
C EN T R E
MER S ENN E

Open Journal of Mathematical Optimization is a member of the
Centre Mersenne for Open Scientific Publishing

http://www.centre-mersenne.org/
e-ISSN: 2777-5860

Open Journal of
Mathematical
Optimization

Olivier Fercoq
Quadratic error bound of the smoothed gap and the restarted averaged primal-dual hybrid gradient
Volume 4 (2023), article no. 6 (34 pages)
https://doi.org/10.5802/ojmo.26

Article submitted on May 31, 2022, revised on April 6, 2023,
accepted on July 3, 2023.

© The author(s), 2023.

This article is licensed under the
CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE.
http://creativecommons.org/licenses/by/4.0/

http://www.centre-mersenne.org/
https://doi.org/10.5802/ojmo.26
http://creativecommons.org/licenses/by/4.0/


Quadratic error bound of the smoothed gap
and the restarted averaged primal-dual hybrid gradient

Olivier Fercoq
olivier.fercoq@telecom-paris.fr
LTCI, Télécom Paris, Institut Polytechnique de Paris, France

Abstract
We study the linear convergence of the primal-dual hybrid gradient method. After a review of current analyses, we show
that they do not explain properly the behavior of the algorithm, even on the most simple problems. We thus introduce
the quadratic error bound of the smoothed gap, a new regularity assumption that holds for a wide class of optimization
problems. Equipped with this tool, we manage to prove tighter convergence rates. Then, we show that averaging and
restarting the primal-dual hybrid gradient allows us to leverage better the regularity constant. Numerical experiments on
linear and quadratic programs, ridge regression and image denoising illustrate the findings of the paper.
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1 Introduction

Primal-dual algorithms are widely used for the resolution of optimization problems with constraints. Thanks to
them, we can replace complex nonsmooth functions like those encoding the constraints by simpler, sometimes
even separable functions, at the expense of solving a saddle point problem instead of an optimization problem.
Then, this amounts to replacing a complex optimization problem by a sequence of simpler problems. In this
paper, we shall consider more specifically

min
x∈X

f(x) + f2(x) + g □ g2(Ax) . (1)

where f and g are convex with easily computable proximal operators, A : X → Y is a linear operator and f2 and
g∗

2 are differentiable with Lf and Lg∗ lipschitz gradients. Here, g □ g2(z) = infy g(y) + g2(z − y) is the infimal
convolution of g. and g2. To encode constraints, we just need to consider an indicator function for g. When using
a primal-dual method, one is looking for a saddle point of the Lagrangian, which is given by

L(x, y) = f(x) + f2(x) + ⟨Ax, y⟩ − g∗(y)− g∗
2(y) . (2)

Of course, we shall assume throughout this paper that saddle points do exist, which can be guaranteed using
conditions like Slater’s constraint qualification condition [4].

A natural question is then: at what speed do primal-dual algorithms converge? This is trickier for saddle
point problems than when we deal with a problem which is in primal form only. For instance, if we just assume
convexity, methods like Primal-Dual Hybrid Gradient (PDHG) [6] or Alternating Directions Method of Multipliers
(ADMM) [17] can be very slow, with a rate of convergence in the worst case in O(1/

√
k) [10]. Yet, if we average

the iterates, we obtain an ergodic rate in O(1/k). Nevertheless, it has been observed that, except for specially
designed counter-examples, the averaged algorithms usually perform less well that the plain algorithm.

This is not unexpected. Indeed, the problem you are interested in has no reason to be the most difficult
convex problem. In order to get a more positive answer, we should understand what makes a given problem easier
to solve than another. In the case of gradient descent, strong convexity of the objective function implies a linear
rate of convergence, and the more strongly convex the function, the faster is the algorithm. Strong convexity can
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be generalized to the objective quadratic error bound (QEB) and the Kurdyka–Łojasiewicz inequality in order
to show improved rates for a large class of functions [5].

Before going further, let us discuss how one quantifies convergence speed for saddle point problems. Several
measures of optimality have been considered in the literature. The most natural one is feasibility error and
optimality gap. It directly fits the definition of the optimization problem at stake. However, one cannot compute
the optimality gap before the problem is solved. Hence, in algorithms, we usually use the Karush–Kuhn–Tucker
(KKT) error instead. It is a computable quantity and if the Lagrangian’s gradient is metrically subregular [28],
then a small KKT error implies that the current point is close to the set of saddle points. When the primal
and dual domains are bounded, the duality gap is a very good way to measure optimality: it is often easily
computable and it is an upper bound to the optimality gap. A generalization to unbounded domains has been
proposed in [30]: the smoothed gap, based on the smoothing of nonsmooth functions [25], takes finite values
even for constrained problems, unlike the duality gap. Moreover, if the smoothness parameter is small and
the smoothed gap is small, this means that optimality gap and feasibility error are both small. In the present
paper, we shall reuse this concept not only for showing a convergence speed but also to define a new regularity
assumption that we believe is better suited to the study of primal-dual algorithms.

Regularity conditions for saddle point problems have been investigated more recently than for plain optimiza-
tion problems. The most successful one is the metric subregularity of the Lagrangian’s generalized gradient [22].
It holds among others for all linear-quadratic programs [21] and implies a linear convergence rate for PDHG and
ADMM, as well as the proximal point algorithm [24]. One can also show linear convergence if the objective is
smooth and strongly convex and the constraints are affine [2, 13, 29]. If the function defined as the maximum be-
tween objective gap and constraint error has the error bound property, then we can also show improved rates [23].
These result can also be extended to the coordinate descent case [1, 32], as well as the setup of distributed
computations where doing less communication steps is an important matter [20]. The other assumptions look
more restrictive because they require some form of strong convexity. Yet, we will see that for a problem that
satisfies two assumptions, the rate predicted by each theory may be different.

Our contribution is as follows.

In Section 2, we formally review the main regularity assumptions and do first comparisons.
In order to do deeper comparisons, we analyze PDHG in detail in Sections 3 and 4 under each assumption.
This choice is motivated by the self-containedness of the method, which does not require to solve any
subproblem.
In Section 5, we show that the present regularity assumptions may not reflect properly the behavior of PDHG,
even on a very simple optimization problem.
We introduce a new regularity assumption in Section 6: the quadratic error bound of the smoothed gap.
We then show its advantages against previous approaches. The smoothed gap was introduced in [30] as a
tool to analyse and design primal-dual algorithms. Here, we use it directly in the definition of the regularity
assumption. We analyze PDHG under this assumption in Section 7
We then present and analyze the Restarted Averaged Primal-Dual Hybrid Gradient (RAPDHG) in Section 8
and show that is some situations, it leads to a faster algorithm. An adaptive restart scheme is also presented
for the cases where the regularity parameters are not known. This is a first step in leveraging our new
understanding of saddle point problems to design more efficient algorithms.
The theoretical results are illustrated in Section 9, devoted to numerical experiments.

We note striking similarities between this paper and the concurrent work of Applegate, Hinder, Lu and
Lubin [3]. Although they focus on linear programs, the authors analyse PDHG and other first order methods
thanks to the sharpness of the restricted duality. Indeed, in the case of linear programs, the restricted duality
gap is a computable finite-valued measure of optimality and it is always sharp. The methodology is very similar
except that the arguments are taylored to linear programs.

2 Regularity assumptions for saddle point problems

In this section, we define three regularity assumptions for saddle point problems from the literature. We will
then present their application range.
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2.1 Notation
We shall denote X the primal space and Y the dual space. We assume that thoses vector spaces are Hilbert spaces.
Let us denote Z = X×Y the primal-dual space. Similarly for a primal vector x and a dual vector y, we shall denote
z = (x, y). This notation will be throughout the paper: for instance x̄ and ȳ will be the primal and dual parts of the
vector z̄. For z = (x, y) ∈ Z, and τ, σ > 0, we denote ∥z∥V = ( 1

τ ∥x∥
2+ 1

σ∥y∥
2)1/2 and ⟨z, z′⟩V = 1

τ ⟨x, x′⟩+ 1
σ ⟨y, y′⟩.

The proximal operator of a function f is given by proxf (x) = arg minx′ f(x′) + 1
2∥x − x′∥2. For a set-value

function F : Z ⇒ Z, we can define F −1 : Z ⇒ Z by w ∈ F (z)⇔ z ∈ F −1(w). We will make use of the convex
indicator function

ιC(x) =
{

0 if x ∈ C

+∞ if x ̸∈ C.

In order to ease reading of the paper, we shall use a blue font for results that use differentiable parts of the
objective f2 and g2 and an orange font for results that use strong convexity.

2.2 Definitions
The simplest regularity assumption is strong convexity.

Definition 1. A function f : X → R ∪ {+∞} is µ-strongly convex if f − µ
2 ∥ · ∥

2 is convex.

Assumption 2. The Lagrangian function is µ-strongly convex-concave, that is (x 7→ L(x, y)) is µ-strongly
convex for all y and (y 7→ L(x, y)) is µ-strongly concave for all x.

This regularity assumption is used for instance in [6]. We can generalize strong convexity as follows.

Definition 3. We say that a function f : X → R ∪ {+∞} has a quadratic error bound if there exists η and an
open region R ⊆ X that contains arg min f such that for all x ∈ R,

f(x) ≥ min f + η

2 dist(x, arg min f)2 .

We shall use the acronym f has a η-QEB.

Although this is more general than strong convexity, the quadratic error bound is an assumption which is not
general enough for saddle point problems. Indeed, for the fundamental class of problems with linear constraints
(y 7→ L(x, y) is linear. Thus, it cannot satisfy a quadratic error bound in y. To resolve this issue, we may resort
to metric regularity.

Definition 4. A set-valued function F : Z ⇒ Z is metrically subregular at z for b if there exists η > 0 and a
neighborhood N(z) of z such that ∀ z′ ∈ N(z),

dist(F (z′), b) ≥ η dist(z′, F −1(b))

We denote C(z) = ∂f(x)× ∂g∗(y) (where × denotes the Cartesian product), B(z) = [∇f2(x),∇g∗
2(y)] and

M(z) = [A⊤y,−Ax]. The Lagrangian’s subgradient is then ∂̃L(z) = (B +C +M)(z). We put a tilde to emphasize
the fact that the dual component is the negative of the supergradient. We shall use the term generalized gradient.

We have 0 ∈ ∂̃L(z∗) if and only if z∗ is a saddle point of L. If ∂̃L is metrically sub-regular at z∗ for 0, this
means that we can measure the distance to the set of saddle points with the distance of the subgradient to 0.

Assumption 5. The Lagrangian’s generalized gradient is metrically subregular, that is there exists η such that
for all z∗ ∈ Z∗ = (∂̃L)−1(0), ∂̃L is η-metrically subregular at z∗ for 0.

This regularity assumption is used for instance in [22]. Another regularity assumption considered in the
literature is as follows.

Assumption 6. The problem is a smooth strongly convex linearly constrained problem. Said otherwise, f + f2
is strongly convex and differentiable, f and f2 both have a Lipschitz continuous gradient, g2 = ι{0} and g = ι{b},
where b ∈ Y.

This assumption is used for instance in [13]. The indicator functions encode the constraint Ax = b.
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Table 1 Domain of applicability of each assumption. “Strongly convex & smooth” means that g □ g2

is a differentiable function and f + f2 is strongly convex.

Assumption Strongly convex Linear Quadratic
& smooth program program

Strongly convex-concave Yes No No
Smooth strongly convex Solve in primal No Strongly convex obj.
with linear constraints space only & linear constraints
Error bound with inequality constraints No Yes No
Metric sub-regularity Yes Yes Yes

Assumption 7. Suppose that g2 = ι{0} and g = ιb+Rm
−

and we encode the constraints Ax− b ≤ 0. Denote x∗ a
minimizer of (1) and X ∗ the set of minimizers. The problem with inequality constraints satisfies the error bound
if there exists µ > 0 such that

F (x) = max
(

f(x) + f2(x)− f(x∗)− f2(x∗), max
1≤j≤m

(Ax− b)j

)
≥ µ dist(x,X ∗)

This regularity assumption is used to deal with functional inequality constraints in [23] but we restrict our
study to linear inequalities to simplify the exposition of this paper. Yet, since it involves primal quantities only,
it is not really adapted to a primal-dual algorithm and we will not discuss it much further in this paper.

The next two propositions show that for the minimization of a convex function, quadratic error bound of the
objective is merely equivalent to metric subregularity of the subgradient.

Proposition 8 ([12, Theorem 3.3]). Let f be a convex function such that ∀ x ∈ R, f(x) ≥ f(x∗)+ µ
2 dist(x,X ∗)2,

where X ∗ = arg min f and x∗ ∈ X ∗. Then ∀ x ∈ R, ∥∂f(x)∥0 = infg∈∂f(x) ∥g∥ ≥ µ
2 dist(x,X ∗).

Proposition 9 ([12, Theorem 3.3]). Let f be a convex function such that f(x) ≤ f0 implies ∥∂f(x)∥0 ≥
η dist(x,X ∗). Then f(x) ≥ f(x∗) + η

2 dist(x,X ∗)2 as soon as f(x) ≤ f0.

For saddle point problems, we have the following result.

Proposition 10 ([21, Lemma 4.2]). If L is µ-strongly convex-concave, then ∂̃L is µ-metrically sub-regular at z∗

for 0 where z∗ is the unique saddle point of L.

In Table 1, we can see that the situation is more complex for saddle point problems than plain optimization
problems. Indeed, the assumptions are not generalizations one of the other. Yet, metric subregularity seems to
be the most general since it holds for more types of problems. In particular all linear programs and quadratic
programs have a metrically subregular Lagrangian’s generalized gradient [21].

3 Basic inequalities for the study of PDHG

Primal-Dual Hybrid Gradient (also known as asymmetric forward-backward-adjoint) is the algorithm defined by
Algorithm 1. We shall use the definition of [21] rather than [8, 31] because we believe it simplifies the analysis.

Algorithm 1 Primal-Dual Hybrid Gradient (PDHG)

x̄k+1 = proxτf (xk − τ∇f2(xk)− τA⊤yk)
ȳk+1 = proxσg∗(yk − σ∇g∗

2(yk) + σAx̄k+1)

xk+1 = x̄k+1 − τA⊤(ȳk+1 − yk)
yk+1 = ȳk+1

Note that the algorithm of Chambolle and Pock [6] can be recovered in the case f2 = 0 by taking z̄k+1 as a state
variable instead of zk+1 and using xk = x̄k − τA⊤(yk − yk−1) = x̄k − τA⊤(ȳk − ȳk−1):

x̄k+1 = proxτf (x̄k − τA⊤(2ȳk − ȳk−1))
ȳk+1 = proxσg∗(ȳk − σ∇g∗

2(ȳk) + σAx̄k+1)
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PDHG is widely used for the resolution of large-dimensional convex-concave saddle point problems. Indeed,
this algorithm only requires simple operations, namely matrix-vector multiplications, proximal operators and
gradients, while keeping good convergence properties. We refer the reader to [9] for a review of variants of the
algorithm and their analysis. As shown in [19], the proof techniques for all these variants share strong similarities
and we believe that the results of the present paper could be easily adapted to them.

It can be conveniently seen as a fixed point algorithm zk+1 = T (zk) where T is defined by

x̄ = proxτf (x− τ∇f2(x)− τA⊤y) ȳ = proxσg∗(y − σ∇g∗
2(y) + σAx̄)

x+ = x̄− τA⊤(ȳ − y) y+ = ȳ

T (x, y) = (x+, y+)
(3)

For z = (x, y) ∈ Z, we denote ∥z∥V = ( 1
τ ∥x∥

2 + 1
σ∥y∥

2)1/2, γ = στ∥A∥2, αf = τLf /2, αg = σLg∗/2 and

Ṽ (z, z′) = 1− τLf /2
2τ

∥x̄− x− x̄′ + x′∥2 +
(

1− σLg∗/2
2σ

− τ∥A∥2

2

)
∥ȳ − y − ȳ′ + y′∥2

= 1− αf

2τ
∥x̄− x− x̄′ + x′∥2 + 1− αg − γ

2σ
∥ȳ − y − ȳ′ + y′∥2 .

We will first show that the fixed point operator T is an averaged operator [4] in this norm. Then, we will give an
upper bound on the Lagrangian’s gap and a convergence result. All the results are small variations of already
known facts so we defer the proofs to the appendix. Note that we may have adapted the results for our purpose.

Lemma 11 ([4, Proposition 12.26]). Let p = proxτf (x) and p′ = proxτf (x′) where f is µf -strongly convex. For
all x and x′,

f(p) + 1
2τ
∥p− x∥2 ≤ f(x′) + 1

2τ
∥x′ − x∥2 − 1 + τµf

2τ
∥p− x′∥2

(1 + 2τµf )∥p− p′∥2 ≤ ∥x′ − x∥2 − ∥p− x− p′ + x′∥2 .

The following lemma can be mostly found in [21, Theorem 2.5]. In comparison, we write everything in the
same norm ∥ · ∥V and we do not restrict to z′ being a saddle point of the Lagrangian.

Lemma 12. Let T : X × Y → X × Y be defined for any (x, y) by (3). Suppose that ∇f2 is Lf -Lipschitz
continuous and ∇g∗

2 is Lg∗-Lipschitz continuous. If the step sizes satisfy γ = στ∥A∥2 < 1, αf = τLf /2 < 1,
αg = σLg∗/2 < 1 then T is nonexpansive in the norm ∥ · ∥V ,

∥T (z)− T (z′)∥2
V ≤ ∥z − z′∥2

V − 2Ṽ (z, z′) (4)

and T is 1
1+λ -averaged where

λ = 1− αf −
αg − (1− γ)αf

2 −
√

(1− αf )2γ + ((1− γ)αf − αg)2/4 ,

which means for z = (x, y) and z′ = (x′, y′)

∥T (z)− T (z′)∥2
V ≤ ∥z − z′∥2

V − λ∥z − T (z)− z′ + T (z′)∥2
V . (5)

As a consequence, (zk) converges to a saddle point of the Lagrangian. Moreover, if σLg∗/2 ≤ αf (1− στ∥A∥2),
then λ ≥ (1−√γ)(1− αf ).

A side result of independent interest proved within Lemma 12 is as follows.

Lemma 13. For any z∗ ∈ Z∗, Ṽ satisfies

Ṽ (zk, z∗) = 1− αf

2τ
∥x̄k+1 − xk∥2 + 1− αg − γ

2σ
∥ȳk+1 − yk∥2 ≥ λ

2 ∥zk+1 − zk∥2
V .

As noted in [19], the case αf > 1
2 is not covered by most of the results in the literature on convergence speed

results. We propose here an extension of results in the proof of [6, Theorem 1] that allows the larger step size
range 0 ≤ αf < 1 where convergence is guaranteed.



6 QEB of the smoothed gap and RAPDHG

Lemma 14. Suppose that γ = στ∥A∥2 < 1, τLf /2 = αf < 1, αg = σLg∗/2 < 1. For all k ∈ N and for all
z ∈ Z,

L(x̄k+1, y)− L(x, ȳk+1) ≤ 1
2∥z − zk∥2

V −
1
2∥z − zk+1∥2

V + a2Ṽ (zk, z∗) (6)

where Ṽ (zk, z∗) = ( 1
2τ −

Lf

2 )∥x̄k+1 − xk∥2 + ( 1
2σ −

τ∥A∥2

2 − Lg∗

2 )∥ȳk+1 − yk∥2 and a2 = max( 2αf −1
1−αf

,
2αg−1+γ
1−αg−γ ).

a2 ≥ −1 may be positive or negative.

The next proposition is adapted from [6, Theorem 1]. We shall show in Section 8 how to generalize it to
τLf < 2.

Proposition 15. Let z0 ∈ Z and let R ⊆ Z. If στ∥A∥2 + σLg∗ ≤ 1 and τLf ≤ 1 then we have the stability

∥zk − z∗∥V ≤ ∥z0 − z∗∥V

for all z∗ ∈ Z∗. Define z̃k = 1
k

∑k
l=1 z̄l and the restricted duality gap G(z̄, R) = supz∈R L(x̄, y) − L(x, ȳ). We

have the sublinear iteration complexity

G(z̃k, R) ≤ 1
2k

sup
z∈R
∥z − z0∥2

V .

4 Linear convergence of PDHG

In this section, we show that under the regularity assumptions stated in Section 2, the Primal-Dual Hybrid
Gradient converges linearly. Most of the results were already known, we only improved slightly some constants.
Hence, in this section also, we defer some of the proofs to Appendix B.

We begin with a technical lemma showing that z̄k+1 is close to zk+1.

Lemma 16. For 0 < α ≤ 1,

distV (z̄k+1,Z∗)2 ≥ (1− α) distV (zk+1,Z∗)2 − (α−1 − 1) 1
σ
∥yk+1 − yk∥2 .

Proof. We use the fact that for any z, ∥zk+1 − PZ∗(z)∥2
V ≥ distV (zk+1,Z∗)2 and Young’s inequality to get

distV (z̄k+1,Z∗)2 = ∥z̄k+1 − zk+1 + zk+1 − PZ∗(z̄k+1)∥2
V

= ∥zk+1 − PZ∗(z̄k+1)∥2
V + ∥z̄k+1 − zk+1∥2

V + 2⟨zk+1 − PZ∗(z̄k+1), z̄k+1 − zk+1⟩V

= ∥zk+1 − PZ∗(z̄k+1)∥2
V + 1

τ
∥x̄k+1 − xk+1∥2 + 2

τ
⟨xk+1 − PX ∗(x̄k+1), x̄k+1 − xk+1⟩

≥ 1
σ

dist(yk+1,Y∗)2 + 1
τ

(1− α) dist(xk+1,X ∗)2 − 1
τ

(α−1 − 1)∥x̄k+1 − xk+1∥2

≥ (1− α) distV (zk+1,Z∗)2 − 1
τ

(α−1 − 1)∥x̄k+1 − xk+1∥2

for all α ∈ (0, 1). Since 1
τ ∥x̄k+1 − xk+1∥2 = τ∥A⊤(yk+1 − yk)∥2 ≤ 1

σ∥yk+1 − yk∥2, we get the result of the
lemma. ◀

The next proposition is a modification of [14, Theorem 4] in order to allow αf < 1 instead of αf ≤ 1/2. Here,
we also concentrate on the deterministic version of PDHG. We put the proof in the main text because the proof
of Theorem 28 in Section 7 will reuse some of the arguments.

Proposition 17. If L is µ-strongly convex concave in the norm ∥ · ∥V , then the iterates of PDHG satisfy for
all k,(

1 + µ

(2 + a2)(1 + µ/λ)

)
∥zk+1 − z∗∥2

V ≤ ∥zk − z∗∥2
V

where z∗ is the unique saddle point of L, a2 = max( 2αf −1
1−αf

,
γ+2αg−1
1−γ−αg

) and λ is defined in Lemma 12.
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Proof. From Lemma 14 applied at z = z∗, we have

L(x̄k+1, y∗)− L(x∗, ȳk+1) ≤ 1
2∥z

∗ − zk∥2
V −

1
2∥z

∗ − zk+1∥2
V + a2Ṽ (z̄k+1 − zk) .

In order to deal with the case a2 ≥ 0, we add to this inequatity a times (4), where a ≥ 0, z = zk and z′ = z∗

L(x̄k+1, y∗)− L(x∗, ȳk+1) ≤ 1 + a

2 ∥z∗ − zk∥2
V −

1 + a

2 ∥z∗ − zk+1∥2
V + (a2 − a)Ṽ (zk, z∗) .

Since L is µ-strongly convex-concave, (x 7→ L(x, y∗)) is minimized at x∗ and (y 7→ L(x∗, y)) is minimized at
y∗, we have

L(x̄k+1, y∗)− L(x∗, ȳk+1) ≥ µ

2 ∥x̄k+1 − x∗∥2
τ−1 + µ

2 ∥ȳk+1 − y∗∥2
σ−1 .

We combine these two inequalities with Lemma 13 and Lemma 16 to get for all α ∈ (0, 1) and a ≥ max(0, a2)

(1+a + µ(1− α))∥zk+1 − z∗∥2
V ≤ (1 + a)∥zk − z∗∥2

V + 1
σ

(µ(α−1 − 1)− λ(a2 − a))∥yk+1 − yk∥2 .

We then choose α = µ
λ(a−a2)+µ so that µ(α−1 − 1) = λ(a− a2) and we choose a = a2 + 1 ≥ 0. Thus(

2 + a2 + µλ

µ + λ

)
∥zk+1 − z∗∥2

V ≤ (2 + a2)∥zk − z∗∥2
V . ◀

We next study the second case where some primal-dual methods have been proved to have a linear rate of
convergence [2, Theorem 1], [13], [29, Theorem 6.2], that is, minimizing a strongly convex objective under affine
equality constraints. Here also, we pay attention to allow 1/2 < αf < 1 in our proof.

Proposition 18. If f + f2 has a L′
f + Lf -Lipschitz gradient and is µf -strongly convex, and g + g2 = ι{b}, then

PDHG converges linearly with rate(
1 + η

(2 + a2)(1 + η/λ)

)
distV (zk+1,Z∗)2 ≤ distV (zk,Z∗)2

where η = min(µf τ, στσmin(A)2

τLf +τL′
f

+ 1
λ

), λ is defined in Lemma 12 and a2 ≥ −1 is defined in Lemma 14.

Note that this does not contradict the lower bound of [27]. In [27], the authors consider the setup where the
number of iterations is smaller than the dimension of the problem and showed that the convergence is necessarily
sublinear in the worst case. On the other hand, our result becomes useful after a number of iterations that may
be large for ill-conditioned problems but is more optimistic.

Finally, we will show that if the Lagrangian’s generalized gradient is metrically sub-regular then PDHG
converges linearly. Compared to [21, Theorem 5], we obtain a rate where the dependence in the norm is directly
taken into account in the definition of metric sub-regularity and does not appear explicitly in the rate.

Proposition 19. If ∂̃L is metrically subregular at z∗ for 0 for all z∗ ∈ Z∗ with constant η > 0 in the
norm ∥ · ∥V , then (I − T ) is metrically subregular at z∗ for 0 for all z∗ ∈ Z∗ with constant bounded below by

η√
3η+(2+2

√
3 max(αf ,αg)) and PDHG converges linearly with rate 1− η2λ

(
√

3η+(2+2
√

3 max(αf ,αg)))2 .

5 Coarseness of the analysis

5.1 Strongly convex-concave Lagrangian
Suppose that f is µf strongly convex and that g∗ is µg∗ strongly convex. Then L is µL strongly convex in the
norm ∥ · ∥V with µL = min(µf τ, µg∗σ). Note that in this case, the objective is the sum of the differentiable term
g(Ax) and the strongly convex proximable term f(x). We have seen that this implies a linear rate of convergence
for PDHG with rate (1− cµL) with c close to 1. We may wonder what is the choice of τ and σ that leads to the
best rate.

We need µL = min(µf τ, µg∗σ) the largest possible and στ∥A∥2 ≤ 1. Hence, we take τ =
√

µg∗

µf

1
∥A∥ and

σ =
√

µf

µg∗
1

∥A∥ . We do have στ∥A∥2 ≤ 1 and also η =
√

µf µg∗

∥A∥ . This rate is optimal for this class of problem [26],
which is noticeable.
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We have seen in Proposition 10 that having a strongly convex concave Lagrangian implies the metric
sub-regularity of the Lagrangian’s gradient. However, applying Proposition 19 with η = µL leads to a rate equal
to (1− cµ2

L) which is much worse than what we can show using the more specialized assumption. This means
that metric sub-regularity applies to more problems but is not a more general assumption because it leads to a
coarser analysis.

5.2 Quadratic problem
We consider the toy problem

min
x∈R

µ

2 x2

ax = b

where a, b ∈ R and µ ≥ 0.
The Lagrangian is given by L(x, y) = µ

2 x2 + y(ax − b). Its gradient is ∇L(x, y) = [µx + ay, ax − b]. Since
∇L is affine, we can see using an eigenvalue decomposition that ∇L is globally metrically sub-regular with
constant

√
µ2τ2+4στa2−µτ

2 in the norm ∥ · ∥V . We can also do a direct calculation. For all α > 0 and the unique
primal-dual optimal pair x∗, y∗,

∥∇L(x, y)∥2
V ∗ = τ∥µx + ay∥2 + σ∥ax− b∥2 = τ∥µx− µx∗ + ay − ay∗∥2 + σ∥ax− ax∗∥2

= (τµ2 + σa2)∥x− x∗∥2 + τa2∥y − y∗∥2 + 2τµa⟨x− x∗, y − y∗⟩

≥ (τ2µ2 + στa2 − τ2µaα) 1
τ
∥x− x∗∥2 + (στa2 − µστaα−1) 1

σ
∥y − y∗∥2 .

We choose α > 0 such that τ2µ2 +στa2−τ2µaα = στa2−µστaα−1, that is α = τµ+
√

τ2µ2+4στa2

2τa , which leads to

∥∇L(x, y)∥2
V ∗ ≥

(
τ2µ2

2 + στa2 − τµ

2
√

τ2µ2 + 4στa2
)
∥z − z∗∥2 =

(√
µ2τ2 + 4στa2 − µτ

2

)2

∥z − z∗∥2 .

Let us now try to solve this (trivial) problem using PDHG:

x̄k+1 = xk − τ(µxk + ayk)
ȳk+1 = yk − σ(b− ax̄k+1)
xk+1 = x̄k+1 − τa(ȳk+1 − yk)
yk+1 = ȳk+1

This can be written zk+1 − z∗ = R(zk − z∗) for

R =
[
(1− στa2)(1− τµ) −τa(1− στa2)

σa(1− τµ) (1− στa2)

]
Hence, we can compute the exact rate of convergence, which is given by the largest eigenvalue of R different
from 1.

We shall compare this actual rate with what is predicted by Proposition 19, that is 1− η2λ

(
√

3η+(2+2
√

3 max(αf ,αg)))2

where λ, γ = στa2, αg = 0, αf = τµ/2 and η =
√

µ2τ2+4στa2−µτ

2 and what is predicted by Proposition 18, that
is
(
1 + η′

(2+a2)(1+η′/λ)
)−1 where 2 + a2 = 1

1−τµf /2 and η′ = min
(

µf τ, στσmin(A)2

τLf +τL′
f

+ 1
λ

)
. On Figure 1, we can see that

there can be a large difference between what is predicted and what is observed, even for the simplest problem.
Moreover, although the actual rate improves when µ increases, metric sub-regularity decreases, so that theory
suggests the opposite of what is actually observed. On the other hand, using strong convexity explains the
improvement of the rate when µ increases but does not manage to capture the linear convergence for µ = 0.

6 Quadratic error bound of the smoothed gap

We now introduce a new regularity assumption that truly generalized strongly convex-concave Lagrangians and
smooth strongly convex objectives with linear constraints and is as broadly applicable as metric subregularity of
the Lagrangian’s gradient.



Olivier Fercoq 9

Figure 1 Comparison of the true rate (line above) and what is predicted by theory (2 lines below)
for a = 0.03, τ = σ = 1 and various values for µ.

6.1 Main assumption
Definition 20. Given β = (βx, βy) ∈ [0, +∞]2, z ∈ Z and ż ∈ Z, the smoothed gap Gβ is the function defined by

Gβ(z; ż) = sup
z′∈Z

L(x, y′)− L(x′, y)− βx

2τ
∥x′ − ẋ∥2 − βy

2σ
∥y′ − ẏ∥2 .

We call the function (z 7→ Gβ(z, ż)) the smoothed gap centered at ż.

Although the smooth gap can be defined for any center ż, the next proposition shows that if ż = z∗ ∈ Z∗,
then the smoothed gap is a measure of optimality.

Proposition 21. Let β ∈ [0, +∞)2. If z∗ ∈ Z∗, then z ∈ Z∗ ⇔ Gβ(z; z∗) = 0.

Proof. We first remark that G0(z, z∗) is the usual duality gap and that G∞(z; z∗) = L(x, y∗) − L(x∗, y) ≥ 0.
Moreover, G0(z, z∗) ≥ Gβ(z, z∗) ≥ G∞(z; z∗) ≥ 0. Since z ∈ Z∗ ⇒ G0(z; z∗) = 0, we have the implication
z ∈ Z∗ ⇒ Gβ(z; z∗) = 0.

For the converse implication, we denote

yβ(x) = arg max
y′

L(x, y′)− βy

2σ
∥y∗ − y′∥2 = arg max

y′
⟨Ax, y′⟩ − g∗(y′)− g∗

2(y′)− βy

2σ
∥y∗ − y′∥2

= proxσ/βy(g∗+g∗
2 )
(
y∗ + σ

β
Ax
)

By the strong convexity of the problem defining Gβ( · ; z∗), we know that

sup
y′

L(x, y′)− βy

2σ
∥y∗ − y′∥2 ≥ L(x, y∗)− βy

2σ
∥y∗ − y∗∥2 + βy

2σ
∥yβ(x)− y∗∥2 ≥ L(x∗, y∗) + βy

2σ
∥yβ(x)− y∗∥2 .

With a similar argument for xβ(y), we get

Gβ(z; z∗) ≥ βy

2σ
∥yβ(x)− y∗∥2 + βx

2τ
∥xβ(y)− x∗∥2 .

Thus, if Gβ(z; z∗) = 0, then yβ(x) = y∗ and xβ(y) = x∗.

yβ(x) = y∗ ⇐⇒ y∗ = proxσ/βy(g∗+g∗
2 )
(
y∗ + σ

βy
Ax
)

⇐⇒ 0 ∈ y∗ − (y∗ + σ

βy
Ax) + σ

βy
∂g∗(y∗) + σ

βy
∇g∗

2(y∗)

⇐⇒ 0 ∈ −Ax + ∂g∗(y∗) +∇g∗
2(y∗)⇐⇒ x ∈ X ∗

and similarly xβ(y) = x∗ ⇔ y ∈ Y∗, which completes the proof of the proposition. ◀
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Assumption 22. There exists β = (βx, βy) ∈ ]0, +∞]2, η > 0 and a region R ⊆ Z such that for all z∗ ∈ Z∗,
Gβ( · , z∗) has a quadratic error bound with constant η in the region R and with the norm ∥ · ∥V . Said otherwise,
for all z ∈ R,

Gβ(z; z∗) ≥ η

2 distV (z,Z∗)2 .

The next proposition, which is a simple consequence of [16, Proposition 1] says that even though QEB is a
local concept, it can be extended to any compact set at the expense of degrading the constant.

Proposition 23. If Gβ( · , z∗) has a η-QEB on {z : dist(z,Z∗)V < a} then for all M > 1, Gβ( · , z∗) has a
η

M -QEB on {z : dist(z,Z∗)V < Ma}.

6.2 Problems with strong convexity
We now give a few examples to show that Assumption 22 is often satisfied.

Proposition 24. If L is µ-strongly convex-concave in the norm ∥ · ∥V , then ∀ z ∈ Z, G∞(z; z∗) ≥ µ
2 ∥z − z∗∥2

V .

Proof. G∞(z; z∗) = L(x, y∗)− L(x∗, y) ≥ µ
2 ∥z − z∗∥2

V . ◀

Proposition 25. If f + f2 has a L′
f + Lf -Lipschitz gradient, g □ g2 = ι{b}, the primal function given by

(x 7→ f(x) + f2(x) + g □ g2(Ax)) has a µ̄-QEB and f + f2 is µf -strongly convex, then the smoothed gap has a
QEB:

Gβ(z, z∗) ≥ min
(

max
(

τµf

2 ,
µ̄2

(Lf + L′
f )2

στσmin(A)2

16βy

)
,

σσmin(A)2

2(Lf + L′
f + βx/τ)

)
distV (z,Z∗)2 .

Note that we require either µf > 0 or µ̄ > 0.

Proof. The proof is a generalization of Proposition 18 and reuses most of the argument.

sup
y′∈Y

L(x, y′)− βy

2σ
∥y′ − y∗∥2 = f(x) + f2(x) + ⟨y∗, Ax− b⟩+ σ

2βy
∥Ax− b∥2 .

We decompose x = xA + xA⊥ with xA⊥ = P{x′:Ax′=b}(x) and xA = x− xA⊥ ∈ (ker A)⊥. We have Ax− b = AxA,
so that ∥Ax− b∥ ≥ σmin(A)∥xA∥. Moreover by convexity of f + f2 and optimality condition ∇f(x∗) +∇f2(x∗) =
−A⊤y∗,

f(x) + f2(x) + ⟨y∗, Ax− b⟩+ σ

2βy
∥Ax− b∥2

≥ f(xA⊥) + f2(xA⊥) + ⟨∇(f + f2)(xA⊥), x− xA⊥⟩ − ⟨∇(f + f2)(x∗), x− xA⊥⟩+ σ

2βy
σmin(A)2∥xA∥2

≥ f(x∗) + f2(x∗) + µ̄

2 dist(xA⊥ ,X ∗)2 − (Lf + L′
f )∥xA⊥ − x∗∥∥xA∥+ σ

2βy
σmin(A)2∥xA∥2

where the last inequality comes from the assumption on the primal function and smoothness of ∇(f + f2).
We combine this with

f(x) + f2(x) + ⟨y∗, Ax− b⟩ ≥ f(x∗) + f2(x∗) + µf

2 dist(x,X ∗)2

to get for all λ ∈ [0, 1] and α > 0,

f(x) + f2(x) + ⟨y∗, Ax− b⟩+ σ

2βy
∥Ax− b∥2

≥ f(x∗) + f2(x∗) +
(

λµ̄

2 −
λα(Lf + L′

f )
2 + (1− λ)µf

2

)
dist(xA⊥ ,X ∗)2

+
(

σ

2βy
σmin(A)2 −

λ(Lf + L′
f )

2α
+ (1− λ)µf

2

)
∥xA∥2

We take α = µ̄
2(Lf +L′

f
) , λ = µ̄

4(Lf +L′
f

)2
σσmin(A)2

βy
to get
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f(x) + f2(x) + ⟨y∗, Ax− b⟩+ σ

2βy
∥Ax− b∥2

≥ f(x∗) + f2(x∗) + max
(

µf

2 ,
µ̄2

(Lf + L′
f )2

σσmin(A)2

16βy

)
dist(x,X ∗)2 . (7)

For the dual vector, we use the smoothness of the objective, the equality ∇f(x∗) +∇f2(x∗) = −A⊤y∗ and
Ax∗ = b.

−L(x′, y) = −f(x′)− f2(x′)− ⟨Ax′ − b, y⟩

≥ −f(x∗)− f2(x∗)− ⟨∇f(x∗)−∇f2(x∗), x′ − x∗⟩ −
Lf + L′

f

2 ∥x′ − x∗∥2 − ⟨Ax′ − b, y⟩

= −L(x∗, y∗) + ⟨A⊤y∗, x′ − x∗⟩ − ⟨x′ − x∗, A⊤y⟩ −
Lf + L′

f

2 ∥x′ − x∗∥2

For a ∈ R, we restrict ourselves to x′ = x∗ + aA⊤(y∗ − y) so that

sup
x′∈X

−L(x′, y)− βx

2τ
∥x′ − x∗∥2 ≥ sup

a∈R
−L(x∗ + aA⊤(y∗ − y), y)− βxa2

2τ
∥A⊤(y∗ − y)∥2

≥ sup
a∈R
−L(x∗, y∗) +

(
a− a2 Lf + L′

f + βx/τ

2

)
∥A⊤(y − y∗)∥2

= −L(x∗, y∗) + 1
2(Lf + L′

f + βx/τ)∥A
⊤(y − y∗)∥2

Moreover, as in Proposition 18, we know that ∥A⊤y − A⊤y∗∥ ≥ σmin(A) dist(y,Y∗), where σmin(A) is the
smallest singular value of A.

Combining this with (7) yields the result of the proposition. ◀

Proposition 26. Suppose that X and Y are finite-dimensional. Suppose that f, f2, g, g2 are convex piecewise
linear-quadratic, which means that their domain is a union of polyhedra and on each of these polyhedra, they are
quadratic functions. Then for all β ∈ [0, +∞[2, there exists η(β) and R(β) such that Gβ(z; z∗) ≥ η(β)

2 distV (z,Z∗)2

for all z ∈ R(β) and z∗ ∈ Z∗.

Proof. The proof follows the lines of [21]. The class of piecewise linear-quadratic functions is closed under scalar
multiplication, addition, conjugation and Moreau envelope [28]. Hence for all β ∈ [0, +∞[2, Gβ( · , z∗) is piecewise
linear quadratic. As a consequence, its subgradient ∂zGβ( · , z∗) is piecewise polyhedral and thus there exists
η > 0 such that it satisfies metric sub-regularity with constant η at all z∗ ∈ Z∗ for 0 [11]. Since Gβ( · , z∗) is a
convex function, this implies the result by Proposition 9. ◀

6.3 Linear programs
In the rest of the section, we are going to show that linear programs do satisfy Assumption 22 and give the
constant as a function of the Hoffman constant [18].

We consider the linear optimization problem

min
x∈Rn

c⊤x (8)

AE,:x = bE

AI,:x ≤ bI

xN ≥ 0

where A is a m× n matrix, b ∈ Rm, E and I are disjoint sets of indices such that E ∪ I = {1, . . . , m} and N , F

are disjoint sets of indices such that N ∪ F = {1, . . . , n}.
A dual of this problem is given by

max
y∈Rm

−b⊤y

(A:,F )⊤y + cF = 0

(A:,N )⊤y + cN ≥ 0
yI ≥ 0
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It happens that the set of primal-dual solution of an LP is characterized by a system of linear equalities and
inequalities. This holds true because a feasible primal-dual pair with equal values is necessarily optimal. We get
the following system

c⊤x + b⊤y = 0 (A:,F )⊤y + cF = 0
AE,:x = bE (A:,N )⊤y + cN ≥ 0
AI,:x ≤ bI yI ≥ 0
xN ≥ 0

(9)

Let us denote the Hoffman constant [18] of this system by θ. This constant is the smallest positive number such
that for all z ∈ Rm+n

dist(z,Z∗) ≤ θ
(
|c⊤x + b⊤y|2 + ∥AE,:x− bE∥2 + dist(AI,:x− bI ,RI

−)2

+ dist(xN ,RN
+ )2 + ∥(A:,F )⊤y + cF ∥2 + dist((A:,N )⊤y + cN ,RN

+ )2 + dist(yI ,RI
+)2
)1/2

(10)

It is known that the Lagrangian’s subgradient of an LP satisfies metric sub-regularity with a constant
proportional to θ [24]. We shall show that the same holds for the QEB of the smoothed gap centered at z∗.

Proposition 27. For any β ≥ 0, R > 0 and z∗ ∈ Z∗, the linear program (8) satisfies the quadratic error bound:
for all z such that Gβ(z; z∗) ≤ R, we have

Gβ(z; z∗) ≥ dist(z,Z∗)2

θ2
(√

2β
τ (
√

2 + ∥x∗
F ∥+ ∥x∗

N∥) +
√

2β
σ (
√

2 + ∥y∗
E∥+ ∥y∗

I∥) + 3
√

R
)2 .

Hence, for R of the order of 1
θ , G 1

θ
( · , z∗) has a c

θ -QEB with c independent of θ.

Proof. See Appendix C. ◀

7 Analysis of PDHG under quadratic error bound of the smoothed gap

In this section, we show that under the new regularity assumption, PDHG converges linearly. Moreover, we give
an explicit value for the rate. This result is central to the paper because it shows that the quadratic error bound
of the smoothed gap is a fruitful assumption: not only it is as broadly applicable as the metric subregularity of
the Lagrangian’s generalized gradient, but also the rates it predicts reach the state of the art in all subcases of
interest.

Theorem 28. Under Assumption 22, if R contains {z : ∥z−PZ∗(z0)∥ ≤ distV (z0,Z∗)}, then PDHG converges
linearly at a rate(

1 + Λ η

1 + η/λ

)
distV (zk+1,Z∗)2 ≤ distV (zk,Z∗)2

where

Λ = λ

max((1 + a2)λ + 1/βx, (2 + a2)λ + 1/βy),

λ is defined in Lemma 12 and a2 = max
( 2αf −1

1−αf
,

2αg−1+γ
1−αg−γ

)
≥ −1 is defined in Lemma 14.

Proof. In this proof, we will use the notation β ⊙ z = (βxx, βyy) and ∥z∥2
βV = βx

τ ∥x∥
2 + βy

σ ∥y∥
2. By Lemma 14,

we have

L(x̄k+1, y)− L(x, ȳk+1) ≤ 1
2∥z − zk∥2

V −
1
2∥z − zk+1∥2

V + a2Ṽ (z̄k, z∗) .

For z∗ = PZ∗(zk), the projection of zk onto the set of saddle points using norm ∥ · ∥V ,

Gβ(z̄k+1; z∗) = sup
x

sup
y

L(x̄k+1, y)− βy

2 ∥y − y∗∥2
σ−1 − L(x, ȳk+1)− βx

2 ∥x− x∗∥2
τ−1

≤ sup
z

1
2∥z − zk∥2

V −
1
2∥z − zk+1∥2

V −
1
2∥z − z∗∥2

βV + a2Ṽ (z̄k, z∗)
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For the right hand side, we are looking for z such that β ⊙ (z − z∗) + (z − zk+1) − (z − zk) = 0 so that
β ⊙ z = β ⊙ z∗ + zk+1 − zk and

1
2∥z − zk∥2

V −
1
2∥z − zk+1∥2

V −
1
2∥z − z∗∥2

βV

= 1
2∥z

∗ − zk∥2
V −

1
2∥z

∗ − zk+1∥2
V + 1

2∥zk+1 − zk∥2
β−1V

≤ 1
2 distV (zk,Z∗)2 − 1

2 distV (zk+1,Z∗)2 + 1
2∥zk+1 − zk∥2

β−1V

where the last inequality comes from our choice of z∗. We also have by Lemma 12

1
2 distV (zk,Z∗)2 − 1

2 distV (zk+1,Z∗)2 − Ṽ (zk, z∗) ≥ 1
2∥z

∗ − zk∥2
V −

1
2∥z

∗ − zk+1∥2
V − Ṽ (zk, z∗) ≥ 0 .

Using Assumption 22, this leads to: ∀ Λ ∈ [0, 1],

1
2 distV (zk,Z∗)2 − 1

2 distV (zk+1,Z∗)2 + Λ
2 ∥zk − zk+1∥2

β−1V + (Λa2 − (1− Λ))Ṽ (zk, z∗)

≥ Λη

2 distV (z̄k+1,Z∗)2 .

Using Lemma 16 and Lemma 13, we get, as soon as Λa2 − (1− Λ) ≤ 0,

1
2 distV (zk,Z∗)2 − 1

2 distV (zk+1,Z∗)2 +
( Λ

βx
+ (Λa2 − (1− Λ))λ

) 1
2τ
∥xk − xk+1∥2

+
( Λ

βy
+ (α−1 − 1)Λη + (Λa2 − (1− Λ))λ

) 1
2σ
∥yk − yk+1∥2

≥ (1− α)Λη

2 distV (zk+1,Z∗)2

So, taking α = η
λ+η and Λ = λ

max((1+a2)λ+1/βx,(2+a2)λ+1/βy) ≤ 1 leads to Λ
βy

+(α−1−1)Λη+(Λa2−(1−Λ))λ =
Λ
βy

+ λΛ + (a2 + 1)λΛ− λ ≤ 0 and Λ
βx

+ (Λa2 − (1− Λ))λ ≤ 0, so that

distV (zk,Z∗)2 ≥
(

1 + Λ η

1 + η/λ

)
distV (zk+1,Z∗)2

and thus the algorithm enjoys a linear rate of convergence. ◀

Strongly convex-concave Lagrangian

If the Lagrangian is strongly convex concave, then we can take β = (+∞, +∞) and η = µ (Proposition 24), so
that we recover the rate of Proposition 17.

Note that in that case, the rate of order 1− cµ given by Proposition 17, and so by its generalized version
Theorem 28, is much better than what Proposition 19 tells us: a rate of order 1− cµ2. Hence, we can see that for
this important particular case, the rate predicted using the quadratic error bound of the smoothed gap is more
informative than using the metric subregularity of the Lagrangian’s gradient. Moreover, the new assumption
applies to all piecewise-linear quadratic problems, making it at the same time accurate and general.

Back to the toy problem

We consider again the linearly constrained 1D problem minx∈R{µ
2 x2 : ax = b} where a, b ∈ R and µ ≥ 0

introduced in Section 5.2 and we calculate the quadratic error bound of the smoothed gap.

Gβ(z̄, z∗) = sup
y

µ

2 x̄2 + y(ax̄− b)− βy

2σ
(y − y∗)2 + sup

x
−µ

2 x2 − ȳ(ax− b)− βx

2τ
(x− x∗)2

= µ

2 x̄2 + y∗(ax̄− b) + σ

2βy
(ax̄− b)2 + bȳ + 1

2( βx

τ + µ)
(βx

τ
x∗ − aȳ)2 − βx

2τ
(x∗)2

≥
µτ + στa2

βy

2τ
(x̄− x∗)2 + στa2

2σ(βx + µτ) (ȳ − y∗)2

≥ 1
2 min

(
µτ + στa2

βy
,

στa2

βx + µτ

)
∥z̄ − z∗∥2

V
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As we have seen in Proposition 25, we can leverage the strong convexity of the objective. But also the
smoothed gap may enjoy a quadratic error bound even if the objective is not strongly convex.

According to Theorem 28, since 2 + a2 = 1
1−τµf /2 , the rate is (1 + ρ)−1 where

ρ = Λ η

1 + η/λ
= λ

max(λ τµf

1−τµf /2 + 1/βx, λ
1+τµf /2
1−τµf /2 + 1/βy)

min
(

µτ + στa2

βy
, στa2

βx+µτ

)
1 + min

(
µτ + στa2

βy
, στa2

βx+µτ

)
/λ

.

with λ = (1− µτ/2)(1−
√

στa2). Since the algorithm does not depend on βx or βy we can choose them so that
they minimize the rate (or maximize ρ). On Figure 2, we can see that the rate of convergence explained using
the quadratic error bound of the smoothed gap is as good as the rate using strong convexity (Assumption 6)
when µ is large and does not vanish when µ goes to 0. On top of this, for small values of µ, we obtain a much
better rate than what is predicted using metric sub-regularity.

In Appendix D, Proposition 34, we derive a finer analysis in the case where we solve a linearly constrained
problem whose objective function is strongly convex. Indeed, we can show that the largest singular value of
the matrix R described in Section 5.2 is 1 − γ. Yet, its spectral radius is much smaller. This implies that a
contraction on distV (zk − z∗)2 is not enough to account for the actual rate. We propose to combine it with a
contraction on ∥zk+1 − zk∥2

V . The rationale for this addition is that for large strong convexity parameters, the
primal sequence will behave as if it were tracking arg minx′ L(x′, yk). This is a kind of slow-fast system where
the dual variable is slowly varying and the primal variable is fast.

When we plot the curve of the rate as a function of µf (with the legend “slow-fast double concentration rate”)
we can see that this more complex analysis manages to explain the improvement of the rate for an increasing
strong convexity parameter, together with its degradations when the parameter becomes too large.

Figure 2 Comparison of the true rate ρ (line above), what is predicted by theory using previous
theories and what is predicted by using quadratic error bound of the smoothed gap for a = 0.03,
τ = σ = 1 and various values for µ. We plot 1 − ρ in logarithmic scale.

8 Restarted averaged primal-dual hybrid gradient

8.1 Restarted Averaged Primal-Dual Hybrid Gradient
In this section we will see how our new understanding of the rate of convergence of PDHG can help us design a
faster algorithm.
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Algorithm 2 Averaged Primal Dual Hybrid Gradient – APDHG(x0, y0, K)
For k ∈ {0, . . . , K − 1}:

x̄k+1 = proxτf (xk − τ∇f2(xk)− τA⊤yk)
ȳk+1 = proxσg∗(yk − σ∇g∗

2(yk) + σAx̄k+1)

xk+1 = x̄k+1 − τA⊤(ȳk+1 − yk)
yk+1 = ȳk+1

x̃k+1 = 1
k+1

k∑
l=0

x̄l+1 ỹk+1 = 1
k+1

k∑
l=0

ȳl+1

Return (x̃K , ỹK)

Let averaged PDHG be given by Algorithm 2. On the class of convex functions, averaged PDHG has an
improved convergence speed in O(1/k) in the worst case while PDHG has a convergence in O(1/

√
k) [10].

However, when averaging, we loose the linear convergence for well behaved problems. We thus propose to
restart the algorithm as in Algorithm 3. The following proposition shows that RAPDHG enjoys an improved rate
of convergence where the product βη is replaced by max(β, η). Hence for problems where η(β) is a decreasing
function of β, like linear programs, we will expect an improved convergence rate by averaging and restarting.

Algorithm 3 Restarted Averaged Primal Dual Hybrid Gradient – RAPDHG(x0, y0)
Let K ∈ N and z0 = (x0, y0). For s ≥ 0:

zs+1 = APDHG(zs, K)

Proposition 29. Under Assumption 22 with βx = βy = β, if the restart frequency K satisfies Kβ ≥ 2 and
Kη ≥ 2(2 + a+

2 )/η, where a+
2 = max(0, a2) and a2 is defined in Lemma 14, then RAPDHG converges linearly at a

rate 2−1/K . Moreover, if K = ⌈max(2/β, 2(2 + a+
2 )/η/η)⌉, then the rate is exp

(
− 1

⌈max(2/β,2(2+a+
2 )/η/η)⌉ ln(2)

)
≈

exp
(
−min(β/2, η/(2(2 + a+

2 ))) ln(2)
)
.

Proof. Let us denote by (zR
s )s∈N the iterates of RAPDHG. We keep the notation zk, z̄k for the iterates of the

inner loop.
Consider z∗ ∈ Z∗ and denote a+

2 = max(0, a2). We combine (6) with a+
2 /2 times (4) to get

L(x̄k+1, y)− L(x, ȳk+1)

≤ 1
2∥z − zk∥2

V −
1
2∥z − zk+1∥2

V + a+
2
2 ∥z

∗ − zk∥2
V −

a+
2
2 ∥z

∗ − zk+1∥2
V + (a2 − a+

2 )Ṽ (zk, z∗) .

Summing this inequality for k between 0 and K − 1, using the fact that the Lagrangian is convex-concave, and
that a2 − a+

2 ≤ 0, we get

L(x̃K , y)− L(x, ỹK) ≤ 1
2K
∥z − z0∥2

V −
1

2K
∥z − zK∥2

V + a+
2

2K
∥z∗ − z0∥2

V −
a+

2
2K
∥z∗ − zK∥2

V

which leads to

L(x̃K , y)− L(x, ỹK)− β

2 ∥z − z∗∥2
V ≤

1
2K
∥z − z0∥2

V −
β

2 ∥z − z∗∥2
V + a+

2
2K
∥z∗ − z0∥2

V

and so, as soon as Kβ > 1, since the maximum of the right hand side is attained at z = Kβz∗−z0
Kβ−1 ,

Gβ(z̃K , z∗) ≤ 1
2K

(
Kβ

Kβ − 1 + a+
2

)
∥z∗ − z0∥2

V .

We now use Assumption 22 to get

1
K

(
Kβ

Kβ − 1 + a+
2

)
∥z∗ − z0∥2

V ≥ η∥z∗ − z̃K∥2 .
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We choose z∗ = PZ∗(z0) and K such that Kβ ≥ 2 and Kη ≥ 2(2 + a+
2 ) in order to get

distV (zR
1 ,Z∗)2 = distV (z̃K ,Z∗)2 ≤ 1

2 distV (z0,Z∗)2 .

If we choose K = ⌈max(2/β, 2(2 + a+
2 )/η)⌉ we thus get a linear convergence

distV (zR
s ,Z∗)2 ≤ 1

2s
distV (z̃R

0 ,Z∗)2

≤ exp
(
− 1
⌈max(2/β, 2(2 + a+

2 )/η)⌉
ln(2)

)sK

distV (z0,Z∗)2

where sK is the total number of iterations. ◀

The rate of convergence of RAPDHG has two nice features as compared to plain PDHG. Indeed, there is a
factor Λ in Theorem 28 in front of the quadratic error bound constant η, which is of order λβ when β is small.
On the other hand, the rate of RAPDHG has no direct dependence on λ, which means that it will behave well
even if στ∥A∥2 is close to 1. Moreover, it replaces βη by min(β, η), which will be orders of magnitude better in
the case of linear programs where η = O(β) for β = 1/θ (Proposition 27)

8.2 Self-centered smoothed gap
In this paper, we have shown that the smoothed gap is a convenient quantity for the analysis of PDHG and
that assuming that it satisfies a quadratic error bound condition explains well its behaviour. However, since
computing it requires the knowledge of a saddle point, one cannot use the smoothed gap for algorithmic design,
and in particular for the tuning of RAPDHG.

We thus propose the following approximation, that we call the self-centered smoothed gap.

Definition 30. Given β = (βx, βx) ∈ [0, +∞[2, and z ∈ Z, the self-centered smoothed gap is given by Gβ(z, z).

The motivation for this definition is the following lemma.

Lemma 31. For all z, ż ∈ Z and z∗ equal to the projection of ż onto Z∗,

Gβ(z, ż) ≥ G2β(z, z∗)− β distV (ż,Z∗)2
V . (11)

Proof.

Gβ(z, ż) = max
z′

L(x, y′)− L(x′, y)− β

2 ∥ż − z′∥2
V

≥ max
z′

L(x, y′)− L(x′, y)− β∥z∗ − z′∥2
V − β∥ż − z∗∥2

V

= G2β(z, z∗)− β∥ż − z∗∥2
V = G2β(z, z∗)− β distV (ż,Z∗)2

V ◀

This shows that Gβ(z, ż) is a good approximation to the measure of optimality G2β(z, z∗) as soon as β is
small enough or ż is close enough to z∗. It happens that for ż = z, we can prove even more.

Proposition 32. The self-centered smoothed gap is a measure of optimality. Indeed, ∀ z ∈ Z, ∀ β ∈ [0, +∞[2:
i. Gβ(z, z) ≥ 0.
ii. Gβ(z, z) = 0⇔ z ∈ Z∗.
iii. For z∗ = PZ∗(z) ∈ Z∗, if Gβ(z, z∗) ≥ η

2 distV (z,Z∗)2, then we have Gβ′(z, z) ≥ η′

2 distV (z,Z∗)2 where
β′ = min(β/2, η/4) and η′ = η/2.

Proof. The function Φ : z′ 7→ L(x, y′) − L(x′, y) − β
2 ∥z − z′∥2

V is β-strongly concave in the norm ∥ · ∥V so for
z∗

β(z) = arg max Φ, we have

Gβ(z, z) = max
z′

Φ(z′) ≥ Φ(z) + β

2 ∥z
∗
β(z)− z∥2

V .

Using the fact that Φ(z) = 0 gives point i.
For the second point, it is clear by Proposition 21 that Gβ(z∗, z∗) = 0. For the converse implication, we shall

do the proof only for β > 0 because G0(z, z) is the usual duality gap.

Gβ(z, z) = 0 ⇒ β

2 ∥z
∗
β(z)− z∥2

V = 0 ⇒ z∗
β(z) = z ⇒

{
0 ∈ −∂xL(x, y)− β

τ (x− x)
0 ∈ −∂y(−L)(x, y)− β

σ (y − y)
⇒ z ∈ Z∗
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so that point ii holds.
Finally, suppose that Gβ(z, z∗) ≥ η

2 distV (z,Z∗)2. Since β′ = min(β/2, η(β)/4) ≤ β/2, we have G2β′(z, z∗) ≥
Gβ(z, z∗). Using Lemma 31, we have

Gβ′(z, z) ≥ G2β′(z, z∗)− β′ distV (z,Z∗)2 ≥ Gβ(z, z∗)− β′ distV (z,Z∗)2 ≥
(η

2 − β′)distV (z,Z∗)2

≥ η

4 distV (z,Z∗)2 . ◀

In the numerical experiment section, we shall use the self-centered smoothed gap as a stopping criterion with
β = (0, δ) where δ is the dual infeasibility.

8.3 Adaptive restart

We now modify RAPDHG so that instead of using unknown quantities β and η to set the restart period K,
we monitor the self-centered smoothed gap and restart when this quantity has been halved. In order to take
into account cases where averaging is detrimental, we then compare z̃k and z̄k and restart at the best of these
in terms of smoothed gap. This adaptive restart is formalized in Algorithm 4 and justified by the following
proposition.

Proposition 33. Suppose that Assumption 22 holds, i.e., there exists β, η such that for all z∗ ∈ Z∗ and z verifying
distV (z,Z∗) ≤ distV (z0,Z∗) we have Gβ(z; z∗) ≤ η

2 distV (z,Z∗). Denote η′(β′) = 0 if β′ ≥ min(β/2, η/4) and
η′(β′) = η otherwise. Then, as soon as βs ≤ min(β/2, η/4) the iterates of Algorithm 4 satisfy for all β′ ∈]0, +∞[,

Gβ′(z̃k, z̃k) ≤ 2
(k − s)η′(βs)

(
2 + a+

2 + 2
(k − s)β′

)
Gβs

(zs, zs) .

where a+
2 = max(0, a2) and a2 is defined in Lemma 14.

Proof. As in Proposition 29, we have ∀ z,

L(x̃k, y)− L(x, ỹk) ≤ 1
2(k − s)∥z − zs∥2

V −
1

2(k − s)∥z − zk∥2
V + a+

2
2(k − s)∥z

∗ − zs∥2
V −

a+
2

2(k − s)∥z
∗ − zk∥2

V .

Summing (6) for l between s and k − 1 and using the fact that the Lagrangian is convex-concave, we get for
all z, We go on with

L(x̃k, y)− L(x, ỹk)− β′

2 ∥z − z̃k∥2
V ≤

1
2(k − s)∥z − zs∥2

V −
1

2(k − s)∥z − zk∥2
V −

β′

2 ∥z − z̃k∥2
V

+ a+
2

2(k − s)∥z
∗ − zs∥2

V −
a+

2
2(k − s)∥z

∗ − zk∥2
V

Gβ′(z̃k, z̃k) ≤ sup
z

1
2(k − s)∥z − zs∥2

V −
1

2(k − s)∥z − zk∥2
V −

β′

2 ∥z − z̃k∥2
V

+ a+
2

2(k − s)∥z
∗ − zs∥2

V −
a+

2
2(k − s)∥z

∗ − zk∥2
V
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This supremum is attained at z = z̃k + 1
β′(k−s) (zk − zs) so that, denoting z∗ = PZ∗(zs),

Gβ′(z̃k, z̃k) ≤ 1
2(k − s)

〈
zk − zs, 2z̃k + 1

β′(k − s) (zk − zs)− zk − zs

〉
V
− 1

2β′(k − s)2 ∥zk − zs∥2
V

+ a+
2

2(k − s)∥z
∗ − zs∥2

V −
a+

2
2(k − s)∥z

∗ − zk∥2
V

≤ 1
2(k − s)∥z̃k − zs∥2

V −
1

2(k − s)∥z̃k − zk∥2
V + 1

2β′(k − s)2 ∥zk − zs∥2
V

+ a+
2

2(k − s)∥z
∗ − zs∥2

V −
a+

2
2(k − s)∥z

∗ − zk∥2
V

≤ 1
k − s

∥z̃k − z∗∥2
V + 1

k − s
∥zs − z∗∥2

V − 0 + 1
β′(k − s)2 ∥zk − z∗∥2

V + 1
β′(k − s)2 ∥zs − z∗∥2

V

+ a+
2

2(k − s)∥z
∗ − zs∥2

V −
a+

2
2(k − s)∥z

∗ − zk∥2
V

≤ 1
k − s

∥z̃k − z∗∥2
V +

(
1

k − s
+ 1

β′(k − s)2 + a+
2

2(k − s)

)
∥zs − z∗∥2

V

+
(

1
β′(k − s)2 −

a+
2

2(k − s)

)
∥zk − z∗∥2

V

≤ 1
k − s

(
2 + a+

2 + 2
β′(k − s)

)
distV (zs,Z∗)2

because Lemma 12 implies that ∥zk − z∗∥ ≤ ∥zs − z∗∥ for all k ≥ s, and thus also ∥z̃k − z∗∥ ≤ ∥zs − z∗∥. We
now use the quadratic error bound of the self-centered smoothed gap, which holds thanks to Proposition 32.

Gβ′(z̃k, z̃k) ≤ 2
η′(βs)(k − s)

(
2 + a+

2 + 2
β′(k − s)

)
Gβs

(zs, zs) . ◀

Hence, choosing β′ = 1
k−s , as soon as k − s ≥ 4(4+a+

2 )
η′(βs) , we have Gβ′(z̃k, z̃k) ≤ 0.5Gβs

(zs, zs). We have added
additional safeguards – β′ = min( 1

k−s+1 , βs) and Gβs
(zs, zs) ≤ 0.01 min(Gβ′(z̃k+1, z̃k+1), Gβ′(z̄k+1, z̄k+1)) – for

cases where a precipitous restart may lead to β′ > min(β/2, η/4) and thus slow down the algorithm afterwards
because we have lost control on η(β′).

Algorithm 4 RAPDHG with adaptive restart
s = 0, β0 > 0
for k ∈ N do

zk+1 = T (zk) – see (3)
z̃k+1 = 1

k−s+1
∑k+1

l=s+1 z̄l

β′ = min( 1
k−s+1 , βs)

Gcurr = min(Gβ′(z̃k+1, z̃k+1), Gβ′(z̄k+1, z̄k+1))
if Gcurr ≤ 0.5 Gβs

(zs, zs) or Gβs
(zs, zs) ≤ 0.01 Gcurr then

if Gβ′(z̃k+1, z̃k+1) ≤ Gβ′(z̄k+1, z̄k+1) then
Reassign zk+1 ← z̃k+1

else
Keep current iterate

zs = zk+1
βs = β′

s = k

9 Numerical experiments

In the last section, we present some numerical experiments to illustrate the linear convergence behaviour of
PDHG and RAPDHG1. We will first look at a two linear program to show that the linear rate of RAPDHG can

1 The code is available on https://perso.telecom-paristech.fr/ofercoq/Software.html

https://perso.telecom-paristech.fr/ofercoq/Software.html
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β η̂(β)
1 0.00018
0.1 0.00183
0.01 0.01829
0.001 0.14474

Figure 3 Table: Estimates of the quadratic error bound of the smoothed gap for several smoothing
parameters. Figure: Comparison of PDHG and RAPDHG on the small linear program. The restart period
of 200 was chosen because for β = 1/100, we have η̂(β) ≈ 2/100, so that K = ⌈max(2/β, 4/η)⌉ = 200.

be much faster than PDHG’s. Then, we will exemplify the limits of the methods with a ridge regression problem
where restarted averaging does not help and a non-polyhedral problem where we do not observe a linear rate of
convergence.

9.1 Small linear program
The first experiment is on a small LP where the dual optimal set is known:

min
x∈R4,x≥0

−7x1 − 9x2 − 18x3 − 17x4

2x1 + 4x2 + 6x3 + 7x4 ≤ 41
x1 + x2 + 2x3 + 2x4 ≤ 17

x1 + 2x2 + 3x3 + 3x4 ≤ 24

To give an estimate the quadratic error bound constant, we compute for several values of β the quantity
η̂(β) = mink

Gβ(zk;z∗)
0.5 dist(zk,Z∗)2 . We can do it because Z∗ is known for this small problem. Using a similar idea we

can also get an estimate of the metric subregularity constant of the Lagrangian’s gradient, here η ≈ 0.0187.
On Figure 3, we can see that the actual rate of convergence is rather close to what is predicted by theory.

Moreover, RAPDHG is much faster than PDHG. Yet, note that thousands of iterations for a LP with 4 variables
and 3 constraints is not competitive with the state of the art.

9.2 Larger polyhedral problem
We then run an experiment on a more realistic problem. We run PDHG and RAPDHG with adaptive restart on
the following sparse SVM problem:

min
w∈Rd

n∑
i=1

max(0, 1− yixi,:w) + ∥w∥1

where (yi, xi,:)1≤i≤n are the data points from the a1a dataset [7] (d = 119 and n = 1, 605). We normalized the
data matrix so that ∥x:,j∥2 = 1.

The convergence profile is given in Figure 4. The behaviour of the algorithms is similar to what was seen in
the small size problem. Here however, we can see clearly two phases. In the beginning, we observe a sublinear
convergence, where restart and averaging does not help. Then the linear rate kicks in after a nonnegligible time.
We believe that it comes from something related to the condition Gβ(z; z∗) ≤ R in Proposition 27. Note that
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this cold start phase is quite long. On our laptop computer with 4 Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz
it took 5.7s while the adaptive proximal point method of [24] took 0.93s to solve the problem.

Figure 4 Comparison of PDHG and RAPDHG: sparse SVM on the a1a dataset. We are plotting the
optimality measure for the last iterate

9.3 Ridge regression
In this experiment, we test on a problem where restarting does not help. We consider least squares with ℓ2
regularization

min
x

1
2∥Ax− b∥2 + 50∥x∥2

where A and b are given by the real-sim dataset [7]. Since we know the strong convexity-concavity parameter of
the Lagrangian, we choose the step sizes σ and τ as in Section 5.1. As a consequence, PDHG has a convergence
rate that matches the theoretical lower bound for this class problem and cannot be improved.

We can see on Figure 5 that, as expected, restart and averaging does not help: z̄k is consistently better than
z̃k so that RAPDHG with adaptive restart selects the same sequence as PDHG and the two curves match. We
added a comparison with restarted-FISTA [15] to show that the choice of step sizes indeed suffices to get an
algorithm with accelerated rate.

9.4 TV-L1
We consider the minimization of the following non-polyhedral function

min
x

λ∥x− I∥1 + ∥Dx∥2,1

where I is the Cameraman image, D is the 2D discrete gradient, ∥z∥2,1 =
∑

p∈P

√
z2

p,1 + z2
p,2 and λ = 1.9. This

problem is not piecewise linear-quadratic, so that our linear convergence result does not hold. Yet is rather
structured: it is equivalent to a second order cone program. We can see in Figure 6 that this is a difficult problem
for PDHG but that RAPDHG does improve the convergence speed significantly. The solution we obtain is shown
in Figure 7.

10 Conclusion

In this paper, we have tried to understand the linear rate of convergence of primal-dual hybrid gradient. Even
on a very simple problem, we have seen that current regularity assumptions are not sufficient to explain the



Olivier Fercoq 21

Figure 5 Solving ℓ2 regularized least squares on the real-sim dataset.

Figure 6 Comparison of PDHG and RAPDHG on the ℓ1 ROF problem.

behavior of the algorithm. We have then introduced the quadratic error bound of the smoothed gap and argue
that this new condition is more widely applicable and more precise than previous ones. Finally, we showed how
this new knowledge can be used to improve the algorithm.
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Figure 7 Left:original image – Right: solution, 59% of the pixels are unchanged

This work opens several perspectives:
Can the quadratic error bound of the smooth gap be used to understand better the convergence rate of other
primal-dual algorithms? Interesting cases would be the ADMM, the augmented Lagrangian method and
coordinate update methods to cite a few.
We have seen in (11) that the smoothed gap at a non-optimal point can approximate the smoothed gap at
an optimal point. Considering it as a stopping criterion would be an alternative to the KKT error, which
implicitly requires metric sub-regularity to make sense, and duality gap, which is +∞ nearly everywhere for
linearly constrained problems.
Our first attempt for the design of a primal-dual algorithm with an improved linear rate of convergence has
shown the usefulness of our regularity assumption. Would we be able to design an optimal algorithm for the
class of problems with a given quadratic error bound of the smoothed gap function?

A Proofs of Section 3

Lemma 11. Let p = proxτf (x) and p′ = proxτf (x′) where f is µf -strongly convex. For all x and x′,

f(p) + 1
2τ
∥p− x∥2 ≤ f(x′) + 1

2τ
∥x′ − x∥2 − 1 + τµf

2τ
∥p− x′∥2

(1 + 2τµf )∥p− p′∥2 ≤ ∥x′ − x∥2 − ∥p− x− p′ + x′∥2 .

Proof. p = arg minz f(z) + 1
2τ ∥z − x∥2

Yet, h : z 7→ f(z) + 1
2τ ∥z − x∥2 − 1+τµf

2τ ∥p− z∥2 is convex and 0 ∈ ∂h(p). This implies the first inequality by
Fermat’s rule.

We now apply the first inequality at (x, p′) and at (x′, p) and then sum.

f(p) + 1
2τ
∥p− x∥2 + f(p′) + 1

2τ
∥p′ − x′∥2

≤ f(p′) + 1
2τ
∥p′ − x∥2 − 1 + τµf

2τ
∥p− p′∥2 + f(p) + 1

2τ
∥p− x′∥2 − 1 + τµf

2τ
∥p′ − p∥2

Rearranging the squared norm terms we get

(1 + τµf )∥p′ − p∥2 ≤ ⟨p− p′, x− x′⟩
∥p− x− p′ + x′∥2 = ∥p− p′∥2 + ∥x− x′∥2 − 2⟨p− p′, x− x′⟩ ≤ ∥x− x′∥2 − (1 + 2τµf )∥p− p′∥2 ◀

Lemma 12. Let T : X × Y → X × Y be defined for any (x, y) by (3). Suppose that ∇f2 is Lf -Lipschitz
continuous and ∇g∗

2 is Lg∗-Lipschitz continuous. If the step sizes satisfy γ = στ∥A∥2 < 1, αf = τLf /2 < 1,
αg = σLg∗/2 < 1 then T is nonexpansive in the norm ∥ · ∥V ,

∥T (z)− T (z′)∥2
V ≤ ∥z − z′∥2

V − 2Ṽ (z, z′) (4)
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and T is 1
1+λ -averaged where

λ = 1− αf −
αg − (1− γ)αf

2 −
√

(1− αf )2γ + ((1− γ)αf − αg)2/4 ,

which means for z = (x, y) and z′ = (x′, y′)

∥T (z)− T (z′)∥2
V ≤ ∥z − z′∥2

V − λ∥z − T (z)− z′ + T (z′)∥2
V . (5)

As a consequence, (zk) converges to a saddle point of the Lagrangian. Moreover, if σLg∗/2 ≤ αf (1− στ∥A∥2),
then λ ≥ (1−√γ)(1− αf ).

Proof. In the appendix, we will improve slightly the result in the case where f or g∗ is strongly convex. Note
that all what follows works even if µf = µg∗ = 0.

Since the proximal operator of a convex function is firmly nonexpansive, for (x, y), (x′, y′) ∈ Z,

(1 + 2µf τ)∥x̄− x̄′∥2 ≤ ∥x− τ∇f2(x)− τA⊤y − x′+τ∇f2(x′) + τA⊤y′∥2

− ∥x− τ∇f2(x)− τA⊤y − x̄− x′+τ∇f2(x′) + τA⊤y′ + x̄′∥2

= ∥x− τ∇f2(x)− x′+τ∇f2(x′)∥2 + τ2∥A⊤(y − y′)∥2

− 2τ⟨x− τ∇f2(x)− x′+τ∇f2(x′), A⊤(y − y′)⟩

− ∥x− τ∇f2(x)− x̄− x′+τ∇f2(x′) + x̄′∥2 − τ2∥A⊤(y − y′)∥2

+ 2τ⟨x− τ∇f2(x)− x̄− x′+τ∇f2(x′) + x̄′, A⊤(y − y′)⟩
= ∥x− τ∇f2(x)− x′+τ∇f2(x′)∥2 − ∥x− τ∇f2(x)− x̄− x′+τ∇f2(x′) + x̄′∥2

− 2τ⟨x̄− x̄′, A⊤(y − y′)⟩

We also have

∥x− τ∇f2(x)− x′+τ∇f2(x′)∥2 = ∥x− x′∥2 + τ2∥∇f2(x)−∇f2(x′)∥2 − 2τ⟨∇f2(x)−∇f2(x′), x− x′⟩

≤ ∥x− x′∥2 −
(

2τ

Lf
− τ2

)
∥∇f2(x)−∇f2(x′)∥2

∥x− τ∇f2(x)− x̄− x′ + τ∇f2(x′) + x̄′∥2

= ∥x− x̄− x′ + x̄′∥2 + τ2∥∇f2(x)−∇f2(x′)∥2 − 2τ⟨∇f2(x)−∇f2(x′), x− x′ − x̄ + x̄′⟩

≥ (1− αf )∥x− x̄− x′ − x̄′∥2 + τ2(1− α−1
f )∥∇f2(x)−∇f2(x′)∥2

for all αf > 0. Hence,

(1 + 2µf τ)∥x̄− x̄′∥2 ≤ ∥x− x′∥2 − (1− αf )∥x− x̄− x′ + x̄′∥2 − 2τ⟨x̄− x̄′, A⊤(y − y′)⟩

−
(

2τ

Lf
− α−1

f τ2
)
∥∇f2(x) − ∇f2(x′)∥2

Similarly,

(1 + 2µg∗σ)∥ȳ − ȳ′∥2 ≤ ∥y − y′∥2 − (1− αg)∥y − ȳ − y′ + ȳ′∥2 + 2σ⟨ȳ − ȳ′, A(x̄− x̄′)⟩

−
(

2σ

Lg∗
− α−1

g σ2
)
∥∇g2(y) − ∇g2(y′)∥2
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We then proceed to

∥T (x, y)− T (x′, y′)∥2
V = 1

τ
∥x̄− τA⊤(ȳ − y)− x̄′ + τA⊤(ȳ′ − y′)∥2 + 1

σ
∥ȳ − ȳ′∥2

= 1
τ
∥x̄− x̄′∥2 + τ∥A⊤(ȳ − y)−A⊤(ȳ′ − y′)∥2

− 2⟨x̄− x̄′, A⊤(ȳ − y)−A⊤(ȳ′ − y′)⟩+ 1
σ
∥ȳ − ȳ′∥2

≤ 1
τ
∥x− x′∥2 − 1− αf

τ
∥x− x̄− x′ + x̄′∥2 − 2⟨x̄− x̄′, A⊤(y − y′)⟩

+ τ∥A⊤(ȳ − y − ȳ′ + y′)∥2 − 2⟨x̄− x̄′, A⊤(ȳ − y)−A⊤(ȳ′ − y′)⟩

+ 1
σ
∥y − y′∥2 − 1− αg

σ
∥y − ȳ − y′ + ȳ′∥2 + 2⟨ȳ − ȳ′, A(x̄− x̄′)⟩

−
(

2τ

Lf
− α−1

f τ2
)
∥∇f2(x)−∇f2(x′)∥2 − 2µf∥x̄− x̄′∥2

−
(

2σ

Lg∗
− α−1

g σ2
)
∥∇g2(y)−∇g2(y′)∥2 − 2µg∗∥ȳ − ȳ′∥2

We choose αf = τLf /2 < 1 and αg = σLg∗/2 < 1 and we note that

−2⟨x̄− x̄′, A⊤(y − y′)⟩ − 2⟨x̄− x̄′, A⊤(ȳ − y)−A⊤(ȳ′ − y′)⟩+ 2⟨ȳ − ȳ′, A(x̄− x̄′)⟩ = 0 .

This leads to

∥T (x, y)− T (x′, y′)∥2
V ≤ ∥z − z′∥2

V −
1− αf

τ
∥x− x̄− x′ + x̄′∥2 − 1− αg − τσ∥A∥2

σ
∥y − ȳ − y′ + ȳ′∥2

− 2µf∥x̄ − x̄′∥2 − 2µg∗∥ȳ − ȳ′∥2

which proves (4). Now, we shall prove that V (z, z′) ≥ λ
2 ∥z − T (z)− z′ + T (z′)∥2

V . For any λ ∈ [0, 1− αf ] and
α > 0,

∥T (x, y)− T (x′, y′)∥2
V ≤

1
τ
∥x− x′∥2 − 1− αf − λ

τ
∥x− x̄− x′ + x̄′∥2

− λ

τ
∥x− x̄ + τA⊤(ȳ − y)− x′ + x̄′ − τA⊤(ȳ′ − y′)∥2

+ λτ∥A⊤(ȳ − y − ȳ′ + y′)∥2

+ 2λ⟨x− x̄− x′ + x̄′, A⊤(ȳ − y)−A⊤(ȳ′ − y′)⟩

+ 1
σ
∥y − y′∥2 − 1− αg − στ∥A∥2

σ
∥y − ȳ − y′ + ȳ′∥2

− 2µf∥x̄− x̄′∥2 − 2µg∗∥ȳ − ȳ′∥2

∥T (x, y)− T (x′, y′)∥2
V ≤

1
τ
∥x− x′∥2 + 1

σ
∥y − y′∥2

− λ

τ
∥x− x̄ + τA⊤(ȳ − y)− x′ + x̄′ − τA⊤(ȳ′ − y′)∥2

− λ

σ
∥y − ȳ − y′ + ȳ′∥2 +

(
λ

τα
− 1− αf − λ

τ

)
∥x− x̄− x′ + x̄′∥2

+
(

(1 + λ + λα)τ∥A∥2 − 1− αg − λ

σ

)
∥(ȳ − y − ȳ′ + y′)∥2

− 2µf∥x̄− x̄′∥2 − 2µg∗∥ȳ − ȳ′∥2

where λ ∈ [0, 1− αf ] and α > 0 are arbitrary. We choose λ and α such that
λ

α
= 1− αf − λ

(1 + λ + λα)γ = 1− αg − λ

that is λ = 1−√γ and α = λ
1−λ = 1−√

γ√
γ when f2 = 0 and g2 = 0. In the case f2 and g2 non zero, we take

λ = 1− αf −
αg − (1− γ)αf

2 −
√

(1− αf )2γ + ((1− γ)αf − αg)2/4 , α = λ

1− αf − λ
.
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Note that as soon as αg ≤ (1− γ)αf , we have (1− αf )(1−√γ) ≤ λ ≤ 1− αf . We continue as

∥T (x, y)− T (x′, y′)∥2
V ≤

1
τ
∥x− x′∥2 + 1

σ
∥y − y′∥2 − λ

τ
∥x− x̄ + τA⊤(ȳ − y)− x′ + x̄′ − τA⊤(ȳ′ − y′)∥2

− λ

σ
∥y − ȳ − y′ + ȳ′∥2 − 2µf∥x̄ − x̄′∥2 − 2µg∗∥ȳ − ȳ′∥2 .

We get that T is β-averaged with 1−β
β = λ, that is β = 1

λ+1 .
For the convergence, we use Krasnosels′kii Mann theorem [4]. ◀

Lemma 13. For any z∗ ∈ Z∗, Ṽ satisfies

Ṽ (zk, z∗) = 1− αf

2τ
∥x̄k+1 − xk∥2 + 1− αg − γ

2σ
∥ȳk+1 − yk∥2 ≥ λ

2 ∥zk+1 − zk∥2
V .

Proof. The last part of the proof of Lemma 12 shows that for any z, z′ ∈ Z,

V (z, z′) ≥ λ

2 ∥z − T (z)− z′ + T (z′)∥2
V

Since T (z∗) = z∗, T (zk) = zk+1, we get the desired result. ◀

Lemma 14. Suppose that γ = στ∥A∥2 < 1, τLf /2 = αf < 1, αg = σLg∗/2 < 1. For all k ∈ N and for all z ∈ Z,

L(x̄k+1, y)− L(x, ȳk+1) ≤ 1
2∥z − zk∥2

V −
1
2∥z − zk+1∥2

V + a2Ṽ (zk, z∗) (6)

where Ṽ (zk, z∗) = ( 1
2τ −

Lf

2 )∥x̄k+1 − xk∥2 + ( 1
2σ −

τ∥A∥2

2 − Lg∗

2 )∥ȳk+1 − yk∥2 and a2 = max( 2αf −1
1−αf

,
2αg−1+γ
1−αg−γ ).

a2 ≥ −1 may be positive or negative.

Proof. By Taylor–Lagrange inequality and convexity of f2 and g∗
2 ,

f2(x̄k+1) ≤ f2(xk) + ⟨∇f2(xk), x̄k+1 − xk⟩+ Lf

2 ∥x̄k+1 − xk∥2

≤ f2(x) + ⟨∇f2(xk), x̄k+1 − x⟩+ Lf

2 ∥x̄k+1 − xk∥2 − τµf2

τ
∥xk − x∥2

g∗
2(ȳk+1) ≤ g∗

2(yk) + ⟨∇g∗
2(yk), ȳk+1 − yk⟩+ Lg∗

2 ∥ȳk+1 − yk∥2

≤ g∗
2(y) + ⟨∇g∗

2(yk), ȳk+1 − y⟩+ Lg∗

2 ∥ȳk+1 − yk∥2 −
σµg∗

2

σ
∥yk − y∥2

By definitions of x̄k+1 and ȳk+1, for all x ∈ X and y ∈ Y, we have:

f(x̄k+1) ≤ f(x) + ⟨∇f2(xk) + A⊤yk, x− x̄k+1⟩+ 1
2τ
∥x− xk∥2 − 1 + τµf

2τ
∥x− x̄k+1∥2 − 1

2τ
∥x̄k+1 − xk∥2

g∗(ȳk+1) ≤ g∗(y) + ⟨∇g∗
2(yk)−Ax̄k+1, y − ȳk+1⟩+ 1

2σ
∥y − yk∥2 − 1 + σµg∗

2σ
∥y − ȳk+1∥2 − 1

2σ
∥ȳk+1 − yk∥2
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Summing these inequalities and using the relations xk+1 = x̄k+1 − τA⊤(ȳk+1 − yk) and yk+1 = ȳk+1 yields

L(x̄k+1, y)− L(x, ȳk+1)
= f(x̄k+1)+f2(x̄k+1) + ⟨Ax̄k+1, y⟩ − g∗(y)− g∗

2(y)− f(x)− f2(x)− ⟨Ax, ȳk+1⟩+ g∗(ȳk+1)+g∗
2(ȳk+1)

≤ 1− τµf2

2τ
∥x− xk∥2 +

1− σµg∗
2

2σ
∥y − yk∥2 − 1

2τ
∥x− xk+1∥2 − 1

2σ
∥y − yk+1∥2

− 1
2τ
∥xk+1 − x̄k+1∥2 − 1

τ
⟨x− xk+1, xk+1 − x̄k+1⟩

+ ⟨Ax̄k+1, y⟩ − ⟨Ax, ȳk+1⟩+ ⟨A⊤yk, x− x̄k+1⟩ − ⟨Ax̄k+1, y − ȳk+1⟩

− 1
2τ
∥x̄k+1 − xk∥2 + 1

2σ
∥ȳk+1 − yk∥2+Lf

2 ∥x̄k+1 − xk∥2 + Lg∗

2 ∥ȳk+1 − yk∥2

− τµf

2τ
∥x̄k+1 − x∥2 − σµg∗

2σ
∥ȳk+1 − y∥2

= 1
2∥z − zk∥2

V −µ2
− 1

2∥z − zk+1∥2
V −

τ

2∥A
⊤(ȳk+1 − yk)∥2

+ ⟨x− x̄k+1 + τA⊤(ȳk+1 − yk), A⊤(ȳk+1 − yk)⟩+ ⟨A(x̄k+1 − x), ȳk+1 − y⟩

− 1
2∥z̄k+1 − zk∥2

V +Lf

2 ∥x̄k+1 − xk∥2 + Lg∗

2 ∥ȳk+1 − yk∥2 − 1
2∥z̄k+1 − z∥2

µ

= 1
2∥z − zk∥2

V −
1
2∥z − zk+1∥2

V + τ

2∥A
⊤(ȳk+1 − yk)∥2 − 1

2∥z̄k+1 − zk∥2
V

+ Lf

2 ∥x̄k+1 − xk∥2 + Lg∗

2 ∥ȳk+1 − yk∥2 − 1
2∥z̄k+1 − z∥2

µ

Since Ṽ (zk, z∗) = 1−αf

2τ ∥x̄k+1 − xk∥2 + ( 1−αg−γ
2σ )∥ȳk+1 − yk∥2, αf ≥ τLf

2 and αg = σLg∗

2 , we can write

τ

2∥A
⊤(ȳk+1 − yk)∥2 − 1

2∥z̄k+1 − zk∥2
V +Lf

2 ∥x̄k+1 − xk∥2 + Lg∗

2 ∥ȳk+1 − yk∥2

≤ 1
2τ

(2αf − 1)∥x̄k+1 − xk∥2 + 1
2σ

(γ + 2αg − 1)∥ȳk+1 − yk∥2 ≤ max
(

2αf − 1
1− αf

,
γ + 2αg − 1
1− γ − αg

)
Ṽ (zk, z∗)

Hence,

L(x̄k+1, y)− L(x, ȳk+1) ≤ 1
2∥z − zk∥2

V −µ2
− 1

2∥z − zk+1∥2
V + a2Ṽ (zk, z∗)− 1

2∥z̄k+1 − z∥2
µ

where a2 = max
( 2αf −1

1−αf
,

γ+2αg−1
1−γ−αg

)
≥ −1 may be negative or positive. ◀

Proposition 15. Let z0 ∈ Z and let R ⊆ Z. If στ∥A∥2+σLg∗ ≤ 1 and τLf ≤ 1 then we have the stability

∥zk − z∗∥V ≤ ∥z0 − z∗∥V

for all z∗ ∈ Z∗. Define z̃k = 1
k

∑k
l=1 z̄l and the restricted duality gap G(z̄, R) = supz∈R L(x̄, y) − L(x, ȳ). We

have the sublinear iteration complexity

G(z̃k, R) ≤ 1
2k

sup
z∈R
∥z − z0∥2

V .

Proof. For any z∗ ∈ Z∗, L(x̄k+1, y∗)−L(x∗, ȳk+1) ≥ 0 which implies by Lemma 14 the stability inequality, since
a2 ≤ 0 in the case αf ≤ 1

2 and 2αg + γ ≤ 1.

1
2∥z

∗ − zk+1∥2
V ≤

1
2∥z

∗ − zk∥2
V ≤

1
2∥z

∗ − z0∥2
V .

We then sum (6) for k between 0 and K − 1 and use convexity in x and concavity in y of the Lagrangian:

K
(
L(x̃K , y)− L(x, ỹK)

)
≤

K−1∑
k=0

L(x̄k+1, y)− L(x, ȳk+1) ≤ 1
2∥z − z0∥2

V −
1
2∥z − zK∥2

V −
K−1∑
k=0

Ṽ (z̄k+1 − zk)

In particular,

G((x̃K , ỹK), R) ≤ 1
2K

sup
z∈R
∥z − z0∥2

V − ∥z − zK∥2
V . ◀
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B Proofs of Section 4

Proposition 18. If f + f2 has a L′
f + Lf -Lipschitz gradient and is µf -strongly convex, and g + g2 = ι{b}, then

PDHG converges linearly with rate(
1 + η

(2 + a2)(1 + η/λ)

)
distV (zk+1,Z∗)2 ≤ distV (zk,Z∗)2

where η = min(µf τ, στσmin(A)2

τLf +τL′
f

+ 1
λ

), λ is defined in Lemma 12 and a2 ≥ −1 is defined in Lemma 14.

Proof. We know by Lemmas 14 and 13 that for all z = (x, y),

L(x̄k+1, y)− L(x, ȳk+1) ≤ 1
2∥z − zk∥2

V −
1
2∥z − zk+1∥2

2+a2Ṽ (zk, z∗) .

We shall choose y = y∗ ∈ Y∗. By strong convexity of f + f2,

L(x̄k+1, y∗) ≥ L(x∗, y∗) + µf

2 ∥x̄k+1 − x∗∥2 .

For the dual vector, we use the smoothness of the objective, the equality ∇f(x∗) + ∇f2(x∗) = −A⊤y∗ and
Ax∗ = b.

−L(x, ȳk+1) = −f(x)− f2(x)− ⟨Ax− b, ȳk+1⟩

≥ −f(x∗)− f2(x∗)− ⟨∇f(x∗)−∇f2(x∗), x− x∗⟩ −
Lf + L′

f

2 ∥x− x∗∥2 − ⟨Ax− b, ȳk+1⟩

= −L(x∗, y∗) + ⟨A⊤y∗, x− x∗⟩ − ⟨x− x∗, A⊤ȳk+1⟩ −
Lf + L′

f

2 ∥x− x∗∥2

For a ∈ R, we choose x = x∗ + aA⊤(y∗ − ȳk+1) so that

−L(x∗+aA⊤(y∗−ȳk+1), ȳk+1) ≥ −L(x∗, y∗) + (a−a2 Lf + L′
f

2 )∥A⊤(ȳk+1−y∗)∥2 .

Moreover, we can show that ∥A⊤ȳ − A⊤y∗∥ ≥ σmin(A) dist(ȳ,Y∗), where σmin(A) is the smallest singular
value of A. Indeed, Y∗ = {y : A⊤y = −∇(f + f2)(x∗)} = PY∗(ȳ) + ker A⊤ is an affine space. Here, we denoted by
PY∗ the orthogonal projection on Y∗. We can then decompose ȳ as ȳ = PY∗(ȳ) + z where z ∈ ker A⊤ = (Im A)⊥.
This leads to ∥A⊤ȳ −A⊤y∗∥ = ∥A⊤PY∗(ȳ)−A⊤y∗∥ ≥ σmin(A)∥PY∗(ȳ)− y∗∥ because PY∗(ȳ)− y∗ ∈ (ker A⊤)⊥.

We now develop

1
2τ
∥x∗ + aA⊤(y∗ − ȳk+1)− xk∥2 − 1

2τ
∥x∗ + aA⊤(y∗ − ȳk+1)− xk+1∥2

= 1
2τ
∥x∗ − xk∥2 − 1

2τ
∥x∗ − xk+1∥2 + a

τ
⟨xk − xk+1, A⊤(y∗ − ȳk+1)⟩

≤ 1
2τ
∥x∗ − xk∥2 − 1

2τ
∥x∗ − xk+1∥2 + λ

2τ
∥xk − xk+1∥2 + a2

2τλ
∥A⊤(y∗ − ȳk+1)∥2

Combining the three inequalities, we obtain

1
2∥z

∗−zk∥2− 1
2∥z

∗−zk+1∥2+a2Ṽ (zk, z∗) ≥ µf

2 ∥x̄k+1−x∗∥2+
(

a−a2 Lf + L′
f

2 −a2 1
2τΓ

)
∥A⊤(ȳk+1−y∗)∥2 .

We choose a = τ
τLf +τL′

f
+ 1

λ

and we use ∥A⊤ȳ −A⊤y∗∥ ≥ σmin(A) dist(ȳ,Y∗) to get

1
2∥z

∗ − zk∥2 − 1
2∥z

∗ − zk+1∥2 + a2Ṽ (zk, z∗) ≥ µf τ

2 ∥x̄k+1 − x∗∥2
τ−1 + στσmin(A)2/2

τLf + τL′
f + 1

λ

∥ȳk+1 − y∗∥2
σ−1 .

Denote η = min
(

µf τ, στσmin(A)2

τLf +τL′
f

+ 1
λ

)
. We then add 1

2 (a2 + 1) times (4) and use Lemma 16 to get

2 + a2

2 ∥z∗ − zk∥2 − 2 + a2

2 ∥z∗ − zk+1∥2 − Ṽ (zk, z∗) + η(α−1 − 1)
2σ

∥yk+1 − yk∥2 ≥ η(1− α)
2 ∥zk+1 − z∗∥2

V .

Taking α = η
λ+η chosen such that η(α−1 − 1) = λ and using Lemma 13 allows us to conclude. ◀
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Proposition 19. If ∂̃L is metrically subregular at z∗ for 0 for all z∗ ∈ Z∗ with constant η > 0 in the norm
∥ · ∥V , then (I − T ) is metrically subregular at z∗ for 0 for all z∗ ∈ Z∗ with constant bounded below by

η√
3η+(2+2

√
3 max(αf ,αg)) and PDHG converges linearly with rate 1− η2λ

(
√

3η+(2+2
√

3 max(αf ,αg)))2 .

Proof. We denote D(z) = [τx, σy], C(z) = ∂f(x)× ∂g∗(y), B(z) = [∇f2(x),∇g∗
2(y)], M(z) = [A⊤y,−Ax] and

H(z) = [τ−1x, σ−1y −Ax]. This will help us decompose the operator T .
First we remark that

∂̃L(z) = (B + C + M)(z) .

We continue with

T (z) = z+ = DHz̄ + (I −DH)z

x− τ∇f2(x)− τA⊤y − x̄ ∈ τ∂f(x̄)
y − σ∇g∗

2(y) + σAx̄− ȳ ∈ σ∂g∗(ȳ)

so that using the fact that (H −M)(z) = [τ−1x−A⊤y, σ−1y],

z̄ = (C + H)−1(H −M −B)(z) .

Thus

T (z) = DH(C + H)−1(H −M −B)(z) + (I −DH)z

(I − T )(z) = DH(I − (C + H)−1(H −M −B))(z) = DH(z − z̄) .

∂̃L(z̄) = (B + C + M)(z̄) = B(z̄) + (C + H)(z̄) + (M −H)(z̄)

B(z̄) + (H −B −M)(z) + (M −H)(z̄) ∈ ∂̃L(z̄)

so that

(H −B −M)(z − z̄) = (H −B −M)(DH)−1(I − T )(z) ∈ ∂̃L(z̄) .

Using the fact that B is Lipschitz-continuous with constant 2 max(αf , αg) in the norm ∥ · ∥V and that ∥z∥V =
∥D−1/2z∥, this leads to

η distV (z̄,Z∗) ≤ ∥(H −B −M)(z − z̄)∥V ∗

≤ ∥(H −M)(z − z̄)∥V ∗ + ∥B(z − z̄)∥V ∗

≤
(
∥(H −M)(DH)−1∥V ∗,V + 2 max(αf , αg)

)
× ∥(DH)−1∥V ∥(I − T )(z)∥V

=
(
∥D1/2(H −M)H−1D−1D1/2∥+ 2 max(αf , αg)∥D−1/2H−1D−1D1/2∥

)
∥(I − T )(z)∥V

=
(
∥I −D1/2MH−1D−1/2∥+ 2 max(αf , αg)∥D−1/2H−1D−1/2∥

)
∥(I − T )(z)∥V

Moreover, ∥D−1/2H−1D−1/2z∥2 ≤ ∥x∥2 + 2στ∥A∥2∥x∥2 + 2∥y∥2 ≤ 3∥z∥2 and

∥I −D1/2MH−1D−1/2z∥2 = ∥x− στA⊤Ax + σ1/2τ1/2A⊤y∥2 + ∥ − τ1/2σ1/2Ax + y∥2

≤ 2(∥I − στA⊤A∥2∥x∥2 + στ∥A∥2∥y∥2) + 2(τσ∥A∥2∥x∥2 + ∥y∥2)
≤ 4∥z∥2

Gathering these three inequalities gives

∥z − PZ∗(z̄)∥V = distV (z̄,Z∗) ≤ η−1(2 + 2 max(αf , αg)
√

3
)
∥(I − T )(z)∥V .

Finally, we remark that

distV (z,Z∗) = ∥z − PZ∗(z)∥V ≤ ∥z − PZ∗(z̄)∥V ≤ ∥z̄ − PZ∗(z̄)∥V + ∥z − z̄∥V

≤ η−1(2 + 2 max(αf , αg)
√

3
)
∥(I − T )(z)∥V + ∥(DH)−1∥V ∥(I − T )(z)∥V

≤ (
√

3 + η−1(2 + 2
√

3 max(αf , αg)))∥(I − T )(z)∥V
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Then, to prove the linear rate of convergence, we recall that for all z∗ ∈ Z∗,

∥T (z)− z∗∥2
V ≤ ∥z − z∗∥2

V − λ∥(I − T )(z)∥2
V .

Combined with the metric sub-regularity of (I − T ), we get

∥T (z)− z∗∥2
V ≤ ∥z − z∗∥2

V −
η2λ(√

3η +
(
2 + 2

√
3 max(αf , αg)

))2 distV (z,Z∗)2 .

Choosing z∗ = PZ∗(z) leads to

distV (T (z),Z∗)2 ≤ ∥T (z)− PZ∗(z)∥2
V ≤

(
1− η2λ(√

3η +
(
2 + 2

√
3 max(αf , αg)

))2

)
distV (z,Z∗)2

and thus the linear rate of PDHG follows directly from this contraction property of operator T . ◀

C Proof of Proposition 27

Proposition 27. For any β ≥ 0, R > 0 and z∗ ∈ Z∗, the linear program (8) satisfies the quadratic error bound:
for all z such that Gβ(z; z∗) ≤ R, we have

Gβ(z; z∗) ≥ dist(z,Z∗)2

θ2
(√

2β
τ (
√

2 + ∥x∗
F ∥+ ∥x∗

N∥) +
√

2β
σ (
√

2 + ∥y∗
E∥+ ∥y∗

I∥) + 3
√

R
)2 .

Hence, for R of the order of 1
θ , G 1

θ
( · , z∗) has a c

θ -QEB with c independent of θ.

Proof. First of all, we calculate the smoothed gap for (8).

Gβ(z; z∗) = sup
z′∈Rn+m

⟨c, x⟩+ IRN
+

(xN ) + ⟨Ax, y′⟩ − ⟨b, y′⟩ − IRI
+

(y′
I)− β

2σ
∥y′ − y∗∥2

− ⟨c, x′⟩ − IRN
+

(x′
N )− ⟨Ax′, y⟩+ ⟨b, y⟩+ IRI

+
(yI)− β

2τ
∥x′ − x∗∥2

= ⟨c, x⟩+ IRN
+

(xN ) + ⟨AE,:x− bE , y∗
E⟩+ σ

2β
∥AE,: − bE∥2

+ β

2σ
∥max

(
0, y∗

I + σ

β
(AI,:x− bI)

)
∥2 − β

2σ
∥y∗

I∥2 + ⟨b, y⟩

+ IRI
+

(yI)− ⟨(A:,F )⊤y + cF , x∗
F ⟩+ τ

2β
∥(A:,F )⊤y + cF ∥2

+ β

2τ
∥max

(
0, x∗

N −
τ

β
((A:,N )⊤y + cN )

)
∥2 − τ

2σ
∥x∗

N∥2

Let us denote SP
β (x, y∗) = Gβ((x, y∗); z∗) and SD

β (y, x∗) = Gβ((x∗, y); z∗) so that Gβ(z; z∗) = SP
β (x, y∗) +

SD
β (y, x∗). We know that dist(x,X ∗) ≤ θ

(
|c⊤x+b⊤y∗|2+∥AE,:x−bE∥2+dist(AI,:x−bI ,RI

−)2+dist(xN ,RN
+ )2)1/2

thanks to (10). Our goal is to upper bound this by a function of SP
β (x, y∗).

First, we note that SP
β (x, y∗) = ⟨c, x⟩+ IRN

+
(xN ) + ⟨AE,:x − bE , y∗

E⟩+ σ
2β ∥AE,:x − bE∥2 + β

2σ∥max
(
0, y∗

I +
σ
β (AI,:x− bI)

)
∥2 − β

2σ∥y
∗
I∥2 + ⟨b, y∗⟩ is the sum of many nonnegative terms:

(A⊤
:,iy

∗ + ci)xi = 0 ∀ i ∈ F

(A⊤
:,iy

∗ + ci)xi ≥ 0 ∀ i ∈ N

IR+(xi) ≥ 0 ∀ i ∈ N

σ

2β
(Aj,:x− bj)2 ≥ 0 ∀ j ∈ E

β

2σ
max

(
0, y∗

j + σ

β
(Aj,:x− bj)

)2 − β

2σ
(y∗

j )2 − (Aj,:x− bj)y∗
j ≥ 0 ∀ j ∈ I

Suppose that SP
β (x, y∗) ≤ ϵ. Then each of these terms is smaller than ϵ. The most complex term is the last

one. We shall consider separately 2 sub cases: I− = {j ∈ I : y∗
j + σ

β (Aj,:x − bj) ≤ 0}, and I+ = {j ∈ I :
y∗

j + σ
β (Aj,:x− bj) > 0}.



30 QEB of the smoothed gap and RAPDHG

If j ∈ I+, then

β

2σ
max

(
0, y∗

j + σ

β
(Aj,:x− bj)

)2 − β

2σ
(y∗

j )2 − (Aj,:x− bj)y∗
j = σ

2β
(Aj,:x− bj)2 .

Hence, if SP
β (x, y∗) ≤ ϵ, then

∑
j∈I+

max(0, Aj,:x− bj)2 ≤
∑

j∈I+
(Aj,:x− bj)2 ≤ 2βϵ/σ

If j ∈ I−, then −(Aj,:x− bj) ≥ β
σ y∗

j , so that (Aj,:x− bj) ≤ 0.
Combining both cases,

∑
j∈I max(0, Aj,:x− bj)2 =

∑
j∈I+

max(0, Aj,:x− bj)2 ≤ 2βϵ/σ.
We now look at ⟨c, x⟩+ ⟨b, y∗⟩ = ⟨c + A⊤y∗, x⟩+ ⟨b−Ax, y∗⟩. SP

β (x, y∗) ≤ ϵ implies 0 ≤ ⟨c + A⊤y∗, x⟩ ≤ ϵ.
Then we need to focus on the complementary slackness ⟨b−Ax, y∗⟩ = ⟨bE −AE,:x, y∗

E⟩+ ⟨bI −AI,:x, y∗
I ⟩.

Since SP
β (x, y∗) ≤ ϵ implies ∥AE,:x− bE∥2 ≤ 2βϵ/σ, we get

|⟨bE −AE,:x, y∗
E⟩| ≤ ∥yE∥∥AE,:x− bE∥ ≤

√
2βϵ/σ∥yE∥ .

For I+, |
∑

j∈I+
y∗

j (bj −Aj,:x)| ≤ ∥y∗
I+
∥∥bI+ −AI+,:x∥ ≤ ∥y∗

I∥
√

2βϵ/σ.
For I−, since − β

2σ (y∗
j )2 ≥ 1

2 (Aj,:x− bj)y∗
j ,

ϵ ≥
∑

j∈I−

β

2σ
max

(
0, y∗

j + σ

β
(Aj,:x− bj)

)2 − β

2σ
(y∗

j )2 − (Aj,:x− bj)y∗
j

=
∑

j∈I−

− β

2σ
(y∗

j )2 − (Aj,:x− bj)y∗
j ≥

∑
j∈I−

−1
2(Aj,:x− bj)y∗

j ≥ 0

Combining the three cases, we get√
2βϵ/σ(∥y∗

E∥+ ∥y∗
I∥) ≤ ⟨c, x⟩+ ⟨b, y∗⟩ ≤

√
2βϵ/σ(∥y∗

E∥+ ∥y∗
I∥) + 3ϵ .

Finally, for x such that xN ≥ 0,

(
|c⊤x + b⊤y∗|2 + ∥AE,:x− bE∥2 + dist(AI,:x− bI ,RI

−)2 + dist(xN ,RN
+ )2)1/2

≤
((√

2βϵ

σ
(∥y∗

E∥+ ∥y∗
I∥) + 3ϵ

)2
+ 2βϵ

σ
+ 2βϵ

σ

)1/2
≤
√

2βϵ

σ
(∥y∗

E∥+ ∥y∗
I∥) + 3ϵ + 2

√
βϵ

σ

The argument for the dual problem is exactly the same. Hence

dist(z,Z∗) ≤ θ

(√
2β

τ
(
√

2+∥x∗
F ∥+∥x∗

N∥)
√

Gβ(z; z∗)+
√

2β

σ
(
√

2+∥y∗
E∥+∥y∗

I∥)
√

Gβ(z; z∗)+3Gβ(z; z∗)
)

.

If Gβ(z; z∗) ≤ R, we get the quadratic error bound

Gβ(z; z∗) ≥ dist(z,Z∗)2

θ2
(√

2β
τ (
√

2 + ∥x∗
F ∥+ ∥x∗

N∥) +
√

2β
σ (
√

2 + ∥y∗
E∥+ ∥y∗

I∥) + 3
√

R
)2 . ◀

D Idea to take profit of strong convexity

Proposition 34. Suppose that µf > 0, g = ι{b} and Gβ( · , z∗) has a η-QEB where 1
βx
≥ 1

βy
+√ηx − ηx. Then,

for all C > 0,

(1 + λ4) distV (zk+1 − z∗)2 + λ1∥zk+1 − zk∥2
V ≤ ρ

(
(1 + λ4) distV (zk − z∗)2 + λ1∥zk − zk−1∥2

V

)
where, denoting α1 = 2µf στ

2µf στ+Γ :

if 2µf τ(1− α1) ≤ Cηx, then λ1 = 0, λ4 = 1
βxΓ − 1 and

ρ = max
((

1 + Cηxβx

Γ

)−1
,

(
1 + ηyβx

Γ

)−1)
;
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if

2µf τ(1− α1) > Cηx and
1

βx
− Γ

2µf (1− α1)− Cηx
>
− 1

βy
+ (1−√

ηx−C)ηx

2γ(1−√
ηx) − C

√
ηx + 1

βx

2µf (1− α1) ,

then we take

λ1 =
− 1

βy
+ (1−√

ηx−C)ηx

2γ(1−√
ηx) − C

√
ηx + 1

βx

2µf τ(1− α1) , λ4 =
1

βx
− λ1(2µf τ(1− α1)− Cηx)

Γ − 1

and we have

ρ =
(

1 + min(Cηx, ηy)Γ
1

βx
− 2µf τ(1−α1)−Cηx

2µf τ(1−α1) (− 1
βy

+ (1−√
ηx−C)ηx

2γ(1−√
ηx) − C

√
ηx + 1

βx
)

)−1

if

2µf τ(1− α1) > Cηx and
1

βx
− Γ

2µf τ(1− α1)− Cηx
≤
− 1

βy
+ (1−√

ηx−C)ηx

2γ(1−√
ηx) − C

√
ηx + 1

βx

2µf τ(1− α1) ,

then

λ4 = 0, λ1 =
1

βx
− Γ

2µf τ(1− α1)− Cηx
and ρ = max

(
(1 + Cηx)−1, (1 + ηy)−1)

In order to use this proposition, we shall compute ρ for a grid of values of C and select the best one.

Proof. We shall write the proof for µg > 0, even though we state the proposition for µg = +∞ only. We apply
Lemma 12 to z = zk and z′ = zk−1 so that T (z) = zk+1 and T (z′) = zk. Note that we apply the appendix
version of Lemma 12 in order to leverage the most of strong convexity.

∥zk+1 − zk∥2
V +2µf∥x̄k+1 − x̄k∥2 ≤ ∥zk − zk−1∥2

V − λ∥zk − zk+1 − zk−1 + zk∥2
V .

∥x̄k+1 − x̄k∥2 = ∥xk+1 + τA⊤(yk+1 − yk)− xk − τA⊤(yk − yk−1)∥2

≥ (1− α1)∥xk+1 − xk∥2 − (α−1
1 − 1)τ∥A⊤(yk+1 − yk − yk − yk−1)∥2

We choose α1 such that 2µf (α−1
1 − 1)τ = λ

σ , i.e. α1 = (1 + λ
2µf στ )−1 ∈ O(µf ), which leads to

∥zk+1 − zk∥2
V +2µf (1− α1)∥xk+1 − xk∥2 ≤ ∥zk − zk−1∥2

V

We also have
ηx

2 ∥x̄k+1 − x∗∥2
τ−1 + ηy

2 ∥ȳk+1 − y∗∥2
σ−1 ≤ Gβ(z̄k+1, z∗)

≤ 1
2∥zk − z∗∥2

V −
1
2∥zk+1 − z∗∥2

V + 1
2βx
∥xk+1 − xk∥2

τ−1 + 1
2βy
∥yk+1 − yk∥2

σ−1+a2Ṽ (z̄k+1 − zk)

Moreover, since 0 ∈ ∂g(yk+1) +∇g2(yk) + Ax̄k+1 + 1
σ (yk+1 − yk),

∥yk+1 − yk∥σ−1 ≤
√

σ(∥Ax̄k+1 −Ax∗∥+ 1
µg
∥yk+1 − y∗∥+ Lg∗

2
∥yk − y∗∥)

≤ √γ∥x̄k+1 − x∗∥τ−1 + σ

µg
∥yk+1 − y∗∥σ−1 + σLg∗

2
∥yk − y∗∥σ−1

∥yk+1 − yk∥2
σ−1 ≤ 2γ∥x̄k+1 − x∗∥2

τ−1 + 4 σ

µg
∥yk+1 − y∗∥2

σ−1 + 4σLg∗
2
∥yk − y∗∥2

σ−1

We then sum the three inequalities with factors λi ≥ 0, i ∈ {1, 2, 3}.(
λ2ηx

2 − λ3γ

)
∥x̄k+1 − x∗∥2

τ−1 +
(

λ2ηy

2 − 2λ3σ

µg

)
∥ȳk+1 − y∗∥2

σ−1 + λ2

2 ∥zk+1 − z∗∥2
V

+
(

λ1

2 + λ1µf τ(1− α1)− λ2

2βx

)
∥xk+1 − xk∥2

τ−1 +
(

λ1

2 −
λ2

2βy
+ λ3

2

)
∥yk+1 − yk∥2

σ−1

− λ2a2Ṽ (z̄k+1 − zk)

≤ λ2

2 ∥zk − z∗∥2
V + λ1

2 ∥zk − zk−1∥2
V + 2λ3σLg∗

2
∥yk − y∗∥2

σ−1
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We combine with

∥x̄k+1 − x∗∥2
τ−1 ≥ (1− α2)∥xk+1 − x∗∥2

τ−1 − (α−1
2 − 1)∥x̄k+1 − xk+1∥2

τ−1

≥ (1− α2)∥xk+1 − x∗∥2
τ−1 − (α−1

2 − 1)∥yk+1 − yk∥2
σ−1

and
1
2∥zk+1 − z∗∥2

V ≤
1
2∥zk − z∗∥2

V − Ṽ (z̄k+1 − zk)

to get((
λ2ηx

2 − λ3γ

)
(1− α2) + λ2

2 + λ4

2

)
∥xk+1 − x∗∥2

τ−1 +
(

λ2ηy

2 − 2λ3σ

µg
+ λ2

2 + λ4

2

)
∥yk+1 − y∗∥2

σ−1

+
(

λ1

2 + λ1µf τ(1− α1)− λ2

2βx
+ (λ4 − λ2a2)λ

2

)
∥xk+1 − xk∥2

τ−1

+
(

λ1

2 −
λ2

2βy
+ λ3

2 −
(

λ2ηx

2 − λ3
√

γ

)
(α−1

2 − 1) + (λ4 − λ2a2)λ

2

)
∥yk+1 − yk∥2

σ−1

≤ λ2 + λ4

2 ∥zk − z∗∥2
V + λ1

2 ∥zk − zk−1∥2
V + 2λ3σLg∗

2
∥yk − y∗∥2

σ−1

To get the rate, we then need

ρ
(
(λ2ηx − 2λ3γ)(1− α2) + λ2 + λ4

)
≥ λ2 + λ4

ρ

(
λ2ηy −

4λ3σ

µg
+ λ2 + λ4

)
≥ λ2 + λ4 + 4λ3σLg∗

2

ρ

(
λ1 + 2λ1µf τ(1− α1)− λ2

βx
+ (λ4 − λ2a2)λ)

)
≥ λ1

ρ

(
λ1 −

λ2

βy
+ λ3 −

(
λ2ηx − 2λ3γ

)
(α−1

2 − 1) + (λ4 − λ2a2)λ
)
≥ λ1

We choose α2 = √ηx, λ3 = (1−α2−C)ηx

2γ(1−α2) and λ2 = 1. We shall let the choice of C ∈ [0, 1− α2] for a 1D grid
search since the rate will depend a lot on its value. This yields

(
λ2ηx − 2λ3γ

)
(1− α2) = Cηx.

We assume that 1
βx
≥ 1

βy
+ ηx(α−1

2 − 1).

Case 1. If 2µf τ(1− α1) ≤ Cηx, we choose λ1 = 0 and λ4 = 1
βxλ +a2. This leads to

ρ
(
1 + λ4 + Cηx

)
≥ 1 + λ4

ρ

(
1 + λ4 + ηy −

4λ3σ

µg

)
≥ 1 + λ4 + 4λ3σLg∗

2

− 1
βx

+ (λ4 − a2)λ = 0 ≥ 0

− 1
βy

+ (1− α2 − C)ηx

2γ(1− α2) − Cηx

1− α2
(α−1

2 − 1) + 1
βx

≥ (1− α2 − C)ηx

2γ(1− α2) − Cηxα−1
2 + ηx(α−1

2 − 1) ≥ ηx(α−1
2 − 1)− (1− α2)α−1

2 ηx = 0

where the last inequality uses C ≤ 1− α2. Supposing that µg = +∞ and Lg∗
2

= 0, we get a rate

ρ = max
((

1 + Cηx

1 + a2 + 1/(λβx)

)−1
,

(
1 + ηy

1 + a2 + 1/(λβx)

)−1)
.

Case 2. If

2µf τ(1− α1) > Cηx and
1

βx
+ a2λ

2µf τ(1− α1)− Cηx
>
− 1

βy
+ (1−α2−C)ηx

2γ(1−α2) − Cηxα−1
2 + 1

βx

2µf τ(1− α1) ,

we choose

λ1 =
− 1

βy
+ λ3 − Cηxα−1

2 + 1
βx

2µf τ(1− α1) and λ4 =
1

βx
− λ1(2µf τ(1− α1)− Cηx)

λ
+ a2.
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We get 2λ1µf τ(1−α1)− λ2
βx

+ (λ4−λ2a2)λ = 2λ1µf τ(1−α1)− 1
βx

+ 1
βx
−2λ1µf τ(1−α1) + λ1Cηx = λ1Cηx and

−λ2
βy

+λ3−
(
λ2ηx−2λ3γ

)
(α−1

2 −1)+(λ4−λ2a2)λ = − 1
βy

+λ3−Cηxα−1
2 + 1

βx
−λ12µf τ(1−α1)+λ1Cηx = λ1Cηx.

Hence,

ρ
(

1 + λ4 + Cηx

)
≥ 1 + λ4

ρ
(

1 + λ4 + ηy −
4λ3σ

µg

)
≥ 1 + λ4 + 4λ3σLg∗

2

ρ
(

λ1 + Cηxλ1

)
≥ λ1

ρ
(

λ1 + Cηxλ1

)
≥ λ1

Supposing that µg = +∞ and Lg∗
2

= 0, we get a rate

ρ = max
((

1 + Cηx

1 + λ4

)−1
,

(
1 + ηy

1 + λ4

)−1)

=
(

1 + min(Cηx, ηy)λ
1

βx
− 2µf τ(1−α1)−Cηx

2µf τ(1−α1) (− 1
βy

+ (1−α2−C)ηx

2γ(1−α2) − Cηxα−1
2 + 1

βx
) + a2λ

)−1

.

Case 3. If

2µf τ(1− α1) > Cηx and
1

βx
+ a2λ

2µf τ(1− α1)− Cηx
≤
− 1

βy
+ (1−α2−C)ηx

2γ(1−α2) − Cηxα−1
2 + 1

βx

2µf τ(1− α1) ,

we choose λ4 = 0 and λ1 =
1

βx
+a2λ

2µf τ(1−α1)−Cηx
. We get

− 1
βy

+ (1− α2 − C)ηx

2γ(1− α2) − Cηxα−1
2 − a2λ ≥ − 1

βx
− a2λ + 2µf τ(1− α1)

1
βx

+ a2λ

2µf τ(1− α1)− Cηx

= λ1(−2µf τ(1 − α1) + Cηx + 2µf τ(1 − α1)) = Cηxλ1.

Hence,

ρ
(

1 + Cηx

)
≥ 1

ρ
(

1 + ηy −
4λ3σ

µg

)
≥ 1 + 4λ3σLg∗

2

ρ
(

λ1 + Cηxλ1

)
≥ λ1

ρ
(

λ1 −
1
βy

+ (1− α2 − C)ηx

2γ(1− α2) − Cηxα−1
2 − a2λ

)
≥ ρ
(

λ1 + Cηxλ1

)
≥ λ1

Supposing that µg = +∞ and Lg∗
2

= 0, we get a rate ρ = max((1 + Cηx)−1, (1 + ηy)−1). We finally combine
the results and use the fact that α2 = √ηx. ◀
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