remove it from the

dataset however, the removal of missing data can significantly reduce the sam-

ple size. Another option is to impute the missing values with mean imputation

however, the mean imputation severely distorts the data distribution. To address

these challenges for omics data integration Lee et al. proposed a deep varia-

tional information bottleneck (IB) approach for learning from incomplete data

called deepIMV [84]. The proposed deepIMV is able to learn from inter-view

interaction, and intra-view interactions and efficiently integrate multi-omics data

with missing patterns. DeepIMV consists of view-specific encoders, view-specific

predictors, product-of-experts(PoE) components, and multi-view predictors to ef-

fectively learn from incomplete data. The proposed deepIMV models the joint

representation as PoE for integration which is utilised by the multi-view predictor

component to predict the target labels for samples. DeepIMV is extensively eval-

uated on multiple omics data and compared against state-of-the-art in subtyping

with multi-omics data.

Disease-subtyping datasets are usually high-dimensional with the essence of the

information in them. If not all these measurements are considered then the

approach results in lower accuracy, on the other hand, considering all these mea-
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surements cost computational time, and challenges in learning from such high-

dimensional data. To address the challenges associated with learning from high-

dimensional data a graph-based neural network approach called multiGATAE

is proposed [85]. multiGATAE is a deep-learning-based graph neural network

approach that considers all features in the learning process. The proposed ap-

proach learns feature embedding by defining a graph-based auto-encoder which

includes a graph attention network, and omics-level attention mechanism. The

learned embedding is then used for clustering omics data and discovering disease

subtypes.

Graph convolutional neural networks (GCN) are gaining research attention in

graph-based high-dimensional clustering. Therefore, in this work a novel consensus-

guided model for clustering is proposed which is based on graph autoencoder

(GAE) called scGAC [86]. scGAC takes full advantage of the graph structure to

learn node-level graph embedding. In the proposed work first, top-level features

are used to extract genetic information. This resolves many limitations associ-

ated with traditional PCA-based feature selection such as the risk of distortion.

It then uses GAEs to learn feature embedding which takes into account the graph

topology and node features in the learning process. A set of similarity matrices

are then learned using the top-level features from the first step. The strength of

association between the cells is predicted by retaining the linear and nonlinear

manifolds of the data via the linear fusion of two distance functions. The learned

similarity matrices are provided back to the GAE to assist the feature learning

process. These steps are iterated several times to construct a single similarity

matrix from the set of similarity matrices. The proposed approach has the abil-

ity to obtain information from the data more comprehensively and address the

limitations of the traditional non-deep learning-based data processing methods.

Although deep learning architectures have demonstrated high performance on

numerous problems, they frequently encounter challenges when applied to small

sample-size data. For instance, disease subtyping commonly involves analysing
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genetics data, which often consists of a small number of patient samples compared

to a large number of features measured [8][9][39]. Such datasets are characterised

as high-dimensional with limited samples and noisy, posing challenges for deep

learning models [87]. Generally, the performance of deep learning algorithms

in recognising patterns is dependent on the dataset size, smaller datasets make

these models less powerful and accurate. Despite the prevalence of this issue

and efforts to address it, comprehensive studies dedicated to this crucial aspect

of machine learning are lacking [87]. This is a common challenge faced by deep

learning models when confronted with a small sample size (limited number of

patients) which greatly impact their performance. [88]. Most of the deep learning

architectures are prone to overfitting on small training samples, leading to sub-

optimal performance when tested on new and unseen samples [89].

3.7 Limitations and Challenges in Disease Sub-

typing

There are several limitations and challenges in disease subtyping that need to

be considered when conducting research in this area. First, there is a lack of

standardisation in the way that diseases are classified and subtyped. This can

make it difficult to compare results across studies. Second, there is a lack of

agreement on the best methods for disease subtyping. This can lead to different

researchers using different methods, which can make it difficult to compare results.

Third, disease subtypes can change over time, making it difficult to track changes

in disease prevalence or incidence. Finally, some diseases are very rare, making

it difficult to find enough cases for study.

Following in Table 3.1 are the summary of common limitations associated with

existing disease subtyping approaches.
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Table 3.1: Limitations and Challenges in Disease Subtyping

State-of-the-art Limitation Reference

PINS and TC Data types weighted equally [39, 29]
CC1, PINS Computation Intensive [55, 35, 39]
IntPD and TC Lack of complete data [31, 29]
IntPD and TC Lack of clinical domain knowledge [31, 29]
NEMO Datasets Assumptions [34]
AD Regularization Parameter γ [90]
ES2 Feature space constraint [30]
MPE3 Missing subtype data [45]
YinInt, AE4 Sensitivity to outliers [40, 25]
CC and TC Data variability [55, 29]
CoINcIDE Compatible Datasets [91]

All data types are weighted equally

Another weakness with most of the disease subtyping approaches is that all data

types are equally weighted when creating subtypes, which may not always be

appropriate [39][29]. In some cases, it might be more meaningful to differentiate

between different types of data when determining subtypes. For example, if we

have a dataset with both gene expression and DNA methylation, it will support

adding different weights to each type of data. This would allow giving more

weight to the data type which is more important to the type of disease being

subtyped.

Computation Intensive

Disease subtyping becomes computationally intensive, especially when we focus

on accuracy. For instance, PINS achieved spectacular results but it is slower than

Consensus Clustering [57] [55], and SNF [38] since it needs more time to perform

the following additional analyses on large data sets [39] [28]. Firstly, it needs to

do perturbations and repeated clustering to find subtypes of a disease against

which small changes in molecular data have little or no effect. Secondly, it runs

k-means multiple times to make sure that the results are stable and reproducible.

In addition, the Multiview-learning based approaches are both computationally
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expensive and memory-demanding [35]. For instance, multiview learning applica-

tions based on alignment methods requires twice as high data memory as required

by the non-multiview learning approaches. this is due to the pairwise processing

strategy of the alignment-based methods. On the other hand, multiview learning,

based on factorisation methods requires high time and space complexities. This

is due to the simultaneous processing of available multiview datasets.

Lack of complete data

Data-driven approaches are limited by the availability and quality of the dataset.

The lack of large-size datasets affects the quality and robustness of these ap-

proaches [29]. Another limitation of the data-driven approaches is that some

diseases have access to limited samples which limits the generalisability of these

approaches [31]. It is important to remember that these methods can’t necessar-

ily be generalised to other types of diseases. The study did not have a complete

set of data and outcome variables for all patients, which may have limited the

findings. Additionally, some of the clinical data was missing, which could also

impact the results.

Lack of clinical domain knowledge

Various research findings suggested that the data-driven approaches should be

used with caution as these studies are usually not based on any knowledge from

clinical domain experts. Therefore, this caveat needs to be kept in mind while

using data-driven approaches. These approaches should never be used in isolation

– they should always be used in conjunction with clinical knowledge and expertise

[29] [31].

The assumption about the dataset

Similarly, some disease subtyping approaches make assumptions about the data

that at least one omics is common in every pair of samples [34]. However, this is
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a strong assumption that is often violated in the real-world dataset. The second

limitation is the choice of K in nearest neighbours in KNN, which is implicitly

assumed that the cluster sizes are equal for all samples.

Challenges that obstruct Autoencoders to perform effective disease

subtyping

Autoencoders are a type of neural network that is used to learn efficient repre-

sentations of data. They are similar to other types of neural networks, but they

have a special architecture that allows them to learn efficiently. However, AEs

are sensitive to hyperparameters, which are parameters that control the learning

process. Therefore, it is important to carefully tune the learning rate in order

to achieve good results with AE [32]. Moreover, AE may not perform optimally

when applied to datasets with a small number of samples and high dimensionality.

It is difficult to find compatible data types for integrative analysis

One challenge with integrative analysis is that it can be difficult to find data sets

that are compatible with each other. Another challenge is that the results of an

integrative analysis can be complex and hard to interpret.

Even though multi-omics data integration has the potential to improve clustering

solutions, it is still a difficult task to uncover all of the complementary information

contained within the data. This is because each type of omics data (genomic,

proteomic, metabolomic, etc.) contains its own unique information that needs to

be taken into account. Furthermore, it is often difficult to effectively integrate all

of these different types of data [32].

Outliers, data variability, and extreme values lead to unstable results

Outliers and data variability can have a significant impact on clustering results.

In some cases, they can completely change the cluster structure. These can be

very influential when calculating distances between points. The more influential
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an outlier is, the more it can impact the distance calculations and, as a result,

the clustering results. This is a common issue with disease subtyping approaches

which leads to unstable results in most cases. This is because of their sensitivity to

outliers, which affect the entire subtyping results [25]. In addition, the distance

functions used with clustering are usually based on classical statistical proce-

dures such as mean, standard deviation, and variance to estimate the distance

between the observations in the data. Whilst these central tendency measures

perform well on compact and isolated clusters, they are susceptible to outliers

[19, 20, 21]. These outliers have an impact on the distances of a pair of data

points in the interquartile range (IQR) [22, 23]. Even a single highly influential

outlier has an unbounded impact on these techniques [24]. The lack of resilience

to outliers restricts these techniques’ ability to provide reliable measures for es-

timation. A simple solution is to eliminate outliers before computing pairwise

distances. Outliers, on the other hand, can often give useful information about

unusual behaviour [24]. As a result, deleting outliers that contain such valuable

information might have a negative impact on the assessment of data variability

and distances.

Therefore, in this thesis, a novel robust graph-based clustering approach is pro-

posed for disease subtyping, that is able to address the data variability and ex-

treme values challenges on high-dimensional data. The proposed approach neu-

tralises the influence of extreme values and data variability in an effective manner.

3.8 Summary

Numerous data-driven approaches have been proposed to address the disease

subtyping problem in Multiview omics data. The challenges exist on various

levels for instance: 1) High-dimensionality vs fewer samples, 2) lack of complete

data, 3) outliers, data variability, and extreme values, 4) significance or weightage

of each view, and 5) Data compatibility. Whilst the integration of the produced

omics data in a meaningful unified model is a challenge, it is crucial for biological
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studies.

Most disease subtyping approaches, for example, equally weight all data types

(views), which is not always appropriate [39][29]. When determining subtypes, it

may be more meaningful in some cases to differentiate between different types of

data. Likewise, when the focus is given to accuracy, disease subtyping becomes

computationally demanding. PINS, for example, achieved spectacular results but

is computationally expensive [39]. Furthermore, the Multiview-learning-based

approaches are both computationally and memory-demanding [35]. Moreover, the

availability and quality of the dataset limit the quality of data-driven approaches.

The lack of a large number of samples has an impact on the quality and robustness

of these approaches [29].

Another limitation is that some diseases have access to limited samples, limiting

their generalisability [31]. Similarly, some disease subtyping approaches make

data assumptions that at least one omics is shared by every pair of samples [34].

This, however, is a strong assumption that is frequently violated in the real-world

dataset. Moreover, autoencoders are hyperparameter sensitive. As a result, in

order to achieve good results with AE, it is critical to carefully tune the learning

rate [32]. Another difficulty with integrative analysis is finding data sets that are

compatible with one another. Despite the fact that multi-omics data integration

has the potential to improve clustering solutions, integrating and uncovering all

of the complementary information contained within the data remains a difficult

task [32].

Finally, outliers and data variability can significantly affect clustering results.

When calculating distances between points, these can have a significant impact.

This is a common problem with disease subtyping approaches, which leads to

instability in the majority of cases. This is due to their sensitivity to outliers,

which have an impact on the overall subtyping results [25]. The statistical pro-

cedures work well on compact and isolated clusters, but they are vulnerable to

outliers [19, 20, 21]. These outliers influence the distance between observations

58



in the interquartile range (IQR) [22, 23]. Even a single highly influential out-

lier can have a massive impact on these classical central tendency measures [24].

Outliers, on the other hand, can sometimes provide useful information about un-

usual behaviour [24]. As a result, removing outliers that represent such valuable

information can have a negative impact on the meaningfulness of the results.
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Chapter 4

Methodology

4.1 Overview

In the last few years, high-throughput sequencing projects have dramatically in-

creased the number of high-dimensional genomics data generated in biomedical

research. This has created a need for new statistical approaches to help re-

searchers make sense of the data, and to aid clinicians in deciding how best to

diagnose or treat patients.

However, the characteristics of genomics data for disease subtyping give rise to

several challenges. Firstly, the data is high-dimensional with a limited number

of samples. This makes it difficult for machine learning models, such as super-

vised or deep learning, to effectively learn from the data. Secondly, the data

is multi-modal, meaning it contains complementary information across different

modalities that needs to be integrated to gain a comprehensive understanding.

Additionally, the presence of extreme values and data variability further com-

plicates the discovery of subtypes, as these characteristics often lead to spurious

clusters. To address these challenges, we propose a methodology that tackles each

of these issues systematically in the disease subtyping pipeline.

Firstly, we address the challenge of extreme values and data variability by employ-

ing a novel robust distance function. This function incorporates robust statistical

techniques, such as statistical quartiles and the Freedman-Diaconis estimator, to

define a topological structure (e.g., graph) for each modality. This approach

enhances resilience against extreme values and data variability. Secondly, in or-

der to compute distances or similarities in high-dimensional data, we utilise the

60



L1 − norm distance metric. This metric is preferred over L2 − norm distance

metrics as it is more resilient to the challenges posed by high dimensionality.

The third challenge, learning from high-dimensionality versus few samples, is ad-

dressed through an unsupervised graph-based clustering approach. We employ

Spectral clustering, which minimises a ratio cut on a connected graph, enabling

efficient learning and subtype discovery even with limited samples. This ap-

proach proves advantageous compared to non-graph-based or deep learning mod-

els. Lastly, the challenge of multi-modal data is tackled by utilising similarity net-

work fusion (SNF), a well-known and widely used approach in the bio-informatics

domain for integrating multi-view or multi-modal data. This method constructs

fully connected similarity graphs for each modality and iteratively integrates them

using a novel network fusion technique.

The proposed disease subtyping approach takes into account these challenges,

making it the most suitable and comprehensive solution for the problem at hand.

By addressing the issues of extreme values, data variability, high dimensionality,

few samples, and multi-modal data integration, our methodology provides a ro-

bust framework for effective disease subtyping. The overall framework is validated

on multiple TCGA cancer datasets, synthetic data, and generic machine-learning

datasets. The results were compared with multiple baseline clustering approaches.

The results are extensively evaluated using various clustering evaluation metrics

as described in the last section of this chapter.

4.1.1 Exploring The Disease Subtyping Data

We selected five cancer disease datasets as used in [28, 39], which were taken from

TCGA 1

The selected five datasets include Kidney Renal Clear Cell Carcinoma (KIRC),

GlioblastomaMultiforme (GBM), Lung Squamous Cell Carcinoma (LUSC), Breast

Invasive Carcinoma (BRCA), and Colon Adenocarcinoma (COAD). These are

1https://www.cancer.gov/tcga
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multi-view high-dimensional datasets, that consist of Gene Expression, DNA

Methylation, and MicroRNA data. The following Figure (4.1) shows the data

for GBM cancer. It includes three types of data (Gene Expression, DNA Methy-

lation, and MicroRNA) which need to be analysed and integrated for disease

subtyping.

1. Gene Expression 2. DNA Methylation

3. MicroRNA Survival Data

Figure 4.1: The GBM cancer data with three types of data (gene expression, DNA
methylation, and microRNA) from 273 samples, along with survival information
for clustering quality assessment.

As can be seen from the Figure (4.1) each data type has the same number of

samples (rows) but the number of measurements (columns) is different for each

view. The gene expression data has 12042, the DNA methylation has 22833, and

the microRNA data has 534 measurements.
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Figure 4.2: The histogram for four measurements (genes) taken form gene ex-
pression view of GBM

To get a general understanding of the distribution of gene expression values, we

plotted a few measurement values from gene expression data in the Figure (4.2).

It is evident from this figure that the measurement values exhibit a high degree

of skewness. These skewed values pose a challenge for clustering algorithms as

they can lead to suboptimal clusterings. To address this issue, we will propose

an approach in this chapter that aims to mitigate the impact of these extreme

values. By implementing this approach, we aim to minimise the influence of such

extreme values on the clustering algorithms. The following chapter will delve

into the details of this proposed method, offering a comprehensive solution for

handling extreme values in the context of clustering analysis.

Now to get an understanding of how these measurement or gene expression val-

ues are distributed for samples we plotted a scatter plot for pair of samples as
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Figure 4.3: Plotting the genetic similarity between a pair of samples based on
the gene expression measurements.

shown in Figure (4.3). The measurement values for these pair of samples exhibit

a significant degree of scatter or dispersion. This scattering poses a challenge for

distance functions used to calculate the similarity between samples. The wide

range of values and their distribution across the measurement space can impact

the accuracy of similarity computations. Therefore, it becomes crucial to address

this issue and develop strategies to mitigate the influence of scattered measure-

ments on distance-based similarity calculations.

In the following Figure (4.4), a heatmap is generated to visualise the gene ex-

pression and DNA methylation data of GBM cancer, aiming to identify common

genetic patterns. Additionally, a dendrogram is plotted to explore the poten-

tial hierarchical clustering of samples, with the intention of grouping them into

four distinct clusters. These visualisations provide valuable insights into the un-

derlying structure of the data and facilitate the identification of shared genetic
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characteristics among samples.

Figure 4.4: The visualisation of heatmaps for GBM data, including gene expres-
sion and DNA methylation, for the first 25 samples and first 25 measurements,
with a dendrogram using a cutree of four.

The heatmaps in Figure (4.4) exhibit distinct genetic patterns among the samples.

The colour coding scheme represents the strength of measurement values, with

blue indicating minimum values and red denoting the highest values. Further-

more, a dendrogram is displayed alongside the heatmap, illustrating the clustering

of samples into four groups using a cutree value of four. These visualisations em-

ploy the R library pheatmap to represent the clusters in Gene Expression and

DNA Methylation data. The primary objective of this research is to integrate

these modalities into a unified view and cluster samples based on their genetic

similarities.

4.2 Frequently used Notations

Table (4.1) provides a concise and organised compilation of frequently used no-

tations. It presents an extensive array of symbols, abbreviations, and acronyms

that will be frequently encountered in the following sections. It simplifies the

process of understanding and interpreting complex notations. Each entry in this

table is accompanied by a succinct yet informative description, enabling readers

to quickly grasp the meaning and context of the notation they encounter.
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Table 4.1: Frequently used notations

Notation Meaning
M M = {Xi, i ∈ 1, 2, .., t} denotes a multi-modality or multi-

view dataset. Where each modality or view is denoted with
Xi, where i represents the ith view or modality.

W W = {wk, k ∈ 1, 2, 3} denotes the set of the estimated width
vectors. Each feature vector is divided into three partitions
and for each partition, the width is estimated using the XFD
estimator.

xk A superscript denotes the partition number e.g., xk = kth parti-
tion of a vector. Likewise, xk

i = kth partition of the ith feature.
w1, w2, w3 w1, w2, w3 denotes the width estimated on the partitions based

on Q1, iqr, and Q4 respectively. where Q1, iqr, and Q4 denotes
the 1st quartile, interquartile and 4th quartile respectively.

Q1, iqr,Q4 ∀xi ∈ Q1 ⩽ ∀yi ∈ iqr ⩽ ∀zi ∈ Q4 and xi, yi, zi ⊆ X
wk wk = {wk

i , i ∈ 1, ..., n}, n is the size of dimensions and wk
i

denotes the estimated width value of feature i on kth partition.
B, βk B denotes the set of vectors containing an estimated number

of buckets for each partition e.g. B = {βk, k ∈ 1, 2, 3}, and
βk = {βk

i , i ∈ 1, ..., n}, and βk
i denotes the estimated number

of buckets of feature i on kth partition.
ϕ(.) ϕ(.) facilitates the grouping of elements into buckets.
G = (V,E) G = (V,E), denotes a general or single type graph
G = (Vt, Ett′) denotes a multi-typed graph, with t type of vertices.
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4.3 Problem Definition & Formulation

Suppose that given a multi-view dataset M , consisting of t views or modalities.

Each view is represented by a matrix e.g., Xi ∈ Rm×n e.g, m samples and n

features, where i ∈ {1, 2, . . . , t}. We will often use X without subscripts to denote

any view in the multi-view dataset M. Similarly, x represents any row vector or

sample in X where xj
i represents the element at ith row and jth column of the

view X. The multi-view dataset M can then be represented as a collection or set

of t matrices, as follows: M = {X1, X2, . . . , Xt}. In the multi-view dataset M ,

each view Xi has the same number of observations (samples) across the views,

but the number of measurements (features) might be different in different views.

The goal is to identify the cohorts of patients (samples) within each individual

view first, and then integrate all of the views within a dataset M , and identify

the cohorts of patients on the integrated view.

To achieve this goal, we need to create an m × m pairwise distance matrix for

each individual view Xi using a robust distance function in such a way where

m denotes the number of observations (patients) and each entry of this matrix

e.g., (ei,j) ∈ Rm×m denotes the distance (dissimilarity) between the patient i, and

j. This distance matrix needs to be transformed into a similarity matrix for the

disease subtyping. To do so, this distance matrix is provided to a similarity kernel

e.g., Radial Basis Function (Gaussian Kernel), which transforms it to another

m×m similarity matrix, where each entry of this matrix (ei,j) ∈ Rm×m denotes

the similarity between the patient i, and j. This similarity matrix is represented

via a similarity graph e.g., S = (V,E), where V denotes the vertices (patients),

and E denotes the set of edges between the vertices. Each edge carries a real

value denoting the strength of similarity between the patients. Finally, A) The

similarity graph S is provided for the graph-based clustering to identify cohorts of

patients in S. B) All the similarity graphs for each view within a dataset M are

integrated using the similarity network fusion (SNF) [38]. It generated a single
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similarity graph for each dataset. This integrated similarity graph is provided for

graph-based clustering to identify cohorts of patients on the integrated similarity

graph.

4.4 Multi-view Graph-based Clustering

Similarity Graph 
Construction

Graph 
Integration

Graph Laplacian 
Matrix

Eigen 
Decomposition Clustering

Evaluation

Multi-view input

Figure 4.5: Multi-view graph-based clustering pipeline

Multi-view graph-based clustering pipeline is shown in Figure (4.5). Given a

multi-view dataset, a graph-based clustering approach such as Spectral Clustering

uses the following stages to partition the dataset into k clusters. First, it builds a

similarity graph for each view. Second, it integrates all of the produced similarity

graphs into a single graph. Third, it constructs the Laplacian matrix from the

similarity graph. Fourth, in the eigen-decomposition, it computes the eigenvectors

and eigenvalues of the Laplacian matrix: This stage computes the vectors and

values that define the clusters. Finally, k-means clustering is applied to the

eigenvectors selected in the previous stage, this stage allocates each data point to

a cluster. Following the generation of the clusters, numerous clustering evaluation

approaches can be employed to analyse and validate the quality of the formed

clusters. The evaluation techniques used in this research are explained in the last

section of this chapter.

The input to this pipeline is a multi-view dataset. A multi-view (also known as

multiple datatypes) dataset contains more than one view for each observation

(also called a data point). Each view represents a different aspect of the obser-

vation. For instance, in the case of cancer diseases, we need to extract multiple
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types of data from each patient, such as gene expression, DNA methylation, and

MicroRNA, to better understand the disease. While disease subtyping can be

accomplished with a single view, such as gene expression alone. However, these

views might include complementary information about the disease and thus their

integration can improve the subtyping results.

The first two phases are critical to the overall clustering quality. These procedures

must be carefully followed in order to build clusters that are accurate representa-

tions of the data. For example, if the created similarity graph does not accurately

match the actual data, it will be unable to generate correct clusters from it in

the following stages. Therefore, accurate graph construction is essential for data

mining which helps extract useful information from complex datasets and is a

vital technique for a wide range of machine-learning applications. The same can

be said for the graph integration in the second stage. High dimensionality, ex-

treme values, and data variability are challenges that obstruct the construction

of accurate similarity graphs from the data.

4.4.1 Robust Similarity Graph Construction

In this section, the architecture for the proposed novel similarity graph construc-

tion approach is provided with details on each stage. It effectively constructs

similarity graphs from each view and then integrates the constructed similarity

graphs into a single graph. The proposed approach is embedded into the multi-

view graph-based clustering pipeline and proposed a novel clustering framework

that can be used for clustering, disease subtyping, object detection, and classifica-

tion. Figure (4.6), shows the proposed approach for similarity graph construction

from the multi-view datasets. The following steps are followed in sequence to gen-

erate a robust similarity graph for clustering:

1. Preprocessing multi-view dataset

2. Statistical data binning (buckets) on each view
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Figure 4.6: Proposed methodology.

3. Construction of intermediate multi-typed graph models (IMG) from buckets

4. Robust construction of similarity graphs from IMG

5. Integration of the constructed similarity graphs

Preprocessing multi-view dataset

The following pre-processing steps have been performed on this high-dimensional

data. The first question is about which features have been included in the clus-

tering, depending on their availability across the patients. For instance, in each

view, any feature with more than 60% missing values across the observations is

excluded from the analysis. And the remaining missing values for the features are

replaced with the mean value. Similarly, any observation missing from any of the

views is excluded from the analysis. As this approach is integrative, therefore, it

assumes that all the observations are available across the views.
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Statistical data binning (buckets) on each view

Statistical binning groups data points into bins (also called buckets) and pro-

vides insights that would not be apparent from raw data. In addition, it reduces

the amount of data that needs to be processed, stored, and analysed. As omics

datasets are often complex and contain extreme values with huge data variability

between them, therefore binning can improve the accuracy of estimates and pre-

dictions by reducing noise and outliers in the data. Thus, the rationale behind the

statistical binning was to minimise the impact of data variability and outliers on

the distance metrics, and similarity graphs and to improve the overall accuracy

of the clustering results.

An important feature of data binning is bin width estimation. Common ap-

proaches used for bin width estimation are Sturge’s rule [92], Scott’s rule [93],

Rice’s rule [94], and Freedman Diaconis estimator (FD) [95]. Sturge’s rule and

Rice’s rule do not take into account the data variability and extreme values. Sim-

ilarly, Scott’s rule is based on standard deviation, therefore, it is not robust to

outliers. These statistical procedures for width estimation work best for small

and normally distributed data, however, real-world datasets are often huge and

skewed. Moreover, these techniques create equal-width bins which are not useful

for complex and noisy data. Equal-width buckets lead to skewed results, it is

especially true when data contain variability and outliers.

On the other hand, the FD estimator does consider data variability, as it is based

on statistical quartiles which are robust to outliers. whilst, the FD estimator is

robust against data variability, it computes an optimal fixed bin width on the

inter-quartile range (IQR) only. The fixed bin width in a skewed distribution

ignores the outliers or extreme values. This leads to the loss of valuable data

and fixed-size buckets failing to handle outliers effectively. Therefore, we pro-

posed an extended version of the FD estimator to address this limitation. The

extended version works by dividing each feature into three defined intervals e.g.,

Q1, IQR and Q4. Afterwards, a bin width is estimated on each interval, resulting
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in multiple variable-sized bin widths. Using this division the highly influential

outliers (if any) will be in Q1, and/or Q4. The rationale behind this division was

to minimise the influence of outliers (e.g., data points on the extreme ends) by

grouping them into relevant buckets. The buckets constructed at this stage are

then transformed into a multi-typed graph. The following section describes how

the process of transforming these buckets into a multi-typed graph.

Construction of intermediate multi-typed graph models (IMG)

Graphs provide a way to represent data in a structured manner that preserves the

relationships between different elements. This allows for certain inferences to be

made about the data based on its structure. In addition to the content similarities

graphs add semantics such as the relationship between different elements, the

strength of the relationships and the types of relationships between the various

elements. All of this information is important in understanding the data set as a

whole. Without it, it would be left with a much less informative representation of

the same data. In addition, graphs are used to find patterns, trends, and outliers

in data sets, and can be used to understand the structure of complex data.

This information is vital for constructing similarity graphs that best represent the

underlying structure of the data. As a result, it contributes to better overall clus-

tering outcomes. Therefore, the rationale behind the graph-based representation

of the data at the intermediate level was to consider the structure of the data as

well, rather than just the individual elements. As it allows for a more global view

of the data and helps in identifying patterns and relationships that may not be

apparent from looking at individual elements. Therefore, we proposed an inter-

mediate multi-typed graph model (IMG) to represent the structural information

of the high-dimensional data.

IMG is built from the buckets constructed in the previous stage. Note that IMG is

defined at an intermediate level which is then used to construct the final similarity

graph. In the IMG graph, the vertices (also called nodes) are the buckets which
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contain one or more measurements (also called feature values). It contains n+ 1

type of vertices, where n is the dimensionality of the view (data type) and the

number of vertices is equivalent to the number of buckets constructed in the

previous stage. In IMG, each feature type is denoted with a particular type of

vertex and additionally there is a vertex type denoting the data points (also called

observation). Any two data points having their measurements co-occurred in the

same bucket will be connected through an edge in IMG. This IMG modelling is

then used in the following stage to construct similarity graphs for clustering.

Robust construction of similarity graphs from IMG

An important factor in determining the quality of a clustering algorithm is its

ability to find groups of similar data points. Therefore, similarity graphs are useful

in graph-based clustering, as they provide an effective way to measure vertex

similarities. This is used to cluster vertices together based on their similarity in

the graph. The IMGs constructed in the previous stage is used to construct this

similarity graph. The IMG graph modelling shows the similarity and structural

information both at the feature level and at the data points level. This modelling

can answer questions like how closely connected a pair of features or data points

are. It can also find overlapping features and data points. Therefore, a distance

metric is defined over the IMG vertices as a measure of similarity. The similarity

information about the data points is extracted from the IMG based on the feature

similarities to construct a similarity graph. This is achieved by first defining a

similarity metric over the IMG vertices to construct a pairwise distance matrix.

Finally, a similarity kernel is defined over this distance metric to construct a

fully connected similarity graph. This similarity graph is represented through

a weighted graph. In the weighted graph, the nodes represent the data points

while the weighted edges represent the pairwise similarities. A weight over the

edge connecting a pair of data points represents the strength of connectivity

between two data points.
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Figure 4.7: It shows the construction of similarity networks from each view Xi.
These similarity networks can be constructed by employing any of the kernels
shown in this figure. The constructed similarity networks can then be provided
to a graph-based clustering algorithm like spectral clustering to group samples
into K groups.

Fig (4.7) shows various kernels that are often employed as a similarity measure,

such that K(x,x’) is large when x and x’ are more similar and vice versa [96]. The

similarity kernel is defined over the distance metric to construct a similarity graph

(also called network) as shown in Fig (4.7). The similarity graph in the figure is

represented through a similarity matrix where the rows and columns denote data

points and the values inside each cell denote the similarity between a pair. Note

that the diagonal values are all 1s which represents the similarity of a data point

with itself (also called self-edge in graphs). The final clustering is based on this

similarity graph. In addition, in the case of multi-view datasets, an IMG and

hence a similarity graph are constructed for each view. These similarity graphs

are then combined to generate a single similarity graph. As a result, clustering

is done on both individual similarity graphs and the integrated similarity graph.

The following section describes the process of integrating these similarity graphs.

4.4.2 Integration of the Constructed Similarity Graphs

The importance of disease subtyping is the type of data that is collected about

the disease. The data-driven subtyping is usually achieved on gene expression,

DNA methylation, and miRNA data types. In some cases, the subtypes of the
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disease are discovered on a single data type however, in most cases, these data

types contain complementary information about the disease. Therefore, their in-

tegration into a single similarity graph is of vital importance for the discovery of

the subtypes of a disease. For this reason, the individual similarity graphs that

are being constructed from the individual data types (views) are integrated into

a single similarity graph using the similarity network fusion SNF [38]. SNF inte-

grates the similarity graphs in a nonlinear manner that considers the similarities,

and complementary pieces of information across the similarity graphs. It itera-

tively integrates these graphs with a network fusion technique to construct the

final integrated similarity graph. In order to integrate the constructed similarity

graphs, the following similarity network fusion [38] approach is used:

G(X) = N (X) ×
[
Σk ̸=XG

(k)

t− 1

]
× (N (X))T (4.1)

where, X = 1, 2, .., t, denotes the number of views e.g., (data types). G, is a

fully connected similarity graph constructed for each view X, while N , is a local

affinity retrieved through KNN , which contains the similarity information about

k nearest neighbours for each data point in G.

The mathematical details of the proposed approach for similarity graph con-

struction and the overall graph-based clustering pipeline are provided in the next

chapter. While the following section describes the evaluation metrics used to eval-

uate the accuracy performance of the proposed multi-view graph-based clustering

approach.

4.5 Evaluation Metrics

The aim of clustering evaluation methods is to provide insight into how well the

algorithm is performing. This can be useful for both debugging purposes and for

comparing different algorithms against each other. It is important to remember,

however, that no single evaluation metric will give a perfect picture - it is often
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necessary to use a combination of different methods in order to get a complete

understanding of how an algorithm is performing. Following are the clustering

evaluation metrics that are usually used in combination with disease subtyping.

4.5.1 Survival Analysis

Survival analysis is a type of statistical analysis that is often used in disease

subtyping. This method looks at the length of time that patients survive after

being diagnosed with a disease. This information can be used to create models

that predict how long a patient is likely to live and what factors may influence

their survival. Survival analysis can be used to compare different subgroups of

patients with a disease. For example, survival analysis could be used to compare

the survival rates of patients with different subtypes of cancer. This information

can help doctors choose the best treatment options for each patient. To achieve

this, time-to-event data is modelled. An event of interest in biological studies

is ”death”. However, this information might not be available to all patients

after the end of the follow-up studies, which affects the survivability results. The

phenomenon in which the occurrence of the event for some patients is unknown is

known as censoring. For instance, some patient may stop follow-up, or a different

event other than the event of interest occurs with some patients or the event do

not occur after the end of the follow-up study.

In bioinformatics, Survival analysis is used in different ways in this thesis however

we look into it from two perspectives. Firstly, from the Kaplan-Meier perspective,

which is used to describe the survival time of patients belonging to a group.

Secondly, from the Cox proportional hazards perspective, which is used to see

the impact of categorical, or quantitative variables on survival.

Kaplan-Meier curves

Kaplan-Meier curves are commonly used in survival analysis, which is a branch of

statistics that deals with the study of data relating to the time until some event
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occurs. The Kaplan-Meier curve is a graphical representation of the estimated

probability of surviving over time. The Kaplan-Meier curve can be used to com-

pare the survival functions of two or more groups of subjects. For example, if

we wanted to compare the survival probabilities of two groups of patients with

different types of cancer, we could use a Kaplan-Meier curve. To create a Kaplan-

Meier curve, we first need to calculate the survival function for each individual

in our data set. This can be done by using the following formula:

Definition 4.1 (Kaplan-Meier curves).

S(ti) =
ai − ei
ai

× S(ti−1) (4.2)

Here, S(ti) is the survival probability at time i, and ai denotes the number of

members that were alive at time ti, and ei is the number of members that were

dead at time ti, and finally, S(ti−1) is the survival probability at time ti−1.

Note that it is a recurring formula and initially at time t0 all the members of the

follow-up were alive therefore, S(t0) = 1, where t0 = 0, denotes the beginning

time.

Cox proportional hazards

Cox proportional hazard is a statistical model used to assess the effect of one or

more covariates on the time of an event. It is widely used for survival analysis.

This model allows to estimate the hazard function, which is the probability of

an event occurring at a given time, and to identify the factors that influence the

hazard function. The model also allows to compare the hazard function between

different groups of individuals. For example, we can use the Cox proportional

hazards model to compare the survival rates of men and women or to compare

the survival rates of different ethnic groups. The formula for Cox proportional

hazards is given as follows:
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Definition 4.2 (Cox proportional hazards).

h(t) = h0(t)exp(a1x1 + a2x2 + ... + anxn) (4.3)

Here, x = {xi, i ∈ 1, ..., n} denotes a set of n covariates, and the coefficient a

with a covariate denotes its impact. Similarly, t denotes the survival time, h(t)

denotes the expected hazard at time t, while h0(t) denotes the baseline hazard

when all the covariates are zero.

Survival analysis is one method that can be used in disease subtyping. Other

evaluation methods, such as concordance index, normalised mutual information

(NMI), and clustering purity, can also be used to evaluate subtyping results.

Ultimately, disease subtyping aims to improve our understanding of diseases and

better tailor treatments to each patient’s needs.

4.5.2 Concordance Index (CI)

The concordance index (CI) [97], or C-Statistics is often used to measure how well

a model predicts time to an event. In disease subtyping, CI assigns a risk score

to each patient, a higher risk score means a shorter time for an event. In medical

settings, the event is usually disease or death. Therefore, the high-risk score

means the patients will soon encounter the event. The CI index is computed by

dividing the number of concordant pairs by the total number of evaluation pairs.

The total number of evaluation pairs is usually the sum of the total concordant

and discordant pairs. The CI index can be formulated in a formula given below

which is taken from [98]:

Definition 4.3.

CI =

∑
i ̸=j 1{λi < λj}1{Ti > Tj}dj∑

i ̸=j 1{Ti > Tj}dj
(4.4)

Here, λ denotes the risk score whereas the attached subscript denotes the patient

index for which the risk score is calculated. Similarly, Ti, Tj denotes the time to
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an event for patient i, j, respectively. A pair of patients i, j is concordant if

λi > λj and Ti < Tj. While it is discordant if λi > λj and Ti > Tj.

4.5.3 Normalised Mutual Information (NMI)

Normalised mutual information (NMI) is a measure of the similarity between

two variables. It is often used to evaluate clustering quality. NMI is typically

expressed as a value between 0 and 1, where 0 indicates no similarity and 1

indicates perfect similarity. To get an NMI score, first, compute the mutual

information (MI) between the two data sets. MI is a measure of how much

information is shared between two variables. Once MI has been computed, NMI

can be obtained by the following equation:

Definition 4.4 (Normalised Mutual Information).

NMI(Y, Y ′) =
2× I(Y ;Y ′)

H(Y ) +H(Y ′)
(4.5)

Here, Y , and Y ′ denotes the set of true labels and cluster labels respectively.

I(Y ;Y ′), denotes the mutual information between the true and cluster labels.

H(Y ), and H(Y ′) denote the entropy of true and cluster labels respectively.

NMI is a useful metric for comparing clusterings because it takes into account

both the intra-cluster and inter-cluster similarities. A high NMI value is preferred

as it indicates that the generated clusters are of high quality.

4.5.4 Clustering Purity

A cluster is considered to be pure if all of the points within it belong to the

same class. If there are points from multiple classes in a cluster, it is impure.

Measuring clustering purity can be useful for determining how well a clustering

algorithm is performing. It is often used to evaluate the clustering quality of the

clustering algorithms. Clustering purity is defined in the following equation:
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Definition 4.5 (Clustering Purity).

Purity =
1

N

k∑
i=1

maxj|y′i ∩ yj| (4.6)

Here, N denotes the number of observations, k denotes the number of clusters,

and y′i denotes the ith cluster in C and yj is the class j.

Clustering purity is an important metric, it evaluates the quality of clusters. A

high degree of purity e.g., 1, indicates that the clusters are well-defined and that

the members of each cluster share similar characteristics. On the other hand,

a low degree of purity usually well below 0.5 indicates that the clusters are not

well-defined and that their members are more heterogeneous. A clustering purity

of around 0.5, is no better than random clustering.

4.5.5 Robustness and Stability Evaluation

In order to assess the robustness and stability of our proposed approach in the

presence of noise, we conducted experiments using a well-known Iris clustering

dataset [99], which provides ground truth labels. To introduce noise, we system-

atically added Gaussian noise to the dataset, gradually increasing the noise level.

This allowed us to evaluate the performance of our approach on noisy data by

employing various evaluation metrics, including Accuracy, Kappa statistic [100],

and Rand index [101].

Gaussian noise is generated by introducing random values (noise) with a zero-

mean and a standard deviation denoted as sigma. By adjusting the sigma value,

we could control the level of noise in the dataset. After adding noise to the data we

clustered this noisy data using the proposed approach. The predicted clustering

labels are then compared with ground truth and robustness is evaluated using

accuracy, kappa statistic and rand index. The Kappa statistic, which measures

inter-rater agreement, was utilised to quantify the level of agreement beyond

chance between the predicted labels and the ground truth labels. It ranges from
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-1 to 1, with higher values indicating stronger agreement and a more reliable

approach. Similarly, we employed the Rand index to evaluate the agreement in

clustering, which takes values between 0 and 1. A Rand index value of 0 suggests

no agreement in the clustering of any pair of elements, while a value of 1 indicates

perfect agreement.
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Chapter 5

ROMDEX

5.1 Introduction

This chapter focused on statistical methods that are being incorporated into

graph theory to help improve the robustness of disease subtyping by grouping

patients with similar characteristics from noisy data. This chapter is organised

as follows:

In the first section, the definition and explanation of the preliminary knowledge

for the proposed approach are provided. It provides definitions of statistical tech-

niques related to the proposed approach, such as statistical binning, quarterlies,

and interquartile ranges. The multi-typed graph model created using statistical

binning for robust clustering on high-dimensional data is then defined. This is fol-

lowed by the definition of the proposed Romdex function. First, a brief overview

of the problem will be given. Next, the mathematical formulation of the robust

distance metric will be presented. The proposed approach is designed to be ro-

bust to outliers and noise. The construction of robust similarity graphs from

high-dimensional omics data is provided which can effectively handle noise and

data variability. Finally, a comprehensive flow-chart and algorithm is outlined

that connects all the techniques proposed and discussed in this thesis for robust

disease subtyping on high-dimensional data.
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5.2 ROMDEX - A Robust Metric for Data Vari-

ability & Extreme Values

This section provides details on the novel robust approach for similarity graph

construction from multi-view datasets. This begins with an assumption about

the data on which a distance metric is defined. This is followed by the creation

of variable-sized buckets through statistical data binning from the multi-view

dataset. Followed by the construction of intermediate multi-typed graphs (IMG)

from these buckets. Finally, the construction of a similarity graph from IMG

for graph-based clustering and disease subtyping. Similarity graphs are useful in

graph-based clustering, as they provide an effective way to measure vertex similar-

ities. The proposed approach exploits the underlying relationships and therefore

finds meaningful clusters in data. This is used to cluster vertices together based

on their similarity in the graph.

5.2.1 Mapping the Approach

Assumptions

Let’s assume a set of m observations X = {xi : xi ∈ X ⊆ Rn}m. The pair (X, d) is

a metric space where d is called a metric a.k.a distance function. Suppose we have

two observations, x, y ∈ X where x = {xi, i ∈ 1, ..., n}, and y = {yi, i ∈ 1, ..., n}.

Properties

Metric learning for numeric data aims to learn a distance metric d(., .) : X×X

−→ R+ for all observations in X that satisfies the following properties:

1. d(x, y) ⩾ 0, Positive Semi-definite

2. d(x, y) = 0 ⇐⇒ x = y, Identity of Indiscernible

3. d(x, y) = d(y, x), Symmetry
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4. d(x, z) ⩽ d(x, y) + d(y, z), Triangle Inequality

Limitation of Manhattan Distance

A typical metric to calculate the distance between observations is the Manhattan

distance which can be defined as:

d(x, y) = ∥x− y∥L1 =
n∑

i=1

|xi − yi| (5.1)

It computes the distance between two points x, y ∈ X as the sum of the absolute

differences of their Cartesian coordinates, and it satisfies all of the four proper-

ties of a metric defined above. The Manhattan distance function (L1 norm) is

preferred for high dimensional data compared to the Euclidean distance function

(L2 norm) [67].

However, it lacks the elements required to be deemed a robust metric. A measure

is said to be robust if it is insensitive to extreme values. This necessitates the

synthesis of structurally relevant elements in order to mitigate the impact of

highly influential outliers in distance metrics. As a result, a solution must be

developed to synthesise the relevant measurements into imminent buckets in order

to calculate the distance between them. As a result, in this part, all of the

notions mentioned above are merged and a novel robust function for clustering is

proposed.

This subsection is organized as follows:

1) An extended Freedman Diaconis estimator is proposed to estimate multiple

variable-sized buckets widths on data.

2) An intermediate multi-typed graph (IMG) is proposed to represent the con-

structed buckets through a graph-based representation.

3) Finally, steps 1), and 2) are embedded in a distance function and proposed

a novel robust function called ROMDEX for Clustering in general, and Disease

subtyping.
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5.2.2 Extended Freedman Diaconis Estimator

Statistical binning is a method of grouping data points into bins or buckets. It

is used to reduce the effect of outliers, and noise in data. The common approach

to data binning is to use equal-width bins, which group data points into buckets

of equal width. A common reason for binning data is to improve the accuracy

of results. This is especially true when working with statistical methods like

clustering. Clustering aims to find groups of similar data points however, if the

data is not evenly distributed, it can be difficult to find these groups. Binning the

data can help to even out the distribution and make it easier to find clusters. In

the following section, we define the widely used bin width estimation approaches.

Statistical data binning

In the literature, various statistical methods have been proposed, aiming to deter-

mine optimal bucket size through probability density estimation. The questions

of optimal buckets and width are critical for constructing reliable similarity net-

works in the proposed research. One common approach to probability density

estimation is histograms, which display the frequency of each value per indepen-

dent feature through ’bins’. Bin width is inversely proportional to the number

of bins. Good trade-offs are possible between the width and number of bins by

employing accurate estimations of how a given feature is distributed. Common

approaches used for bin width estimation are Sturge’s rule [92], Scott’s rule [93],

Rice’s rule [94], and Freedman Diaconis estimator (FD) [95].

Let’s x denotes the vector, and n denotes the length of x, e.g., n = |x|, then the

bucket width w, can be estimated using Sturge’s rule as follows:

k = ⌈log2 n⌉+ 1 (5.2)

w =
MAX(x)−MIN(x)

⌈log2 n⌉+ 1
(5.3)
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Sturge’s rule works best for small, normally distributed, and symmetrical data.

However, it does not tack into account the variability and extreme values.

Similarly, Scott’s rule is defined as follows:

h =
3.49σ

3
√
n

(5.4)

Scott’s rule works well for large datasets. As Scott’s rule is based on the standard

deviation, therefore, it is not robust to outliers.

Likewise, the Rice rule is defined as follows:

k = ⌈2 3
√
n ⌉ (5.5)

Similarly, the rice rule overestimates the number of bins and does not consider

the data variability. Generally, the challenge in data binning is the estimation

of bucket width, while the limitation is the equal-width bins. The bucket width

is usually estimated using classical statistical procedures which are not robust to

outliers. Similarly, equal-width buckets lead to skewed results, it is especially true

when data contain variability and outliers. In the following section, we define the

robust bin width estimation approach.

Freedman Diaconis Estimator

FD estimator [95] uses IQR instead of standard deviation which is robust to

outliers. FD estimator is defined as:

w2 = 2× IQR(x)
3
√
n

(5.6)

FD estimator computes the optimal bin width, which is proportional to the in-

terquartile range (IQR) and inversely proportional to the cube root of N . It

considers both data variability and size. It uses IQR instead of standard de-

viation which is robust to outliers. FD estimator, estimates buckets widths on

inter-quartile Range which is comparatively robust to outliers than other bucket
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width estimation methods such as Sturges’ [92], Scott’s [93], and Rice rule [94].

Important concepts to the FD estimator are the statistical quartiles and inter-

quartiles which are defined below:

Definition 5.1 (Quartile). In statistics, quartile describes the division of data

points into four segments of approximately equal size.

Q1 Q2 Q3
Minimum 
values

Maximum 
values

Interquartile range = Q3 – Q1 = 14.15

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 40.5

Figure 5.1: The division of a vector into statistical quartiles

According to Def. (5.1) a feature vector v, with n data points is sorted and

divided into four parts in such a way that each part consists of approximately a

quarter e.g., 25% of the total data points as shown in Fig. 5.1. The partitions

Q1, Q2, Q3, and Q4 denotes the 1st, 2nd, 3rd, and 4th quartile respectively. The

interquartile (IQR) is then computed by taking the difference between the 3rd

and 1st quartile e.g., iqr = Q3 - Q1, and consists of the maximum distribution

(50%) of the data points. In this thesis, a vector v is divided into three parts e.g.,

Q1, iqr, and Q4, and the data points in each part are grouped into buckets using

variable-sized bucket widths. Using this division the highly influential outliers (if

any) will be in Q1, and/or Q4. The rationale behind this division is to minimise

the influence of outliers (e.g., data points on the extreme ends) by grouping them

into relevant buckets.

Limitations of FD Estimator

The only caveat in the FD estimator is that it computes an optimal fixed bin

width on IQR e.g., (25th to 75th percentile) of the data. The FD Estimator

estimates fixed-size bucket width based on IQR only. The feature of fixed size
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buckets in a highly skewed distribution determines outliers as anything outside

the range of Q1−1.5×IQR and Q3+1.5×IQR. This results in empty buckets on

either side of the extreme ranges. It is because the variation between the values

on extreme ends is higher than the variation in the IQR range. This results in

the loss of valuable data and fixed-size buckets not handling the variations in a

more effective way.

The proposed approach aims to group elements into multiple optimum numbers

of buckets to minimise the influence of the outliers on the data distribution. This

can be achieved using an accurate estimation of the true underlying probability

distribution of the observations. Therefore, the proposed approach extended

Freedman Diaconis (FD) estimator [95] as it considers both data variability and

size.

Extending FD Estimator to Multiple Variable Sized Bucket

The proposed methodology aims to achieve a robust metric by incorporating sta-

tistical binning and quartiles into the distance function. This necessitates a grasp

of the extreme minimums and maximums of a highly skewed distribution. The

extreme minimums are in the first quartile (Q1), while the extreme maximums

are in the fourth (Q4). Therefore, for each dimension xi ∈ x we estimate width

on Q1, IQR and Q4 as w1, w2, and w3 respectively. Based on the estimated

widths, the values in these designated quartiles are divided into buckets. Finally,

the distances between the buckets are calculated using the proposed method.

FD Estimator generates fixed bucket sizes, which might result in data loss, there-

fore, it is extended to variable bucket sizes. The variable bucket sizes for the mea-

surements are computed in the IQR, lower quartile, and upper quartile.

w1 = 2× IQR(Q1(x))
3
√
m1

(5.7)

w3 = 2× IQR(Q4(x))
3
√
m3

(5.8)
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In the above equations, m1, m3 denotes the corresponding sizes for the first

quartile and fourth quartile respectively. Where, Eq. (5.7) estimates the bucket

width on the 1st quartile (Q1) of the data while Eq. (5.8) estimates the bucket

width on the 4th quartile (Q4) of the data, thus returns bucket widths for the

lower and upper extreme ranges respectively. Using this strategy, the number of

buckets for IQR, Q1, and Q4 are estimated based on equation (5.6), (5.7), and

(5.8) respectively. Let’s say, w1, w2, and w3 denote the estimated width on 1st

quartile, interquartile, and 4th quartile of the feature vector v respectively, then

the bucket number for any data point xi ∈ x is computed by dividing it on its

respective estimated width.

Figure (5.2) provides a visual depiction of the bucket construction process from

a single view, denoted as Xi. The figure includes an example view represented

as a matrix with 12 samples and 3 features. To construct the buckets, each fea-

ture vector (column vector) is initially divided into three predefined intervals: Q1

(first quartile), Iqr (interquartile range), and Q4 (fourth quartile). Next, the pro-

posed extended Freedman-Diaconis estimator is employed to estimate the width

of each interval. These estimated widths are denoted as wj
i , where i represents

the feature number and j indicates the interval number. Once the bucket width

is determined, it is used as a sliding window over the elements within the interval.

Elements that occur within the same window are grouped together into the same

bucket. In the illustrated Figure (5.2), two buckets are created in the first (Q1)

and third (Q4) intervals for feature f1, while three buckets are generated in the

second (Iqr) interval.

This bucket construction process is repeated for each feature vector in the dataset,

resulting in the creation of distinct buckets corresponding to different intervals

and features. In summary, Figure (5.2) provides a visual explanation of the step-

by-step bucket construction process from a single view, encompassing partitioning

feature vectors into intervals, estimating widths, sliding window operations, and

grouping elements into buckets. In addition, the generated buckets are repre-
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sented by an intermediate multi-typed graph, allowing graph theoretical tech-

niques to leverage the structural information of the data (IMG). The following

section describes the way to represent buckets using IMG.
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Figure 5.2: It shows an example data with n features and m rows. Each column
vector (feature) is divided into three intervals e.g., Q1, Iqr, and Q4. A width w
is estimated on each interval to group samples into buckets in each interval based
on the similarity of feature value.

5.2.3 Intermediate Multi-typed Graph (IMG)

Definition 5.2. Intermediate Multi-typed Graph (IMG):

G = (Vt, Ett′ , lV , lE, FG), is a multi-typed graph, where:

• Vt, denotes a set of finite vertices of type t, (t = 1 to c).

• LV , denotes a set of vertex labels

• Ett′ , represents a set of edges between the vertices of type t, t′ where (t ̸= t′).

• Each vertex, v, v ∈ V , is assigned a list of finite pair of attributes from FG.

• FG(v) = (A1, a1), (A2, a2) . . . (An, an).

A multi-typed graph is created from the constructed buckets. Graph-based ap-

proaches exploit the structure of the data to find similarities between data points.
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By examining the structure of the graph, it is possible to identify overarching pat-

terns and trends. Therefore, we proposed an intermediate graph model (IMG),

defined on the buckets computed from the high-dimensional data. IMG will be

used by the proposed approach to construct a robust high-quality similarity graph

for clustering in general and disease subtyping. Furthermore, the structure-based

treatment of the data provides a way to create sparse matrices with well-separated

clusters. Besides content similarity, IMG also captures structural information in

the final similarity graph, which can be utilised to avoid a pairwise matching sit-

uation or generate sparse matrices with better-separated clusters. The pictorial

representation of this IMG graph is provided in Fig (5.3).
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23 48B1 B2

B1B2
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6 B1

B1 B2

f3

f2

f1

Legend

ID

1 2 2

1 2 2

1 2 2

Figure 5.3: A fragment of the intermediate multi-typed graph (IMG)

Moreover, to enable graph theoretical techniques to compute distances in a topo-

logical space, we propose an intermediate graph representation of the constructed

buckets. The constructed graph is called an intermediate multi-typed graph

(IMG) as shown in Fig. (5.3). The graph in Fig. (5.3), shows a fragment of

the buckets constructed in Fig. (5.2). IMG consists of n types of vertices, where

n denotes the dimensions of the dataset. In Fig. (5.3), n = 3 since it consists of

three different types of vertices, each represented with a distinct symbol. Note

that each vertex in the graph is called a supernode as it may contain a set of

similar values that co-occurred in a single bucket.

IMG modelling handles data variability, and skewness and supports the construc-

tion of a high-quality graph. IMG brings-in useful information from the data and

reflects it in the graph for improved performance. In addition to the content

similarity, this graph model brings-in structural information in the final similar-
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ity graph. Further to this, the structural information can be utilised to avoid

pairwise matching, and generate sparse matrices with better-separated clusters.

Example 6. Let’s assume that X −→ R5×3 represents the gene expression mea-

surements of five patients measured on three proteins e.g., (features). Firstly, the

extended FD estimator will be applied on each feature vector (e.g., protein) sep-

arately to construct a set of buckets for that feature as shown in Fig (5.2). The

type of vertices in IMG is analogous to the number of features in X. Secondly,

there will be three types of vertices (as there are three proteins in X) in IMG, and

the number of vertices (buckets) for each type of vertex will be determined by

the extended FD estimator. Finally, the in-memory representation of this graph

will require three 5×5 adjacency matrices, each for a single type of vertex.

The mathematical representation of this IMG graph is given below:

G = (Vt, Ett′) (5.9)

Where, Vt, denotes a set of finite vertices of type t, (t = 1 to 3 in this case), and

Ett′ , represents a set of edges between the vertices of type t, t′ where (t ̸= t′).

Note that for simplicity we do not assume any labels for edges or vertices. For

each type of vertex Vt, where t = 1, 2, 3, we require a 5 × 5 adjacency matrix as

shown below:

V1 =



0

e21 0

e31 e32 0

e41 e42 e43 0

e51 e52 e53 e54 0


(5.10)

where each eij ∈ Et, and denotes the presence or absence of an edge (link) between

the ith, and jth patient in this adjacency matrix. Note that the diagonal elements

are zero this is because of the absence of the loop (also called a self-loop or a

buckle) between a vertex and itself. Similarly, the upper triangular values are
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empty this is because of the undirected property of the graph. Similarly, an

adjacency matrix will be constructed for each feature vector e.g., V2, V3.

Here, each adjacency matrix e.g., Vt, denotes the structural connectivity of pa-

tients based on feature t. The mathematical representation of this matrix is given

by G1 = (V,E). The structural similarity of patients’ overall features can be rep-

resented through IMG as shown in Fig(5.3), and Eq (5.9). IMG is the combined

(integrated) view of a set of t graphs e.g., G1, G2, G3 in this particular example.

Now, graph theoretical approaches can exploit the structural connectivity from

IMG to find similarities between the patients on either single or multiple mea-

surements (features or proteins). The proposed approach will rely on IMG in

order to construct a robust, high-quality similarity graph.

5.2.4 Robust Similarity Graph Construction

The proposed research computes the distance between the pair of feature vectors

e.g., x, y as the sum of the absolute differences of their corresponding buckets.

With this definition the Manhattan distance becomes as follows:

d(x, y) =
n∑

i=1

∣∣∣∣ xi

wi

− yi
wi

∣∣∣∣ (5.11)

where w is a width vector and each wi consists of the width estimated on ith

dimension e.g., w = {wi, i ∈ 1, ..., n}. The width is estimated using the Freedman

Diaconis estimator (FD estimator). Therefore, dividing the variable xi on ith

estimated width will generate the bucket number for xi inclusion. In the case

of highly skewed features and data variability, the estimated width might not

generate accurate buckets. To solve this problem we need to divide each feature

into defined intervals e.g., (Q1, iqr, and Q4), and then estimate the width of

each interval independently. In this way, the extreme values e.g., (Q1, Q4) are

separated from the maximum distribution e.g., (iqr) and hence the effect of data

variability is minimized. Now we have three set of width vectorsW = [w1, w2, w3],
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where each wk ∈ W and W = {wk, k ∈ 1, 2, 3}. With this modification we have

the following equation:

d(x, y) =
n∑

i=1

∣∣∣∣ xi

wp
i

− yi
wq

i

∣∣∣∣ (5.12)

where, wp
i , w

q
i denotes the estimated width of ith feature of x, y on pth, and qth

partition respectively. As each feature vector is divided into three defined intervals

e.g., Q1, iqr, and Q4, and on each interval, the bucket width is estimated e.g.

w1, w2, and w3 therefore, p, q ∈ 1, 2, 3. We define a function ϕ(.), which assigns

each data point to its respective bucket number. d(x, y) =

n∑
i=1

∣∣∣∣ϕ(xp
i −min(xp)

wp
i

)
− ϕ

(
yqi −min(yq)

wq
i

)∣∣∣∣ (5.13)

ϕ(.) generates the respective bucket number for xi, and yi. The aim behind this

approach is to group values in each feature into an estimated number of buckets

and then compute the distance between the buckets. To achieve this we need

the total number of buckets in each partition. If a width w, is estimated on a

vector v, then the total number of buckets in v, is computed with the following

equation:

βN =
max(v)−min(v)

w
(5.14)

where βN , is the total number of buckets in v. To facilitate the process we do not

need to explicitly group the elements into buckets, but we can compute the bucket

number for any element whenever it is needed with the following equations.

βp
i = ϕ

(
xpi −min(xp)

wp
i

)
(5.15)

ζqi = ϕ

(
yqi −min(yq)

wq
i

)
(5.16)

βp
i , and ζqi denotes the bucket number for the xi, yi feature in the pth, qth partition

respectively. As the bucket numbers are always integers, therefore, the decimal
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value generated by the function ϕ(.) is rounded up to the nearest integer. The

bucket numbers in each partition are in increasing order where, βN denotes the

maximum bucket number, which is equivalent to the last bucket number in a

partition. Therefore, there could be nine possible scenarios which we cover with

the following axioms:

When xi ∈ lower Quartile and yi ∈ upper Quartile

1. d(x, y) = |β1
i − (ζ2i + β1

N)| ⇐⇒ xi ∈ Q1, yi ∈ iqr

2. d(x, y) = |β1
i − (ζ3i + β1

N + β2
N)| ⇐⇒ xi ∈ Q1, yi ∈ Q4

3. d(x, y) = |β2
i − (ζ3i + β2

N)| ⇐⇒ xi ∈ iqr, yi ∈ Q4

When xi ∈ upper Quartile and yi ∈ lower Quartile

4. d(x, y) = |(β2
i + β1

N)− ζ1i | ⇐⇒ xi ∈ iqr, yi ∈ Q1

5. d(x, y) = |(β3
i + β1

N + β2
N)− ζ1i | ⇐⇒ xi ∈ Q4, yi ∈ Q1

6. d(x, y) = |(β3
i + β2

N)− ζ2i | ⇐⇒ xi ∈ Q4, yi ∈ iqr

When both xi, yi ∈ same Quartile

7. d(x, y) = |β1
i − ζ1i | ⇐⇒ xi, yi ∈ Q1

8. d(x, y) = |β2
i − ζ2i | ⇐⇒ xi, yi ∈ iqr

9. d(x, y) = |β3
i − ζ3i | ⇐⇒ xi, yi ∈ Q4

where β1
N , β

2
N , and β3

N are the total number of buckets in the partitions defined

by Q1, iqr, and Q4 respectively.

Now, by adding the bucket numbers from the lower quartile partitions the final

distance metric becomes:

d(β, ζ) =

n∑
i=1

∣∣∣∣∣
(
βp
i +

p−1∑
k=q

βk
i

)
−

(
ζqi +

q−1∑
k=p

ζki

)∣∣∣∣∣ (5.17)
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The final ROMDEX function proposed in Eq. (5.17) covers all of the nine axioms.

These axioms can broadly be categorised into three categories as follows:

1) when xi ∈ lower quartile and yi ∈ upper quartile. In this case, the sum of the

number of buckets on each partition from p to q − 1 is added to the yi. Where,

p, q denotes the partition number such that xi ∈ p, and yi ∈ q. Note that the

summation becomes irrelevant if q ⩽ p.

2) when xi ∈ upper quartile and yi ∈ lower quartile. In this case, the sum of the

number of buckets on each partition from q to p − 1 is added to the xi. Where,

p, q denotes the partition number such that xi ∈ p, and yi ∈ q. Note that the

summation becomes irrelevant if p ⩽ q.

3) when xi, yi ∈ same partition. In this case, there is no need to add anything

as both xi, yi ∈ same partition. Note that in this case p = q, therefore both the

summations on a maximum number of buckets become irrelevant.

The ROMDEX function proposed in Eq. (5.17) is robust to outliers. It synthe-

sizes relevant features into buckets in such a way that minimizes the influence

of outliers on the final computed distance. A critical part of the proposed ap-

proach is the bucket construction as shown in Eq.(5.15), and Eq.(5.16). The

internal process of these equations is visually depicted in Fig. 5.2. In the figure,

each feature vector is divided into partitions based on three defined intervals e.g.,

(Q1, iqr,Q4). In each partition, the elements are grouped into buckets based on

their corresponding estimated bucket width. The process moves the highly influ-

ential elements to the extreme buckets. It can be seen that the relevant elements

in each partition are nicely grouped into multiple buckets using Eq.(5.15), and

Eq.(5.16). In Fig. (5.2), Bi denotes the bucket number which contains the ith

feature. The proposed distance function constructs these buckets and computes

the distances between the buckets instead of individual elements, which is robust

to outliers.

The distance matrix computed in Eq (5.17) is transformed into a similarity graph

for clustering. The clustering algorithms take the similarity matrix of the graph
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and generate clusters based on the similarity of the vertices. A similarity matrix

is defined as a symmetric matrix S, such that Si,j > 0 represents the strength

of similarity between patient i, and j. A standard clustering algorithm such as

KNN is used to separate the group of patients on the graph. In order to generate

a fully connected similarity graph, the ROMDEX function proposed in Eq. (5.17)

is embedded into the Gaussian function as below.

S(β, ζ) =
1√
2πσ

e(−
∥β−ζ∥2
2σ2 )

(5.18)

In Eq. (5.18), ∥β − ζ∥ is the ROMDEX function proposed in Eq. (5.17), and

σ is the bandwidth of the kernel to associate local KNN graph structure. For

multi-view datasets, which is usually the case with disease subtyping datasets, a

separate similarity graph will be created for each type of view a.k.a, data type.

For instance, if m different data types are given, then m similarity matrices for

data types v = 1, 2, ...m, are constructed using Eq (5.18).

The individual similarity graphs are used for single-view analysis, clustering, and

disease subtyping. However, for integrative analysis, these similarity graphs can

be integrated into a single unified similarity graph using any graph integration

approach such as ANF[78], or SNF[38].

5.3 Multi-view Clustering & Disease Subtyping

Disease subtyping typically involves preparing multi-view datasets that include

information on the diseases being studied. After that the similarity graphs for

each type of data (e.g., view) that shows the similarity between the patients based

on their disease status are constructed. At this stage, the graph-based clustering

algorithm is applied to the individual similarity graphs to group the diseases into

distinct clusters. On the other hand, for integrated clustering, these similarity

graphs need to be integrated into a single similarity graph prior to applying any

clustering algorithm. Therefore, in this section, the integration of the constructed
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similarity graphs is explained. Furthermore, the working mechanism of the Spec-

tral clustering algorithm on the integrated similarity graph is shown. Finally, the

end-to-end algorithm which connects all the proposed techniques into a single

framework for robust multi-view clustering and disease subtyping is proposed.

5.3.1 Spectral Clustering and Disease Subtyping

Disease subtyping is widely achieved with spectral clustering, which aims to iden-

tify sub-types of a disease on a patient similarity graph. In this thesis, the spectral

clustering for disease subtyping is applied on the similarity graph G with nor-

malised graph Laplacian L as below:

Lnorm = I −D−1AD−1 (5.19)

where I is the identity matrix, and A is the adjacency matrix of the similarity

graph G generated using Eq. (5.18). In the above Eq. (5.19), D denotes the

diagonal matrix, where each diagonal element is the row sum of the adjacency

matrix A computed using the following equation:

Dii =
∑
j

Aij (5.20)

Spectral clustering [102] algorithms aim to minimise RatioCut [103]. In terms

of clustering, the goal is to minimise the capacity of a cut in a graph. Capacity

defines the strength of edges between the vertices in two different partitions of

the similarity graph G. For instance if V denotes a set of all vertices in G, and

P , P ′, denotes two partitions of the vertices in V , where P ′, is the complement

of P e.g., P ′ = (V − P ), and P, P ′ ∈ V . The total capacity of this partition is

defined as the strength of the total number of edges that exist between these two

sets. Therefore, an optimal cut is found through an objective function RatioCut,

by solving the optimisation problem below:
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min
P∈Rn×C

Trace(P TLP )

s.t. P TP = I

(5.21)

where, P , and L, denote the partition matrix, and normalised Laplacian matrix

respectively.

In the following section, an end-to-end algorithm for the proposed disease subtyp-

ing approach is outlined. It connects all the techniques proposed and discussed

in this thesis at a comprehensive level. The resulting framework enables robust

single-view, integrated-view clustering, and disease subtyping in high-dimensional

data.

5.3.2 End to End Algorithm

Start

M

Extract View Xi

Generate IMG

Preprocess 
View

More 
Views ?

Multiview 
Input

More 
features

?

Extract feature vi

Generate BucketsStore Buckets

Aggregate

Spectral Clustering

Store Similarity Graph

Gen. Similarity 
GraphStore Subtype Results

Integrate Sim. Graphs

Spectral Clustering

Store Subtype Results

End

Survival Analysis

Survival Analysis

Yes

NoYes

NoStored Similarity 
Graphs

Data preparation

Loop condition

Executes when
loop ends

Step or process

Internal storage

Subroutine

Legend

Figure 5.4: Flowchart of the methodology.

In this section first, a comprehensive flowchart is provided which visually depicts

the process flow of the proposed methodology. Secondly, an end-to-end algorithm

is provided which provides algorithmic and technical details to the proposed dis-

ease subtyping process. The flowchart illustrating the proposed methodology is

presented in Figure (5.4). The chart is accompanied by a legend that provides an
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explanation of the different processing stages involved in the methodology, aiding

in the comprehension of the workflow.

The technical details of the flowchart are shown in the algorithm (1). It requires

a multi-view data set M , consisting of t views or modalities. Each view is rep-

resented by a matrix e.g., Xi ∈ Rm×n e.g, m samples and n features, where i

∈ {1, 2, . . . , t}. We will often use X without subscripts to denote any view in

the multi-view dataset M. Similarly, x represents any row vector or sample in X

where xj
i represents the element at ith row and jth column of the view X. The

multi-view dataset M can then be represented as a collection or set of t matri-

ces, as follows: M = {X1, X2, . . . , Xt}. Each Xi needs to be clustered into K

subtypes. First, a robust similarity graph is constructed for each view e.g., Xi

of the dataset X, which is clustered individually into K subsets using Spectral

Clustering. After that, the similarity graphs for all views are integrated into a

single graph, and Spectral Clustering is applied to the integrated similarity graph.

The other requirements are the number of clusters e.g., K, and the Gaussian ker-

nel parameter σ. This algorithm returns a set of similarity graphs e.g., LG, and

clustering labels e.g., LC for each individual view Xi respectively. Additionally,

it returns the integrated similarity graph G, and the clustering labels LC , which

are computed on the integrated graph G.

The algorithm (1), begins by initialising the LG, and LC to empty sets in line 3. In

(line 5) each view is pre-processed according to the pre-processing steps explained

in the results chapter. In (line 7) three variable-sized bucket widths are estimated

for each dimension of the view xi. This is achieved using the proposed extended

FD estimator (see Eq. 5.7, 5.6, 5.8). In (line 8) a set of buckets are generated for

each dimension using the estimated widths e.g., w1,2,3. These buckets are then

added to the list LB. At the end of the loop (see line 6 to 10) the list LB consists

of all the buckets for view Xi generated on its individual dimensions.

The generated buckets are transformed and represented through the proposed

intermediate multi-typed graph model (IMG). It is achieved in (line 11), where
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GX denotes the IMG graph of the view Xi. There will be n type of vertices in GX

as there are n dimensions to the Xi. Each vertex of the IMG denotes a bucket,

while the vertex type represents one of the dimensions of Xi from which it is

created (see Sec. 5.2.3, Example 6, Eq. 5.9).

Algorithm 1 Robust Multi-view Clustering for Disease Subtyping

Require: M,K, σ
Ensure: LG, LC , G, C
1: M = {Xi, i ∈ 1, 2, .., t}, Xi ∈ Rm×n

2: K, σ are the clustering, and kernel parameters respectively.
3: Initialise: LG = LC = [ ]
4: for view Xi ∈M in M do
5: Xi ← pre process(Xi)
6: for vector v ∈ Xi in Xi do
7: w1,2,3 ← xFD estimaor(v) ▷ (using Eq. 5.7, 5.6, 5.8)
8: Bv ← generate buckets(w1,2,3, v)
9: LB ← add to list(Bv)
10: end for
11: GX ← IMG(LB) ▷ (using Eq. 5.9)
12: D ← ROMDEX(vertices(GX)) ▷ (using Eq. 5.17)
13: GS ← Gaussian kernel(D, σ) ▷ (using Eq. 5.18)
14: LG ← add to list(GS)
15: # Single-view clustering
16: CS ← SpectralClustering(GS, K) ▷ (Sp. Clustering [102])
17: LC ← add to list(CS)
18: end for
19: # Integrative-view clustering
20: G← network fusion(LG) ▷ (SNF [38])
21: C ← SpectralClustering(G,K) ▷ (Sp. Clustering [102])

For graph-based clustering, a similarity graph representing the data-point simi-

larities is clustered intoK desired clusters. This similarity graph plays a vital role

which is often computed from the pairwise distance matrix of the data points.

Therefore, the distance matrix is created using the proposed ROMDEX function

(see Eq. 5.17). ROMDEX works on the vertices of the IMG graph constructed

above. This is achieved at the line (line 12) of the algorithm (1). This distance

matrix is then transformed into a similarity graph GS using the Gaussian kernel

(see Eq. 5.18), which is achieved in line (13). Here, GS represents the similarity

graph of the view Xi. Similarly, a GS is created for each view Xi in each iteration

and added to the list LG for later integrative clustering. The similarity graph

101



GS, for each view is clustered into K subsets using the spectral clustering (see

line 16), and the cluster labels are added to the list LC corresponding to the view

Xi. This is used for the evaluation and validation of the clusters generated for

the single view.

At the end of this loop (line 4 to 18), for the dataset D, a set of similarity graphs

GS, and a set of clustering labels LC corresponding to each view Xi are generated.

This means, there will be t, similarity graphs, and t set of clustering labels as

there are total t views in the dataset D. The second part of this algorithm

is the integrated view clustering of the dataset D. Therefore, the individual

similarity graphs from LG are integrated into a single similarity graph G, using

similarity network fusion [38]. This is achieved in (line 20) of the algorithm. The

integrated similarity graph G, fuses the similarity between the data points from

each similarity graph GS. The integrated similarity graph G, is then clustered

into K subsets using the spectral clustering in (line 21) of this algorithm. Finally,

the clustering labels computed for the G are stored in C for the evaluation and

validation of the clusters generated for the integrated views.

5.4 Summary

High-dimensional omics data limits the ability of current bioinformatics approaches

to analyse the data for a variety of reasons. Outliers, extreme values, and data

variability are examples of such limitations, which limit the robustness of these

approaches. Therefore, a novel robust approach for disease subtyping is proposed,

which allows for robust clustering in the presence of outliers in high-dimensional

data. On each view of omics data, the proposed approach performed binning. Ex-

isting statistical binning methods are best suited for small, normally distributed

datasets. Also, these fail to take the extreme values and variability of the data

into account. To avoid this, the proposed approach provided a statistical solution

that extended the FD estimator but created variable size buckets along three de-

fined intervals e.g., Q1, IQR, and Q4 that account for extreme values on either
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end. The rationale behind this division was to minimise the influence of outliers

(e.g., data points on the extreme ends) by grouping them into relevant buckets.

The constructed buckets were then combined to form the Intermediate Multi-

typed Graph (IMG). These IMG were then used to generate a robust high-quality

similarity graph for clustering in general and disease subtyping in particular.

The structure-based data treatment allows for the creation of sparse matrices

with well-separated clusters. In addition to content similarity, IMG captures

structural information in the final similarity graph. A robust function is then

defined on the vertices (buckets) of IMG to compute a pairwise distance matrix.

This distance matrix is then embedded in a Gaussian kernel to generate a patient

similarity graph for each view. In addition, similarity network fusion (SNF), is

used to iteratively integrate all of the constructed similarity graphs. Finally, an

end-to-end algorithm is proposed for Robust Multi-view Clustering and Disease

Subtyping.
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Chapter 6

Results and Evaluation

6.1 Revisiting the Research Objectives

The aim of this research was to investigate a robust statistical approach that

could effectively identify disease subtypes in high-dimensional data with data

variability and extreme values. In particular, the research focuses on four main

objectives: firstly, the development of an Intermediate Graph Models (IMGs)

to represent the topological graph structure of the data, that aids in identifying

patterns and relationships within the dataset. Secondly, to develop a novel robust

function (Romdex) utilising IMG to address the data variability and extreme

values challenges in finding proximity between observations in high-dimensional

spaces. Thirdly, to develop a robust disease subtyping approach based on Romdex

for the accurate discovery of disease subtypes defined by clinical differences, such

as survival. Finally, validation of the proposed approach on genomics, synthetic,

and generic machine learning datasets.

6.2 Introduction

This chapter provides an overview of the various types of data sets used in this

thesis for experiments. The nature of the datasets, their types, and their di-

mensions are extremely important when performing statistical analysis. There-

fore, it also goes over the various dimensions and types of these data sets. The

chapter then presents some statistical analysis of the data sets. This includes

both descriptive statistics and inferential statistics. When performing descriptive
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statistics, it is important to understand the measures of central tendency and

dispersion. Central tendency measures include the mean, median, and mode.

Dispersion measures include the range, variance, and standard deviation. These

have been shown through detailed box plots in the descriptive statistics section.

These measures provide a good idea of what the data looks like and whether or

not there are any outliers. Inferential statistics, on the other hand, allows mak-

ing predictions about a population based on a sample. This includes correlation

analysis between various measurements (features). In this section, correlation is

measured from both aspects e.g., between continuous measurements and between

continuous and categorical measurements. After that, the experimental proce-

dure is presented. This includes setting up the hypothesis (null and alternate),

the significance of the test, the laboratory setup for conducting experiments, and

then evaluation metrics. These tests allow us to determine if the results are sta-

tistically significant or if they could have occurred by chance alone. Finally, the

evaluation of the method on Omics data, synthetic data, and generic machine

learning data is examined and compared with state-of-the-art in the field.

6.3 Datasets Information

We used a variety of real-world and synthetic datasets to evaluate and validate

the proposed research. Five multi-view high-dimensional omics datasets taken for

a specific cancer disease are among the real-world datasets. For further validation

of the research, synthetic data was generated based on real-world omics data with

and without extreme values. Finally, the robustness and stability of the proposed

approach is evaluated by introducing various levels of noise in the clustering data.

6.3.1 Datasets Overview and Shape

The datasets that have been included in this thesis for evaluation and validation

of the proposed work are all multi-view and high-dimensional. A multi-view
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dataset includes more than one view (a.k.a., data type), where each view measures

a different aspect of the problem. Moreover, the data points across all views

of a dataset are the same but the number and type of measurements across

the views are different. Moreover, each view has the shape of Rm×n, with m,

rows (a.k.a, observations, data points) which are the same across all the views,

and n columns (a.k.a., measurements, features) which are different across the

views. These matrices are then transformed into individual distance matrices of

the shape Rm×m, denoting the pairwise distance between the data points. The

distance matrix for each view is then transformed into another similarity matrix

of the same shape e.g., Rm×m, denoting the pairwise similarities between the data

points. Prior to applying the spectral clustering or finding subtypes of a disease,

for each view, a data matrix of the shape Rm×n, a distance matrix of the shape

Rm×m, and a similarity matrix of the shape Rm×m is constructed. Finally, all the

similarity graphs generated for each view of a dataset are integrated into a single

similarity graph of a shape Rm×m.

6.3.2 Omics Data

The proposed approach is evaluated through extensive experiments on multiple

genomics datasets. These datasets are selected for five cancer diseases from [28,

39], which are taken from TCGA 1.

The selected five datasets include Kidney Renal Clear Cell Carcinoma (KIRC),

GlioblastomaMultiforme (GBM), Lung Squamous Cell Carcinoma (LUSC), Breast

Invasive Carcinoma (BRCA), and Colon Adenocarcinoma (COAD). These are

multi-view high-dimensional datasets, that consist of Gene Expression, DNA

Methylation, and MicroRNA data. In addition, clinical data was also available

with each dataset, which included the following information: survival data, age,

gender, tumour status, tumour stage, and histological type.

Table (6.1) depicts the dimensionality of each dataset on each view. The table’s

1https://www.cancer.gov/tcga
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LUSC GBM BRCA KIRC COAD
Expression 110r × 12042c 273r × 12042c 172r × 20100c 124r × 17974c 146r × 17062c
Methylation 110r × 23348c 273r × 22833c 172r × 22533c 124r × 23165c 146r × 24454c
MicroRNA 110r × 706c 273r × 534c 172r × 718c 124r × 590c 146r × 710c

Table 6.1: Shape of each high-dimensional dataset.

row names represent the datasets, whereas the column names represent the views

within each dataset. The dimensionality of the view is represented in rows ×

columns notations in each cell. As can be seen, the number of measurements

(a.k.a, features) far outnumbers the number of observations (a.k.a, data points

or samples). The comparative results generated on these datasets are provided in

Table (6.2). The details and explanation for the generated results are provided

in the corresponding evaluation section.

6.3.3 Synthetic Data

Synthetic data has been generated using the synthpop library. The data is gen-

erated based on the miRNA view of the GBM data.

The Synthpop package in R is used to produce the synthetic data [104]. This

tool is used to create a fictitious version of real MicroRNA data. In addition to

the MicroRNA data, clinical data such as survival, death, gender, and age were

submitted for synthesis. The package includes a survctree method for synthesis

survival time analysis. Because the default options were accepted, the data gen-

eration procedure was largely automated. The synthetically created MicroRNA

data set included five MicroRNA variables and 110 clinical observations. Figure

(6.1) depicts the characteristics of the synthetic data. The skewness coefficient

for each feature is generated using a statistical library moments, which denotes

the skewness direction and strength.

The results generated on the synthetic data are provided in Figure (6.10), and

Figure (6.11). The details and explanation for the generated results are provided

in the corresponding evaluation section.
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Figure 6.1: Characteristics of the synthetic data

6.4 Statistical Analysis and Visualisation

6.4.1 Descriptive Statistics

Descriptive statistics are used to summarise and describe interesting information

about the data. They can be used to describe the distribution of data, and to

calculate measures of central tendency and dispersion. Box plots are a type of

descriptive statistic that can be used to visualise the distribution of data. It is also

known as a box and whisker plot. Figure (6.2), shows a box plot for the selected

few gene expression values from the GBM, and COAD cancer data. It consists

of five elements: the minimum value, the first quartile, the median, the third

quartile, and the maximum value. Each of these values corresponds to a point

on the graph. The values on the x-axis denote the expression value, whereas the

names on the y-axis are the gene names. The boxes inside the figure for each gene

represent the interquartile range (IQR), which is the difference between the first

and third quartiles. The horizontal lines inside the boxes denote the median value.

Similarly, the lines extending from the boxes are called whiskers. They extend

from the edges of the boxes to the minimum and maximum values. The purpose

of this plot is to give a visual representation of how the gene expression values
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are distributed among the patients and across the datasets (e.g., GBM, COAD).

It is helpful for comparing distributions of data sets. In addition, these plots

visually represent the outliers and extreme values denoted as dots at the far ends

of the whisker lines. Interestingly, from Figure (6.2), we can see that almost every

gene has many extreme expression values, lying far outside the IQR range. As, in

statistics, outliers are defined as observations that are more than 1.5×IQR below

Q1 or more than 1.5× IQR above Q3. Since extreme values represent potential

but unlikely outcomes, they are statistically and philosophically more fascinating.

In these situations, any similarity metric based on central tendency measures such

as mean, median or variability elements such as standard deviation, and variance

is severely affected by these extreme values.
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Figure 6.2: Box plot for selected genes.

In addition, while conducting statistical analysis it is important to validate the

observed characteristics of the data through multiple approaches. Therefore, to

ensure whether the values at the edge of whisker lines in Figure (6.2) are truly

outliers? we performed some more statistical analysis as shown in Figure (6.3).

This figure is generated using the gene expression values of CCNB1, and PIK3R1
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of the COAD dataset. The plot shows an ordered squared Mahalanobis distance

of the observations against the empirical distribution function. Figure (6.3) shows

the outliers using four sub-plots. In the top-right plot, the chi-square p-value is

plotted along with vertical lines analogous to the chi-square quantile (0.975), and

adjusted quantile. Similarly, the plot at the top-left is the actual distribution.

Likewise, the plot at the bottom-left shows the outliers detected by the chi-square

distribution, while the plot at the bottom-right shows the outliers detected by

adjusted quantile. The outliers in this figure are shown in red colour, where each

value denotes the index of the outlier in the data.
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Figure 6.3: Extreme values and outliers
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6.4.2 Inferential Statistics

Inferential statistics are often used in data science to test the correlation between

the measurements. For instance, to understand the role of genes in disease,

scientists often measure the expression of thousands of genes in patients’ cells.

This gene expression data is then used in inferential statistics to determine the

correlation between genes.
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Figure 6.4: Statistically significant correlation between genes in GBM.

Correlation analysis is a statistical technique from inferential statistics used to

examine the relationship between two measurements. The relationship between

two measurements is typically represented by a linear equation, and the strength

of that relationship is known as the correlation coefficient. Correlation coefficients

can range from -1 to 1, with -1 indicating a perfect negative correlation and 1

indicating a perfect positive correlation. A correlation of 0 indicates that there

is no relationship between the two variables. Correlation analysis can be used
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to determine whether there is a statistically significant relationship between two

measurements. If the correlation coefficient is significantly different from 0, then

we can conclude that there is a relationship between the two measurements.

Figure (6.4), shows the correlation between expression values of various genes

taken from GBM data. The slider, in the figure, shows the range of correlation

where the row and column names denote the genes. The size of the circles in cells

denotes the strength of the correlation between the genes, it could either be a pos-

itive, or negative correlation. For instance, the pairs (CCNB1, IDH2), (PIK3R1,

PIK3CA), (PIK3R1, NF1), (PTEN, PIK3CA), and (PIK3CA, NF1) are highly

correlated. In addition, the cells with cross symbols denote that the relationship

is insignificant. For instance, the correlation between the pairs (EGFR, CCNB1),

and (EGFR, IDH2) is insignificant. The maximum circle sizes can be seen on the

diagonal because it represents the self-correlation.
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Figure 6.5: Distribution of gene expression values among histological types

In addition, more sophisticated statistical methods need to be used which take

into account other factors that could be influencing the gene expression levels.

For instance, it is statistically, interesting to see the correlation between a gene

expression, and one or more categorical features such as histological type, tumour
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status, or tumour stage. It can provide a better understanding of influencing

factors for expression levels.

x

D
en

si
ty CCNB1

4
6

8
5

7
9

4
6

8
11

5.
0

7.
0

4 7 11

6.
5

8.
5

4 6 8

0.28
***

x

D
en

si
ty PTEN

0.26
***

0.29
***

x

D
en

si
ty TP53

4 6

5 8 11

−0.056

 

−0.066

 

0.14
*

x

D
en

si
ty EGFR

−0.15
*

0.015

 

0.16
**

0.29
***

x

D
en

si
ty PIK3R1

4 7 10

4 7 10

0.15
*

0.47***

0.39
***

0.0086

 

0.33
***

x

D
en

si
ty PIK3CA

0.21
***

0.28
***

0.43
***

0.19
**

0.39
***

0.47***

x

D
en

si
ty NF1

5.0 6.5

5.0 7.0

0.15
*

0.29
***

0.31
***

0.22
***

0.36
***

0.27
***

0.32
***

x

D
en

si
ty RB1

0.32
***

0.28
***

0.29
***

0.25
***

0.16
**

0.17
**

0.23
***

0.42
***

x

D
en

si
ty IDH1

8.0 10.5

6.5 8.5

4
7

10

0.39
***

0.10

.

4
60.30

***

0.087

 

4
6

8

0.29
***

0.23
***

5.
0

6.
0

0.20
***

0.15
*

8.
0

10
.0

0.26
***

x

D
en

si
ty IDH2

Figure 6.6: Performance analytics - inferential statistics.

In Figure (6.5), the expression values of various genes (known to be associated

with GBM cancer) are plotted against the histological types e.g., glioblastoma

multiforme, treated primary GBM, and untreated primary (de novo ) GBM. The

figure shows how the expression values are distributed among these histological

types. From the figure, most of the extremely high or low expression values can

113



be seen with the type untreated-primary (de novo) GBM.

For more detailed insights on correlation, a performance analytics plot is pro-

vided in Figure (6.6), showing various information about the pairwise correlation

between the selected genes. In this figure, for each pair, we plotted a correlation

line, histogram, and the significance of the correlation. Note that, the asterisk in

each cell denotes the significance of the correlation, where the more the asterisk

the stronger the correlation between the pair. The significance of the correlation

between each pair is computed using the P-value, denoting the level of marginal

significance within a statistical hypothesis test for the correlation. In this fig-

ure, the cells without any asterisks denote that the correlation between the pair

is insignificant. Additionally, the values inside each cell denote the correlation

value, and the sign of the coefficient indicates the direction of the correlation

(e.g., negative, or positive).

6.5 Experimental Procedure

6.5.1 Hypothesis

Hypothesis testing is a method used in order to make decisions about whether or

not to accept or reject a hypothesis. It is a statistical procedure used to assess

whether or not a hypothesis is supported by given data. This is based on statisti-

cal evidence, and the decision that is made is either accepting or rejecting the null

hypothesis. Therefore, to conduct a hypothesis test for the subtypes identified

by the proposed approach from the omics data, first, we specify a null and then

an alternative hypothesis as below:

Null Hypothesis (H0): There is no significant evidence of a difference in sur-

vival times between the identified groups.

Alternate Hypothesis (Ha) : There is significant evidence of a difference in

survival times between the groups.
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The null hypothesis (H0) is intriguing because it indicates that there is no signif-

icant difference in survival times between different groups of patients. If this is

the case, then (H0) will be accepted. This contradicts the assumptions made in

alternate hypothesis (Ha) which is in favour of the research conducted in this the-

sis. (Ha) assumes that there is strong evidence in clinical data about the survival

time differences between patients in different subtypes (groups). A significance

test (see the section below) will be performed to determine whether there is signif-

icant evidence of the differences in survival times between the patients in different

groups identified by the proposed approach. If this is the case, then (H0) will be

rejected and (Ha) will be accepted.

Test of Significance

We conducted a significance test, to see if it can provide enough evidence to

reject the null hypothesis (H0). The p-value has been used for testing the null

hypothesis. It is a key concept in hypothesis testing. The smaller the p-value,

the stronger the evidence against the null hypothesis.

There are two types of errors that can be made when performing hypothesis

testing: Type I and Type II. A Type I error occurs when the null hypothesis is

rejected when it should have been accepted. A Type II error occurs when the

null hypothesis is accepted when it should have been rejected. The p-value helps

to control for these errors by giving us a measure of how likely they are to occur.

It is important to note that the p-value is not the same as the significance level

(alpha). The significance level is the probability of rejecting the null hypothesis

when it is actually true. The p-value is used to determine whether or not to reject

the null hypothesis. If the p-value is less than the significance level (0.05), then

the null hypothesis is rejected and the alternative hypothesis is accepted. If the

p-value is greater than the significance level, then the null hypothesis cannot be

rejected.
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This experiment’s evaluation metric was survival time analysis. Cox-proportional

hazards (cox p-value) are used to estimate survival time [105]. It is commonly

used to assess the outcomes of spectral clustering for disease subtyping. The Cox

P-value is a popular statistical model for examining the association between a

patient’s survival time and one or more predictor variables. This model is used

to compare the survival times of two groups of patients at the same time. For p-

values less than 0.05, the null hypothesis that the cohorts have the same survival

is rejected since there is significant evidence of a difference in survival times. As

a result, the lowest values are favoured because they suggest better grouping.

To carry out the test of significance in cancer data, Cox-proportional hazards

(Cox P-value) is used for survival time analysis. For more details on determining

significance in survival data using p-values, the readers are referred to a recent

study [106].

6.5.2 Experimental Setup

Experiment Pipeline

Each individual view of the cancer data is a Rn×m matrix with m observations

and n measurements. The number of measurements varies between views of the

same data, but the observations remain consistent across all views. Following

preprocessing, an Rm×m similarity matrix representing the patients’ similarity

graph is constructed for each individual view using the proposed approach. Sur-

vival curves and the cox p-value are generated for the clustering results on each

similarity graph. During the integration phase, all of the constructed similarity

graphs for each dataset are combined into a single similarity graph using the SNF

[38], and survival curves and cox p-value for the integrated view are generated.

Table (6.2) in the evaluation section contains the p-value for each experiment.

The best p-values obtained by disease subtyping approaches on any dataset are

shown in bold font in the Table. Several survival plots were also created and are

available in the evaluation section.
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Furthermore, two steps of pre-processing are conducted before analysing the gene

expression, methylation, and miRNA of five distinct cancers: To begin, any bi-

ological feature with more than 35% missing values across patients in any data

type was discarded. The values in each data type are then normalised using the

normalisation technique adopted in SNF [38].

Experimental Laboratory Setup

In addition, the experiments are conducted in the following laboratory setup:

Machine: iMac (Retina 4K, 21.5-inch)

Operating System: macOS Big Sur

Processor: 3.1 GHz Quad-Core Intel Core i5

Memory: 8 GB 1867 MHz DDR3

Storage: Macintosh HD 1 TB

Graphics: Intel Iris Pro

Programming Language - R

Programming Environment: R-Studio

Evaluation Metrics

The evaluation of results on omics data for disease subtyping is based on Kaplan-

Meier survival time analysis, which is validated using statistical tests e.g., Cox-

proportional hazard (Cox p-value). Furthermore, we added concordance statis-

tics for the evaluation of the fitted survival model on five TCGA datasets. The

concordance index (CI) is used to evaluate the predictive ability of the survival

model. The CI values of the fitted survival model for all the datasets are im-

pressive which demonstrates the predictive ability of the proposed unsupervised

graph-based disease subtyping. In addition, the proposed method is also vali-

dated on generic machine learning datasets (vision datasets) and evaluated using
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normalised mutual information (NMI), clustering purity, and clustering accuracy.

6.6 Evaluation

In this section, the proposed approach is extensively evaluated using various types

of datasets and evaluation metrics with state-of-the-art approaches. To begin, the

following section evaluates the proposed approach on Omics (cancer datasets)

using Cox-proportional hazards for survival analysis.

6.6.1 Evaluation on Genomics Data
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Figure 6.7: Kaplan-Meier survival curves the groups identified by the proposed
approach in GBM.

118



0 1000 2000 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Survival curves for gene expression of LUSC (IMG)

Days

Su
rv

iva
l

Cox p−value:0.10974 Group 1: 11
Group 2: 21
Group 3: 22
Group 4: 1
Group 5: 21
Group 6: 13
Group 7: 12
Group 8: 1
Group 9: 8

0 1000 2000 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Survival curves for microRNA of LUSC (IMG)

Days

Su
rv

iva
l

Cox p−value:0.00058 Group 1: 45
Group 2: 45
Group 3: 20

Figure 6.8: Kaplan-Meier survival curves the groups identified by the proposed
approach in LUSC.

The proposed approach is tested on these datasets and compared against the

state-of-the-art approaches for disease subtyping. We compared the results of

the proposed approach with the state-of-the-art approaches in disease subtyping

from [39]. These include, Perturbation Clustering (PINS) [39], Similarity Network

Fusion (SNF) [38], Consensus Clustering (CC) [55], and iCluster+ [107]. In

addition, we compared the proposed approach with MRGC, which is a robust

graph-based disease subtyping approach [9].

The Kaplan-Meier survival curves for GBM patients on Gene Expression and

MicroRNA views obtained by the proposed technique are displayed in Fig (6.8).

There is a noticeable difference between the curves of different groups in this

illustration. On the MicroRNA view, the curves for group 2 are dropping at

a slower rate than the other groups, indicating a higher survival rate. All of

the patients in this category are adults aged 43 to 65. Figure (6.9) shows the

survival curves for GBM data using the PINS method. As can be observed, the

proposed method for gene expression has a lower p-value than the PINS. Likewise,

the survival curves for LUSC patients are depicted in Fig (6.8). The proposed

technique found three groups on microRNA view in this image with a Cox p-value

of 0.00058. In the figure, the survival curves for groups 1 and 3 are declining at

a considerably slower rate than group 2, indicating that these two groups have
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Figure 6.9: PINS - Kaplan-Meier survival curves for GBM patients on individual
gene expression view and on integrated view.

Dataset Views ROMDEX MRGC PINS CC SNF Icluster+
Gene Expression 0.00181 0.003109 0.176 0.073 0.219 0.072
DNA Methylation 0.00171 0.00323 0.111 0.128 0.577 0.14

MicroRNA 0.00758 0.0084 0.138 0.509 0.138 NA
KIRC

Integration 0.00676 8.5E-05 0.00013 0.104 0.138 0.077
Gene Expression 0.00043 0.002106 0.408 0.281 0.992 0.056
DNA Methylation 0.03004 0.00508 0.0001 0.001 0.017 0.003

MicroRNA 0.02404 0.0406 0.086 0.526 0.401 0.09
GBM

Integration 0.00307 0.0467 0.000087 0.039 0.062 0.076
Gene Expression 0.10974 0.00182 0.125 0.782 0.095 0.588
DNA Methylation 0.0106 0.0244 0.019 0.129 0.376 0.606

MicroRNA 0.00058 0.0077 0.117 0.938 0.001 NA
LUSC

Integration 0.01084 0.00608 0.0097 0.794 0.428 0.36
Gene Expression 0.00692 0.00766 0.902 0.114 0.969 0.101
DNA Methylation 0.0698 0.000012 0.048 0.578 0.878 0.083

MicroRNA 0.04905 0.07623 0.218 0.142 0.105 NA
BRCA

Integration 0.03963 0.01496 0.034 0.667 0.398 0.416
Gene Expression 0.05281 0.00006 0.113 0.048 0.148 0.29
DNA Methylation 0.13944 0.0486 0.741 0.034 0.389 0.194

MicroRNA 0.18799 0.0175 0.452 0.318 0.131 NA
COAD

Integration 0.08898 0.0602 0.201 0.225 0.296 0.445

Table 6.2: The evaluation and comparison with baseline methods using cox
p-value.
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Concordance Statistics
Datasets KIRC GBM LUSC BRCA COAD
CI 0.7081 0.6599 0.6775 0.7361 0.8405

Table 6.3: The evaluation of the fitted survival model using the Concordance
index (CI).

a higher survival rate. In this case, the p-value is 0.00058, which is significantly

less than 0.05, and so the null hypothesis that the groups have the same hazard

is rejected. The p-value of 0.00058 indicates that there is a significant difference

in survival between the groups. Table (6.2), shows a comprehensive comparison

of the proposed method to state-of-the-art disease subtyping methodologies on

five TCGA multi-view cancer datasets.

As seen in the table (6.2), the proposed method outperformed the baseline ap-

proaches on the majority of the individual view data. Except for the GBM data,

the MRGC algorithm performed the best on the integrated data. The PINS

method, on the other hand, performed well on both the integrated and methy-

lation views of the GBM data. Table (6.2) shows the most significant p-values

with bold numerals. The proposed method consistently received good scores on

the microRNA views.

On the KIRC dataset, the proposed method consistently produced the best p-

value on all views, whereas MRGC earned the best p-value on the integrated

view. On the BRCA dataset, the proposed method had the best p-value for gene

expression and microRNA, whereas the MRGC took first place for DNA methy-

lation. When compared to other techniques, the Consensus Clustering algorithm

(CC) earned the best p-value on the Methylation view of the COAD dataset. The

MRGC remained the closest rival for the proposed subtyping approach. Overall,

the proposed method performed well in terms of the p-value when compared to

the baseline approaches.

Furthermore, an assessment statistic, such as the concordance index (CI), is em-

ployed to test the fitted survival model’s prediction capacity [108]. A decent

predictive model has a CI value larger than 0.7. The CI values for the five TCGA
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Figure 6.10: Proposed vs PINS - Results on synthetic data with extreme values

datasets are displayed in the table (6.3). Overall, the proposed method produced

outstanding results, notably on the KIRC, BRCA, and COAD datasets. The

research conducted by Terry et.al [108] is recommended for further information

on the concordance index for survival models.

6.6.2 Validation of Clustering Performance on Synthetic

Data

Based on the actual MicroRNA data, synthetic data with fever variables is de-

veloped to verify the robustness of the proposed approach. First, the experiment

is conducted on synthetic data with a non-normal distribution and extreme val-

ues, as is common with real omics data. Second, the synthetically created data

is transformed to map it to a roughly normal distribution. The outcomes are

created in both scenarios and compared using various approaches.

Synthetic Data Generation and Transformation

The proposed approach is compared to state-of-the-art perturbation clustering

(PINS) using this synthetic data (see Fig. 6.1) with extreme values. Figure 6.10

depicts the outcomes. Furthermore, we used several statistical transformations
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Figure 6.11: Proposed vs PINS - Results on the transformed synthetic data

to the generated data. The goal was to reduce skewness from the data and

bring it closer to the normal distribution. As a result, we used square root and

log transformations to approximate the normal distribution of the data. We

transformed the data using typical heuristics based on the normality violation.

Based on the normality violation, we applied the following transformation meth-

ods. Applied square-root transformation for variables V1, V3, and V4, since they

were more positively skewed. We applied the log transformation for the variable

V2. Following the transformation, the skewness coefficients were as follows: V1

(0.145), V2 (0.117), V3 (-0.201), and V4 (-0.0083). As we can see, the trans-

formation reduced the skewness dramatically. Following these modifications, we

assessed the proposed approach’s performance on the cleaned synthetic dataset

and compared it to existing state-of-the-art methodologies. The findings are de-

picted in Fig (6.11). The next section explains the results using synthetic data.

6.6.3 Results on Synthetic Data

The performance of the proposed approach is examined using both synthetic data

with extreme values and synthetic data without extreme values. The findings for

data with and without extreme values are displayed in Fig (6.10) and Fig (6.11),

respectively. We chose the PINS method for the comparison and displayed the
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results side by side for the proposed and PINS, as shown in Fig (6.10) and (6.11).

The proposed method attained a p-value of 0.0022 on the extreme values in Fig

(6.10) and identified three patient groups with unique survival curves; however,

the survival curves for the PINS were overlapping. Similarly, using data with no

outliers, the proposed approach produced a much better p-value of 0.00195 than

the PINS, as shown in Fig (6.11). The findings show that the suggested technique

is least influenced by extreme values.

6.6.4 Robustness and Stability of Romdex Against Noise

To assess the stability of the proposed romdexClustering algorithm against data

variability and extreme values, we conducted experiments by repeatedly adding

Gaussian noise to the input data. Gaussian noise introduces random values with a

zero-mean and a standard deviation (sd) determined by the noise level. To control

the amount of noise, we sequentially increased the standard deviation from 1%

to 25%. In order to evaluate stability, we employed several metrics: Accuracy,

Kappa statistics, and the Rand index. Since these metrics require ground truth,

we utilised the Iris dataset [99], a commonly used dataset in machine learning for

clustering, which provides ground truth labels.

We performed two types of experiments to test the stability of romdexClustering.

Firstly, after each iteration of adding noise, we computed the values of the eval-

uation metrics and recorded their values for each noise level. These values were

plotted in Figure (6.12). Since the noise values are randomly generated with the

same level of noise, multiple repetitions of the experiment yield different random

values for the same noise level. To mitigate biases caused by these random values,

we repeated the iterations of adding noise for each level of noise.

Subsequently, we computed the minimum, average, and maximum values of each

metric achieved by romdexClustering across all iterations for each noise level.

These values were then plotted in the following three Figures (6.13, 6.14, 6.15)

corresponding to Accuracy, Kappa statistic and Rand index, which provide a
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Figure 6.12: The stability of Romdex clustering against noise. Gaussian noise
is added in each iteration in increasing order. The evaluation metrics, including
Accuracy, Kappa statistic, and Rand index, are then computed. The X-axis
represents the noise level, while the y-axis depicts the impact of each noise level
on the evaluation metrics. This analysis provides insights into how Romdex
performs under different levels of noise, allowing us to assess its stability.

comprehensive visualisation of the stability analysis.

Figure (6.12) illustrates three line plots representing the Accuracy, Kappa statis-

tic, and Rand index. These results were generated using the following settings:

First, the Iris dataset was loaded into R-studio and assigned to a dataframe,

excluding the ground truth column. The ground truth labels were stored in a

variable called ”true label”.

Next, a loop was defined to iterate over Gaussian noise levels, ranging from 0%

to 25% in increasing order. A noise level of 0% represents the dataset without

any noise, and the loop increments the noise level by 1% in each iteration.
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In Figure (6.12), the X-axis displays the noise levels as 0.01, 0.02, ..., 0.25, cor-

responding to 1%, 2%, ..., and 25% respectively. For each iteration, a specific

level of Gaussian noise (determined by the iteration) was generated, maintaining

the same shape as the dataset. This noise was then added to the dataset. The

resulting noisy dataset was then clustered using the proposed romdexClustering

algorithm.

The predicted clustering labels were compared to the ground truth labels using the

Accuracy, Kappa statistic, and Rand index. The computed values were recorded

for each noise level, and the loop moved to the next iteration. This process was

repeated twenty-five times. Finally, the recorded values were plotted in Figure

(6.12). The figure demonstrates the stability of the proposed clustering algorithm

against noise. From the figure, it can be observed that the addition of increasing

noise has minimal impact on the results. There is no significant decline in any of

the metrics as the noise level increases. Instead, the lines representing the metrics

remain relatively stable up to a noise level of sixteen percent, after which they

show a slow and slight decline.

The lines in the figure have been smoothed using a smoothening function in R,

but the actual values are also displayed on each point for a better understanding

of the stability. It is noteworthy that the accuracy and kappa statistic exhibit

only a minor decline compared to the Rand index.

Overall, the figure demonstrates the robustness of the romdex clustering algo-

rithm against noise, indicating its stability in the presence of varying noise levels.

To ensure an unbiased evaluation of the proposed method in the presence of

randomness, we conducted an extensive evaluation by iterating over the same

noise level multiple times. To achieve this, we implemented an inner loop within

the outer loop that iterates over the noise levels.

For each noise level defined by the outer loop, the inner loop iterates ten times,

generating a noise sample for the same noise level in each iteration. Within each

inner loop iteration, the generated noise is added to the dataset, and the resulting
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Figure 6.13: To mitigate biases, each noise level is repeatedly added multiple
times within each iteration, and the accuracy is calculated for each instance of
noise addition. Subsequently, the minimum, average, and maximum values of the
accuracy metric are computed for each noise level over all iterations, and these
values are displayed in the figure.
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Figure 6.14: To mitigate biases, each noise level is repeatedly added multiple
times within each iteration, and the Kappa statistic is calculated for each instance
of noise addition. Subsequently, the minimum, average, and maximum values of
the Kappa statistic are computed for each noise level over all iterations, and these
values are displayed in the figure.
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Figure 6.15: To mitigate biases, each noise level is repeatedly added multiple
times within each iteration, and the Rand index is calculated for each instance
of noise addition. Subsequently, the minimum, average, and maximum values of
the Rand index are computed for each noise level over all iterations, and these
values are displayed in the figure.

noisy dataset is clustered using the romdex clustering algorithm. The predicted

labels are then compared against the ground truth labels using the evaluation

metrics mentioned earlier. Therefore, for each noise level, we obtain ten sets of

clustering results.

Additionally, after each iteration of the outer loop, we record the minimum, av-

erage, and maximum values of each metric across these ten clustering results to

examine and visualise the range of results obtained. This provides a comprehen-

sive analysis of the stability and performance of the romdex clustering algorithm

under different noise levels.

In summary, the outer loop runs 25 times, and within each outer iteration, the

inner loop iterates ten times, resulting in a total of 250 clustering results (ten

clustering results for each level of Gaussian noise). These results are plotted in

three separate figures: Figure (6.13) for Accuracy, Figure (6.14) for the Kappa
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statistic, and Figure (6.15) for the Rand index.

Each figure displays the maximum, average, and minimum values achieved for

each point (corresponding to the noise level) across the ten clustering results.

From these figures, we can observe that the romdex clustering algorithm exhibits

robustness and stability against noise, as evidenced by the consistent average

evaluation values achieved. However, it is worth noting that the Rand index val-

ues show comparatively more fluctuation between maximum and minimum values

to other metrics. Nevertheless, overall, these results confirm the stability and ro-

bustness of the proposed approach against noise, as evidenced by the consistent

average evaluation values achieved.
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Chapter 7

Discussions

This chapter comprehensively discusses all of the key points related to the re-

search findings raised during the peer-review process. In addition, It provides a

brief conclusion that summarises the main research findings and discusses their

implications for future research in this area.

7.1 A preferred distance function for clustering

on high-dimensional data

Many studies have been conducted to investigate the impact of the curse of high

dimensionality on clustering [109, 37]. The difficulty with clustering on such high

dimensions is that data becomes significantly sparse in high-dimensional spaces

[61]. As a result, the concept of similarity and distance, which are critical for

clustering, loses qualitative significance. A careful investigation of the behaviour

of distance functions (Lk norm) revealed that the meaningfulness is sensitive

to the value k [67]. In comparison to the Euclidean distance (L2 norm), the

Manhattan distance (L1 norm) is preferable for high-dimensional data [67]. Based

on these findings, the proposed method for grouping high-dimensional omics data

used the Manhattan distance (L1 norm).
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7.2 Robust statistical binning vs ranking based

vs non-binning methods for clustering

Ranking-based methods usually obtain their ranks by assigning an ordered inte-

ger ri to each value vi of a sorted feature vector. For example, ri = 1 only if vi is

the greatest value in the feature vector [21]. Rank-based approaches have limi-

tations when it comes to taking essential information regarding data variability

and the degree of proximity between values. Specifically, these approaches might

not be able to provide a precise understanding of the extent to which one value

is superior or inferior to another. As a result, a significant quantity of critical

information included in the data is lost [21]. On the other hand, in the proposed

approach, each feature vector is divided into three defined intervals (Q1, IQR,

Q4), and the values inside each interval are classified into buckets depending on

their corresponding estimated bucket width. This mechanism shifts the most

influential values to the extreme buckets. These robust statistical binning ap-

proaches retain data variability and proximity information in the form of empty

buckets, e.g., gaps. When the distance between two values is higher than the pre-

dicted bucket width, gaps arise. Furthermore, unlike ranking-based approaches,

the bucket numbers are not always ordered consecutively, as gaps (empty buckets)

may occur between distant values.

In addition, Table (6.2) compares the results of binning-based vs non-binning

approaches. Similarity network fusion (SNF), in particular, is a non-binning-

based strategy that is substantially connected to the proposed approach. The

proposed approach differs from the SNF in that the Euclidean distance (used in

the SNF) is replaced with the ROMDEX (used in the proposed). The results

displayed in Table (6.2) show that the ROMDEX (using robust binning) beat the

non-binning based (existing) approaches on numerous datasets.
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7.3 Effect of data complexity on clustering per-

formance

The complexity of data, such as high-dimensionality versus fever observation,

influences the clustering balance. This is frequently the case with gene expression

data. These are high-dimensional data types with fewer observations. These

properties generate issues for both supervised ML models (which frequently leads

to model overfitting) and clustering methods that employ the similarity graph

to put observations into coherent groupings. The intricacy of the data-type in

many circumstances leads to a sparse patient similarity graph, making it difficult

for clustering algorithms to group some of the patients. As demonstrated by

experiments using synthetic data with fever dimensions in Fig (6.10, 6.11), the

proposed approach identified better patient groups with distinct survival.

As a summary, genomics data introduces obstacles such as the curse of dimen-

sionality, and extreme values. Extreme values can distort distance calculations

by significantly influencing overall similarity and dissimilarity measures. Con-

sequently, clustering algorithms may exhibit bias towards these extreme values,

potentially resulting in suboptimal clustering outcomes. Similarly, as dimension-

ality increases, the majority of distances between points tend to become similar,

making it difficult for clustering algorithms to accurately group data points based

on similarity [61]. Therefore, the proposed research suggested a robust statistical

approach that involves grouping measurements into buckets prior to applying any

distance function. This approach mitigates the impact of extreme values on the

distance functions. Subsequently, the problem is modelled to enable the effective

computation of distances between data points based on the constructed buckets

using the Manhattan distance, which is more resilient to dimensionality compared

to the Euclidean distance.
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7.4 Qualitative comparison of the existing dis-

ease subtyping approaches

There are several recent methodologies that have demonstrated robustness in

grouping omics data that are closely related. MRGC is one such approach, with

notable results on omics and generic machine learning data [9]. On many het-

erogeneous actual and synthetic data, ROMDEX produces equivalent excellent

clustering results. ROMDEX, on the other hand, produces more consistent and

stable outcomes. Similarly, the PINS method finds stable clusters by varying

the amount of noise introduced [39]. However, the clustering stability in PINS

comes at the expense of high computing complexity and power. ROMDEX, on

the other hand, produced comparable findings using a robust statistical tech-

nique. In S2GC, on the other hand, a supervised machine learning approach is

used, which produced an optimised similarity graph and showed promising results

for subtyping [11]. However, S2GC requires human intervention to provide class

labels, unlike ROMDEX and other unsupervised techniques.

7.5 Graph Contrastive Learning for Clusteirng

Graph Contrastive Learning (GCL) is a prevalent self-supervised learning ap-

proach for graph-structured data. GCL methods rely on augmentation schemes

for learning invariant representations across different views [110][111]. Existing

approaches for multi-view contrastive learning primarily concentrate on either

multiple graphs or multi-view attributes. Therefore, a generic framework called

multi-view contrastive graph clustering (MCGC), which aims to cluster multi-

view attributed graph data by learning a consensus graph is proposed [112]. The

backbone of GCL is contrastive learning, wherein graph samples are contrasted

to push similar samples together and dissimilar samples apart in an embedded

space [113]. Contrastive Learning uses graph neural networks (GNN) to learn
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low-dimensional embeddings [114]. In recent years, it has garnered increasing

popularity due to its ability to facilitate efficient training of neural networks

when confronted with limited labelled data.

In contrast, the proposed approach in this thesis utilises spectral clustering which

inherently performs dimensionality reduction by leveraging the eigenvectors as-

sociated with the smallest eigenvalues of the affinity matrix [16] [115]. This

approach facilitates the effective representation of high-dimensional data in a

lower-dimensional space, proving advantageous when working with genetics data

that encompass small samples and a large number of features.

7.6 Performance advantages of the proposed re-

search

The proposed linear approach could not outperform the non-linear CGGA model

in terms of accuracy. The proposed approach, on the other hand, has its own per-

formance advantages, such as its rapid, transparent, and explainable procedure,

which is crucial in critical areas such as healthcare and finance. Furthermore,

the proposed approach produces more consistent and stable outcomes. Clus-

tering stability is achieved by a robust statistical approach that is quick and

requires little processing power. The results on synthetic data further show that

the proposed approach is least influenced by extreme values and data variability.

Furthermore, the proposed method has the advantage of being simpler and easier

to understand, which is more applicable to particular applications.

7.6.1 Generalisation of the Proposed Approach

Generic Machine Learning Vision Data

Finally, we have also included three datasets from computer vision, these datasets

are related to object recognition and classification problems. These include 1)
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Caltech101-7, 2) COIL20, and 3) Handwritten Digits.

The results generated on the object recognition and classification data are pro-

vided in Figure (7.1). The details and explanation for the generated results are

provided in the corresponding evaluation section.

Results on object recognition and classification data

In the above section, the proposed approach was evaluated on genomics and syn-

thetic datasets for disease sub-typing. As most of the disease sub-typing datasets

lack gold standards, therefore, the cox p-value remains the most acceptable com-

parison metric, which has been widely adopted in comparative analysis in the

field. In addition to the cox p-value, concordance statistics were performed to

test the predictive ability of the proposed model.

Now, in order to test the generalisability of the proposed approach in other do-

mains it has been evaluated on object recognition and classification data as stated

in the earlier sections. We performed experiments on the vision (generic ML)

datasets. As the vision dataset contained the gold standards, therefore, we com-

puted additional metrics such as NMI, clustering purity, and clustering accuracy.

We computed clustering accuracy to compare the proposed approach with ex-

isting clustering approaches on generic ML datasets. For comparison, we picked

Spectral Clustering, SNF, and PINS. The comparison results are evaluated based

on clustering accuracy. The source code for the proposed approach is made avail-

able on GitHub: https://github.com/bit-whacker/romdex

The results are shown in Figure (7.1) below. Before the comparison, the follow-

ing basic preprocessing steps were applied which are essential for preparing the

dataset for clustering.

1. Each image in each category of the ML datasets is reshaped to a fixed

width× height dimensions d.

2. To extract a single channel, each image is transformed to grayscale.
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Figure 7.1: Accuracy comparison on object recognition and classification data.

3. Image data is extracted from each grayscale image to produce a d-dimensional

numerical matrix.

4. The matrices are then flattened into row vectors.

5. Afterwards, all of the images from each category combined to form a single

matrix with n × m dimensions, where n is the number of all images and m

is equal to d (fixed width× height of the image).

6. Additionally, we added a column vector with the label (category) for each

image.

As can be seen from the figure, overall the proposed approach achieved a decent

clustering performance on all datasets. On the handwritten digits, Caltech, and

COIL20 datasets it achieved 74%, 76%, and 62% accuracy respectively. Likewise,

the proposed approach achieved the best position on the Handwritten digits and

Caltech101-07 dataset. For more details please refer to Figure (7.1).

In addition, the clustering performance of the proposed approach is further evalu-

ated through NMI, and clustering purity. These results are shown in Figure (7.2)

below. Overall, the NMI, and clustering purity values on all three datasets (hand-

written digits, caltech101-07, and coil20) show a decent performance. Which
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Figure 7.2: Performance evaluation of the proposed approach in terms of NMI
and Clustering purity.

shows, the generalisability of the proposed approach toward other domains.

7.7 Limitations of the proposed approach and

the best context in which to apply it.

Despite the best performance of the proposed approach in high-dimensional datasets

with extreme values and variability, has certain limitations. Firstly, the approach

may not perform optimally in datasets, where normal or nearly normal distri-

bution and minimal data variability are present. Other models assuming normal

distribution might yield better accuracy in such contexts. Secondly, the proposed

approach’s reliance on its internal mechanism can lead to relatively lower accu-

racy when applied to datasets that do not exhibit the specific characteristics it is

designed to handle.

On the other hand, the proposed approach is best suited for specific contexts

where its strengths can be leveraged. It excels when dealing with datasets that

contain extreme values and high variability, the proposed approach’s ability to

handle such characteristics makes it an ideal choice. Moreover, the proposed

approach is well-suited for datasets that exhibit complex patterns, non-linear

relationships, and diverse data distributions, as it can capture and model these
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intricacies effectively.

In summary, while the proposed approach has limitations as above, it shines

in high-dimensional datasets with extreme values and variability, as well as in

complex and diverse datasets.
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Chapter 8

Conclusion and Future Works

8.1 Conclusion

Graph-based approaches have the potential to improve overall clustering perfor-

mance. These approaches exploit the underlying relationships and therefore find

meaningful clusters in data. It is feasible to acquire a better knowledge of the

structure inside the data and reveal better insights from previously hidden rela-

tionships by exploiting graph algorithms. Graph-based approaches for clustering

have the potential to uncover hidden value in huge datasets that would otherwise

remain hidden.

Another, critical factor in clustering is the notion of similarity for categorising and

organising noisy knowledge. Similarity kernels are commonly used to compute

it. The distance function utilised in similarity kernels, on the other hand, is

not robust to extreme values, and data variability. Extreme values and data

variability can have a significant impact on the distance function used in clustering

algorithms. The most common distance metric is the Euclidean distance, which

is simply the straight-line distance between two points. However, extreme values

greatly deviate from the rest of the data than other points, causing them to

have a disproportionate influence on the calculated distances. This can cause

problems with clustering algorithms that are sensitive to outliers. Consequently,

they impact disease subtyping by making it more difficult to identify risk factors

and develop appropriate treatments.

All of these issues underscore the importance of carefully considering extreme

values when conducting research on disease subtypes. Failure to do so could lead
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to inaccurate conclusions and potentially harmful consequences for patients. Data

binning can be a helpful tool for handling them. This is because extreme values

often skew results when using traditional methods, such as mean and median.

With data binning, it can group data into bins, or categories, which makes it

easier to see patterns and trends. This can be especially helpful when there are

a lot of extreme values in the data set.

8.1.1 Research Findings

After extensive experiments, we come up with the following research findings. As

the proposed approach assumes high-dimensional data with extreme values and

data variability. Therefore, the proposed mechanism starts pushing the extreme

values (extreme minimums, and maximums) to the far ends of the distribution.

Moreover, to make the proposed approach least affected by the data variability it

starts bucketing the data with variable bucket widths. Afterwards, it computes

the distances between the buckets using ROMDEX (distance metric based on

Manhattan distance) which is preferred for high-dimensional data compared to

the L2 norm functions as the distance in high-dimensional spaces is sensitive to

the value LK norm. Now, as the approach is explicitly proposed for the datasets

with these characteristics, therefore, it works best in these scenarios as can be seen

from the results section. However, if the datasets lack these characteristics then

due to the internal mechanism of the proposed approach it achieves comparatively

lower accuracy than the models that assume normal distribution which provide

strong fitting ability. Therefore, the final takeaway is that the proposed approach

is recommended for the datasets with the above-mentioned characteristics.
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8.2 Future works

8.2.1 Injectable Probabilistic Graph Integration towards

Explainable AI

The amount of information and data generated in healthcare is increasing expo-

nentially. Such a large volume of data creates the need for better integration of

clinical information. Therefore, in medicine a cognitive method of investigation

e.g., clinical oncology, for instance, starts from a generic approach and moves to-

wards more specialised examination by injecting evidence and information from

these relevant sources until they reach a conclusion supported by facts. There-

fore, in the future, the same idea will be adopted to inject context information

into the graph for improvement results. A holistic view of the data leads to a

better understanding of the data sets that are being analysed and can lead to

more granular and insightful research. Therefore, in the future, the aim is to

propose an approach that provides injectable evidence for the improvements in

the integration which is a step forward towards explainable AI. The integrative

approach can help to better understand the disease and its progression, identify

new therapeutic targets, and improve patient care. In addition to the omics data,

the proposed work will integrate clinical information and inject context into the

patient graphs for better and explainable subtyping.

8.2.2 Graph Probabilistic Dependencies for Multi-view

Data Integration

Wide-range of studies investigates data integration techniques for the provision of

valuable insights on several business functions such as disease-subtyping, entity

resolution, and clustering. Real-world datasets often exhibit intrinsic structure

with possible relations between them, therefore, the integration of these datasets

using graph theoretical approaches shows improved results compared to their non-
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graph theoretical counterparts. In graph-theoretical approaches, the individual

source data is first transformed into a graph and then all these graphs are inte-

grated to construct a single integrated target graph. The challenges exist both

at the integration level and the graph construction level.

The challenges at the integration level are those that alter the state of data in-

tegrity on the integrated graph. These challenges arise from the noise and high

dimensionality of the datasets, which increases the likelihood of redundancies.

Consequently, this leads to poor quality of the integrated graph. The challenges

at the integration level significantly reduce the accuracy of the final application.

In the future, these challenges will be addressed by integrating large-scale datasets

using novel graph theoretical approaches. Particularly, these challenges will be

addressed with novel graph dependencies (GDs) called graph probabilistic de-

pendencies (GPDs). GPDs provide probabilistic explanations for the issues that

alter the state of data integrity on graphs.

8.2.3 Improvement Directions to the Proposed Approach

Whilst, graph-based approaches have a great potential to improve overall clus-

tering performance, there are remaining challenges to be addressed. Some of the

challenges have been addressed in this thesis by presenting a robust approach

that led to considerable improvements in disease subtyping. There is space for

improvement, such as determining the optimal sigma value for constructing sim-

ilarity graphs, which is estimated empirically in this work over a few runs of the

programme. As a result, in the future, an optimisation technique is required

to determine the optimal sigma value. In addition, graph theoretical ways to

compute distances on the IMG in topological space are recommended.

As the research contributed to the construction of robust similarity graphs from

high-dimensional source datasets. These robust similarity graphs can be used

with deep learning models as an input for clustering. Therefore, tuning the

proposed approach to work the best on datasets that require non-linear fitting is
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another future direction to be considered.
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[61] N. Tomašev and M. Radovanović, “Clustering evaluation in high-
dimensional data,” in Unsupervised learning algorithms. Springer, 2016,
pp. 71–107.

[62] M. Behringer, P. Hirmer, D. Tschechlov, and B. Mitschang, “Increasing
explainability of clustering results for domain experts by identifying mean-
ingful features.” in ICEIS (2), 2022, pp. 364–373.

[63] D. Cohen, “Precalculus: A problems-oriented approach , cengage learning,”
ISBN 978-0-534-40212-9, Tech. Rep., 2004.

[64] P. E. Black, “Manhattan distance”” dictionary of algorithms and data
structures,” http://xlinux. nist. gov/dads//.

[65] A. Singhal et al., “Modern information retrieval: A brief overview,” IEEE
Data Eng. Bull., vol. 24, no. 4, pp. 35–43, 2001.

[66] R. S. Strichartz, The way of analysis. Jones & Bartlett Learning, 2000.

[67] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, “On the surprising behav-
ior of distance metrics in high dimensional space,” in International confer-
ence on database theory. Springer, 2001, pp. 420–434.

[68] B. Pfeifer and M. G. Schimek, “A hierarchical clustering and data fusion
approach for disease subtype discovery,” Journal of Biomedical Informatics,
vol. 113, p. 103636, 2021.

[69] N. Rappoport, R. Safra, and R. Shamir, “Monet: multi-omic module dis-
covery by omic selection,” PLoS computational biology, vol. 16, no. 9, p.
e1008182, 2020.

[70] A. Kamoun, G. Cancel-Tassin, G. Fromont, N. Elarouci, L. Armenoult,
M. Ayadi, J. Irani, X. Leroy, A. Villers, G. Fournier et al., “Comprehen-
sive molecular classification of localized prostate adenocarcinoma reveals a
tumour subtype predictive of non-aggressive disease,” Annals of Oncology,
vol. 29, no. 8, pp. 1814–1821, 2018.

[71] H. Xu, L. Gao, M. Huang, and R. Duan, “A network embedding based
method for partial multi-omics integration in cancer subtyping,” Methods,
vol. 192, pp. 67–76, 2021.

[72] T. Gärtner, “A survey of kernels for structured data,” ACM SIGKDD ex-
plorations newsletter, vol. 5, no. 1, pp. 49–58, 2003.

[73] M. Rupp, “Machine learning for quantum mechanics in a nutshell,” Inter-
national Journal of Quantum Chemistry, vol. 115, no. 16, pp. 1058–1073,
2015.

[74] D. Ramazzotti, A. Lal, B. Wang, S. Batzoglou, and A. Sidow, “Multi-omic
tumor data reveal diversity of molecular mechanisms that correlate with
survival,” Nature communications, vol. 9, no. 1, pp. 1–14, 2018.

150



[75] W. Fan, C. Hu, X. Liu, and P. Lu, “Discovering graph functional depen-
dencies,” ACM Transactions on Database Systems (TODS), vol. 45, no. 3,
pp. 1–42, 2020.

[76] W. Fan, X. Liu, P. Lu, and C. Tian, “Catching numeric inconsistencies in
graphs,” ACM Transactions on Database Systems (TODS), vol. 45, no. 2,
pp. 1–47, 2020.

[77] Q. Chen, J. Zobel, and K. Verspoor, “Duplicates, redundancies and in-
consistencies in the primary nucleotide databases: a descriptive study,”
Database, vol. 2017, 2017.

[78] T. Ma and A. Zhang, “Affinity network fusion and semi-supervised learning
for cancer patient clustering,” Methods, vol. 145, pp. 16–24, 2018.

[79] X. Chen, N. Garcelon, A. Neuraz, K. Billot, M. Lelarge, T. Bonald, H. Gar-
cia, Y. Martin, V. Benoit, M. Vincent et al., “Phenotypic similarity for rare
disease: ciliopathy diagnoses and subtyping,” Journal of Biomedical Infor-
matics, vol. 100, p. 103308, 2019.

[80] E. Parimbelli, S. Marini, L. Sacchi, and R. Bellazzi, “Patient similarity for
precision medicine: A systematic review,” Journal of biomedical informat-
ics, vol. 83, pp. 87–96, 2018.

[81] K. K. Sharma and A. Seal, “Multi-view spectral clustering for uncertain
objects,” Information Sciences, vol. 547, pp. 723–745, 2021.

[82] O. Rafique and A. H. Mir, “Weighted dimensionality reduction and robust
gaussian mixture model based cancer patient subtyping from gene expres-
sion data,” Journal of Biomedical Informatics, vol. 112, p. 103620, 2020.

[83] I. M. Baytas, C. Xiao, X. Zhang, F. Wang, A. K. Jain, and J. Zhou, “Patient
subtyping via time-aware lstm networks,” in Proceedings of the 23rd ACM
SIGKDD international conference on knowledge discovery and data mining,
2017, pp. 65–74.

[84] C. Lee and M. van der Schaar, “A variational information bottleneck ap-
proach to multi-omics data integration,” in International Conference on
Artificial Intelligence and Statistics. PMLR, 2021, pp. 1513–1521.

[85] G. Zhang, Z. Peng, C. Yan, J. Wang, J. Luo, and H. Luo, “Multigatae:
A novel cancer subtype identification method based on multi-omics and
attention mechanism,” Frontiers in Genetics, vol. 13, 2022.

[86] D.-J. Zhang, Y.-L. Gao, J.-X. Zhao, C.-H. Zheng, and J.-X. Liu, “A new
graph autoencoder-based consensus-guided model for scrna-seq cell type
detection,” IEEE Transactions on Neural Networks and Learning Systems,
2022.

[87] P. Kokol, M. Kokol, and S. Zagoranski, “Machine learning on small size
samples: A synthetic knowledge synthesis,” Science Progress, vol. 105,
no. 1, p. 00368504211029777, 2022.

151



[88] E. Li, L. Wang, Q. Xie, R. Gao, Z. Su, and Y. Li, “A novel deep learn-
ing method for maize disease identification based on small sample-size and
complex background datasets,” Ecological Informatics, vol. 75, p. 102011,
2023.

[89] R. Keshari, M. Vatsa, R. Singh, and A. Noore, “Learning structure and
strength of cnn filters for small sample size training,” in proceedings of
the IEEE conference on computer vision and pattern recognition, 2018, pp.
9349–9358.

[90] J.-Y. Park, H. K. Na, S. Kim, H. Kim, H. J. Kim, S. W. Seo, D. L. Na, C. E.
Han, and J.-K. Seong, “Robust identification of alzheimer’s disease subtypes
based on cortical atrophy patterns,” Scientific reports, vol. 7, no. 1, pp. 1–
14, 2017.

[91] C. R. Planey and O. Gevaert, “Coincide: A framework for discovery of
patient subtypes across multiple datasets,” Genome medicine, vol. 8, no. 1,
pp. 1–17, 2016.

[92] A. S. Herbert, “The choice of a class interval,” Journal of The American
Statistical Association, vol. 21, pp. 65–66, 1926.

[93] D. W. Scott, “On optimal and data-based histograms,” Biometrika, vol. 66,
no. 3, pp. 605–610, 1979.

[94] D. M. Lane et al., “Online statistics education: a multimedia course of
study (http://onlinestatbook. com/),” Rice University, 2006.

[95] D. Freedman and P. Diaconis, “On the histogram as a density estimator: L 2
theory,” Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete,
vol. 57, no. 4, pp. 453–476, 1981.

[96] J.-P. Vert, K. Tsuda, and B. Schölkopf, “A primer on kernel methods,”
Kernel methods in computational biology, vol. 47, pp. 35–70, 2004.

[97] F. E. Harrell, R. M. Califf, D. B. Pryor, K. L. Lee, and R. A. Rosati,
“Evaluating the yield of medical tests,” Jama, vol. 247, no. 18, pp. 2543–
2546, 1982.

[98] M. Schmid, M. N. Wright, and A. Ziegler, “On the use of harrell’s c for
clinical risk prediction via random survival forests,” Expert Systems with
Applications, vol. 63, pp. 450–459, 2016.

[99] R. A. Fisher, “Iris,” UCI Machine Learning Repository, 1988, DOI:
https://doi.org/10.24432/C56C76.

[100] J. Cohen, “A coefficient of agreement for nominal scales,” Educational and
psychological measurement, vol. 20, no. 1, pp. 37–46, 1960.

[101] W. M. Rand, “Objective criteria for the evaluation of clustering methods,”
Journal of the American Statistical association, vol. 66, no. 336, pp. 846–
850, 1971.

152



[102] A. Ng, M. Jordan, and Y. Weiss, “On spectral clustering: Analysis and
an algorithm,” Advances in neural information processing systems, vol. 14,
2001.

[103] Y.-C. Wei and C.-K. Cheng, “Towards efficient hierarchical designs by ratio
cut partitioning,” in 1989 IEEE International Conference on Computer-
Aided Design. Digest of Technical Papers. IEEE, 1989, pp. 298–301.

[104] B. Nowok, G. M. Raab, and C. Dibben, “synthpop: Bespoke creation of
synthetic data in r,” Journal of statistical software, vol. 74, pp. 1–26, 2016.

[105] D. R. Cox, “Regression models and life-tables,” Journal of the Royal Statis-
tical Society: Series B (Methodological), vol. 34, no. 2, pp. 187–202, 1972.

[106] J. Emmerson and J. Brown, “Understanding survival analysis in clinical
trials,” Clinical Oncology, vol. 33, no. 1, pp. 12–14, 2021.

[107] Q. Mo, S. Wang, V. E. Seshan, A. B. Olshen, N. Schultz, C. Sander, R. S.
Powers, M. Ladanyi, and R. Shen, “Pattern discovery and cancer gene iden-
tification in integrated cancer genomic data,” Proceedings of the National
Academy of Sciences, vol. 110, no. 11, pp. 4245–4250, 2013.

[108] T. M. Therneau and D. A. Watson, “The concordance statistic and the
cox model,” Department of Health Science Research Mayo Clinic Technical
Report, vol. 85, pp. 1–18, 2017.

[109] Z. T. Kosztyán, A. Telcs, and J. Abonyi, “A multi-block clustering algo-
rithm for high dimensional binarized sparse data,” Expert Systems with
Applications, vol. 191, p. 116219, 2022.

[110] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph con-
trastive learning with augmentations,” Advances in neural information pro-
cessing systems, vol. 33, pp. 5812–5823, 2020.

[111] N. Liu, X. Wang, D. Bo, C. Shi, and J. Pei, “Revisiting graph con-
trastive learning from the perspective of graph spectrum,” arXiv preprint
arXiv:2210.02330, 2022.

[112] E. Pan and Z. Kang, “Multi-view contrastive graph clustering,” Advances
in neural information processing systems, vol. 34, pp. 2148–2159, 2021.

[113] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang, “Graph contrastive
learning with adaptive augmentation,” in Proceedings of the Web Confer-
ence 2021, 2021, pp. 2069–2080.

[114] K. Hassani and A. H. Khasahmadi, “Contrastive multi-view representa-
tion learning on graphs,” in International conference on machine learning.
PMLR, 2020, pp. 4116–4126.

[115] D. Verma and M. Meila, “A comparison of spectral clustering algorithms,”
University of Washington Tech Rep UWCSE030501, vol. 1, pp. 1–18, 2003.

153


	Acknowledgments
	Abstract
	Declaration
	List of Tables and Figures
	Introduction
	Background
	Motivation
	Problem Statement
	Aim and Scope of the Research
	Aim
	Research Objectives

	Significance, Contribution and Benefits of this Research
	Validation of the Research
	Layout of the Thesis

	Background
	Introduction
	Dataset Overview
	Disease Subtyping
	Single-view Analysis of Omics for Subtype Discovery 
	Integrative Analysis of Omics for Subtype Discovery

	Clustering Analysis a key driver for Disease Subtype Discovery
	Partitional Clustering
	Hierarchical Clustering
	Consensus Clustering
	Evaluation and Assessment of Clustering

	Similarity Measures
	Distance Metrics and the Metric Space
	Similarity Kernels
	Similarity Graph

	Summary

	Literature Review
	Introduction
	Current State of Disease Subtyping
	Integrative Approach for Disease Subtyping
	Graph-based Approaches
	Pairwise Similarity Kernels
	Similarity graph Construction

	Spectral Clustering for Disease subtyping
	Neural Networks for Disease Subtyping
	Limitations and Challenges in Disease Subtyping
	Summary

	Methodology
	Overview
	Exploring The Disease Subtyping Data

	Frequently used Notations
	Problem Definition & Formulation
	Multi-view Graph-based Clustering
	Robust Similarity Graph Construction
	Integration of the Constructed Similarity Graphs

	Evaluation Metrics
	Survival Analysis
	Concordance Index (CI)
	Normalised Mutual Information (NMI)
	Clustering Purity
	Robustness and Stability Evaluation


	ROMDEX
	Introduction
	ROMDEX - A Robust Metric for Data Variability & Extreme Values
	Mapping the Approach
	Extended Freedman Diaconis Estimator
	Intermediate Multi-typed Graph (IMG)
	Robust Similarity Graph Construction

	Multi-view Clustering & Disease Subtyping
	Spectral Clustering and Disease Subtyping
	End to End Algorithm

	Summary

	Results and Evaluation
	Revisiting the Research Objectives
	Introduction
	Datasets Information
	Datasets Overview and Shape
	Omics Data
	Synthetic Data

	Statistical Analysis and Visualisation
	Descriptive Statistics
	Inferential Statistics

	Experimental Procedure
	Hypothesis
	Experimental Setup

	Evaluation
	Evaluation on Genomics Data
	Validation of Clustering Performance on Synthetic Data
	Results on Synthetic Data
	Robustness and Stability of Romdex Against Noise


	Discussions
	A preferred distance function for clustering on high-dimensional data
	Robust statistical binning vs ranking based vs non-binning methods for clustering
	Effect of data complexity on clustering performance
	Qualitative comparison of the existing disease subtyping approaches
	Graph Contrastive Learning for Clusteirng
	Performance advantages of the proposed research
	Generalisation of the Proposed Approach

	Limitations of the proposed approach and the best context in which to apply it.

	Conclusion and Future Works
	Conclusion
	Research Findings

	Future works
	Injectable Probabilistic Graph Integration towards Explainable AI
	Graph Probabilistic Dependencies for Multi-view Data Integration
	Improvement Directions to the Proposed Approach



