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Hyperbolicity from contact surgery

Boris HassELBLATT & Curtis HEBERLE

(Recommended by Svetlana Katok)

ABSTRACT. A Dehn surgery on the periodic fiber flow of the unit tangent
bundle of a surface produces a uniformly hyperbolic Cantor set for the
resulting contact flow.

1. Introduction

This note augments recent progress at the intersection of dynamical systems and con-
tact geometry centered on a Dehn surgery construction adapted to Reeb flows (“contact
flows” to dynamicists) [7]. This surgery is known to contact-symplectic topologists as a
Weinstein surgery, and its introduction in [6] makes it easier to study dynamical prop-
erties (as opposed to, for instance, topological properties). We explicitly establish here
that when performed on a trivial flow, this surgery can produce hyperbolicity: the flow
being surgered is the (strictly periodic) fiber flow on the unit tangent bundle of a surface,
and hyperbolicity ensues when the surgery is performed along a sufficiently nontrivial
annulus. It is explicitly manifested as a Smale horseshoe. This complements the recent
discovery that nondegenerate Reeb flows on closed irreducible oriented 3-manifolds
other than graph manifolds have positive topological entropy [2].

From the perspective of a dynamicist or topologist the creation of dynamical or topo-
logical complexity through surgery is not new. The suspension construction (or mapping
torus) can be viewed as starting from the obvious S!'-action on M x S! and performing
surgery along M x {0} with a dynamically complex identification map on M, such as
M =T? f=(31). In this case, the complexity of the resulting R-action matches that
of f. Topologists are interested in this construction as a source of new manifolds, while
dynamicists see it as a source of examples of flows—whose dynamics is a close coun-
terpart to the discrete-time dynamics of the underlying map. The introduction of the
dynamical contact surgery in [6] was motivated by the exotic flows it produces when
applied to a (hyperbolic) geodesic flow. Later, [7] showed how it can produce (possibly
slightly) larger complexity on an exponential scale. The present application produces
the same manifolds, but creates hyperbolicity, hence exponential orbit complexity, from
an S'-action, the most trivial of flows.

The present construction differs from previous ones in several ways. Unlike the
suspension construction, this surgery is performed on a contact flow (that is, the Reeb
flow of a contact form), the fiber flow on the unit tangent bundle of a surface and produces
a new contact flow. Contact flows are the canonical opposite of suspension flows. On
the other hand, the resulting complexity far exceeds both that of the identification map
on the surgery annulus and that of the original flow. A like surgery on the fiber flow was
undertaken in [7] on an annulus in the unit tangent bundle of a surface that projects
injectively under the footpoint projection to the surface (to a neighborhood of a simple
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closed geodesic). In that context, the resulting flow has the same complexity as the
identification map, which is larger than that of the fiber flow on which the surgery is
being performed; it has quadratic orbit growth.

Here, we instead consider an annulus that projects to a neighborhood of a self-
intersecting geodesic, and the resulting overlap produces hyperbolicity. The mechanism
is that of linked twist maps [1, 3,4, 8-15] to which an introduction is given in [12, Sec-
tion 1.2.2] and in [14]. We note that the insights about linked twist maps that are salient
for this and likely future work are some 40 years old [1, 3,4, 10, 15], and that the self-linked
twists involved here are counter-oriented, which is the less straightforward of the two
possibilities, as intimated by Remark 1 on page 9.

Main Theorem. Consider the (periodic) fiber flow of the unit tangent bundle of a negatively
curved surface and an annulus defined by a nonsimple closed geodesic. A Dehn—Foulon—
Hasselblatt-Vaugon-Weinstein surgery [7] of this flow along this annulus gives a contact
[flow which exhibits a Smale horseshoe for (1, k)-Dehn twisting (“k-twist” for short) with
k = 3. This implies exponential orbit growth and positive topological entropy.

This appears to be a new way of constructing flows with a hyperbolic set, particularly
among Reeb flows, and this theorem was announced in [7]. Here, we focus on the
geometric and dynamical features of the surgery rather than the contact structure, since
that is done carefully in [7]. Establishing the dynamical complexity, that is, the presence
of a horseshoe, does not need to make any reference to this nature of the fiber flow. Nor
does it require describing the flow with great precision. Indeed, horseshoes are robust
under C!-perturbation.

The flows we construct are periodic on a large set, namely on the union of those
fibers which do not meet the surgery annulus. Consequently, the resulting flow is not
hyperbolic in the usual sense [5]—the chain recurrent set includes this large periodic
piece and is hence not hyperbolic. For the same reason the Liouville volume is (invariant
but) not ergodic, nor hyperbolic. Itis a separate project to show that the (Liouville) volume
restricted to the orbit-saturation of the surgery annulus is hyperbolic and ergodic (indeed,
Bernoulli, along the lines of [1,4,15], but adapted to the inconvenient counter-orientation
of the linked twist maps as in [10]). This is not that project.

We produce a horseshoe, analogously to [3], as follows. Section 2 describes the surgery
construction, with a little more background on the ambient contact structures than
needed for the proof of the theorem (because the contact nature of the surgery was
already established in [7]). Section 3 produces the horseshoe engendered by the surgery,
specifically a rectangle in the surgery section which is mapped across itself in at least two
strips by the return map to the section. To establish hyperbolicity of the compact isolated
set defined by this, Section 4 describes how the return map is akin to classical linked twist
maps, albeit counter-oriented rather than co-oriented. Finally, Section 5 then produces
the invariant (and automatically expanding) cone family, which gives hyperbolicity by
the Alexeev cone criterion [5]. At the end we return to a discussion of the context and of
possible further work.

2. Description of the surgery

We build on [7, Section 8], which describes a surgery construction adapted to Reeb
flows (“contact flows” for dynamicists). This construction was originally conceived as a
source of uniformly hyperbolic Reeb flows constructed from the (hyperbolic) geodesic
flow. Here we apply it to the (periodic!) fiber (or vertical) flow in a unit tangent bundle
M = SZ of a surface X of negative and (for convenience of exposition) constant curvature
equipped with its natural contact structures.
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Although this is not essential, we introduce the three Reeb flows that naturally appear
on the unit tangent bundle of a surface of constant negative curvature [5, Chapter 2]. This
is elementary but not commonly presented. There is a canonical framing consisting of
X, the vector field on SX that generates the geodesic flow, of V, the vertical vector field
(pointing in the fiber direction and defined uniquely by a choice of orientation), and of
the horizontal vector field H:= [V, X]. It satisfies the classical structure equations

V,X]1=H, [H,X]=V, [HV]=X. (2.1)
One can check these by using that in the PSL(2,R)-representation of S3, these vector
fields are given by
1/2 0 0 12 0 =12
X~(0 —1/2)’ ~(1/2 0)’ VN(l/z 0 )

The structure equations imply that e* := V + H satisfies [X, V + H] = Fe*, so if a vector

field f - e* along an orbit of X is invariant under the geodesic flow, then 0 = [X, fe*] =

(f ¥ f)e*, where f is the derivative along the orbit. This means that f = + f, so f(¢) =

const-e*’. Thus, the differential of the geodesic flow expands and contracts, respectively,

the directions e*; this is the Anosov property and E* is spanned by the vector e* = V + H.
Of course, in the PSL(2, R)-representation of ST, these three flows are given by

12 0 et’2 o
XWeXp(( 0 _1/2) t) :( 0 e‘”z)'
H s ex ( 0 12 ) coshi/2 sinht/2
Plliz o “\sinh#/2 cosht/2)’

0 -1/ cost/2 —sint/2
Vwexp((ll2 0 )t):( )

sint/2  cost/2

To see in these terms that X is a Reeb field, define a 1-form ay by ap(X) =1 and a((V) =
0= ag(H). For Z € {V, H} we have

=0 =1 eV, H}
dag(X, 2) = Lx ao(Z) = L7 ao(X) + (12, X]) =0,
=0 =0 =0
s0 tx dag = 0. Additionally ag A dag (X, V, H) = ao(X)dao(V, H) = 1 because
=0 =0 =X
dao(V, H) = Ly ao(H) = Ly ao(V) +ao([H, V]) = 1.
=0 =0 =1

Thus, ag A dag is a volume form; in fact, a volume particularly well adapted to this
canonical framing, and « is a contact form with X = Rg,.

Likewise, one can check that the 1-forms = —day(H,-) and y = day(V,-) defined
by (V) =1and B(X) =0 = B(H), and y(H) =1 and y(X) = 0 = y(V) are contact forms
with Reeb vector fields Rg = V and R, = H. Note that the orientation given by A df§ is
the opposite of the orientation given by ag A d ay; therefore ay and B define different
contact structures. Dynamically R,, and Rg are polar opposites: the geodesic flow is
hyperbolic and the fiber flow is periodic.

To fix ideas in a convenient way, we suppose that the surface X has genus two and
constant curvature, and that the closed geodesic c: Sl — %, s+ ¢(s) we use to define the
surgery annulus is as shown in Figure 1, with a single self-intersection at right angles.
Consider the knot y obtained by rotating the unit vector field along ¢ by the angle 0 = /2.
This knot is Legendrian since H is tangent to y. To obtain standard coordinates in a
neighborhood of y we first consider an annulus A in SZ transverse to the fibers with
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FiGure 1. A self-intersecting geodesic and projections of surgery annuli
with different widths

coordinates (s, w) € S' x (=2¢, 2¢) such that 4 = wd's and then flow along the Reeb vector
field Rpg to obtain coordinates (t, s, w) € S! x A= N such that B=dt+wds.

This is more detail than needed here. It suffices that we have defined a smooth
embedding ¢ of the “abstract” annulus A:=R/Z x [0, 1] into the unit tangent bundle such
that the image projects along fibers as shown in Figure 1; under the base-point projection,
this corresponds to a tubular neighborhood of ¢.

Next, define a twist f on A. For purposes of the present description it can either be
linear or smoothly tangent to the identity on the boundary. The twist 1o fo:™! on IA,
taken as an identification map, defines the surgery. (In the sequel we will conflate this
and f. How to ensure that the surgered flow is a Reeb flow is described carefully in [7].)
We denote the surgered manifold by M, . Note that the unit tangent spheres at points
outside of the projection to X of the annulus are unaffected by the surgery. The embedded
annulus (A is a section for the surgered flow, and we will henceforth study the restriction
to the orbits that meet this section, and we will do so by studying the return map to this
section (A.

3. Horseshoe

We begin by locating those points which always return to the overlap region and
are hence subject to twists in alternating orientation. We then show that this implies
hyperbolicity. Specifically, we here look for a rectangle which is mapped across itself in a
manner analogous to the Smale horseshoe in Figure 2.

I |I [ |) B B
ER d ||L<(g((| | - -

FiGure 2. Horseshoe (from [5] with permission)

In doing so, consider Figure 3. It shows a k-twist f with k = 2 of the embedded
annulus.! The corners of the “overlap” square are denoted by A, B, C, D; on the top copy
of that region, the twist is in the vertical direction. In that copy, denote by y; the curve

1k = 2 reduces clutter but is insufficient; the invariant set A :=;e7 f iQisa hyperbolic fixed point rather
than a hyperbolic Cantor set. Figure 4 shows a less trivial situation, but we refer to the notations in Figure 3.
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with end-points at D and on the line AB, respectively, such that f(y;) € CD, and by y»
the curve with end-points at B and on CD, respectively, such that f(y,) < AB. Likewise,
on the bottom copy, where the twist is in a horizontal direction, let o, be the curve from
D to BC such that f’1 (1) € AD and o, the curve from B to AD such that f’l(Uz) c BC.
Let Q denote the quadrilateral in the top layer bounded by the curves vy, y2, 01 and o7,
and let Q' denote the corresponding quadrilateral in the bottom layer.

fypeCD
f(y2) < AB

f Yoy cAD
f o2 cBC

FiGure 3. Self-linked 2-twist

The strip snaking across the annulus is f(Q) as follows. The sides y; and y; are
mapped into CD and AB, respectively, while the sides o; and o, are wrapped around
the annulus k times, so f(Q) is a narrow strip beginning on AB and terminating on CD
having k intersections with Q" and k — 1 intersections with Q; in Figure 3, this is the one
intersection labeled S. Our interest is in f(Q) N Q, because its points are subject to a
vertical twist followed by a horizontal one after the flow takes Q to Q'.

For k > 2 this overlap produces two or more strips of Q mapped across Q as in Figure 2.
We will show that the invariant set A :=(;ez f*(Q) is hyperbolic.

4. Relationship with linked twist maps

With respect to these pictures, let us assume that ¢ is “linear” in that it maps the
boundary and each line {x} x [0, 1] with constant speed, and the image of each of these
lines is a line orthogonal to the boundary. Since this assumption is only used on the
invariant set from the previous section, it does not preclude smoothness—the surgery
can be smoothed in a neighborhood of the annulus boundary which is disjoint from this
invariant set.

Again, this annulus is a section for the fiber flow. The surgery uses the twist f (conju-
gated by ¢). This connects fiber segments ending (in the sense of the flow direction) at
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FIGURE 4. Self-linked 3-twist

a point z in the annulus with segments starting at f(z). The original flow corresponds
to f =1d. The return map of the surgered flow to this section then has twist dynamics
plus the interaction of transverse twists in the blue “overlap” square. Here is a slightly
inaccurate description of the dynamics which shows the close kinship with classical
linked twist maps. The subsequent proof of hyperbolicity does not use this description.

Figure 5 shows how the embedded annulus corresponds to two strips in the plane with
suitable identifications; these are shown in enclosing squares labeled H and V according
to whether the included strip is horizontal or vertical. Let J = J -1 denote the piecewise

FiGure 5. Overlap and identifications of the surgery annulus



Hyperbolicity from contact surgery 7

isometric involution that interchanges H and V by translations. The strips correspond
to [0,1] x [0,1/2] and [0,1/2] x [0, 1], respectively, in a natural way; say, up to translation,
rotation, and scaling. Each is marked with the blue “overlap” square from the projection.

Define F: HUV — HUYV by Jo f on the union of the strips (as representing the surgery
annulus) and J elsewhere. The linked twist map in question is defined by T':= F o F. This
is as smooth as f.

To see that this represents the return map of the flow, consider first a point z in H
outside the strip. Then F(z) = J(z), which may lie outside the strip in V, in which case
T(z) = J?(z) = z. If F(2) = J(z) lies in the strip in V, then T(z) = F(J(z)). Similarly with
points in V outside the strip.

If z € H is in the strip, then f(z) is in one of the strips, so F(z) is in a strip only if it lies
in either of the “overlap” squares, in which case T'(z) = F(F(z)) involves four nontrivial
maps, including two twists in orthogonal directions; otherwise T'(z) = J(F(z)). Similarly
for z € V in the strip.

So indeed, the “overlap” square is the locus of composing orthogonal twists. The sole
inaccuracy in this description is that the rotation between twist of one kind and the other
is not unique but only defined up to a sign (or an angle of =) depending on whether the
transition is from top to bottom or vice versa.

Az

Ay

FIGURE 6. Linking of twists

5. Hyperbolicity

For establishing hyperbolicity of the horseshoe, we briefly continue with the preceding
description, and place H and V in Figure 5 on top of each other to obtain a representation
in the unit square [0, 1]? with the overlap square [0,1/2]? in the lower left corner as in
Figure 6. The twist f which defines the surgery can be defined in terms of an f: [0,1/2] — R
such that

e fissmooth,

e f(0)=0,

. f(1/2) €N,

e f=0,

e 3¢>0, A>2suchthatf(x) >Awhene<x<1/2—c¢.
In our context, we can take A = k = 3. Taking as in Figure 6 the two parts of the surgery
annulus to be

Ar={(x, ) el0,1*|0=y=<1/2}, Ay:={(x,»el0,1]*|0=sx=1/2},
this produces (area- and orientation-preserving integrable twist) maps by projecting

(x+f(),y ify<1/2 G:(x,y)H{(x,y—f(x)) ifx<1/2

, (5.1)
(x,) ify>1/2. (x,) ifx>1/2

F: (x,y)»—»{
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to [0,1]2 according to the identifications in Figure 6. With respect to these choices, the
return map is given up to a sign by the linked twist map T defined by the projection of
GoF, and (for small €), the set A consists of those (x, y) for which T"(x, y) € [e, % —¢]? for
allnez.

While the preceding is not an exact description of the dynamics, it suffices for es-
tablishing hyperbolicity because either way, the differential of the second iterate of the
return map is either DGo DF or —DGo DF, depending on the point. An alternative way
of seeing this without reference to linked twist maps is by turning attention to the frame
field on the annulus, which is illustrated in the left half of Figure 5. Applying the twist F,
then changing layers in the overlap region, then applying the complementary twist and
changing layers again produces a map whose differential is DT = + JDGJDF, where J is
the rotation by 7 and the sign depends on the point—and is immaterial for invariance of
cones.

Ficure 7. Cones

As in Figure 7, we establish hyperbolicity of T [ A by showing that the cone family

C@)={uv)eTA[024>5:=-5+/(5)*~1>-1}
L 1
$0 6%+A8+1=0, thatis,| §+A=-1/5

for z € Ais strictly D T-invariant. To that end, note first that

DFCC C(2):={(u,v) € T,A|ulv=-1/6=5+A}

because if (1, v) € C(x, y), then

( [ N _ ! u,_ u U u
u,v):=DFy,y(u,v) =W+ (y)vy,v), so 7_;+f(y)>;+A26+A.

Next, note that DGC C C since (1, v) € C(x,y) = (//, V) := DG(u, v) = (u, v —§ () 1), s0
!

u u 1 1
- = = > 26.
voov—fu L -f( -6-A
[ ] | M—|
<-6<1 >A>2
S — |
<0

Thus, DTC = +DGDFC c C strictly, as claimed . Together with area-preservation ([5,
Theorem 5.1.15], or by a simple calculation), this also implies that DT uniformly expands
vectors in C, which verifies the cone criterion for uniform hyperbolicity.

Note from the computations or from Figure 7 that DT flips the cones “half the time”.
This feature of the counter-orientation of the self-linked twist and Figure 7 illustrate that
hyperbolicity requires the twists to be strong enough.
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Remark 1. Figure 7 and a look at linear parts illustrate the relative delicacy in handling
counter-oriented twists. In this situation, the linear parts can be taken to be

1 a 1 0 1 0\(1 a 1 a
DF_(O 1)' DG‘(—a 1)' DGDF‘(—a 1)(0 1)_(—51 1—a2)'

The latter has eigenvalues 1. =1 — “72 + %v a? —4 < 1; these lie on either side of —1 when
a > 2, but hyperbolicity can fail for smaller a. It is well to add that this does not require f'
to be constant; if ab > 4 then

S PR R

has eigenvalues 1. =1 - %(1+/1 - ) on either side of —1:

b 4 1
/1+=1—a—(1+ 1——)<—1 and A_=—>—1.

2 ab As

>2 >1

By contrast, for co-oriented twists this becomes

b 1o =06 12%)

with eigenvalues 1. =1+ %b (1£4/1+ 2;) >0 on either side of 1 whenever ab > 0. Indeed,
a picture corresponding to Figure 7 for this situation shows strict invariance of the first
quadrant for any a, b > 0 (both twists preserve the first quadrant, and its image under the
composition is the cone bounded by the columns of this last matrix, which are positive).

6. Further work

6.1. Contact homology. Returning to the fact that this construction can be carried out
entirely in the realm of contact flows, we first point to amplifications analogous to the
aims in [7]: it would be interesting? to associate with these surgered flows some insights
into exponential orbit growth produced by cylindrical contact homology for any Reeb
flow with the same contact structure.

6.2. Transitivity, and ergodicity of Liouville measure. Geometrically, a natural direction
for extensions is to develop ways in which a flow built in this way is (nonuniformly) hy-
perbolic on the entire manifold rather than retaining periodic pieces. It seems plausible
that choosing several surgery annuli built from self-intersecting geodesics in such a way
that their footpoint projections cover the surface, would “in general” produce hyper-
bolicity of Liouville measure if the corresponding surgeries are carried out at the same
time. However, handling the interactions between the annuli is likely to be technically
daunting.

Alesser issue is the choice of geodesic in Figure 1. It is clear that this is inessential
for the arguments in Sections 3 that produce the invariant set. It is a more significant
convenience in Sections 4 and 5. At the level of precision needed here, an adaptation
of the coordinate choices produces like local computations and the desired conclusion.
However, for producing contact flows, one needs to choose Darboux coordinates on
the embedded surgery annulus in order to directly implement the surgery description
in [6, 7]. For establishing hyperbolicity of a horseshoe in Section 5, this is an inessential
convenience, but for establishing hyperbolicity of Liouville measure (restricted to the

2But daunting, as noted there: “The growth rate of contact homology appears quite difficult to handle” in
the present case [7, Remark 3.15].
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surgered part of the flow), this seems more urgent. It may be worth noting that the
arguments in Section 5 will work when the twists are not at right angles, possibly requiring
stronger twisting. Here it is relevant that the twisting by the differential of the surgery
identification is inversely proportional to the width of the surgery annulus, averting the
need for changing the degree of the Dehn twist. (At the same time, “thinner” twists may
have to be more numerous to cover the manifold.)
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