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Time series Autoregressive Integrated Moving Average (ARIMA) model is often
used in landslide prediction and forecasting. However, few conditions have been
suggested for the application of ARIMA models in landslide displacement
prediction. This paper summarizes the distribution law of the tangential angle
in different time periods and analyzes the landslide displacement data by
combining wavelet transform. It proposes an applicable condition for the
ARIMA model in the field of landslide prediction: when the landslide
deformation is in the initial deformation to initial acceleration stage, i.e., the
tangential angle of landslide displacement is less than 80°, the ARIMA model
has higher prediction accuracy for 24-h landslide displacement data. The
prediction results are RMSE = 4.52 mm and MAPE = 2.39%, and the prediction
error increases gradually with time. Meanwhile, the ARIMA model was used to
predict the 24-h displacements from initial deformation to initial acceleration
deformation for the landslide in Guangna Township and the landslide in Libian
Gully, and the prediction results were RMSE = 1.24 mm,MAPE = 1.34% and RMSE =
5.43 mm,MAPE = 1.67%, which still maintained high accuracy and thus verified this
applicable condition. At the same time, taking the landslide of Libian Gully as an
example, the ARIMA model was used to test the displacement prediction effect of
the landslide in the Medium-term acceleration stage and the Imminent sliding
stage (the tangential angle of landslide displacement is 80° and 85°, respectively).
The relative error of displacement data prediction in the Medium-term
acceleration stage is within 3%, while the relative error of the prediction value
in the Imminent sliding stage is more than 3%, and the error gradually increases
with time. This demonstrates that the relative error of the ARIMAmodel in landslide
prediction and forecasting is within 3%. The relative error of the prediction value in
the Imminent sliding stage is above 3%, and the error increases gradually with time.
Meanwhile, the prediction results are analyzed and it is concluded that the
increase in prediction time and tangential angles are the main reasons for the
increase in error. The applicable conditions proposed in this study can provide a
reference for the application of ARIMA model in landslide prediction and forecast.
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1 Introduction

Landslide is a natural disaster that occurs worldwide. It has the
characteristics of uneven distribution in space and time and often
poses a great threat to human production and life. As one of the core
research topics of geological disaster prevention and mitigation, the
prediction and forecasting of landslide disasters is also recognized as
a world-class problem by scholars at home and abroad
(Alimohammadlou et al., 2013; Boyd et al., 2021; Wu et al.,
2023). Due to the complexity and uncertainty of landslide
activities, the success rate of landslide prediction is still very low.
Therefore, studying the temporal prediction and forecasting of
landslide hazards is of great theoretical and practical significance.
Landslides can be triggered by various factors (such as human
influence or geological deformation), and such geological hazards
often occur in special geological environments or in conjunction
with other hazards, such as earthquakes (Yin et al., 2016; Liu et al.,
2019; Zhang et al., 2021; Luo et al., 2022; Zhong et al., 2022).
However, the most common cause of landslides is changes in
groundwater levels due to prolonged precipitation and human
activities (Xu et al., 2012; Haque et al., 2016; Ahmed, 2021).

At present, there are two aspects to landslide prediction and
forecasting: temporal and spatial. In the field of landslide prediction
and forecasting research, the recognized starting point for landslide
time forecasting research began in the 1960s, when the Japanese
scholar Saito (1969) proposed an empirical formula for landslide
forecasting based on creep theory. He established an accelerated
creep equation to predict landslides through displacement
monitoring curves. Since then, a large number of landslide time
forecasting models have been generated, including statistical
forecasting models (Miao et al., 2017; Huang et al., 2021) and
nonlinear forecasting models based on machine learning (Li
et al., 2018; Niu, 2020; Wang et al., 2022b; Fu et al., 2022; Jiang
et al., 2022), among others.

In landslide real-time monitoring, various types of automated
monitoring equipment (including fractometer, GNSS, deep
displacement, etc.) produce a series of time-related displacement
monitoring data. Due to the influence of various external or internal
factors, the monitoring equipment collects the data discretely. The
discrete wavelet transform can extract the real deformation
information to a certain extent by noise reduction and filtering of
the original monitoring data of landslides (Khandelwal et al., 2015;
Huang et al., 2016; Li et al., 2017; Sun et al., 2021). Li et al. (2019)
performed wavelet analysis on GPS-monitored cumulative
displacements of Shuping and Baijiabao landslides in the Three
Gorges Reservoir area, China, to decompose the displacement time
series into low-frequency and high-frequency components in order
to solve the problem of non-stationary characteristics. At the same
time, during the acquisition of landslide displacement information,
data acquisition can be interrupted due to equipment failure or other
reasons. This can result in discontinuity in the acquired
displacement data, meaning that the displacement data may have
different intervals. For time series ARIMA models, having equal
time intervals of data is necessary to capture the information in the
time series (Calheiros et al., 2015; Pranolo et al., 2022). Therefore,
cubic spline interpolation is used to preprocess the landslide
displacement data, ensuring that the landslide data have equal
time intervals in the time series (Allil et al., 2021). Zhang et al.

(2018) introduced two spline interpolation methods to correct and
resample the data during the conversion from angle to displacement
in the landslide physical modeling tests conducted to study the
structural damage of landslides, and the test results were highly
consistent with the actual deformation of the landslide model. Li
et al. (2021) selected the South Slope Landslide of West Open Pit
Mine in Liaoning Province, Northeast China, and the Huangsi
Landslide in Gansu Province, Northwest China, as study cases,
and proposed a short-term forecasting of landslides (STFL)
model by summarizing the displacement data after preprocessing
such as cubic spline interpolation and smoothing of the noisy data
from the missing data and using it as the input parameter of the
model, which realizes a new method that has good reliability and
accuracy in landslide prediction.

As a type of statistical forecasting model, the time series
Autoregressive Integrated Moving Average (ARIMA) model is
known for its remarkable predictive accuracy and flexibility in
representing several different types of time series, and it is often
used in the field of landslide prediction forecasting (Zhang, 2003;
Aggarwal et al., 2020). Singh et al. (2022) were the first to use
Sentinel-1A data in the Darjeeling-Sikkim Himalayan region to
select potential landslide risk areas and predict landslide
displacement and deformation in those areas using an ARIMA
model for interannual simulation. Fayaz et al. (2022) used
ARIMA prediction models to predict surface temperature and
precipitation in the Himalayan region. They determined the
weights and critical thresholds of each parameter through field
surveys and laboratory tests to give the probability of landslide
events in the study area. They also produced hazard level maps for
the probability of landslides in each month. Luo et al. (2023)
developed a new hybrid model that incorporates the local mean
decomposition (LMD), innovations state space models for
exponential smoothing (ETS), and the temporal convolutional
network (TCN). This proposed model, based on over 10 years of
long-term time series monitoring GPS data, was evaluated using a
selected case study—the Baijiabao landslide in the Three Gorges
Reservoir area of China (TGRA). The proposed model was
compared to the ARIMA, support vector regression (SVR), and
long short-term memory neural network (LSTM) models. The
results indicated that the ARIMA model was suitable for
univariate forecasting. Kavoura et al. (2020) analyzed the long-
term ground displacements of three of the most famous historical
landslide areas in western Greece based on inclinometer data and
used an ARIMA model to characterize the specific kinematics of the
landslides and to model the kinematic evolution.Wang et al. (2022a)
used slope deformation data obtained by interferometric synthetic
aperture radar (InSAR) to build a combined LSTM-ARIMA model,
obtaining results with higher accuracy than either single model. A
major limitation is that ARIMA models assume a linear form of the
data of interest, which makes them inappropriate for complex
nonlinear time series modeling. Linear models cannot estimate
complex nonlinear problems when the prediction horizon is long
(Aggarwal et al., 2020). At present, the ARIMA model is mainly
applied in the field of landslide prediction and forecasting on annual
and monthly time scales and long time series. However, the
application of ARIMA model in the field of landslide
displacement prediction on hourly time scales is less common,
and there is no established applicable condition.
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In this research, an applicable condition of the ARIMAmodel in
the field of landslide displacement prediction is proposed and
validated based on on-site deformation data at short time
intervals. This provides a reference for the application of the
ARIMA model in landslide prediction.

2 Case study

In this study, we first use the deformation data of the Qingshui
River landslide to propose applicable conditions for the ARIMA
model in the field of landslide prediction and forecasting. We verify
the proposed conditions with data from the Libiangou landslide and
explore the prediction effect of the ARIMA model in the short-term
proslide stage of landslides.

The Qingshui River landslide is located inMaoanVillage, Sansheng
Town, Beibei District, Chongqing of China, on the east flank of the
Longwangdong backslope. Figure 1D displays an overview of the
Qingshui River landslide. The general topography slopes from
southeast to northwest, with the elevation at the bottom of the slope
being 573 m and the elevation at the top of the hill being about 651m,
resulting in a total height difference of about 78 m. The landslide plane
is shaped like a “lap chair”. The rear part of the landslide is gentle
terrain, and the left and right side boundaries are located at the foot of
the slope. Additionally, there aremore buffer ditches at the left and right

side boundaries of the lower and middle parts of the landslide. The
entire landslide is 78 m in height, 121 m long, and 150 m across, with an
average thickness of about 3 m, a landslide area of 1.02 × 104 m2, and a
volume of about 3.57 × 104 m³. It is a shallow surface mound landslide
with a main sliding direction of 317°. The type of landslide is a small,
shallow, earthy slope composed of powdered clay mudstone. The slip
zone is made up of powdered clay sandwich gravel, and the slip surface
is located at the rock-soil contact surface with a slip bed made of
mudstone. The rock yield is 298°∠71°. The main threat to the landslide
area is the safety of 19 households and 57 people. The landslide is a
small soil landslide, pushed landslide with a tongue-shaped plane. In
recent years, the deformation has mainly been concentrated in the
middle and rear parts, with pulling cracks and seams measuring 1–5 m
long and 1–5 mm wide. Locally, there is a downward deviation of
1–10 mm, and the trees on the slope are skewed.

The Guangna Township Landslide is located in Group 2, Mengzi
Village, Guangna Township, Tongjiang County, Bazhong City, with
geographic coordinates of 107°14′46 “E, 31°50′48 “N. The overall slope
is about 24°, and themain slide direction is 340°. The longitudinal length
of the slide is about 100 m, and the horizontal width is about 50 m. The
overall slope of the landslide is about 24°, the main slip direction is 340°,
the longitudinal length of the landslide is about 100 m, the transverse
width is about 50 m, the area is about 5000 m2, the average thickness of
the slide is about 1–2 m, the scale of the landslide is about 1.0 × 104 m³,
it is a small earthy landslide, and the material composition of the

FIGURE 1
(A)Qingshui River landslide(red point) is located at 29°54′41″N, 106°39′21″E(Chongqing, China); Guangna Township landslide(red point) is located at
32°19′32″N, 107°27′15″E(Sichuan, China); Libian Gully landslide(red point) is located at 32°46′45″N, 110°8′40″E(Hubei, China). (B) Overview of the
Qingshui River landslide. (C) Overview of the Guangna Township landslide. (D) Overview of the Libian Gully landslide.
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landslide is pulverized clay, with looser structure and the content of
debris is about 5%.

The Libian Gully landslide is located in Shagou Village,
Hujiaying Township, Yunyang District, Shiyan City, Hubei
Province of China. Figure 1C displays an overview of the Libian
Gully landslide. The landslide underwent initial deformation in July
2003, with the central ground uplift and a deformation range of
about 100 m2. The slip body experiences many small-scale collapse
slides, with creep slip phenomena occurring every rainy season.
Under the influence of strong or continuous rainfall, the slide body
may undergo large-scale destabilization and sliding damage.

The on-site monitoring data of the landslides are obtained from
the China Geological Disaster Monitoring and Early Warning
Information System. Among, the monitoring system for the
Qingshuihe landslide is operated by the 208 Hydrogeological
Engineering Geological Team of the Chongqing Geological and
Mineral Exploration and Development Bureau, the Guangna
Township landslide is monitored by the 283rd Brigade of the
Sichuan Nuclear Industry Geological Bureau, and the Libiangou
landslide is monitored by the Hubei Provincial Geological and
Environmental General Station. Displacement data for the three
landslides are available on the website (Supplementary Material).

3 Materials and methods

3.1 Application of ARIMA model

A time series is a collection of data gathered at specific intervals, and
an appropriate analyticalmodel is created based on the unique nature of
the data to predict potential future values of the series. The time series of
cumulative landslide displacement is often non-stationary, and the
ARIMA model is a commonly used model for dealing with non-

stationary time series. The ARIMA model transforms a non-stationary
time series into a stationary one, and then regresses the dependent
variable on its lagged value, the current value of the random error term,
and only the lagged value. The ARIMA model comprises the moving
average process (MA), autoregressive process (AR), autoregressive
moving average process (ARMA), and the ARIMA process.
Specifically, if the time series yt can be smoothed by d differences to
obtain Wt = Δdyt (i.e., yt ~ I(d)), then Wt is a smooth series (i.e., Wt ~
I(0)), and the ARIMA(p, q) model can be formulated as follows:

Wt � Φ1Wt−1 + Φ2Wt−2 + . . . + ΦpWΦt−p + et − θ1et−1 − θ2et−2

− . . . − θqet−q
(1)

The ARIMA (p, q) model after the d-order difference is called
ARIMA(p, d, q), where p is the autoregressive order, q is the moving
average order, and et is the white noise process. When d = 1, the
above equation can be written as:

yt � 1 + Φ1( )yt−1 + Φ2 − Φ1( )yt−2 + . . . + Φp − Φt−p( )yt−p + et

− θ1et−1 − θ2et−2 − . . . − θqet−q
(2)

FIGURE 2
Workflow for constructing an ARIMAmodel and summarizing the
applicable conditions.

FIGURE 3
(A)Original signal of wavelet transform of landslide displacement
in Qingshui River. (B) Low-frequency signal of wavelet transform of
landslide displacement in Qingshui River. (C)High-frequency signal of
wavelet transform of landslide displacement in Qingshui River.
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In this study, the application of ARIMA model is divided into the
following steps: (1) preprocessing the data; (2) modeling and predicting
the data using the ARIMA model; (3) classifying the stage of landslide
deformation bywavelet transform analysis; (4) calculating the tangential
angle of landslides in the study area with high prediction accuracy of the
ARIMA model; (5) summarizing the law of the distribution of the
tangential angle; (6) verifying the law; (7) drawing conclusions. The
framework of this study is shown in Figure 2.

3.2 Parameters for landslide prediction

Currently, landslide prediction studies are often analyzed from
both qualitative and quantitative perspectives. From the qualitative
point of view, the severity of precipitation and the nature of the soil,
among others, are influences that are often considered (Guzzetti
et al., 2020; Prancevic et al., 2020; Li et al., 2022). Among them, the
physical mechanisms of soil properties are relatively complex,
involving thermodynamic mechanisms of geotechnical particle
movement and the influence of permeable water flow (Deng
et al., 2020; Bai et al., 2021b). Furthermore, the content of heavy
metals in soil is also a key variable. The interaction between heavy
metals in soil and the soil itself often leads to anomalies in soil heavy
metal content in areas where landslides occur. Therefore, the
content of heavy metals in soil can serve as a criterion for
predicting landslide hazards (Bai et al., 2021a; Anda et al., 2021).
However, qualitative analyses generally cannot be quantified
accurately. Therefore, landslide susceptibility mapping (LSM) is
often used to express the degree of risk of landslide hazards in a
certain area (Zhang et al., 2022b; Li et al., 2022).

Correspondingly, the primary objective of landslide prediction
in quantitative terms is to simulate and predict landslide

displacement data using prediction models, establish threshold
criteria, and ultimately achieve accurate landslide forecasting
(Kirschbaum et al., 2010; Fan et al., 2019a; Yang et al., 2019;
Guzzetti et al., 2020; Zhang et al., 2022c). The landslide
displacement prediction is a key component of early warning
systems that emphasizes the ease of access, quantification, and
reliability of displacement monitoring data (Du et al., 2013;
Manconi and Giordan, 2015; Liu et al., 2018; Yan et al., 2021).
Global Navigation Satellite System (GNSS) technology is an effective
and direct method in landslide evolution analysis, which can be used
to monitor the surface displacement of landslides (Lian et al., 2014;
Li et al., 2017; Huang et al., 2022). The displacement data can be
recorded to form displacement monitoring curves, which are the
core of the evaluation of landslide stability and its trend. It is also the
key parameter to realize the accurate early warning of a landslide
(Pecoraro et al., 2019; Ju et al., 2020). The monitoring curve is the
basis for deformation evolution stage determination, and the
monitoring curve of the accelerative deformation stage is the
basis for landslide early warning. For landslide prediction and
forecasting, it is crucial to delineate different stages of landslide
hazard evolution and provide different warning information
according to different stages (Li et al., 2016). The current study
generally divides the landslide hazard evolution into the following
three stages: initial deformation, constant deformation, and
accelarative deformation stages (Xu et al., 2008; Zhang et al.,
2022a). In this paper, the tangential angle is primarily used as
the basis for dividing landslide deformation stages. The
accelerated deformation stages are further subdivided into the
initial acceleration stage, the medium-term acceleration stage,
and the imminent sliding stage, based on previous studies on
three-stage landslides (Fan et al., 2019b; Chen et al., 2023; Tan
et al., 2023).

FIGURE 4
(A) The distribution of tangential angles with respect to time in the Qingshui River landslide. (B) ARIMA model autocorrelation plot of the Qingshui
River landslide. (C) ARIMA model partial autocorrelation plot of the Qingshui River landslide.
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For judging the stage of landslide deformation development, the
tangential angle is a common statistical quantity that can be used to
further classify the deformation stage of landslides from a
quantitative perspective, enabling early warning. Currently, a
specific division of landslide warning level is made based on the
tangential angle, where if the tangential angle is greater than 45°, the
landslide deformation enters the initial acceleration deformation
stage; if the tangential angle is greater than 80°, the landslide
deformation enters the medium-term acceleration deformation
stage; if the tangential angle is greater than 85°, the landslide
deformation enters the imminent sliding deformation stage (Xu
et al., 2009). Therefore, the key to the successful realization of the
proslide warning lies in the accurate calculation of the tangential
angle. For calculating the tangential angle, the displacement-time
curve’s different coordinate scales and the fluctuation correction of
the measured data over time must be considered. According to the
definition of the improved tangential angle (Xu et al., 2009):

αi � arctan
T i( ) − T i − 1( )

ti − ti−1
� ΔT

Δt
(3)

Among them:

T i( ) � S i( )
�v

(4)

Where αi denotes the improved tangential angle corresponding to
the monitoring moment ti, ti denotes the monitoring moment, ΔT
denotes the change of T(i) in unit time period, Δt corresponds to the
unit time period of S, S(i) is the accumulated displacement of landslide
deformation in a unit time period (generally one monitoring cycle is
used), and �v is the displacement rate in the constant deformation phase.

As can be seen from Eqs 3, 4, calculating the average
deformation rate �v for the constant deformation phase is crucial
for obtaining an accurate improved tangential angle αi. This requires
accurately delineating the different deformation phases of the
displacement-time curve. For manual data processing, post-hoc
analysis of the complete monitoring data curve, combined with
macroscopic signs of deformation damage and the use of graphical
methods and visual observation, can roughly delineate the
demarcation between the constant and accelerative deformation
phases of a complete displacement-time curve. However, calculating
the tangential angle requires further clarification of the demarcation
points of each phase and the uncertainty of distinguishing them
based only on the naked eye. Therefore, the use of discrete wavelet
transform to extract information about the change characteristics of
the displacement-time curve can determine the demarcation point
of the isokinetic deformation stage and carry out the calculation of
parameters. Furthermore, when calculating the tangential angles
using Eq. 3, the T-t curve of landslide deformation can be obtained.

FIGURE 5
(A) Displacement prediction by ARIMA model of Qingshui River landslide. (B) Residual autocorrelation of ARIMA model for the Qingshui River
landslide. (C) Residual partial autocorrelation of ARIMA model for the Qingshui River landslide.
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This method ensures a uniform time unit scale (Xu et al., 2009;
Wang et al., 2017) and enables the calculation of tangential angle
values even when dealing with landslide deformation data with short
sampling intervals or in the presence of sampling interruptions.
Zhang et al. (2022a) accurately described the nonlinear creep
behavior of unstable slopes in the initial creep stage and the
unstable creep stage by using a mathematical model based on the
T-t monitoring curve of unstable slope deformation over time
combined with the tangential angle, and proposed a forecasting
method for creep landslides.

4 Results

4.1 Qingshui River landslide displacement
prediction

The ARIMA model was tested with monitoring data from the
Qingshui River landslide. Figure 3A displays the hourly cumulative

displacement change data of the Qingshui River landslide from 10:
00:00 on 14 August 2021, to 09:00:00 on 28 September 2021. As
shown in Figure 3A, the change trend of the cumulative
displacement-time curve of the Qingshui River landslide is
smooth, and the deformation of the landslide is not very violent
and does not belong to the “step” category landslides. Therefore, the
Qingshui River landslide is used as the main research object to
explore the applicability conditions of the ARIMA model in
landslide prediction and forecasting, in order to determine its
suitability for such purposes.

After preprocessing the original displacement data using the
cubic spline interpolation method, the wavelet transform is applied
to extract both the high-frequency and low-frequency signals from
the displacement data. The high-frequency signal fluctuation (red
line) in Figure 3C serves as the dividing point for the uniform
deformation phase. Subsequently, the exact time of the constant
deformation phase in the original data is determined, enabling the
calculation of the rate of change during this phase. Based on this, the
qualitative description is expressed quantitatively, and the tangential

FIGURE 6
(A)Original signal of wavelet transform of landslide displacement in Guangna Township. (B) Low-frequency signal of wavelet transform of landslide
displacement in Guangna Township. (C) High-frequency signal of wavelet transform of landslide displacement in Guangna Township. (D)Original signal
of wavelet transform of landslide displacement in Libian Gully. (E) Low-frequency signal of wavelet transform of landslide displacement in Libian Gully. (F)
High-frequency signal of wavelet transform of landslide displacement in Libian Gully.
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angle is calculated for each time period. Statistical analysis is then
conducted on the range of values for all the tangential angles. This
helps reveal the distribution pattern of the improved tangential angle
for the Qingshui River landslide displacement at different time
intervals, as depicted in Figure 4A.

From Figure 4A, it can be seen that the tangential angles of
the deformation of the Qingshui River landslide in each time
period are roughly distributed in the interval from 0° to 80°,

indicating the initial deformation to the initial acceleration
deformation stage of the landslide. This suggests that the
Qingshui River landslide is currently relatively stable in
deformation, making it suitable for prediction using the
ARIMA model. A total of 100 displacement data points from
10:00:00 on 14 August 2021, to 13:00:00 on 18 August 2021, are
taken as training samples for the model and inputted into the
ARIMA model for modeling.

FIGURE 7
(A) The distribution of tangential angles with respect to time in the Guangna Township landslide. (B) ARIMA model autocorrelation plot of the
Guangna Township landslide. (C) ARIMA model partial autocorrelation plot of the Guangna Township landslide.

FIGURE 8
(A) The distribution of tangential angles with respect to time in the Libian Gully landslide. (B) ARIMA model autocorrelation plot of the Libian Gully
landslide. (C) ARIMA model partial autocorrelation plot of the Libian Gully landslide.
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Figure 4B depicts the autocorrelation plot of the ARIMA model
for the Qingshui River landslide. The autocorrelation function
(ACF) is used to compute the correlation of the time series with
itself, describing the degree of correlation between the current value
of the series and its past values. Figure 4B includes the coefficients,
upper and lower confidence limits. The horizontal axis represents
the number of delays and the vertical axis represents the
autocorrelation coefficient. The ACF plot is truncated at order q
and the partial autocorrelation function (PACF) plot is trailing, and
the ARMA model can be reduced to the MA(q) model. If both ACF
and PACF plots are trailing, the most significant order (minimum)
in PACF and ACF plots can be combined as p and q values. If the
ACF and PACF plots are both truncated, a higher differential can be
chosen, or the ARMAmodel is not suitable. Based on Figure 4B, the
parameter q of this model is judged to be 1.

Figure 4C shows the partial autocorrelation plot, which uses the
partial autocorrelation function (PACF) to find the correlation between
the residuals and the next lag value, instead of the correlation between
the lag and the current value as with the ACF plot. The PACF plot is
truncated at order p, while the ACF plot is trailing, and the ARMA
model can be reduced to an AR(P) model. If both the ACF and PACF
plots are trailing, the most significant order (minimum) in the PACF
and ACF plots can be combined as the p and q values. If both plots are
truncated, a higher differential can be chosen or the ARMAmodel may
not be suitable. According to Figure 4C, the present model parameter p
is judged to be 1. Thus, the construction of this model is completed as
ARIMA(1,1,1).

Using the constructed ARIMA(1,1,1) model, forecasts were
made and plotted for the last 24 h of data, starting from the data
at 14:00:00 on 18 August 2021, and the following results were
obtained:

Figure 5A shows the fitting of the ARIMA(1,1,1) model to the
displacement data of the Qingshui River landslide, along with the
predicted values. The generated data are evaluated using model
residuals, and the root mean square error (RMSE) and mean
absolute percentage error (MAPE) are used as evaluation metrics.
The residuals of the ARIMA model for the Qingshui River landslide
are shown in Figures 5B, C, respectively.

If all the correlation coefficients fall within the dashed lines,
then the autoregressive model (AR) and moving average model
(MA) residuals are considered as white noise series. It is required
for the time series that the model residuals are white noise series.
In both plots, the residuals at the top order are mostly within the
confidence interval, which is consistent with the white noise
assumption.

According to the predicted results, RMSE is 4.52 mm and the
MAPE is 2.39%. With an R2 value of 0.96, the model fits well.
Based on the numerical distribution of the tangential angle of the
Qingshui River landslide in different time periods, we conclude
that the prediction of landslide deformation displacement is good
for the distribution of tangential angles below 80°, which
corresponds to the initial deformation to initial acceleration
stage. The prediction error will gradually increase with the
passage of time.

FIGURE 9
(A) Displacement prediction by ARIMA model of Guangna Township landslide. (B) Residual autocorrelation of ARIMA model for the Guangna
Township landslide. (C) Residual partial autocorrelation of ARIMA model for the Guangna Township landslide.
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4.2 Validation of landslide displacement
prediction laws

Utilizing the laws obtained from predicting the Qingshui River
landslide, the ARIMA model was applied to forecast landslides in
Guangna Township and Libian Gully, serving to validate the
established applicable conditions.

The overall trend of the landslide in Guangna Township and the
landslide in Libian Gully as well as the wavelet analysis are shown in
Figure 6. From the overall trend shown in Figure 6D, the cumulative
displacement of the landslide fluctuated to a certain extent on
13 August 2021 and 22 August 2021. The deformation of the
landslide entered the accelerative deformation phase and
returned to stability after a certain period of time. Finally, on
28 August 2021, a violent deformation occurred, indicating that
the landslide destabilized. From the available data of the landslide
cumulative displacement and warning information records, the

warning time of the measuring cumulative displacement device at
the landslide was 08:00:00 on 29 August 2021, when the
accumulated displacement value was 286.4 mm and the warning
level was 0. This study mainly focuses on the time before the
occurrence of the landslide, and uses the ARIMA model to
predict the cumulative displacement of the landslide to achieve
the purpose of early warning. The first step is to extract the
deformation characteristics of the displacement-time curve of the
landslide in Libian Gully and the landslide in Guangna Township
using the discrete wavelet transform.

After preprocessing the original displacement data using the
cubic spline interpolation method, the wavelet transform is applied
to extract both the high-frequency and low-frequency signals from
the displacement data. The high-frequency signal fluctuation (red
line) in Figures 6C, F serve as the dividing point for the uniform
deformation phase of Guangna Township landslide and Libian
Gully landslide. Subsequently, the exact time of the constant

FIGURE 10
(A)Displacement prediction by ARIMAmodel of Libian Gully landslide. (B) Residual autocorrelation of ARIMAmodel for the Libian Gully landslide. (C)
Residual partial autocorrelation of ARIMA model for the Libian Gully landslide.

TABLE 1 Evaluation of the accuracy of ARIMA model for displacement prediction at three landslides Table.

Landslide site Prediction model RMSE (mm) MAPE (%) R2

Qingshui River Landslide ARIMA(1,1,1) 4.52 2.39 0.96

Guangna Township Landslide ARIMA(1,2,1) 1.24 1.34 0.99

Libian Gully Landslide ARIMA(3,2,2) 5.43 1.67 0.99
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deformation phase in the original data is determined, enabling the
calculation of the rate of change during this phase.

The tangential angle data for different time periods of
displacement was calculated according to the constant
deformation cut-off point of the time period at the red line. The
training sample time period used to validate the predictions selected
for the landslide in Guangna Township is from 19:05 on
2 September 2021 to 1:04 on 7 September 2021, and the
distribution of the landslide tangential angle data for this time
period is calculated as shown in Figure 7A. The training sample
time period used to validate the predictions selected for the landslide
in Libian Gully is from 10:00 on 10 August 2021 to 10:00 on
20 August 2021, and the distribution of the landslide tangential
angle data for this time period is calculated as shown in Figure 8A.

From Figure 7A and Figure 8A, it can be observed that the
tangential angles of the training samples from the Guangna
Township and Libian Gully landslides are primarily distributed
within the range of 0°–80°. This alignment with the previously
mentioned condition indicates that the landslides are in the
developmental stage between initial deformation and initial

acceleration deformation. Subsequently, separate ARIMA models
for displacement prediction were developed in the two study areas.

According to Figures 7B, C, and combined with parameter
optimization theory, the ARIMA model established for landslide
displacement prediction in Guangna Township is ARIMA(1,2,1).
The model was also used to predict displacement data for a total of
24 time steps over 24 h, and the results are shown in Figure 9A, and
the residuals of the ARIMA model for the Libian Gully landslide are
shown in Figures 9B, C, respectively.

According to the predicted results, the RMSE is 1.24 mm, and
the MAPE is 1.34%. The error between the predicted and measured
values of the model is small, the error float is small, and the R2 is 0.99,
at the same time, the model residuals are all within the 95%
confidence interval, indicating a good model fit.

According to Figures 8B, C, and combined with parameter
optimization theory, the ARIMA model established for landslide
displacement prediction in Libian Gully is ARIMA(3,2,2). The
model was also used to predict displacement data for a total of
24 time steps over 24 h, and the results are shown in Figure 10A, and
the residuals of the ARIMA model for the Libian Gully landslide are
shown in Figures 10B, C, respectively.

According to the predicted results, The RMSE is 5.43 mm, and
the MAPE is 1.67%. The error between the predicted and measured
values of the model is small, the error float is small, and the R2 is 0.99,
at the same time, the model residuals are all within the 95%
confidence interval, indicating a good model fit.

Table 1 demonstrates the accuracy evaluation indexes of the
ARIMA model for predicting three different landslides. The
prediction accuracies of the landslide in Guangna Township and
the landslide in Libian Gully verify the conclusion that the ARIMA
model has high prediction accuracy in the interval from the initial
deformation to the initial acceleration deformation stage (tangential
angle less than 80°) of landslide deformation.

4.3 Displacement prediction of landslides at
high tangential angles

This study further explores the application of the ARIMAmodel in
the acceleration stage and proslide stage (i.e., tangential angle of 80° and
85° or more, respectively) of landslide deformation, based on the Libian

FIGURE 11
Prediction of displacement in the imminent sliding phase of the
Libian Gully landslide.

TABLE 2 Evaluation of displacement prediction accuracy in the medium-term acceleration and imminent sliding phases of the Libian Gully landslide.

Predicted values Measured Values(mm) Relative error (%) Tangential angles (°)

Time(h) Predicted Results(mm)

1 197.2 198.8 0.82 84.1

2 200.2 205.2 2.42 84.6

3 204.1 213.9 4.59 86.3

4 207.8 222.9 6.79 87.3

5 210.7 233.2 9.66 87.4

6 213.8 243.5 12.21 87.7

7 217.6 257.6 15.51 87.7

The prediction error of landslide displacements increases dramatically at tangential angles greater than 80°, so this study simultaneously explores the factors that increase its error.
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Gully landslide. A total of 422 time periods data from 10:00:00 on
10 August 2021 to 23:00:00 on 28 August 2021, in this test area were
used as modeling data and predicted using the ARIMA(3,2,2) model.
The prediction results are shown in Figure 11.

Figure 11 represents the raw data plot, model fitted values, and
model predicted values of this time series model. The last point of
the initial acceleration deformation was predicted by using the
proximate moment of the landslide occurrence at 22:00:00 on
28 August 2021, with a cumulative displacement of 190.4 mm as
the last point of the initial accelerated deformation. The
displacement data will be predicted in hours h, from 23:00:00 on
28 August 2021, and the subsequent 7 h displacement data will be
predicted and compared with the original data as follows:

From Table 2, it can be seen that the predicted landslide
displacement data for the 7-h time period from 22:00:00 on
28 August 2021 has a tangential angle of 80–85° for the first 2 h
(medium-term acceleration stage), and above 85° for 3–7 h
(imminent sliding). In the medium-term acceleration stage of
landslide deformation, i.e., from 1–2 h when the prediction starts,
the predicted displacement values are all smaller than the actual
measured values, and the relative error is within 3%. However, in the
imminent sliding stage of landslide deformation, i.e., from 3 to 7 h,
the displacement prediction values are all smaller than the actual
measured values, but the relative error gradually increases, reaching
9.66% at the fifth hour and 15.51% at the seventh hour. This
indicates that when the ARIMA model is used to predict the
displacement values of the landslide in the imminent sliding
stage, the relative error gradually increases with the increase of
prediction time.

Figure 12 shows the Pearson Correlation Heatmap of the Libian
Gully landslide for each variable at a tangential angle greater than
80°. This figure illustrates the relationship between the prediction
step (Time), Relative Error, and Tangential angles, from which it can
be seen that Tangential angles and Time are the main factors for the
increase in Relative Error. It is hypothesized that this is due to the

nonlinear mechanics of the landslide, which increases the prediction
error dramatically.

5 Discussion

This study summarizes an applicable condition of the ARIMA
model in the field of landslide displacement prediction. However,
the results are mainly data-driven, and data acquisition is
challenging and filled with uncertainty. The selection of training
samples and the division of landslide deformation stages also pose
difficulties due to changing sampling intervals. Moreover, in cases
where the landslide tangential angle is greater than 80°, the
prediction accuracy of the ARIMA model will rapidly decrease
with an increase in the prediction step. This is due to the
influence of the nonlinear mechanics of landslides (Liu et al.,
2014). A combination model can be used to adjust the
proportion of different models through weighting, thereby
improving prediction accuracy and enhancing the model’s
generalization ability (David et al., 2016). On the other hand,
when the landslide tangential angle is less than 80°, the ARIMA
model exhibits higher accuracy in predicting landslide displacement,
which holds significant importance for the long-term prediction of
landslide evolution stages.

6 Conclusion

In conclusion, this study has successfully identified an applicable
condition for the use of the ARIMA model in predicting landslide
displacement. The results demonstrate that the ARIMAmodel exhibits
higher prediction accuracy when the landslide deformation is in the
initial deformation to initial acceleration stage, characterized by
tangential angles of displacement less than 80°. The predicted
displacement values for 24-h intervals during this stage have been
shown to yield a RMSE of 4.52 mm and aMAPE of 2.39%, indicating a
high level of accuracy. This finding has been validated through
predictions on different landslide instances, such as the cases of
Guangna Township and Libian Gully, which yielded consistent results.

However, it is important to acknowledge the data-driven nature
of these results, alongside the inherent challenges and uncertainties
associated with data acquisition. The selection of training samples,
the division of landslide deformation stages, and the influence of
changing sampling intervals present obstacles that could impact the
model’s accuracy. Furthermore, the study highlights that when the
landslide tangential angle exceeds 80°, the accuracy of the ARIMA
model diminishes significantly due to the influence of nonlinear
mechanics inherent to landslides. To enhance prediction accuracy
and generalize the model, future research could explore combination
models that adjust the proportion of different models through
weighting. This approach has been previously shown to improve
predictive capabilities and overall model performance. Moreover,
the study underscores the importance of the identified applicable
condition for the long-term prediction of landslide evolution stages
when tangential angles are below 80°.

Overall, this research not only contributes an empirically
derived applicable condition for ARIMA model utilization in
landslide displacement prediction but also sheds light on the

FIGURE 12
Pearson Correlation Heatmap of predictor variables for
landslides in Libian Gully.
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challenges and potential directions for future enhancements in
landslide prediction methodologies.
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