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Multiple sclerosis (MS) is the leading cause of non-traumatic disability in

young adults. New avenues are needed to help predict individuals at risk for

developing MS and aid in diagnosis, prognosis, and outcome of therapeutic

treatments. Previously, we showed that skin fibroblasts derived from patients

with MS have altered signatures of cell stress and bioenergetics, which likely

reflects changes in their protein, lipid, and biochemical profiles. Here, we used

Fourier transform infrared (FTIR) spectroscopy to determine if the biochemical

landscape of MS skin fibroblasts were altered when compared to age- and sex-

matched controls (CTRL). More so, we sought to determine if FTIR spectroscopic

signatures detected in MS skin fibroblasts are disease specific by comparing

them to amyotrophic lateral sclerosis (ALS) skin fibroblasts. Spectral profiling

of skin fibroblasts from MS individuals suggests significant alterations in lipid

and protein organization and homeostasis, which may be affecting metabolic

processes, cellular organization, and oxidation status. Sparse partial least squares-

discriminant analysis of spectral profiles show that CTRL skin fibroblasts segregate

well from diseased cells and that changes in MS and ALS may be unique.

Differential changes in the spectral profile of CTRL, MS, and ALS cells support

the development of FTIR spectroscopy to detect biomolecular modifications

in patient-derived skin fibroblasts, which may eventually help establish novel

peripheral biomarkers.

KEYWORDS

amyotrophic lateral sclerosis, biomolecular profiling, Fourier transform
infrared spectroscopy, multiple sclerosis, skin fibroblasts, sparse partial least
squares-discriminant analysis

1. Introduction

Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS)
and the leading cause of non-traumatic disability in young adults. Despite progress in
treating relapsing MS, options for the progressive disease remains limited. Findings in
human CNS tissue have greatly advanced our pathophysiological understanding of the
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disease (Lucchinetti et al., 2000; Reich et al., 2018; Tham et al.,
2021). Several complex factors including genetics, environment,
immune function, mitochondrial dysfunction, oxidative stress,
lipid biosynthesis, and protein homeostasis are thought to
contribute toward disease progression (Stone and Lin, 2015; Filippi
et al., 2018; Pineda-Torra et al., 2021). However, the precise
mechanisms are not fully understood. Thus, the development of
additional approaches to study the pathophysiological basis of
disease progression in MS are needed. More so, the identification
of molecular biomarkers using peripherally accessible sources could
help enhance personalized therapies in MS.

Skin fibroblasts from patients with neurological disorders
including MS, Alzheimer’s disease (AD), Parkinson’s disease (PD),
Huntington’s disease (HD), and amyotrophic lateral sclerosis
(ALS) are proving to be useful for studying pathophysiological
mechanisms and the development of biomarkers (Jędrak et al.,
2018; Akerman et al., 2019; Romano et al., 2020; Wilkins et al.,
2020). Previously, we identified altered stress and metabolic
signatures in skin fibroblasts derived from individuals with MS
(Wilkins et al., 2020). In MS skin fibroblasts, we detected apparent
endoplasmic reticulum (ER) swelling when compared to control
(CTRL) cells. When treated with hydrogen peroxide, MS skin
fibroblasts had increased rates of death compared to CTRL cells.
Additionally, the bioenergetics of MS skin fibroblasts were found
to be perturbed compared to CTRL cells. Thus, we predict
that the changes detected in MS skin fibroblasts are associated
with biomolecular alterations likely affecting proteins and lipids.
However, the extent of detectable biomolecular changes in MS
skin fibroblasts remains to be specified. Therefore, we sought
to determine if we could readily detect modified biomolecular
processes in skin fibroblasts. To do so, we utilized Fourier
transform infrared (FTIR) spectroscopy and chemometrics, which
are effective methods to study biomolecular changes within
biological materials (Mantsch and Jackson, 1995; Baker et al.,
2014; Yang et al., 2022). The technique is reagent-free and non-
destructive requiring minimal preparation prior to scanning.
Molecules including lipids, proteins, nucleic acids (phosphate),
and carbohydrates within biospecimens give unique vibrational
frequencies, which change with structure, composition, and
functional groups (Talari et al., 2017). Indeed, interrogation of skin
fibroblasts and tissue by FTIR spectroscopy has detected altered
biomolecules and processes that inform on aging, cancer, muscular
dystrophy, quiescence, neurological disorders, and oxidation
(Kosoglu et al., 2017; Kyriakidou et al., 2017; Eberhardt et al.,
2018; Martel et al., 2020; Mateus et al., 2021; Martins et al.,
2023). Therefore, characterization of biochemical changes of MS
skin fibroblasts may inform on pathophysiological mechanisms
involved in the disease, as well as provide a potential alternative site
to detect and monitor early biomolecular alterations.

Neurological disorders including MS show features of
mitochondrial dysfunction, protein aggregation, increased
oxidative stress, and lipid degradation. Hence, research utilizing
FTIR spectroscopy has demonstrated its application to detect
macromolecular changes within diseased tissue. For instance, brain
tissue derived from patients with AD displayed spectral signatures
of lipid oxidation surrounding areas of amyloid plaques (Benseny-
Cases et al., 2014). Spectral analysis of brain tissue from patients
with PD suggest that Lewy bodies have an increased abundance
of β-sheet structures on the periphery while lipids were more

concentrated in the core (Araki et al., 2015). In MS brain tissue,
altered spectral features were indicative of increased oxidation
of proteins and lipids within white matter lesions (LeVine
and Wetzel, 1998). Here, we tested whether skin fibroblasts
derived from patients with MS have altered biomolecular profiles
compared to CTRL cells as detected by FTIR spectroscopy.
Previously, we showed that skin fibroblasts from patients with ALS
had altered physiological properties when compared to control
cells (Wilkins et al., 2020). Moreso, these changes were likely
unique when compared to MS skin fibroblasts. Thus, we continued
to utilize ALS skin fibroblasts in this study to evaluate disease
specific biomolecular changes. We report that the use of FTIR
spectroscopy coupled to multivariate analysis can detect changes
in the biomolecular signatures of patient-derived skin fibroblasts
and reliably segregate between MS, ALS, and CTRL individuals.
Our results support the use of patient-derived skin fibroblasts
for spectral phenotyping, which may aid in the understanding of
pathophysiological mechanisms and the development of novel
biomarkers enhancing individualized medicine approaches.

2. Materials and methods

2.1. Human skin fibroblasts

The usage of patient-derived skin fibroblasts in this study
was approved by the Mayo Clinic Institutional Review Board.
Skin fibroblasts obtained from CTRL individuals (no detectable
CNS disorders) and patients diagnosed with ALS were obtained
from the Mayo Clinic Center for Regenerative Medicine. Cells
obtained from patients diagnosed with MS were obtained from
the Mayo Clinic Center of Multiple Sclerosis and Autoimmune
Neurology. Patient-derived skin fibroblasts were matched by age,
sex, and passage number (Supplementary Table 1). All MS skin
fibroblasts were collected from patients diagnosed with relapsing-
remitting MS at the time of harvest. The time from diagnosis to
skin fibroblast harvest ranged from 0.2 to 16.7 years in MS cells
and 0.9 to 6.1 years in ALS cells (Supplementary Table 1). A total
of 10 CTRL, 10 MS, and 10 ALS skin fibroblasts were used in
this study (Supplementary Table 1). Any known family history
of ALS is listed in Supplementary Table 1. Genotyping was not
performed but does not exclude the possibility of possessing known
genetic risk factors.

2.2. Reagents and materials

Minimum essential medium (MEM; cat. # 10-010-CV),
phosphate-buffered saline (PBS; cat. # 21-031-CV), and MEM non-
essential amino acids (NEAA; cat. # 25-025-CI) were purchased
from Corning (New York, NY, USA). Trypsin (cat. # 25300),
penicillin-streptomycin solution (PenStrep; cat. # 15140-122), and
L-glutamine (L-Gln; cat. # 25030081) were purchased from Thermo
Fisher Scientific (Waltham, MA, USA). Fetal bovine serum (FBS;
cat. # F2442), silicone (cat. # Z273554), 10 mm × 10 mm
cloning cylinders (cat. # CLS316610), and extracellular matrix
gel (ECM gel; cat. # E1270) was purchased from Sigma-
Aldrich (St. Louis, MO, USA). Low-e microscope slides were
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purchased from Kevley Technologies (cat. # CFR, Chesterland, OH,
USA). Paraformaldehyde solution was purchased from Electron
Microscopy Sciences (cat. # 15710, Hatfield, PA, USA).

2.3. Cell culture

Skin fibroblasts were incubated at 37◦C in a humidified
chamber with 5% CO2/95% air maintained in MEM media
containing 10% FBS, 2 mM L-Gln, 1X NEAA, and 1X PenStrep.
Cells were passaged when approximately 80% confluent. At plating
for experiments, all cell lines were within five passages of each other
(passages 7–11, Supplementary Table 1).

2.4. Sample preparation for
spectroscopic analysis

Low-e slides were sterilized using 70% ethanol and air dried.
Cloning cylinders were placed on the slide and sealed with silicone
to prevent media from leaking. Each slide contained one CTRL, MS,
and ALS skin fibroblast matched by age, sex, and passage number.
Skin fibroblasts were detached from stock plates using trypsin,
neutralized in media containing FBS, and spun. The supernatant
was removed, and cells were suspended in media. A total of 20,000
cells in 200 µL of media were added per cloning cylinder. The slides
were placed in a sterile 10 cm dish, covered, and incubated for 48 h.
The media was removed, and skin fibroblasts were fixed in warm
media containing 4% PFA for 10 min at 37◦C. Cloning cylinders
were removed and slides containing fixed cells were rinsed in PBS
followed by Milli-Q water. Rinsed slides were dried in a glass
desiccator containing desiccant for a minimum of 48 h.

2.5. Measurement by FTIR spectroscopy

All spectroscopic data was collected using an Agilent Cary
670 FTIR Spectrometer coupled to an Agilent Cary 620 FTIR
Microscope (Agilent Technologies, Santa Clara, CA, USA)
equipped with a liquid-N2 cooled detector. The microscope stage is
enclosed with a custom-built chamber to displace the atmosphere
with a nitrogen stream. A 7 × 7 tile mosaic was collected with
128 × 128 focal plane array detector. The spectral resolution was
set to 8 cm−1 using a 25x objective with an optical resolution of
0.7 µm pixel size accumulating 80 scans per pixel. Measurements
were done in reflection mode within the spectral region of
3500–950 cm−1. Background measurements (120 scans per pixel)
were taken from a clean area (no cells) on the slide using the
same acquisition parameters and subtracted from the respective
spectra to compensate for atmospheric interference and instrument
performance. Scanning was carried out using Agilent Resolutions
Pro Software (Agilent Technologies, Santa Clara, CA, USA).

2.6. Spectral pre-processing

The initial preprocessing of raw spectral files was carried
out using Quasar based on Orange software (Demsar et al., 2013;

Toplak et al., 2021), which utilized Python 3.8 software.
Supplementary Figure 1 represents the general workflow used for
pre-processing. In summary, wavenumbers 2700–2000 cm−1 were
removed due to the presence of a CO2 peak in the absorbance
spectra and low signal contribution of biological material (Bruun
et al., 2006; Song et al., 2019). All remaining spectra were
baseline corrected using the rubber band method. Next, we
used unsupervised clustering (k-Means) to separate spectra of
cells from near background measurements. The resulting spectra
was binned to reduce the file size for further processing. To
help correct for potential Mie scattering (Bassan et al., 2010;
Baker et al., 2014; Troein et al., 2020), we utilized the software
Open Chemometrics Toolbox for Analysis and Visualization
of Vibrational Spectroscopy (OCTAVVS) (Troein et al., 2020),
which utilized Python 3.8 software. The OCTAVVS platform uses
an algorithm for clustered resonant Mie scattering correction,
which greatly reduces computational time while achieving similar
performance to previously described models (Troein et al., 2020).
The absorbance spectra are corrected against a reference spectrum,
which is typically produced from a homogenous sample (e.g.,
casein, Matrigel, etc.) (Bassan et al., 2010; Troein et al., 2020). For
our study, we generated a reference spectrum using ECM gel for
use in the OCTAVVS software (Supplementary Figure 2). The
corrected spectra were then smoothed (Savitzky-Golay, windows 5,
polynomial order 2), averaged, and vector normalized in Orange
software. The averaged absorbance spectra were then used to
generate second derivative spectra (Savitzky-Golay, windows 7,
polynomial order 2, derivative 2) and vector normalized in Orange
software.

2.7. Data analysis

The second derivative curves were used to help identify
wavenumber regions and peak positions that correspond to
biochemical features previously described in the literature (Talari
et al., 2017). As pre-processing can affect the presence of spectral
bands, we compared the second derivative results reported herein
with those using a Savitzky-Golay windows 15 and polynomial
order 5. Two biologically relevant peaks (asN-CH3 and asCH3,
listed in Table 1) were apparent using the current analysis, which
were reduced in the latter (data not shown). However, as a Savitzky-
Golay of windows 7 and polynomial order 2 has been used to
analyze skin, breast, and tonsil material (Piqueras et al., 2015;
Valle et al., 2021; Shakya et al., 2022), and a polynomial order
2 has been recommended for FTIR spectra (Morais et al., 2019),
we deemed the current analysis to be suitable. The wavenumber
regions identified (Table 1) were used to integrate the respective
area under the absorbance spectra (Baker et al., 2014; Cakmak-
Arslan et al., 2020; Ferreira et al., 2020; Szentirmai et al., 2020).
Significant changes in the integrated areas between groups were
detected using a one-way ANOVA with post-hoc Tukey’s test
(GraphPad Prism 9). Tests for normality (Shapiro–Wilk) and
homoscedasticity (Brown–Forsythe) indicate that the data largely
have a normal distribution and equal variances, respectively. Apart
from the amide A variable of MS skin fibroblasts, which had a
Shapiro-Wilk test P-value = 0.0279, all other P-values were not
significant (P > 0.05). Sparse partial least squares-discriminant
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TABLE 1 Assignments of absorbance spectra.

Region Assignment Wave-number

Predominately protein

Amide A v(N-H) 3315–3260 cm−1

Amide B -NHCO- 3120–3000 cm−1

Amide I 1700–1580 cm−1

Amide II 1580–1480 cm−1

Amide II δas(N-CH3),
choline

1500–1485 cm−1

Amide III 1300–1185 cm−1

Predominately lipid

Total lipids 3000–2800 cm−1

Lipid asymmetric CH3 vas(CH3) 2972–2950 cm−1

Lipid asymmetric CH2 vas(CH2) 2936–2912 cm−1

Lipid symmetric CH3 vs(CH3) 2880–2865 cm−1

Lipid symmetric CH2 vs(CH2) 2860–2843 cm−1

Carbonyl ester v(C = O) 1750–1725 cm−1

Acyl chain δ(CH2), δas(CH3) 1470–1430 cm−1

Mixed region

Carbohydrates, lipids,
proteins, phosphate (e.g.,
nucleic acids, phospholipids,
phosphoproteins)

vs(C = O), C-O,
vas(PO2

−),
vs(PO2

−)

1300–1000 cm−1

analysis (sPLS-DA) was performed using the R package mixOmics
(Rohart et al., 2017). All averaged second derivative data (10 CTRL,
10 MS, and 10 ALS) were used for generating the sPLS-DA
classification model using centroid-based distances. Data was
divided into two sets for sPLS-DA using M-fold cross-validation
(3-fold) repeated with 200 iterations. The optimum number of
components was predicted to be three with 60, 40, and 20 latent
variables on the first three components, respectively. We further
tested the sPLS-DA model with a 2- and 3-fold repeated cross
validation utilizing the second derivative data generated with a
Savitzky-Golay window of 15 and polynomial order 5. The results
were consistent with the former analysis and did not affect the
conclusions as presented herein (data not shown). The sPLS-DA
plot, AUROC curve plot, correlation plot, and loading plots were
generated using the mixOmics package.

3. Results

3.1. FTIR spectroscopy detects biological
spectra in patient-derived skin fibroblasts

The absorbance spectra for all skin fibroblasts (10 CTRL, 10 MS,
and 10 ALS, Supplementary Table 1) were collected in the 3500–
950 cm−1 range. All spectra were pre-processed using the same
steps as outlined in the section “2. Materials and methods” and
Supplementary Figure 1. The resulting absorption bands showed
several characteristic peaks associated with biological samples
(Figure 1A; Talari et al., 2017). To delineate specific wavenumber

regions of interest for integrated analysis, we generated the
second derivative spectra to help separate overlapping peaks
(Figure 1B). Regions corresponding to amides, lipids, nucleic acids,
and carbohydrates are highlighted in Figure 1 and listed in Table 1.
Using the averaged second derivative spectra, multiple amide bands
were detected including Amide A (3315–3260 cm−1), Amide B
(3120–3000 cm−1), Amide I (1700–1580 cm−1), Amide II (1580–
1480 cm−1), and Amide III (1300–1185 cm−1). Regions mainly
associated with lipids were detected at 3000–2800 cm−1 (total
lipids, symmetric and asymmetric CH2/CH3 vibrations), 1750–
1725 cm−1 [carbonyl esters, v(C = O)], and 1470–1430 cm−1

[acyl chains, δ(CH2)] (Snyder et al., 1996; Oleszko et al., 2015).
The wavenumbers from 1300 to 1000 cm−1 are composed of
several metabolites and macromolecules including carbohydrates,
proteins, lipids, and phosphate (e.g., nucleic acids, phospholipids,
and phosphoproteins) (Colagar et al., 2011; Talari et al., 2017).
These results demonstrate that patient-derived skin fibroblasts
are suitable for generating spectral profiles as detected by FTIR
spectroscopy.

3.2. Second derivative spectra are
sufficient to segregate MS, ALS, and
CTRL skin fibroblasts

In this study, we first aimed to determine if the spectral
profiles from MS, ALS, and CTRL skin fibroblasts were unique
as detected by FTIR spectroscopy. To do so, we analyzed the
second derivative spectra (3500–2800 and 1800–950 cm−1) using
sparse partial least squares-discriminant analysis (sPLS-DA) to
determine if the skin fibroblasts could be effectively classified
into their respective groups (Figure 2). The sPLS-DA model
is particularly useful for classification of FTIR spectroscopy
data where high multi-collinearity exists amongst the variables
and the number of variables far outnumber the samples while
focusing on the discrimination between groups (Chung and Keles,
2010; Lê Cao et al., 2011; Rohart et al., 2017). Optimization
of the model suggests that three components with 60, 40, and
20 variables, respectively, were optimal for group separation
(Supplementary Figure 3). A 3D plot of the three components
shows reasonable separation between MS, ALS, and CTRL skin
fibroblasts (Figure 2A). Performance of the model was evaluated
using an area under the receiver operating characteristics (AUROC)
curve. The AUROC curve values were 1, 0.975 and 0.965 for
CTRL, MS, and ALS, respectively, indicating good separation
between groups (Figure 2B). Thus, these results suggest that second
derivative spectra from patient-derived skin fibroblasts may be
useful for the prediction and classification of diseased cells from
MS, ALS, and CTRL individuals.

3.3. Altered lipid, protein, and
physiological profiles detected in MS skin
fibroblasts

Quantitative ratios of the integrated absorbance spectra
can provide insight into molecular changes occurring within
tissue, cells, and biofluids, which have largely been described
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FIGURE 1

The spectral profiles of MS, ALS, and CTRL skin fibroblasts. (A) The average absorbance spectrum of MS, ALS, and CTRL skin fibroblasts
(3500–950 cm-1). (B) The average second derivative of the absorbance spectra of MS, ALS, and CTRL skin fibroblasts. For both graphs, MS and ALS
spectra were offset for clarity. Regions corresponding to biological functional groups are highlighted.

previously in the literature (Baker et al., 2014; Benseny-Cases
et al., 2014; Talari et al., 2017). Additionally, ratios can help
normalize and minimize the effect of experimental artifacts. Using
the band regions identified from the second derivative spectra
(Table 1), we calculated ratios of the respective integrated area
under the absorbance spectrum (Figure 3 and Supplementary
Table 2). We identified several lipid ratios that were significantly
altered in MS and/or ALS skin fibroblasts compared to CTRL
cells. The ratios of carbonyl ester/total lipids (∼1740/3000–
2800 cm−1), carbonyl ester/acyl chain (∼1740/1450 cm−1),
and carbonyl ester/asymmetric CH3 (∼1740/2960 cm−1) were
significantly decreased in MS skin fibroblasts when compared
to CTRL cells (Figures 3A–C). These altered ratios suggest that
lipid homeostasis is perturbed, which may include abundance,
membrane organization, structure, and peroxidation (Benseny-
Cases et al., 2014; Oleszko et al., 2015; Barraza-Garza et al., 2016;

Dreier et al., 2019). Interestingly, analysis of the integrated area
under the absorbance spectra for total lipids, carbonyl ester,
and acyl chains suggest an overall decrease in cellular lipids
for MS and ALS skin fibroblasts when compared to CTRL cells
(Supplementary Figures 4A–C). Additionally, ratios previously
described to inform on membrane polarity (∼2920/2870 cm−1),
lipid chain packing (∼2850/2870 cm−1), the degree of lipid
saturation (∼2920/2960 cm−1), and phospholipid chain length
(∼2920/3000–2800 cm−1) were further evaluated, however, we did
not detect any significant changes (Supplementary Figures 4D–G;
Saeed et al., 2015). These observations suggest that lipid abundance
is reduced likely affecting cellular membrane organization,
metabolism, signaling, and oxidative stress via peroxidation.

Similar to lipids, protein dysregulation in MS is well described
(Andhavarapu et al., 2019). We analyzed several quantitative ratios
related to protein dyshomeostasis. The ratio of Amide I to Amide
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FIGURE 2

Multivariate analysis separates MS, ALS, and CTRL skin fibroblasts. The second derivative spectra of MS, ALS, and CTRL skin fibroblasts were used for
sPLS-DA. (A) A 3D plot of the sPLS-DA analysis of MS, ALS, and CTRL skin fibroblasts. (B) An AUROC curve based on the performance of the
cross-validated sPLS-DA model generated indicating good separation between groups.

II (1700–1580/1580–1480 cm−1) revealed a significant increase in
MS skin fibroblasts compared to CTRL cells (Figure 3D). A change
in the Amide I/Amide II ratio is largely attributed to structural
changes in proteins (Ricciardi et al., 2020). A general rise in
protein abundance was detected in MS skin fibroblasts compared
to ALS and CTRL cells as detected by an increase in the Amide
I region (Supplementary Figure 4H) while Amide II levels were
down in ALS (Supplementary Figure 4I). Interestingly, the ratio
between Amide I and Amide A revealed a significant increase in
MS compared to ALS (Figure 3E). Amide A largely arises from
N-H stretching of peptide linkages, which is thought to arise from
the overtone of the Amide II, and/or interactions between Amide
I and Amide II, reflecting possible disorder in protein secondary
structures (Krimm and Dwivedi, 1982; Magazù et al., 2012). Thus,
the Amide I/Amide A ratio may be reflecting distinct protein
structural changes in MS when compared to ALS skin fibroblasts.
Overall, these findings suggest that protein structure, organization,
and abundance are perturbed in MS and ALS skin fibroblasts
compared to CTRL cells.

Lastly, we explored ratios linked to the status of membrane
organization, protein folding, and cellular physiology (Szalontai
et al., 2000; Colagar et al., 2011; Cakmak et al., 2012; El Khoury
et al., 2019; Poonprasartporn and Chan, 2021). The Amide I/Total
Lipids ratio resulted in a significant increase in MS skin fibroblasts
compared to CTRL cells (Figure 3F). This reflects an imbalance
in protein and lipid homeostasis. Similarly, the Amide I/carbonyl
ester is significantly increased in MS skin fibroblasts (Figure 3G),
which may affect membrane organization and protein folding
and dynamics. The region 1300–1000 cm−1 is comprised of
lipids, proteins, phosphate, and carbohydrates reflecting several
metabolites and macromolecules (Colagar et al., 2011; Caine
et al., 2012). The ratio of carbonyl ester/1300−1000 cm−1 was
found to be significantly decreased in both MS and ALS skin
fibroblasts compared to CTRL cells suggesting diseased cells
are biochemically distinct (Figure 3H). Taken together, these
observations indicate that the physiological status of diseased
skin fibroblasts are unique suggesting that cellular membranes,

protein dynamics, oxidative stress, and metabolite profiles are
perturbed.

3.4. Second derivative spectra reveal
altered protein and lipid structure in MS
and ALS skin fibroblasts

The second derivative spectra are particularly useful to
interrogate shifts in the peak location and shape, which can
help inform on biomolecular alterations within the biospecimens.
Therefore, we compared the mean second derivative spectra of
MS, ALS, and CTRL skin fibroblasts (Figure 4). Notably, we
detected a shift in the peak positions of the Amide I and Amide
II bands (Figures 4A, B, respectively). The Amide I band near
the α-helical region (∼1650 cm−1) in MS and ALS shifted toward
higher wavenumbers when compared to CTRL skin fibroblasts
(Figure 4A). This suggests an increase in β-turn structures in both
MS and ALS cells, which may be indicative of protein alterations
commonly associated with neurological disorders including MS
and ALS (David and Tayebi, 2014; McAlary et al., 2019; Ricciardi
et al., 2020). In the Amide II region, we detected three peaks
(Figure 4B). The peaks near 1545 and 1520 cm−1 are largely
associated with α-helixes and β-sheets, respectively (Murphy et al.,
2014). The third peak around 1490 cm−1 is less clear but may
be related to additional β-structures or choline groups of lipids
(Casal and Mantsch, 1984; Murphy et al., 2014; Oleszko et al.,
2015). In agreement with the shift in the α-helical region of the
Amide I peak, the α-helix peak detected in the Amide II region
was also shifted toward higher wavenumbers in MS and ALS
when compared to CTRL skin fibroblasts further suggesting altered
secondary structures in the diseased cells (Figure 4B). The Amide
A and Amide B peaks were found between ∼3350 and 3000 cm−1

(Figure 4C). While the Amide B peak was relatively weak, we
observed a prominent band for Amide A. An apparent increase in
the Amide A intensity and shift toward lower wavenumbers was
observed in both MS and ALS skin fibroblasts when compared to
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FIGURE 3

Physiological profiles are altered in MS and ALS skin fibroblasts. The integrated area under the absorbance spectra were used to identify informative
quantitative ratios. The ratios include (A) carbonyl ester/total lipids, (B) carbonyl ester/acyl chain, (C) carbonyl ester/asymmetric CH3, (D) amide
I/amide II, (E) amide I/amide A, (F) amide I/total lipids, (G) amide I/carbonyl ester, and (H) carbonyl ester/Mixed region. Significant changes between
groups were detected using one-way ANOVA post-hoc Tukey’s test (∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001). Integrated regions were as follows:
Acyl chain, 1470–1430 cm-1; Amide I, 1700–1580 cm-1; Amide II, 1580–1480 cm-1; Amide A, 3315–3260 cm-1; Asymmetric CH3, 2972–2950 cm-1;
Carbonyl ester, 1750–1725 cm-1; Mixed region, 1300–1000 cm-1; and Total lipids, 3000–2800 cm-1.

CTRL cells (Figure 4C), which is likely associated with the α-helix
shifts observed in the Amide I and II regions (Magazù et al., 2012).
Four peaks were observed in the lipid region (3000–2800 cm−1)
mainly arising from C-H stretching including the symmetric CH2
[vs(CH2), 2860–2843 cm−1], symmetric CH3 [vs(CH3), 2880–
2865 cm−1], asymmetric CH2 [vas(CH2), 2936–2912 cm−1], and
asymmetric CH3 [vas(CH3), 2972–2950 cm−1] peaks (Figure 4D).
Two additional peaks, carbonyl ester and acyl chain, were detected
in skin fibroblasts, which are thought to arise predominately from

lipids (Derenne et al., 2013). The carbonyl ester [v(C = O)] was
detected around 1735 cm−1 and the acyl chain near 1450 cm−1

(Figures 4E, F, respectively). The acyl chain of CTRL cells
reveals two peaks likely representing the bending/scissoring of
CH2 [∼1455 cm−1, δ(CH2)] and deformation mode of methyl
groups [∼1435 cm−1, δas(CH3)] (Casal and Mantsch, 1984; Ami
et al., 2014). Interestingly, MS and ALS skin fibroblasts have a
single acyl chain peak possibly indicating altered organization,
structure, and packing of the acyl chains in lipid membranes
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FIGURE 4

The second derivative of the absorbance spectra reveals changes in the biomolecular profiles of MS and ALS skin fibroblasts compared to CTRL
cells. The average second derivative of the absorbance spectra of MS, ALS, and CTRL skin fibroblasts is shown. The second derivative spectra of
various regions corresponding to biological functional groups including (A) amide I (1700–1580 cm-1), (B) amide II (1580–1480 cm-1), (C) amide A
and B (3315–3260 cm-1 and 3120–3000 cm-1, respectively), (D) total lipids (3000–2800 cm-1), (E) carbonyl ester (1750–1725 cm-1), and (F) acyl
chain (1470–1430 cm-1). Standard deviations of the spectra can be seen in Supplementary Figure 5.

(Figure 4F; Casal and Mantsch, 1984; Ami et al., 2014). Overall, the
second derivative spectra suggests that protein structure and lipid
organization are altered in MS and ALS cells when compared to
CTRL skin fibroblasts.

4. Discussion

Using patient-derived skin fibroblasts, we determined that
the physiological properties in MS and ALS cells have unique
spectroscopic profiles that may be suitable for the development
of novel peripheral biomarkers. We previously demonstrated that
stress signatures and bioenergetics in MS and ALS cells were
perturbed when compared to CTRL individuals (Wilkins et al.,
2020). Here, evaluation using FTIR spectroscopy coupled to
multivariate analysis strongly suggests the spectral profiles of MS,
ALS, and CTRL individuals are unique. More so, examination of
their second derivative spectra and use of quantitative ratios suggest
that distinct alterations in MS and ALS skin fibroblasts relating to
lipid and protein homeostasis, structure, and function are disrupted
when compared to CTRL cells. These findings support the use of
MS skin fibroblasts to study pathophysiological mechanisms and
for the development of novel peripheral biomarkers.

Previously, in MS skin fibroblasts, we detected an apparent
increase in ER swelling compared to CTRL cells, which may
be indicative of increased cell stress affecting lipid and protein
homeostasis among other physiological processes (Stone and Lin,
2015; Andhavarapu et al., 2019; Wilkins et al., 2020). When treated
with hydrogen peroxide, MS skin fibroblasts had reduced cell
survival rates compared to both ALS and CTRL cells suggesting
that processes controlling oxidative stress in MS skin fibroblasts
were altered. Furthermore, mitochondrial and glycolytic metabolic

functions in MS skin fibroblasts were perturbed compared to
CTRL cells, which is often associated with increased stress and
altered biological processes (Hotamisligil and Davis, 2016). Thus,
based on our previous findings, it is conceivable that biomolecular
modifications and altered lipid and protein homeostasis exist in MS
skin fibroblasts. This is in line with our current observations that
spectral profiles in MS, ALS, and CTRL skin fibroblasts are unique
and indicative of altered physiological profiles in diseased cells.

Studies in other labs have also demonstrated that diseased
tissues have altered biomolecular profiles as detected by FTIR
spectroscopy. Brain tissue from MS and CTRL individuals
suggested that white matter lesions had an increase in the carbonyl
ester to acyl chain (1740 to 1468 cm−1) ratio and broadening of the
Amide I peak. These changes in MS lesions were thought to be due
to lipid and protein peroxidation, respectively (LeVine and Wetzel,
1998). In our study, we observed a significant decrease in the
carbonyl ester to acyl chain ratio in MS skin fibroblasts compared
to CTRL cells. Likewise, we detected shifting of the α-helical region
of the Amide I and Amide II peak suggestive of altered protein
structures in MS and ALS skin fibroblasts when compared to CTRL
cells. Additional investigations using FTIR spectroscopy correlated
an increase in the ratio of 1740/2960 cm−1 as a measurement of
lipid oxidation and a sign of oxidative stress (Benseny-Cases et al.,
2014; Oleszko et al., 2015; Barraza-Garza et al., 2016). Interestingly,
in our current study, we found the ratio of 1740/2960 cm−1 to be
significantly lower in MS cells compared to CTRL skin fibroblasts,
which is in agreement with the decrease in the carbonyl ester/acyl
chain ratio.

Oxidative stress has long been implicated in MS due to the
inflammatory nature of the disease and other factors including
mitochondrial dysfunction (van Horssen et al., 2008; Mahad et al.,
2015). Several antioxidant mechanisms exist to control the level
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oxidation within a cell. However, an increase in oxidative stress
can result in the oxidation of proteins, lipids, and nucleic acids
resulting in altered structure and function. Additionally, increased
lipid peroxidation can result in lipid acyl chain disorder and the
degradation of lipids and cellular membranes (Lamba et al., 1991).
Indeed, an overall decrease of lipid abundance as detected by FTIR
spectroscopy in MS skin fibroblasts was observed. More so, the
lipid acyl chain peak (∼1460 cm−1) had two peaks in CTRL skin
fibroblasts while MS and ALS cells presented with a single peak.
This may be reflecting disorder caused by modification of lipid acyl
chains in MS and ALS. Overall, these observations may indicate
changes in oxidative stress homeostasis of MS skin fibroblasts
resulting in altered lipid organization and abundance. Furthermore,
protein misfolding and dyshomeostasis are characteristic features
of MS (Stone and Lin, 2015; Andhavarapu et al., 2019). Studies
using FTIR spectroscopy have further described altered protein
homeostasis in various biospecimens from MS patients including
blood plasma and serum (Kołodziej et al., 2022), cerebrospinal fluid
(Yonar et al., 2018), and brain tissue (LeVine and Wetzel, 1998).
In each study, the general conclusion is that protein modifications,
structure, and aggregation are perturbed in MS biospecimens vs.
CTRL samples. This likely reflects a common endpoint inherent
to MS (e.g., oxidative stress, mitochondrial dysfunction, etc.). In
MS skin fibroblasts, significant changes in various amide peaks
were observed when compared to CTRL and ALS skin fibroblasts.
This likely reflects an overall disruption in protein secondary
structures and abundance. Similarly, several shifts in the amide
peaks (I, II, and A) of MS and ALS skin fibroblasts were observed
supporting the notion that diseased skin fibroblasts have altered
protein structures. In a similar study using serum from MS, ALS,
and CTRL individuals, the region 1200–1000 cm−1 was identified
as the most differential amongst the groups (El Khoury et al., 2019).
This was predicted to be due to changes in carbohydrates and
nucleic acids of MS and ALS serum samples. Interestingly, in this
study, the ratio of carbonyl ester to the region of 1300–1000 cm−1

was significantly altered in MS and ALS when compared to CTRL
individuals. As the region of 1300–1000 cm−1 contains several
metabolites and macromolecules including lipids, proteins, nucleic
acids (phosphate), and carbohydrates, this ratio likely reflects a
unique metabolic and physiological status in MS and ALS skin
fibroblasts.

Ultimately, our results support the use of FTIR spectroscopy to
detect biomolecular alterations in MS skin fibroblasts, which may
be suitable for the development of novel biomarkers and studying
pathophysiological mechanisms. While the change of specific ratios
in skin fibroblasts did not match precisely with previously reported
results, it is likely due to differences in the biospecimens used (e.g.,
blood, brain tissue, cerebrospinal fluid) and experimental setup.
Additionally, multivariate analysis strongly supports the feasibility
of using second derivative spectra for the classification of patient-
derived skin fibroblasts. However, larger cohorts will need to be
tested to also address potential confounding factors (e.g., age, sex,
medications, disease status, genetic variants, etc.), and to confirm
the segregation of data as presented here using a separate training
and testing group. Nonetheless, our results suggest that MS is a CNS
disorder that which contributes to biochemical alterations detected
in the periphery that can be interrogated using FTIR spectroscopy
of patient-derived skin fibroblasts.

5. Conclusion

Taken together, our findings demonstrate that skin fibroblasts
derived from patients with MS have inherent disease-associated
changes resulting in unique biomolecular profiles as detected
by FTIR spectroscopy. Establishing distinct profiles in MS
skin fibroblasts have the potential to advance the development
of novel biomarkers facilitating spectral phenotyping, which
may inform pathophysiological mechanisms as well as aid in
disease monitoring. The results of this study suggest that
lipid and protein homeostasis are perturbed in MS skin
fibroblasts with changes indicative of altered physiological
properties involved in modulating oxidative stress, metabolic
function, and cellular organization. Thus, interrogating patient-
derived skin fibroblasts may provide a unique opportunity to
study pathophysiological mechanisms that could become targets
for future therapies or a platform for establishing a skin-
brain axis in MS.
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