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Introduction

Heat shock protein 90 (Hsp90) is a molecular chaperone assisting in the folding and

maturation of a plethora of intracellular proteins, which participate in crucial functions and

responses, including inflammation (1). Hsp90 inhibitors were developed—and are tested in

clinical trials—to oppose cancers; and have been associated with anti-inflammatory activities

(2). Those effects are not limited to malignant tissues, but are also applied in endothelial

cells (3–5).

Endothelial inflammation promotes barrier dysfunction, tissue leak, lung edema, which

are considered the hallmarks of acute respiratory distress syndrome (6). This is a respiratory

disorder, associated with high mortality rates in the intensive care units, in septic patients.

The COVID-19—related ARDS has caused more than 1,100,000 deaths in the Unites States

(7), and efficient medicine to counteract it does not exist, so far.

Blocking the COVID-19—related cytokine storm it is a promising therapeutic strategy,

and anti-inflammatory agents appear to improve patient survival. However, glucocorticoids

are not efficient in cases of substantial inflammation, and monoclonal antibodies were

developed to suppress the cytokine storm (8). IL-1 blockade delivered promising results (9).

Indeed, there is an urgent need to develop new therapeutics against ARDS, utilizing robust

anti-inflammatory agents.

Hsp90 inhibitors represent a promising therapeutic approach to oppose lung

inflammatory disease, so to reinstate normal endothelial barrier function (10). In addition

to their ability to block transcriptions factors which propel inflammatory responses (e.g.,

NFκB) (11), they can induce survival elements in charge of cell homeostasis, to ameliorate

injury. P53 participates in those events.

P53 is a transcription factor which opposes the activities of NFkB in human tissues (12),

and P53 deletion worsens LPS-induced injury in mice (13). P53 inhibition using pifithrin

or small interfering RNA potentiated endothelial inflammation, while P53 augmentation

exerted protective effects (14). The guardian of the genome mediates—at least in part—the

effects of Hsp90 inhibition in the lungs, and mice overexpressing P53 were protected against

inflammatory lung injury (15). Moreover, Hsp90 inhibition suppresses P53 phosphorylation,

preventing P53 degradation (16, 17). The actin cytoskeleton is affected by P53, since this

transcription factor can induce cortical actin, and suppress filamentous actin formation (18).

The unfolded protein response (UPR) can also participate in the Hsp90 inhibitors—related

effects in the endothelium.

UPR is a mechanism involved in cell fate, and can initiate repairing processes or induce

cell death (19, 20). It is involved in endothelial barrier function. Recent studies suggest that

UPR activation increases barrier integrity and reduces endothelial permeability, whereas its

suppression is associated to impaired barrier function (21–25). Hsp90 inhibitors were shown

to activate UPR sensors, as well as their downstream targets, in endothelial cells and mouse

lungs (26, 27). The effects of Hsp90 inhibitors are also applied to brain microvascular cells,

a component of the blood brain barrier. Specifically, those compounds protect brain cells
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against LPS (28) and oxidative stress (28, 29); in line with similar

P53—mediated effects, in vitro (30, 31).

Hsp90 inhibitors may represent an exciting new possibility

to counteract COVID-19. SARS-CoV-2 spike triggers barrier

dysfunction and vascular leak via integrins and TGF-β signaling

(32). The aforementioned compounds modulate SARS-CoV-2

spike protein subunit 1-induced human pulmonary microvascular

endothelial activation and barrier dysfunction (33). They can also

suppress SARS-CoV-2 assembly partially through induced M or N

degradation (34). Interestingly, the oral Hsp90 inhibitor SNX-5422

attenuates SARS-CoV-2 replication and suppresses inflammation

in airway cells (35).

Discussion

Many questions are to be addressed about the specific

mechanisms by which Hsp90 inhibition assists impaired/inflamed

endothelial cells to survive, and affected tissues to recover. Which

are the exact kinases mediating the effects of Hsp90 inhibitors

toward P53 modulation, and how this molecular chaperone

modulates UPR in endothelial cells? It was previous reported

that IRE1α is involved in those phenomena, in cancers (36).

Studies in genetically modified mice which do not express P53

and UPR sensors in their lung endothelium will most probably

address those questions; to enrich our knowledge on the expanding

Hsp90 universe.
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