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Background: Inferring drug-related side effects is beneficial for reducing drug
development cost and time. Current computational prediction methods have
concentrated on graph reasoning over heterogeneous graphs comprising the drug
and side effect nodes. However, the various topologies and node attributes within
multiple drug–side effect heterogeneous graphs have not been completely exploited.

Methods:Weproposed a new drug-side effect association predictionmethod, GGSC,
to deeply integrate the diverse topologies and attributes frommultiple heterogeneous
graphs and the self-calibration attributes of each drug-side effect node pair. First, we
created twoheterogeneousgraphscomprising thedrugand sideeffect nodes and their
related similarity and association connections. Since each heterogeneous graph has its
specific topology and node attributes, a node feature learning strategy was designed
and the learning for each graphwas enhanced from a graph generative and adversarial
perspective.We constructed a generator based on a graph convolutional autoencoder
to encode the topological structure and node attributes from the whole
heterogeneous graph and then generate the node features embedding the graph
topology. A discriminator based on multilayer perceptron was designed to distinguish
the generated topological features from the original ones. We also designed
representation-level attention to discriminate the contributions of topological
representations from multiple heterogeneous graphs and adaptively fused them.
Finally, we constructed a self-calibration module based on convolutional neural
networks to guide pairwise attribute learning through the features of the small
latent space.

Results: The comparison experiment results showed that GGSC had higher
prediction performance than several state-of-the-art prediction methods. The
ablation experiments demonstrated the effectiveness of topological
enhancement learning, representation-level attention, and self-calibrated
pairwise attribute learning. In addition, case studies over five drugs
demonstrated GGSC’s ability in discovering the potential drug-related side
effect candidates.
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Conclusion: We proposed a drug-side effect association prediction method, and
the method is beneficial for screening the reliable association candidates for the
biologists to discover the actual associations.
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representation-level attention

1 Introduction

Drug-related side effects are harmful outcomes that go beyond
the therapeutic expectations of a drug’s application, which can result
in its failure during clinical studies (Ding et al., 2018; Cakir et al.,
2021; Zhang et al., 2021). Therefore, recognizing drugs’ adverse
effects might help to minimize drug development cost and time
(Jiang et al., 2018; Sachdev and Gupta, 2020). Computational
prediction methods have proven helpful in selecting suitable
drug-related side effect candidates for biological testing.

Existing studies can be grouped into three main categories. The first
category uses drug-related biological data to forecast potential side
effects. Francesco et al. and Wishart et al. exploited the similarity of
gene expression profiles of multiple drug-treated cell lines to predict
unexpected adverse drug reactions (Iorio et al., 2010; Li et al., 2016).
However, these two methods are limited by unknown molecular
differences (Wishart et al., 2008). Therefore, applying such methods
on a large scale to predict reliable drug-related side effect candidates is
difficult (Ma et al., 2003; Pauwels et al., 2011; Sawada et al., 2015).

The second category uses machine learning-based models to predict
associations between drug use and adverse effects. Pauwels et al. used four
machine learning methods to build prediction models: support vector
machine, k-nearest neighbor (KNN), ordinary canonical correlation
analysis, and sparse canonical correlation analysis (Bresso et al., 2013).
A feature-derived graph regularization matrix decomposition method
was proposed to predict side effects not found based on accessible drug
attributes and known drug–side effect connections in medications at
present (Dimitri and Lió, 2017). Decision trees and inductive logic
methods were introduced by Bresso et al. (Uner et al., 2019). Zhang
et al. inferred potential side effect associations for drugs using a feature
selection-based multi-label KNN method (Xu et al., 2022). In addition,
Cakir et al. andDimitri et al. used random forest and Bayesian algorithms
to predict drugs’ potential side effects, respectively (Seo et al., 2020; Joshi
et al., 2022). However, these methods are shallow predictive models that
cannot effectively learn deeper correlations between nodes.

The category uses deep learning to combine more detailed
information between nodes and enhance model forecast performance.
Uner et al. developed four prediction models using a multilayer
perceptron (MLP), multi-modal neural networks, multi-task neural
networks, and simplified molecular input line entry system
convolutional neural networks, respectively (Lee et al., 2017; Zheng
et al., 2019). Some studies have combined similarity data between drugs
and their side effects and estimated the frequency of pharmacological
side effects using deep neural (Yang et al., 2009) and graph attention
neural (Luo et al., 2011; Liu et al., 2012; Mizutani et al., 2012) networks.
However, these methods disregard the value of heterogeneous graphs
comprising several associations between drugs and side effects when
attempting to anticipate potentially important pharmacological side
effects (Zhang et al., 2015; Ding et al., 2019). They proposed a graph

convolutional neural network combining graph and node embedding to
improve model prediction performance. In addition, adverse drug
reactions have also been predicted using deep neural networks based
on knowledge graph embedding (Zhang et al., 2018; Zhao et al., 2018;Hu
et al., 2019). However, this approach ignores the extraction of enhanced
topological representations through adversarial learning and the learning
of attributes of node pairs after self-calibration.

In this study, we present a new drug-related side effect
prediction method, GGSC, which learns the topological features
of drug and side effect nodes enhanced by the generative and
adversarial strategy and integrates the self-calibration attributes of
each drug–side effect node pair. The contributions of our prediction
method are listed as follows.

First, for each heterogeneous graph, a generative adversarial-
based strategy is designed to learn the topological representations of
the drug and side effect nodes. In this way, these representations are
learned and enhanced from the whole graph perspective.

Second, the generator comprises a graph convolutional encoder
and decoder to generate a false topological embedding of all the drug
and side effect nodes. The encoder based on graph convolutional
neural network encodes the topological structure and node
attributes of each heterogeneous graph.

Third, the decoder generates the false topological embedding
according to the encoded feature map. The discriminator contains
multilayer perceptron to determine whether the topological
embedding is the original feature one or the generated false one.
The encoded topological features and node attributes of the drug
and side effect nodes are enhanced by the generative and adversarial
strategy.

Finally, a self-calibrating convolutional neural network (SCC)-
based module is constructed to learn the attributes of each drug–side
effect node pair from multiple heterogeneous graphs. More global
information is obtained through greater receptive field in a small
latent feature space, and it is utilized to guide the pairwise feature
learning in an original feature space.

2 Materials and methods

Our primary goal is to predict a drug’s probable relevant side
effects. We built a GGSCmodel comprising an SCC and a generative
adversarial network (GAN) with a representational-level attention
mechanism based on information from many sources about drugs
and their adverse effects. The model comprises two branches. To
thoroughly understand the topological representation of nodes, we
first built two distinct bilayer heterogeneous networks based on two
drug similarities, side effect similarities, and drug–side effect
associations (Figure 1A). In the first branch, we learn the
topological representation of network-level enhancements in the
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two heterogeneous graphs based on GANs. The learned topological
representation is then integrated using a novel attention method,
and drug–side effect node pairs are extracted to obtain association
prediction scores via convolution and fully connected layers. We
used an SCC to encode the specifics and characteristics of the other
branch’s self-calibrated drug–side effect node pairs (Figure 2). The
prediction scores of the last two branches were combined by
weighting to obtain the final association score, which reflects the
likelihood of the drug having the corresponding side effects.

2.1 Dataset

Datasets were obtained from the work of Galeano et al. (2020),
Guo et al. (2020), and Zhao et al. (2021), originally collected from
the side effect resource (SIDER) and comparative toxicogenomics
databases. They include drug similarities, drug–side effect
associations, and drug–disease relationships. We examined
4,192 side effects from 708 drugs, representing 80,164 known
pairs of associations in the SIDER database. We extracted
199,214 drug–disease pairs from the comparative
toxicogenomics database, representing 708 drugs and
5,603 diseases. Drug similarity was based on chemical
substructure calculations.

2.2 Matrix expressions of multi-source data
about the drugs and side effects

2.2.1 Drug–side effect heterogeneous graph
Two separate drug–side effect heterogeneous graphs were

created for two drugs with similar chemical properties based on
chemical substructures and drug-related disorders. The two graphs
are denoted asGchem = (Vchem, Echem) andGdise = (Vdise, Edise), where the
set of nodes V = {Vm ∪ Vs} comprises the set of drug nodes Vm and
the set of side effect nodes Vs. The edge set E comprises the edges
between nodes, with the edges between nodes vi and vj denoted by
eij ∈ E. The heterogeneous graphs Gchem and Gdise contain three edge
types: drug–drug similarity linkage edges, side effect–side effect
similarity linkage edges, and drug–side effect association edges.

2.2.2 Expressions of the similarities and
associations among the drugs and side effects
Drug similarity matrix

Based on the drug’s chemical makeup and associated disorders,
we obtained two drug similarity matrices, defined as follows,

Mk � Mchem � Mchem( )
ij
∈ RNr×Nr ,

Mdise � Mdise( )
ij
∈ RNr×Nr ,

⎧⎪⎨⎪⎩ (1)

FIGURE 1
Framework of the proposed GGSCmodel. (A) Two drug–side effect heterogeneous graphs constructed based on two kinds of drug similarities. (B)
Enhanced topological representation learning via generative and adversarial networks based on graph convolutional autoencoders. (C) Topological
fusion based on representation-level attention. (D) Pairwise attribute representation learning by self-calibrated convolutional neural networks.
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whereNr is the number of drugs andMk(k = chem, dise) is the degree
of similarity determined based on the drug’s chemical makeup and
the disease it treats.

When two drugs ri and rj have more common chemical
substructures, their functions are usually more similar. Based on
this biological premise, the previous methods (Liang et al., 2017;
Zhao et al., 2022) calculated the drug similarities by the cosine
similarity measure on their chemical substructures. When
calculating Mdise, two drugs share more associated diseases and
have a higher similarity. Using Wang et al.’s method, taking
drugs ri and rj as an example, we first obtain the disease set Dri �
di1, di2/din{ } associated with ri and the disease set Drj �
dj1, dj2/djm{ } associated with rj. We then take the similarity
between Dri and Drj as the similarity between drugs ri and ri.

The matrix S depicts the side effect similarities.

S � S( )ij ∈ RNs×Ns , (2)

where Ns represents the number of nodes with side effects. Side effects si
and sj are more likely to be similar when they share more associated
drugs. Therefore, using the technique of Wang et al., first of all, we
obtained the drug sets Msi and Msj associated with side effects si and sj.
Then, we calculated the similarity between the drug setsMsi andMsj, and
the outcome served as a measure of how closely side effects si and sj are
related. The side effect similarity matrix was then obtained. (S)ij indicates
the degree of similarity between si and sj, varying from 0 to 1; the higher
the value, the higher the corresponding similarity.

The matrix O represents the known relationship between a drug
and a side effect.

O � O( )ij ∈ RNr×Ns , (3)

where Nr drugs have been associated with Ns side effects based on
observed drug–side effect correlations. Each row is a drug, and each
column is a side effect. (O)ij is set to 1 if the drug ri is associated with
the side effect sj and 0 otherwise.

To integrate the multiple associations between drug side effects,
we constructed two heterogeneous graphs and denoted their
adjacency matrices as Achem and Adise. We built edges based on
instances of known drug–side effect correlations, connecting Nr

drugs and Ns side effect nodes based on the cases of known
drug–side effect relationships. When (O)ij = 1, we connect ri to sj.

Ak � MkO
OTS

[ ] ∈ RNv×Nv , (4)

where Nv denotes the total number of nodes for drugs and side
effectsNv =Nr +Ns. The transposed matrix ofO is defined asOT. The
similarities and associations associated with a drug or side effect
node can be considered its attributes. Therefore, it can be considered
an attribute matrix, denoted Hk.

2.3 Network-level enhanced topological
representation learning

We built a drug–side effect association prediction model with an
SCC and GAN with a representation-level attention (RLA) method.
Modules based on GAN and SCC are used to learn the topological
representation of network-level enhancements in drug–side effect
heterogeneous graphs and the self-calibrated node–pair attribute
representation, respectively.

FIGURE 2
Illustration of pairwise attribute learning based on self-calibrated convolutional neural networks.
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2.3.1 Enhanced topological representation learning
based on GAN

Given two drug–side effects heterogeneous graphs, each network
has its own unique characteristics, and we suggest an independent
graph convolutional generation adversarial learning technique to
individually encode the topological information of each
heterogeneous graph. The module comprises the generator G and
the discriminator D (Figure 1B). Adversarial learning between
generators and discriminators forms a topological representation.
Since the learning strategies are similar for drug–side effect
heterogeneous graphsGchem andGdise, we describeGchem as an example.

Generators based on graph convolutional selfencoders
We consider the attribute matrix H

∧
chem generated by the

generator comprising all nodes as a false sample. The primary
purpose of the generator is to make the generated matrices as
close as possible to the original attribute matrix Hchem. As shown
in Figure 1, the generator G encodes the provided attribute matrix.

Encoder
First, Achem is an adjacency matrix with node self-connections.

~A
chem

can be obtained by Laplace normalization.

~A
chem � Dchem( )− 1

2Achem Dchem( )− 1
2, (5)

where (Dchem)ii � ∑j(Achem)ij ∈ RNv×Nv and Dchem is the degree
matrix of Achem. In order to learn the topological representation
of network-level enhancements, the normalized adjacency matrix
~A
chem

and the original attribute matrixHchem are fed together into the
L-th coding layer of the generator, denoted as

Hchem
en 1( ) � φ ~A

chem
HchemWchem

en 1( )( ), (6)

Hchem
en L( ) � φ ~A

chem
Hchem

en L−1( )W
chem
en L( )( ), (7)

where L ∈ [2, Len], where Len represents the overall number of coding
layers, and φ represents the rectified linear unit (ReLU), the
activation function. The weight matrices for the first and L-th
layer graph convolution encoders are denoted Wchem

en(1) and Wchem
en(L),

respectively. In addition, Wchem
en(1) and Wchem

en(L) are the corresponding
coded outputs for layers 1 and L, respectively. The output of the final
coding layer is Hchem

en(Len) ∈ RNv×Nf , where Nf is the dimension of the
dimensionality of the reduced feature vector, which contains the
representative information of all nodes, denoted Hchem

en .

Decoder
Decoder is a graph convolutional neural network-based

framework for reconstructing the original matrix of drug side
effect nodes. We mapped the topology representation back to the
original space using a decoder. We then calculated the loss between
the reconstructed matrix H

∧
chem and the original matrix Hchem to

obtain a better encoding for predicting drug–side effect associations.
The decoding matricesHchem

de(1) andHchem
de(L) of the first and L-th layers

are represented as follows:

Hchem
de 1( ) � φ ~A

chem
Hchem

en Wchem
de 1( )( ), (8)

Hchem
de L( ) � φ ~A

chem
Hchem

de L−1( )W
chem
de L( )( ), (9)

where L ∈ [2, Lde] and Lde represent the overall quantity of the
decoding layers. The weight matrices for the first and L-th decoding
layers are denoted as Wchem

de(1) and Wchem
de(L), respectively. H

chem
de(1) and

Hchem
de(L) are the outputs of the corresponding decoding layers. The

output of the final decoding layer Hchem
de(Len) is renamed H

∧
chem.

Discriminator based on MLP
The original matrix Hchem and the reconstructed matrix H

∧
chem

generated by the generator are provided as input to the
discriminator D and are considered true and false samples,
respectively. The discriminator attempts to distinguish between
true and false samples, enabling the generator to obtain a more
accurate topology representation of Hchem

en . The discriminator
essentially evaluates the likelihood that the input sample is true
or false. The discriminator should assign a high score to true samples
and a low score to false samples. Let Dchem

(L) represent the
discriminator’s hidden layer output. The input is flattened to
obtain a vector hchem to feed into the discriminator to obtain the
score distribution of the input samples.

Dchem
1( ) � φ Wchem

D 1( )h
chem + bchem1( )( ), (10)

Dchem
L( ) � φ Wchem

D L( )D
chem
L−1( ) + bchemL( )( ), L � 2, . . . , LD, (11)

where LD is the total number of hidden layers in the discriminator,
Wchem

D(L) and bchem(L) are the layer’s weight matrix and bias vector,
respectively, and Dchem

(1) and Dchem
(L) are the output of the

corresponding hidden layer, respectively. The final layer’s
activation function is softmax, while φ represents the ReLU
activation function.

Optimization
The optimization goal of learning topological representation

based on GANs is that the generator generates a reconstruction
matrix as close to the original matrix as possible, the discriminator
more accurately distinguishes the original matrix from the
reconstruction matrix, and both form an adversarial
relationship. Their optimization functions are as follows:

min
G

max
D

V D,G( ) � EHchem~Pdata logD Hchem( )[ ]
+ EHchem

en ~Pdata log 1 −D G Hchem
en( )( )( )[ ], (12)

where E represents the expectation and Pdata represents the
probability distribution of nodes in the original and
reconstructed matrices. By maximizing the loss from the
discriminator and minimizing the loss from the generator, they
can achieve adversity with shared loss. The first expectation
EHchem~Pdata[logD(Hchem)] represents when the input is a true
sample, and the second EHchem

en ~Pdata[log(1 −D(G(Hchem
en )))]

represents when the input is a false sample generated by the
generator. The algorithm Adam is used to improve the loss
function. The two heterogeneous graphs are fed into separate
GANs to learn the corresponding topological representation
matrices Hchem

en and Hdise
en , respectively.

2.3.2 Attention mechanism at the representation
level

Given the topological representation matrices Hchem
en and Hdise

en of
the nodes, the i-th row ofHchem

en (Hchem
en,i ) is the topological vector of the
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node vi. Different aspects of Hchem
en,i contribute to the prediction of

potentially important information. As the multiple topological
representations have various contributions for the drug–side effect
association prediction, we designed an attention at the
representation level to obtain the informative representations. The
attention scores of the Nf features of the node vi form a score
vector schemi .

schemi � LeakyReLU Wchem
fea pHchem

en,i + bchemfea( ), (13)

where schemi � si,1, si,2, si,3, . . . , si, Nf{ } represents the importance
of the different features, LeakyReLU represents the activation
function, and Wchem

fea and bchemfea represent the learnable weight
matrix and bias vector, respectively. αij is the normalized
attention score of the j-th feature in Hchem

en,i .

αij �
exp schemij( )

∑k exp schemik( ). (14)

Similarly, each feature of the vectorHdise
en,i is assigned an attention

weight to form sdisei , which is defined as

sdisei � LeakyReLU Wdise
feapH

dise
en,i + bdisefea( ), (15)

where βij is the normalized attention weight of sdisei .

βij �
exp sdiseij( )

∑k exp sdiseik( ). (16)

Therefore, the feature vector vi obtained by augmenting the node
with the attention mechanism can be expressed as hi.

hi � αi ⊗ Hchem
en,i +Hchem

en,i( ) + βi ⊗ Hdise
en,i +Hdise

en,i( ), (17)

where “⊗” represents the element-by-element product operator.
We perform an attention fusion operation on the feature vectors
of each node in Hchem

en and Hdise
en to generate an enhanced

topological representation Hen ∈ R(Nr+Ns)×Nf throughout the
network. Obtaining the topological embedding of the
pharmacological side effect nodes for ri-sj, we extract the
vectors corresponding to the ri and sj in Hen, which are
termed x1 and x2, respectively. As shown in Figure 1D, x1
and x2 form an ri-sj enhanced topological embedding by
stacking them on top and bottom.

Xtopo � x1

x2
[ ] ∈ R2×Nf . (18)

We obtain the topological representation Ztopo of ri-sj by
convolving Xtopo fed into the two convolution-pooling layers.

2.4 Pairwise attribute learning based on self-
calibrated convolutional neural networks

2.4.1 Embedding construction of a pair of drug and
side effect nodes

Given the similarity of the two drugs, we propose a strategy to
form an embedding of the nodes’ attributes. The embedding process
is depicted in Figure 1D using the example of ri and sj. Given the
matrices Mchem, S, and O, we first splice the i-th row (Mchem)i of

Mchem and the i-th row (O)i of O to form the attribute vector xchem1 ,
which is denoted as

xchem
1 � Mchem( )

i
‖ O( )i[ ], xchem

1 ∈ RNr+Ns , (19)

where (Mchem)i represents how similar a drug’s chemical structure is
to all others. (O)i provides details on how each adverse effect is
related to the drug ri. “‖” is a splicing operation.

Then, the j-th row (OT)j of OT and the j-th row (S)j of S are
spliced to form the attribute vector x2, which is denoted as

x2 � OT( )j‖ S( )j[ ], x2 ∈ RNr+Ns , (20)

where (OT)j and (S)j represent the relationship between sj and all
drugs and the similarity between sj and all side effects, respectively.
Finally, we stack xchem

1 and x2 to obtain the embedding matrix xchem.

Xchem � xchem
1

x2
[ ], Xchem ∈ R2p Nr+Ns( ). (21)

Similarly, given a drug similarity matrix Mdise, a side effect
similarity matrix S, and a drug–side effect association matrix O, a
second ri-sj pairwise attribute embedding matrix Xdise ∈ R2p(Nr+Ns)

is obtained using the same embedding strategy. Finally, Xchem and
Xdise are stacked to form the attribute embedding matrix
Xatt ∈ R2p2p(Nr+Ns).

2.4.2 Self-calibrated pairwise attribute learning
For a pair of drug and side effect nodes, such as the drug ri and

the side effect sj, each feature of the node pair has the context
relationship with the features around it. To capture the context
relationship, a self-calibrated convolution-based attribute learning
module was constructed. The module obtained the attribute
embedding in a small latent space by utilizing convolution with
larger receptive fields, and then, the embedding was used to guide
the pairwise attribute learning in the original features space.

Xatt undergoes average pooling to form a low-dimensional
embedding of node pairs L.

L � APool Xatt( ). (22)
The feature transformation of L uses convolution operations.

Xatt′ � B φ WLpL + bL( )[ ], (23)
where B[·] is a bilinear interpolation operation that maps the
convolved feature map from the latent space back to the original
space, “*” represents the convolution process, and φ represents the
activation function ReLU. WL and bL represent the weight matrix
and deviation vector, respectively. The feature graph Xatt′ obtained
in the latent space is used to calibrate the feature embedding Xatt in
the original space, forming the calibration weight Ycal.

Ycal � WcalpXatt + bcal( ) ⊗ σ Xatt ⊕ Xatt′( ), (24)
where σ is the activation function. ⊕ and ⊗ represent the element-by-
element addition and multiplication operations, respectively. Ycal

passes through a convolution-pooling layer to deeply fuse the
calibrated features to form Yatt.

Yatt � σ WcalpYcal + bcal( ). (25)
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The original feature embedding Xatt is convolved to form the
original feature graph, comprising the original feature information.
Xatt is not padded to preserve and learn its edge information, and
Yori is obtained after two convolutional layers. Finally, Yatt and Yori

are joined to form the calibrated ri − sj attribute embedding matrix
Zatt.

Zatt � Yatt, Yori{ }. (26)

2.5 Final fusion and loss function

The learned topological representation Ztopo is first flattened into
a vector ztopo and fed into the fully connected layer and softmax layer
to obtain the association probability distribution of the drug ri and
the side effect sj.

scoretopo � softmax Wtopoztopo + btopo( ), (27)

where Wtopo and btopo are the weight matrix and deviation
vector, respectively, and softmax is the activation function. In
scoretopo � [(scoretopo)0, (scoretopo)1], (scoretopo)1 and (scoretopo)0
represent the presence and absence of probabilities for an
association between ri and sj, respectively. There is a loss of cross
entropy between the true label of the drug–side effect association and
the expected likelihood scoretopo, which is defined as

losstopo � −∑T
i�1

ylabel × log scoretopo( )
1
+ 1 − ylabel( ) × log 1 − scoretopo( )

0
( )[ ],

(28)

where T is a collection of training samples and ylabel is the actual
association between the nodes. ylabel equals 1 if ri is known to be
associated with sj and 0 otherwise.

The self-calibrating pairwise property representation Zatt is
flattened into a vector zatt and fed into the fully connected and
softmax layers. This module’s prediction score scoreatt and the loss
function lossatt are defined as follows:

scoreatt � softmax WattZatt + batt( ), (29)

lossatt � −∑T
i�1

ylabel × log scoreatt( )1 + 1 − ylabel( ) × log 1 − scoreatt( )0( )[ ],
(30)

where (scoreatt)1 and (scoreatt)0 represent the ri-sj correlation and
non-correlation probabilities, respectively. The Adam algorithm was
used to optimize the loss losstopo and lossatt. Finally, we weighted
scoretopo and scoreatt and fused them to obtain the final correlation
prediction score.

score � λ × scoretopo + 1 − λ( )scoreatt, (31)
where hyperparameter λ(λ ∈ [0, 1]) is used to moderate the extent to
which scoretopo and scoreatt contribute to the final score.

FIGURE 3
ROC curves and PR curves of our method and the compared methods for drug-side effect association prediction. (A) ROC curves (B) PR curves.

TABLE 1 Results of the paired Wilcoxon test on the AUCs and AUPRs over all the 708 drugs by comparing GGSC and other methods.

GCRS SDPred Galeaon’s method RW-SHIN Ding’s method FGRMF

p-value of AUC 1.7687-10 6.0316e-12 9.3621e-36 2.6478e-37 5.1475e-42 4.6142e-54

p-value of AUPR 6.2487e-14 6.3164e-15 3.2266e-32 7.3184e-42 8.2642e-46 7.3242e-58
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3 Experimental evaluations and
discussion

3.1 Evaluation metrics and parameter
settings

The prediction performance of our model and other
comparator models was assessed through five-fold cross
validation. If a drug was observed to associate with a side
effect by the biological experiments, the drug–side effect node
pair may be regarded as a positive sample. On the other hand,
all the unobserved drug–side effect node pairs are the negative
samples. The number of positive samples and that of negative
samples are 80,164 and 2,887,772, respectively, and their ratio
is about 1:36. Thus, there is serious class imbalance for the
positive samples and the negative ones. Five subsets of positive
samples—four used for training and one for testing—were
created by randomly equalizing all positive example
samples. The same number of negative samples as the
positive samples was selected for training, with the
remainder used for testing.

The measures used in the evaluation process included the area
under the receiver operating characteristic (ROC) curve (AUC), the
area under the precision-recall curve (AUPR), and the recall rate for

the top k candidates. The AUC is widely used to assess the
performance of prediction models. Since there are much fewer
negative than positive samples and the distribution is
imbalanced, AUPR is more informative than AUC and helps
assess the model’s performance. We separately calculated the
AUC and AUPR of each fold during cross validation, and the
final findings were calculated using the five-fold cross validation’s
average AUC and AUPR. Typically, biologists choose the best
candidates for additional validation. Therefore, we calculated the
recall of the top k candidates (k ∈ [30, 60, . . . , 240]); the higher the
recall, the more positive samples the prediction model correctly
identifies.

The filter size within all the convolutional operations and the
window size are 2 × 2. The GCN encoder has two encoding layers,
and their feature dimensions are 2,500 and 1,500, respectively. The
feature dimensions of the two decoding layers in the GCN decoder
are set to 2,500 and 4,900, respectively. The dimensions of two
hidden layers in the discriminator are 2,500 and 1,200. The topology
representation fusion module contains two convolutional layers
which have 16 and 32 filters. In the self-calibrated convolutional
module, for the small feature space, the two convolutional layers
have 1 and 32 filters, respectively. In terms of original feature space,
the numbers of filters are 16 and 32, respectively. GGSC was
developed on the PyTorch framework, and the server has a
Nvidia GeForce GTX 2080Ti graphic card with 11 GB graphic
memory.

3.2 Comparison with other methods

Six cutting-edge approaches for predicting pharmacological
side effects were compared with GGSC, graph convolutional
network-based risk stratification (GCRS), SDPred, Galeaon’s
method, random walk on a signed heterogeneous information
network (RW-SHIN), Ding’s method, and feature-derived graph

FIGURE 4
Recall rates of all the prediction methods at various top k values.

TABLE 2 Ablation study results of our method.

TGA RLA SCPA Average AUC Average AUPR

× × ✓ 0.954 0.302

✓ × ✓ 0.959 0.298

✓ ✓ × 0.943 0.309

✓ ✓ ✓ 0.969 0.340

The bold value means the highest AUC (AUPR).
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regularized matrix factorization (FGRMF). In the cross-validation
process, GGSC uses the same training and test sets as all
comparison methods to compare the results more convincingly.

The average ROC and precision–recall (PR) curves for all
methods using 708 drugs are shown in Figure 3. The average
AUC of 0.969 of our GGSC model was 1.2% higher than that of

the suboptimal GCRS, 2.3% higher than that of SDPred, 5.7% higher
than Galeon’s method, 7.7% higher than RW-SHIN, 2.4% higher
than Ding’s method, and 5.0% higher than FGRMF, respectively.
Using 708 drugs, GGSC had the highest mean AUPR of 0.340, 6.8%,
11.4%, 20.9%, 24.1%, 14.9%, and 16.1% higher than GCRS, SDPred,
and other methods, respectively.

TABLE 3 Top 15 candidate side effects of fluoxetine.

Drug Rank Side effect Evidence

Fluoxetine

1 Anorexia Drugcentral, MetaADEDB, Rxlist, SIDER

2 Thrombocythemia Rxlist

3 Colonorrhagia MetaADEDB, SIDER

4 Cataract Drugcentral, MetaADEDB, Rxlist, SIDER

5 Hyponatremia MetaADEDB, Rxlist

6 Hypoventilation MetaADEDB, Rxlist, SIDER

7 Fibroids MetaADEDB, Rxlist, SIDER

8 Ecchymosis MetaADEDB, Rxlist, SIDER

9 Abdominal syndrome acute Rxlist

10 Neuritis MetaADEDB, Rxlist, SIDER

11 Optic neuritis MetaADEDB, Rxlist, SIDER

12 Purpura MetaADEDB, Rxlist, SIDER

13 Osteomyelitis MetaADEDB, Rxlist, SIDER

14 Hypertensive Rxlist

15 Somnolence Drugcentral, MetaADEDB, Rxlist, SIDER

TABLE 4 Top 15 candidate side effects of lenalidomide.

Drug Rank Side effect Evidence

Lenalidomide

1 Supraventricular arrhythmia Rxlist

2 Thrombophlebitis superficial Rxlist, SIDER

3 Dermatitis MetaADEDB, Rxlist, SIDER

4 Pemphigus Drugcentral

5 Abdominal pain Drugcentral, MetaADEDB, Rxlist, SIDER

6 Dysarthria Drugcentral, MetaADEDB, Rxlist, SIDER

7 Easy bruising Rxlist

8 Febrile neutropenia Drugcentral, MetaADEDB, Rxlist, SIDER

9 Abdominal tenderness MetaADEDB, Rxlist, SIDER

10 Stiffness MetaADEDB, Rxlist, SIDER

11 Allergic rhinitis Drugcentral, Rxlist

12 Angioedema Drugcentral, MetaADEDB, Rxlist, SIDER

13 Asthma Drugcentral, MetaADEDB, Rxlist, SIDER

14 Conjunctivitis MetaADEDB, Rxlist, SIDER

15 Dyspepsia MetaADEDB, Rxlist, SIDER
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After five-fold cross validation, we could obtain the average AUC
and AUPR for each of the 708 drugs. We performed aWilcoxon test on
the 708 AUCs and AUPRs to determine whether performance differed
significantly among methods (Table 1). These results showed that our
methodGGSC significantly outperformed the other predictionmethods,
when the p-value is always less than 0.05.

Among the compared methods, our GGSC method performed
best, followed by GCRS. SDPred and Ding’s method integrate
multiple drug similarities but ignore the heterogeneous graph’s
topological information, so they do not perform as well as our
GGSC method. FGRMF and Galeaon’s method are shallow
prediction models that use matrix decomposition to predict

TABLE 5 Top 15 candidate side effects of sumatriptan.

Drug Rank Side effect Evidence

Sumatriptan

1 Abnormal pulse Rxlist, SIDER

2 Flatulence MetaADEDB, Rxlist, SIDER

3 Dehydration MetaADEDB, Rxlist, SIDER

4 Viral infection Rxlist, SIDER

5 Apathy MetaADEDB, Rxlist, SIDER

6 Keratitis MetaADEDB, Rxlist, SIDER

7 Sedation Rxlist

8 Chest pressure MetaADEDB, Rxlist, SIDER

9 Retinal vascular occlusion MetaADEDB, SIDER

10 Optic neuropathy MetaADEDB, Rxlist

11 Panic disorder MetaADEDB, Rxlist, SIDER

12 Enzymatic abnormality MetaADEDB

13 Discomfort Drugcentral, MetaADEDB, Rxlist, SIDER

14 Ulcer MetaADEDB, Rxlist

15 Convulsions Rxlist

TABLE 6 Top 15 candidate side effects of risperidone.

Drug Rank Side effect Evidence

Risperidone

1 Vomiting Drugcentral, Rxlist, SIDER

2 Transient blindness Drugcentral, MetaADEDB

3 Bradycardia Drugcentral, MetaADEDB, Rxlist, SIDER

4 Apnea Rxlist

5 Nightmares Rxlist

6 Mediastinal disorders Drugcentral, MetaADEDB, Rxlist, SIDER

7 Superficial phlebitis Rxlist

8 Hyperglycemia MetaADEDB, Rxlist

9 Rectal hemorrhage Rxlist

10 Female breast pain MetaADEDB, Rxlist

11 Flu Rxlist

12 Cyst Drugcentral, MetaADEDB, Rxlist, SIDER

13 Supraventricular extrasystoles Rxlist, SIDER

14 Generalized edema Rxlist

15 Dysphagia Drugcentral, Rxlist, SIDER
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drug-related side effects, which cannot effectively learn the deep
associations between drug and side effect nodes, resulting in slightly
worse performance. These findings show that RW-SHIN performs
worse than other methods because it learns the topological
information of medication nodes but not of side effect nodes.
GGSC method’s better performance is mainly attributed to
adversarial learning to obtain topological information and self-
calibration learning to obtain node–pair properties. A higher
recall of the top k candidate drug–side effect associations
indicates that more true associations are correctly identified.
Figure 4 shows that the GGSC method had consistently higher
recall than the other methods for different values of k. When
considering k = 30, GGSC had the highest recall (52.5%) and
GCRS the second highest (47.0%).

Other methods had recall rates of 41.8%, 32.2%, 23.7%, 35.4%,
and 32.8%, respectively. GGSC still performed best at values of k of
60, 90, and 120, with recall rates of 64.6%, 70.9%, and 75.2%,
respectively. The second best performing method was GCRS,
with recall rates of 59.6%, 66.8%, and 71.8%, respectively. The
third best performing method was SDPred, with recall rates of
54.9%, 62.3%, and 67.4%, respectively. Ding’s method (48.1%,
56.2%, and 62.1%, respectively) and FGRMF (45.2%, 52.5%, and
58.1%, respectively) consistently outperformed Galeaon’s method
(43.6%, 51.6%, and 56.8%, respectively). RW-SHIN consistently
performed the worst, with recall rates of 34.3%, 41.2%, and
47.1%, respectively.

3.3 Ablation studies

We performed ablation experiments to confirm the
contributions of the main innovations, including topological
representation learning based on generative adversarial (TGA),

RLA, and self-calibrated pairwise attribute (SCPA) learning
(Table 2). The complete model, GGSC with TGA, RLA, and
SCPA, performed best, with an AUC of 0.969 and AUPR of
0.340. For the model without TGA, the AUC and AUPR
decreased by 1.5% and 3.8%, respectively, compared to the full
model. These results show that topological representation learning
helps to improve the model’s prediction performance. For the model
without RLA, the AUC and AUPR fell by 1.0% and 4.2%,
respectively, compared to the full model. The possible reason is
that RLA assigns more weight to topological representations that are
more informative, which helps the model capture more important
features. For the model without SCPA, the AUC and AUPR declined
by 2.6% and 3.1%, respectively, compared to the full prediction
model. The main reason was that self-calibration enables learning
more comprehensive information about the nodes’ neighboring
nodes. This analysis demonstrates the respective contributions of
TGA, RLA, and SCPA. The ablation experiment results show that
SCPA learning provided the greatest enhancement to the drug–side
effect association prediction model.

3.4 Case studies on five drugs and prediction
of novel drug-related side effects

To further demonstrate our GGSC model’s ability to detect
potentially relevant pharmacological adverse effects, we conducted
case studies on five drugs: fluoxetine, lenalidomide, sumatriptan,
risperidone, and aripiprazole. We obtained the drug’s associated
candidate side effects and corresponding association scores, and all
candidates were sorted in descending order. Tables 3–7 list the top
15 probable side effects for each of these five drugs.

Online database MetaADEDB containing comprehensive
information on adverse drug events (ADEs), covering

TABLE 7 Top 15 candidate side effects of aripiprazole.

Drug Rank Side effect Evidence

Aripiprazole

1 Dry eyes Rxlist

2 Decreased appetite Drugcentral, Rxlist, SIDER

3 Inguinal hernia SIDER

4 Anger Drugcentral, MetaADEDB, SIDER

5 Neuroleptic malignant Drugcentral, MetaADEDB, Rxlist, SIDER

6 Reflux Rxlist, SIDER

7 Thrombocythemia MetaADEDB

8 Dysphemia Drugcentral, MetaADEDB, SIDER

9 Groin pain Drugcentral, MetaADEDB, Rxlist

10 Hypoglycemic reaction MetaADEDB, Drugcentral, Rxlist

11 Conjunctivitis MetaADEDB, Rxlist, SIDER

12 Formication MetaADEDB, SIDER

13 Thrombophlebitis MetaADEDB, Rxlist, SIDER

14 Weight fluctuation Drugcentral, MetaADEDB, Rxlist

15 Abnormal dreams MetaADEDB, Rxlist
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744,709 associations between 8,498 drugs and 13,193 ADEs confirmed
by clinical trials (Kuhn et al., 2016; Luo et al., 2017; Xuan et al., 2022).
DrugCentral contains 4,927 drugs approved by regulatory authorities
such as the European Medicines Agency, providing a resource for
information on ADEs, indications, and more (Nair and Hinton,
2010; Wang et al., 2010; Davis et al., 2021). RxList contains
information on drug descriptions and side effects in physicians’
articles and authoritative websites and supports > 5,000 drugs online
(Hajian-Tilaki, 2013; Saito and Rehmsmeier, 2015). SIDER contains
information on 1,430 drugs that have been marketed and their recorded
ADEs from public documents and package inserts (Steigerwalt, 2015;
Avram et al., 2021; Yu et al., 2021). Tables 3–7 show that 45 candidate
side effects were recorded in MetaADEDB, 21 in DrugCentral, 60 in
RxList, and 50 in SIDER. This result suggests that the drug candidates are
associated with the corresponding side effects. The five drug case studies
demonstrate GGSC’s ability to identify drugs’ potentially relevant side
effects.

Following a thorough evaluation of the GGSC model’s
performance, we used the training model to forecast
708 potential drug-associated side effects. Supplementary Table
ST1 lists the top 30 potential side effects for each drug predicted
by our model to aid biologists in their ongoing efforts to identify new
side effects for drugs through biological testing.

4 Conclusion

We proposed a method to encode and fuse multiple types of
similarities and associations from multiple heterogeneous graphs to
predict drug-related candidate side effects. The constructed two
drug–side effect heterogeneous graphs facilitate the formation of their
specific topological embeddings based on the generative and adversarial
strategy. The generator and the discriminator were constructed based on
graph convolutional autoencoder and MLP, and then, the enhanced
topological representations of the drug and side effect nodes were
learned. The representation level attention was designed to assign
higher weights to those more important topological representations.
In the constructed self-calibrated convolutional neural network module,
the pairwise features extracted from the small latent feature space are able
to guide the feature learning in the original feature space. The cross-
validation experimental results indicated that GGSC outperformed the
compared prediction models in terms of both AUC and AUPR.
Additionally, GGSC retrieved more realistic drug–side effect
associations in the top-ranked candidate list, which makes it be more
attractive to the biologists. GGSC’s ability in discovering the potential
drug–side effect association candidates was further shown through case
studies on five drug-related candidates.
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