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ABSTRACT 

Global approval of the use of fluid viscous dampers to control the buildings 

response against dynamic loadings is growing. The idea behind incorporating 

additional dampers is that they will reduce most of the energy that is transmitted 

to the building during shaking event. The objective of this work is to identify 

and enhance the design parameters that control the nonlinear behaviour of fluid 

viscous damper subjected to sinusoidal excitation. For this, a numerical model 

of the flow inside the dissipater has been carried out based on finite volume 

method. A novel approach has been adopted to simulate elastic behaviour of the 

fluid, taking into account its compressibility by using the Murnaghan equation 

of state. A comparison between the calculations of the proposed model and the 

experimental tests was carried out. The model proved to be sufficiently accurate. 

A fluid flow analysis was then conducted to fully understand the internal 

mechanism of the damper. A parametric study was then performed by varying 

aspects such as dimensions, geometric relationships between components and 

fluid properties in order to better understand their effect on the non-linear 

behaviour of the device.  The results highlight the relationship between the 

parameters governing the shear thinning behaviour of the fluid and the non-

linearity exponent of the damper. This makes it possible to better control the 

non-linear behaviour of the device by selecting the appropriate silicone oil and 

the appropriate geometric dimensions of its components. 
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1. INTRODUCTION 

 Among the passive vibration energy dissipation 

systems (Ras & Boumechra, 2017; Ras & Hamdaoui, 

2023), the fluid viscous damper (FVD) has become an 

increasingly used technology for dynamic loads 

mitigation in civil engineering. Its great dissipative 

capacity was first proven in the military domain (Taylor, 

2010) and then in the automotive and aerospace industries 

(Nguyen & Choi, 2009; Jiao et al., 2018; Kumar et al., 

2020; Kumar et al., 2022a). In the last decade, the use of 

FVDs had been then extended to protect new 

constructions (Konstantinidis et al., 2015; Ras & 

Boumechra, 2016; Venkata Ramudu et al., 2022), and 

strengthen existing ones (Lin et al., 2008; Martínez-

Rodrigo et al., 2010) during major disasters as 

earthquakes. 

 This device, whose schematic view is shown in Fig. 1, 

is generally composed of a hollow cylinder filled with a 

high viscosity fluid (usually silicone oil). The inside 

includes a piston with orifices dividing the cylinder into 

two chambers. During dynamic excitation, the damper 

design involves the motion of the piston in the longitudinal 

direction of the cylinder, which forces the fluid to pass 

through a narrow gap between the piston head and the 

cylinder, resulting in the development of significant 

velocity gradients. As a result, a pressure difference is 

generated between the two chambers, which acts as 

resistance to the piston's motion. The dissipation of kinetic 

energy occurs as heat due to the frictional interaction 

between the fluid particles, thereby generating a damping 

force.  

 The damping force is not always linearly dependent on 

loading velocity in fluid viscous dampers, which refers to 

a nonlinear force-velocity relationship. The nonlinearity 

exponent (α) often characterizes the nonlinear behaviour 

of fluid viscous dampers. This exponent indicates the rate 

at which the damping force increases with the loading 

velocity. Low exponent dameprs (𝛼 < 1) exhibit a less 

pronounced  increase  in  damping  force  with  increasing  
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NOMENCLATURE 

𝐴    Displacement amplitude  Re  Reynolds number 

CY   Carreau-Yasuda constitutive equation  𝑅𝑝  Piston radius  

C   Damping coefficient  S   Cross-sectional area  

EOS   Equation of state  𝑢   Flow velocity 

F    Damping force  V   Piston velocity 

𝐹𝑓𝑣      Friction force  𝛼   Nonlinearity exponent 

FVD    Fluid viscous damper  𝜌   Fuid density 

ℎ      Annular space of width  ∇𝑝   Hydraulic pressure gradient  

𝑘         Bulk modulus  𝜏   Viscous stress tensor 

 𝜅        Relaxation time  𝜔   Pulsation 

𝐿𝑐       Cylinder length  𝜇   Dynamic viscosity  

𝐿𝑝       Piston length    𝜀̇   Strain rate tensor 

𝑚       Density exponent  𝛾̇   Shear rate 

P        Pressure  𝜂0   Apparent viscosity at zero shear rate.   

PTT    Equations of Phan Thien and Tanner.  𝜂∞   Apparent viscosity at infinite shear rate 

𝑅𝑐      Cylinder internal radius  𝜌0   Density at rest at 𝑝0 pressure 

 

 

Fig. 1 Fluid viscous damper 

 

velocity. This nonlinear relationship allows the damper to 

efficiently, dissipate a greater amount of kinetic energy 

during dynamic excitations. Understanding the 

nonlinearity of fluid viscous dampers and exploiting its 

advantages contribute to the development of more 

efficient passive vibration energy dissipation systems. 

 Extensive literature is available about the dynamic 

behaviour of structures equipped with this type of damper 

(Kumar et al., 2018a; Kumar et al 2019; De Domenico & 

Hajirasouliha, 2021; Dong et al., 2022; Mousavi et al., 

2022). Regarding the origin of the nonlinear behaviour, 

many authors attributed low exponents (𝛼 < 1) to orifices 

with complex geometries (Cameron & Makris, 2005; 

Narkhede & Sinha, 2014). However, the little work that 

has been published on the internal mechanism of the FVD 

has shown that these devices always exhibit nonlinear 

behaviour, even with a simple configuration with annular 

orifices. 

 Hou et al. (2007) found in their study on the nonlinear 

mechanism of the viscous damper that the shear rate of the 

fluid reached in the orifice is sufficiently high to cause the 

shear thinning of the fluid (drop in viscosity). For that, 

Carreau equation giving the relationship between the 

viscosity of the silicone oil and the shear rate was used in 

a finite element model. The obtained results demonstrated 

that the nonlinear behaviour was involved with low 

exponent (𝛼 < 1). This was also confirmed by a 

numerical and experimental study led by Frings et al. 

(2011) who developed a model capable to take into 

account the complex fluids dynamics and the thermal 

behaviour of the flow inside the damper.  

 Jiao et al. (2016) presented a mathematical model of 

the FVD, developed because of the Navier-Stokes 

equations. The rheological behaviour of the silicone oil is 

considered by the constitutive equation of Carreau-

Yasuda (CY). The obtained results agree well with those 

obtained from experimental measurements.  

 Syrakos et al. (2018) modelled the flow inside a FVD 

containing high viscosity silicone oil by the constitutive 

equations of Phan Thien and Tanner (PTT). Unlike the CY 

model, the PTT equation thus takes into account the elastic 

behaviour of silicone oil. It was found that the CY and 

PTT predictions are similar when the excitation frequency 

is low, but that at medium and high frequencies, the CY 

model does not describe the phenomenon of stiffness 

predicted by the PTT model and observed in experimental 

tests. Shangtao et al (2023) conducted a study on leaked 

fluid viscous dampers (FVD) used for seismic-induced 

structural vibration. They evaluated the damping 

performance by cyclic tests on a large-tonnage FVD with 

different levels of oil leakage. Analytical models were 

established to simulate the hysteresis characteristics of 

leaking FVDs, and the impact of the leaks on a cable-

stayed bridge was analysed. The results showed that oil 

leakage caused a "gap" in the damping force, but did not 

alter the mechanical parameters of the FVD. Vibration 

mitigation effectiveness decreased with leakage, but 

performance degradation was reduced for high-intensity 

excitations.   

 These studies have shown that the nonlinear behaviour 

of FVD with low exponent (𝛼 < 1).  is directly related to 

the shear thinning behaviour of silicone oil. However, 

there are several types of silicone oils with different shear 

thinning behaviours, sometimes even with a similar initial 

viscosity, which obviously implies that their effect on the 

damper behaviour will not be the same. This means  

that  certain fluid’s rheological  parameters  are  relatively  
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(a)                                                                           (b) 

Fig. 2 Constitutive law of FVD for different values of α. (a) Force-velocity relationship. (b) Idealized Force-

displacement relationship 

 

favourable to produce a more efficient behaviour of the 

damper (lower exponent) compared to others. Few details 

are given in the literature concerning the selection criteria 

of silicone oils to have a specific non-linear behaviour of 

the damper (specific 𝛼 value) and the contribution of the 

geometric parameters to achieve this behaviour. Although 

it represents a particularly relevant element for the design 

of this type of dampers. 

 The main objective of this work is to determine 

through a parametric study the design conditions that 

control the nonlinear behaviour of a fluid viscous damper 

subjected to sinusoidal excitation. A numerical model 

based on the finite volume method was therefore 

developed. Simulations of fluid flow inside an FVD 

containing silicone oils with different behaviours were 

then, presented. These simulations were carried out with 

frequencies of 1, 2, and 4 Hz, while the displacement 

amplitude is kept fixed at 20 mm. The Carreau-Yasuda 

CY (Carreau, 1972; Yasuda, 1979) constitutive equation 

was used to account for the shear thinning behaviour of 

the fluid. Its parameters were selected to represent the 

rheological behaviour of the considered silicone oils. In 

addition, the elastic behaviour of silicone oil was taken by 

considering the compressibility that characterises this type 

of fluid. A novel procedure has been performed to model 

this phenomenon in FVD dampers using the Murnaghan 

equation of state.  

 The parametric study focused on examining the influence 

of the rheological and elastic properties of the fluid on the 

force-velocity and displacement relationships of the FVD. This 

has enabled to gain a better understanding of its behaviour and 

to assess the impact of certain aspects, such as the dimensions 

and geometric relationships between components on the fluid 

shear thinning behaviour. The work carried out also allowed 

the evaluation of the ability of silicone oils to achieve nonlinear 

behaviour of the damper for low nonlinearity exponents. 

2. FLUID VISCOUS DAMPER BEHAVIOUR 

 A well-known analytical model is used to describe the 

damping force-piston velocity relationship characterizing 

the behaviour of this type of dampers: 

 𝐹 = 𝐶. 𝑉𝛼𝑠𝑔𝑛(𝑉)                                                    (1) 

Where 𝐹 is the damping force, 𝐶 is the damping 

coefficient, 𝑉 is the piston velocity, 𝑠𝑔𝑛(𝑉) is the signum 

function, and 𝛼 is the nonlinearity exponent. 

 Figure 2.a represents the force-velocity extracted from 

the presented model (Eq.1) for a sinusoidal excitation with 

different values of α. At low or medium velocity (case of 

frequent earthquake), FVD with nonlinear behaviour 

(α<1) can produce a relatively large damping force, while 

for high velocity (case of rare earthquake) the curve takes 

an almost rectilinear shape and the damping force hardly 

increases. The presence of this stabilization bearing is not 

visible for the damper with α = 1, since there is a linear 

curve. This means that when the structure to which the 

linear damper is attached undergoes quite strong 

earthquakes. Hence, the damping force will be very 

significant and may be sufficient to damage the device and 

therefore leaving the structure unprotected. The observed 

behaviour of linear dampers is accentuated in the case of 

nonlinear dampers with α > 1 since the damping force is 

exponentially increased with respect to velocity. As a 

result, the nonlinear damper with α < 1 is the most safely 

device because it has a limited maximum damping force 

for all velocity values. 

 The capacity of these devices to dissipate energy can 

be estimated by the area defined by the hysteresis loops 

(Fig. 2.b). The linear damper is characterised by an 

elliptical shape, while nonlinear FVDs (α < 1), the output 

forces brought by the high velocities are minimized. This 

leads to a larger loop that tends towards a rectangular 

shape. For the case of nonlinear FVDs with α > 1, the 

hysteresis loop tends towards a lozenge shape, which is 

smaller than that of linear FVDs. Consequently, the 

energy dissipation capacity of the nonlinear FVD with 

(α<1) is more important compared to that of the linear 

(Ras, & Boumechra, 2014; Ras, 2015; Lu et al., 2018). As 

shown in Fig. 2.a, the nonlinearity of the damper depends 

on the value of the exponent α. If this latter is low, the 

nonlinear behaviour will become more perceptible, thing 

that allows furthering increasing the energy dissipation 

capacity. 
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Fig. 3 Apparent viscosity-shear rate relationships of the silicone oil at different viscosities (Clearco 

2023a) 

 

3. GOVERNING EQUATIONS OF THE VISCOUS 

FLUID FLOW 

 The flow inside the damper is governed by the 

following equations, which express the mass conservation 

and the momentum of a supposed isothermal flow, 

respectively: 

𝜕𝜌

𝜕𝑡
+ ∇. (𝜌𝑉) = 0                                                           (2) 

𝜌 (
𝜕𝑉

𝜕𝑡
+ 𝑉. ∇𝑉) = −∇𝑝 + ∇. 𝜏                                       (3) 

 Where 𝜌 is the density of the fluid. 𝑉 = (𝑢, 𝑣, 𝑤, 𝑡) is 

the flow velocity. The term 𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑉. ∇𝑉) presents the 

inertial forces per volume unit. ∇𝑝 is the hydraulic 

pressure gradient and 𝜏 is the viscous stress tensor acting 

on a fluid element.   

 These equations must be supplemented by a 

constitutive equation that presents the fluid behaviour law 

connecting the viscous stresses tensor to the flow 

kinematics: 

𝜏 = 2𝜇𝜀̇ +
2

3
𝜇(∇. 𝑉)                                            (4) 

 Where 𝜇 is the dynamic viscosity of the fluid. The 

strain rate tensor 𝜀̇ can be obtained by: 

𝜀̇ =
1

2
[∇𝑉 + (∇𝑉)𝑇] =

1

2
𝛾̇.                               (5) 

 With (∇𝑉)𝑇 is the transpose of the matrix, 𝛾̇ is the 

shear rate of the fluid.  

 However, this is not enough to describe the behaviour 

of polymeric liquids such as silicone oils. This type of 

fluid, which is most often used in FVD devices, is made 

up of chain molecular structures. At rest, these molecular 

structures are entangled with each other. As the shear rate 

increases, the entangled molecules are stretched and move 

in a more aligned manner. This reduces the friction 

between them, thereby reducing the viscosity and 

resulting in a fluid shear thinning behaviour. 

 This is clearly shown in Fig. 3, where the viscosity-

shear rate relationships extracted from the experimental 

tests on samples of silicone oils of different viscosities are 

represented. The silicone oil shear thinning behaviour can 

be modelled by the Carreau-Yasuda equation (Carreau, 

1972; Yasuda, 1979): 

𝜂−𝜂∞

𝜂0−𝜂∞
= [1 + (𝜅|𝛾̇|𝑎)]

𝑛−1
𝑎⁄                                           (6) 

 Where 𝜂0 is the apparent viscosity at zero shear rate.  

𝜂∞ is the apparent viscosity at infinite shear rate. 𝜅 is the 

relaxation time indicating the length of the Newtonian 

plateau. The parameter 𝑛 represents the slope of the drop 

in viscosity and the exponent 𝑎 determines the length of 

the transition zone from Newtonian behaviour to shear 

thinning behaviour where the slope of the curve becomes 

constant. 

 The silicone oil is not purely viscous but it can exhibit 

an elastic behaviour resulting in the appearance of a 

stiffness force during the operation of the damper (Kumar 

et al., 2020). A commonly used constitutive model, that 

can simulate this behaviour, is that of Maxwell that 

describes the behaviour of viscoelastic fluids (Hou, 2011). 

A purely viscous damper represents this model with a 

Hook spring putted in series (Hatada et al., 2000). Another 

model recently used for modelling elastic behaviour is the 

Phan Thien and Tanner model (PTT) (Syrakos et al., 

2018). In this study, the elastic behaviour is taken into 

account by considering the compressibility that 

characterizes the silicone oil. Indeed, the pressure reached 

in the damper chambers is sufficient so that the fluid 

volume becomes variable, which implies the variation of 

the density as a function of the pressure. This relationship 

can be expressed using an equation of state (EOS). There 

are several EOS proposed in the literature (Singh, 2005; 

Kumar et al., 2016; Kumar et al., 2018b, 2022b).  

 However, that of Murnaghan was chosen for this 

study. This EOS has been widely used in many fields 

especially earth sciences (Plymate & Stout. 1989; Kanani 

et al., 2004). In this study, the Murnaghan EOS is 

employed for the first time to model the compressibility of 

silicone oil inside the FVD. The Murnaghan EOS can be 

written in this form: 

(
𝜌

𝜌0
)

𝑚

=
𝑘+𝑚(𝑝−𝑝0)

𝑘
                                                         (7) 
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Fig. 4 Murnaghan EOS calibration compared to the experimental test (Clearco 2023b) 

 

 

Fig. 5 FVD geometry with annular orifice (a) and cross section (b) 

 

 

Fig. 6 Forces applied to the piston rod assemblage 

 

 Where 𝜌0 represents the density at rest at 𝑝0 pressure, 

𝑘 is the bulk modulus and 𝑚 is the density exponent. This 

type of EOS is isothermal, i.e. the temperature is assumed 

to be constant. A value of 𝑚 = 1 implies a linear 

relationship between density and pressure. However, this 

is not the case for the silicone oil.  

 Figure 4 illustrate the adjustment of equation 7 with 

respect to the experimental results of a sample of silicone 

oil subjected to pressure. It shows that the results of the 

equation agree very well with those of the experimental 

test in the range of pressures reached inside an FVD 

damper during its operation. 

 Figure 5 display the damper geometry with annular 

orifice. Its design consists of a hollow cylinder of internal 

radius 𝑅𝑐 and length 𝐿𝑐 which contains a cylindrical piston 

of radius 𝑅𝑝 and length  𝐿𝑝. When the piston moves, the 

fluid is forced to flow through the gap of width ℎ = 𝑅𝑐 −
𝑅𝑝. The piston is fixed on a rod of radius 𝑅𝑣, which 

extends on both sides of the piston. 

 The piston-rod assemblage is subjected to two forces 

during its motion along the cylinder as shown in Fig. 6. 

One (in red) is the force induced by the fluid pressure, 

another (in blue) is the friction force induced by the fluid 

viscosity. 

 The pressure force 𝐹𝑝 can be expressed by: 

𝐹𝑝 = ∬ 𝑃𝑑𝑠 = 2𝜋 ∫ 𝑃(𝑟)𝑟𝑑𝑟
𝑅𝑝

𝑅𝑣
                                   (8) 

 With 𝑝(𝑟) the pressure field applied to the normal face 

of the piston as a function of the variation of its radius 𝑟. 

 The friction force 𝐹𝑓𝑝 exerted on the piston can be 

written as follows: 

𝐹𝑓𝑝 = ∬ 𝜏𝑝𝑑𝑠 = 2𝜋𝑅𝑝 ∫ 𝜏𝑝(𝑥)𝑑𝑥
𝐿𝑝

0
                       (9) 

 The friction force 𝐹𝑓𝑣 exerted on the two rods of the 

piston is given by: 

𝐹𝑓𝑣 = 𝐹𝑓𝑣1 + 𝐹𝑓𝑣2                                                   (10) 
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 Where 𝐹𝑓𝑣1, 𝐹𝑓𝑣2 represent the friction forces exerted 

on the right and left piston rods. 

𝐹𝑓𝑣1 = ∬ 𝜏𝑣1𝑑𝑠 = 2𝜋𝑅𝑣 ∫ 𝜏𝑣1(𝑥)
𝐿𝑣1

0
𝑑𝑥                     (11) 

𝐹𝑓𝑣2 = ∬ 𝜏𝑣2𝑑𝑠 = 2𝜋𝑅𝑣 ∫ 𝜏𝑣2(𝑥)
𝐿𝑣2

0
𝑑𝑥                     (12) 

 With 𝜏𝑝(𝑥), 𝜏𝑣1(𝑥) and 𝜏𝑣2(𝑥) are the shear stresses 

applied to the tangential faces of the piston and to the two 

rods respectively. It is in function of the longitudinal 

dimension 𝑥 of each component. 

 The total output force is therefore, obtained by the 

following equation: 

𝐹 = 𝐹𝑝 + 𝐹𝑓𝑝 + 𝐹𝑓𝑣                                                   (13) 

 The damper operation can also cause friction between 

the piston rod and the cylinder seals at both ends, resulting 

in an additional friction force. However, this force is 

negligible and is therefore not taken into consideration in 

this work (Li et al., 2006). 

 Two types of fluids were used in this study. The first 

with 𝜂0  =  1 𝑃𝑎. 𝑠 (denoted by F-1), and the other with 

𝜂0  =  5 𝑃𝑎. 𝑠 (denoted by F-5). The parameters of the 

models have been adjusted so that they correspond to the 

density-pressure and viscosity-shear rate relationships 

provided by Clearco product (Clearco 2023b). The 

parameters values of equation 6 and 7 used in the 

modelling are indicated in table 1. The damper dimensions 

considered are the same as those indicated in table 2. These 

dimensions are relative to those of the silicone oil dampers 

used in previous experimental studies such as (Hou et al., 

2007; Frings et al., 2011). 

4. NUMERICAL MODELLING  

 The equations given in the previous sections were 

solved by realizing a numerical model of the damper 

through a computational fluid dynamics program based on 

the finite volume method "ANSYS Fluent" (ANSYS, 

2014) The objective of the model is to determine the 

velocity and pressure fields at each instant 𝑡 of the  

simulation. This allows calculating the output force 𝐹 of 

the the damper as a function of the corresponding piston 

velocity. 

 To reduce the computation time, one took the 

advantage of the axisymmetric geometry of the annular 

orifices, which allows solving the flow equations in two-

dimensions by assuming that all the variables are 

independent of the tangential coordinate, and the velocity 

is zero in this direction. Figure 7 shows the axisymmetric 

geometry of the model and its boundary conditions. 

 In this study, all fluid boundaries have been considered 

as rigid walls where the no-slip condition is applied. This 

condition assumes that the fluid velocity relative to the 

wall is zero. Except the cylinder walls, all the other fluid 

limits (rod-piston assemblage walls) were defined as 

moving walls to which a sinusoidal displacement was 

assigned. 

 The rod-piston assemblage is adjusted to perform a 

sinusoidal motion 𝑥𝑝 in the axial direction of the damper 

such as: 

𝑥𝑝 = 𝐴. 𝑠𝑖𝑛(𝜔𝑡)                                                          (14) 

 Where 𝐴 represents the displacement amplitude fixed 

at 𝐴 =  20 𝑚𝑚, 𝜔 is the pulsation linked to the excitation 

frequency by 𝜔 =  2𝜋𝑓. The oscillation period is 

extracted by 𝑇 =  1 / 𝑓. The piston velocity 
𝑑𝑥𝑝

𝑑𝑡
 is 

therefore: 

𝑣𝑝 = 𝐴𝜔 cos(𝜔𝑡) = 𝑉𝑝 cos(𝜔𝑡)                                 (15) 

 Where 𝑉𝑝 =  𝐴𝜔 is the maximum velocity of the 

piston.  

 

Table 1 Fluid properties used in modelling 

Properties F-1 F-5 

𝜌0 (Kg/m3) 971 975 

𝑝0 (Pa) 0 0 

𝑘 (Pa) 8.99e8 8.99e8 

𝑚 9.084 9.084 

𝜅 (s) 6.629e-5 6.088e-4 

𝑎 1.017 1.087 

𝑛 0.651 0.545 

𝜂0(Pa.s) 1 5 

𝜂∞(Pa.s) 0 0 

 

Table 2 Fluid viscous damper dimensions 

 𝑹𝒗 𝑹𝒑 𝑹𝒄 𝒉 𝑳𝒗 𝑳𝒑 𝑳𝒄 

Dimension 

(mm) 
25 79 80 1 200 100 500 

 

 

Fig. 7 Axisymmetric model geometry and boundary conditions 
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Table 3 Operating conditions and associated Reynolds number 

 𝐹 − 1 𝐹 − 5 

𝑓(𝐻𝑧) 1 2 4 1 2 4 

𝑉𝑝 (𝑐𝑚 𝑠⁄ ) 12.6 25.1 50.2 12.6 25.1 50.2 

𝑉𝑓 (𝑐𝑚 𝑠⁄ ) 458 912 1823 458 912 1823 

𝛾̇𝑐 (𝑠−1) 18320 36480 72920 18320 36480 72920 

𝜂(𝛾̇𝑐) (𝑃𝑎. 𝑠) 0.74 0.63 0.52 1.26 0.93 0.68 

𝜂(𝛾̇𝑐)/𝜂0 0.74 0.63 0.52 0.25 0.19 0.14 

𝑅𝑒 4.5 8.9 17.7 0.9 1.8 3.6 

𝑅𝑒𝑐 6 14.1 34 3.5 9.6 26.1 

 

 
Fig. 8 Cross-sections S1 and S2 

 

 At the beginning of the simulation(𝑡 = 0), the fluid is 

assumed to be at rest. Once the piston starts to move, the 

flow will not directly reach a periodic state due to the 

elastic behaviour of the fluid. As soon as the periodic flow 

is reached, the flow at time 𝑡 will be identical to that at 

time 𝑡 +  𝑇. It is this periodic state that we are interested 

in this work. 

 The "SIMPLE" algorithm is used for the pressure-

velocity coupling, while the second-order upwind scheme 

is used for the convective and diffusive terms.   

 The time increment used in the calculations depends 

on the excitation period. For sufficient precision, we took 

a time step of 𝑇 / 10000 and a value of 10−6 for all the 

residual terms. 

 Three-compiled UDF (User defined function) were 

integrated into the model. Two of them define the 

rheological characteristics of the fluid through equations 6 

and 7, while the third is dedicated to assign the sinusoidal 

motion to the rod-piston assemblage. 

 The selection of the flow model adopted in this study, 

depends systematically on the importance of the inertial 

effects present when the fluid flows. If the inertial forces 

are dominant compared to the viscous ones, turbulences 

will appear and the behaviour of the damper will be, 

considerably affected. To evaluate the importance of 

inertial effects, we can refer to Reinolds number, which 

expresses the ratio between inertial forces and viscous 

forces in the flow. Considering that the flow through the 

annular orifice is a flow between two parallel plates, the 

Reynolds number can be obtained by 𝑅𝑒 = 𝜌ℎ𝑉𝑓/𝜂 where 

𝑉𝑓 is the average velocity of the fluid in the orifice when 

the piston reaches its maximum velocity 𝑉𝑝. 

 𝑉𝑓 can be calculated by the continuity equation as follow: 

𝑉𝑝 × 𝑆1 = 𝑉𝑓 × 𝑆2  →  𝑉𝑓 =
𝑅𝑐

2−𝑅𝑣
2

ℎ2+2𝑅𝑝ℎ
𝑉𝑝                      (16) 

 With 𝑆1 the cross-sectional area of the fluid domain at 

the level of the cylinder and 𝑆2 the cross-sectional area of 

the fluid domain at the level of the orifice (Fig. 8). 

 The extent of shear thinning depends on the shear rates 

encountered. The highest shear rates occur in the critical 

region of the piston-cylinder gap, when the fluid velocity 

reaches 𝑉𝑓. A characteristic shear rate can be defined as 

𝛾̇𝑐 = 𝑉𝑓/(ℎ/4). 

 Table 3 shows the values of 𝛾̇𝑐 for the selected 

frequencies. Tthe viscosity that corresponds to each 𝛾̇𝑐 can 

be deduced from Equation 6 or from Fig. 3 and can be 

compared to the nominal 𝜂0. Table 3 also lists the ratios 

𝜂(𝛾̇𝑐)/𝜂0. From these values, it is evident that shear-

thinning is expected to play a very significant role, even at 

low frequencies. The Reynolds number values for each 

fluid/frequency combination are presented in Table 3. The 

given definition of the Reynolds number does not consider 

shear-thinning effects, but tends to overestimate viscous 

forces. Therefore, the table also incorporates a Reynolds 

number based on the viscosity at the characteristic shear 

rate, 𝑅𝑒𝑐 = 𝜌ℎ𝑉𝑓/𝜂(𝛾̇𝑐).  

 It is observed that both Reynolds numbers exhibit low 

values. This means that viscous effects dominate the flow, 

rather than inertial effects. As results, the laminar flow 

model is adopted in the numerical simulations. 

 The axisymmetric plane was discretised by a series of 

structured grids of increasing finesse. An average grid is 

shown in Fig. 9. The mesh characteristics of each grid are 

shown in Table 4. 

 For a more correct mesh, the model has been 

decomposed into three zones according to the geometric 

shape of the damper. The orifice area (Fig. 9.b) has a more 

refined mesh compared to the chambers (Fig. 9.a), in order 

to capture the high velocity gradients that characterise this 

part of the damper. 

 As the piston moves, the fluid’s domain continuously 

changes shape, which implies the deformation of the mesh 

over time. In order to follow the movement of the piston, 

the mesh domain conforms by applying the dynamic 

superposition method, which can only be used for a 

hexahedral mesh. This method permits to add or remove 

adjacent cells layers to a moving wall. This is done by 

considering  the height of  the layer  in relation to the wall.
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Fig. 9 Mesh of fluid viscous damper model (grid 2). (a) : Chambre zone. (b) : Orifice zone 

Table 4 mesh characteristics for each grid 

 Elements Nodes 

Grid 1 177980 180180 

Grid 2 44590 45693 

Grid 3 2996 3282 

 

 

Fig. 10 Piston motion for different times of the 

simulation 

 

 In other words, if the moving wall crosses the height 

of the adjacent cell layer, it will be then, split or merged 

with the next cell layer. In the current model, the orifice 

domain (Fig. 9.b) is considered a rigid body that moves 

with the piston, while the chamber domain (Fig. 9.a) is 

immovable. Consequently, the above method was applied 

to avoid overlap between the two domains, which can lead 

to damage to adjacent cells at the interface between the 

two domains. Figure 10 shows the movement of the piston 

for different times of the simulation. 

 To assess the accuracy levels achieved, it is essential 

to consider the influence of mesh resolution on the results. 

To do this, simulations were carried out for the F-5 fluid, 

using different mesh variants, each with a frequency of 1 

Hz. This comparative analysis makes it possible to study 

the impact of mesh refinement on the accuracy of the 

results, and then to identify the optimum mesh resolution 

for the damper model. Figure 11 illustrates the force-

velocity and force-displacement relationships, while 

Table 5 provides the values of the non-linearity exponent 

and maximum force for each respective case.  

 The obtained results revealed significant differences 

between the mesh variants in terms of estimated output 

force and non-linearity exponent. Specifically, the coarse 

mesh underestimated the output force and the nonlinearity 

exponent compared to the other two variants, which 

presented relatively similar values. The comparable 

results obtained with the medium and refined grids 

indicate that further refinement does not contribute 

significantly to improving the accuracy of the analysis. It 

can therefore, be concluded that the medium mesh is 

suitable for the simulations performed in this study. 

 It offers a satisfactory balance between computational 

efficiency and accuracy, providing reliable predictions of 

the behaviour of the fluid viscous damper.  

  
Fig. 11 Force-velocity and Force-displacement relationships for each grid variant 
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Table 5 Values of 𝑭𝒎𝒂𝒙 and 𝜶 corresponding for each grid variant 

 𝑭𝒎𝒂𝒙  (𝑲𝑵) 𝜶 𝑭𝒎𝒂𝒙 rate difference/ grid 1 (%) 𝜶 rate difference/ grid 1 (%) 

Grid 1 152.73 0.67 0 0 

Grid 2 152.46 0.67 0.18 0.01 

Grid 3 141.48 0.65 7.37 2.99 

  

 

 
Fig. 12 Force-velocity and Force-displacement relationship of the tests 

 

Table 6 𝑭𝒎𝒂𝒙 and 𝜶 values for test 1 and 2 

 Test 1 Test 2 

 
𝐹𝑚𝑎𝑥 

(𝐾𝑁) 
𝛼 

𝐹𝑚𝑎𝑥 

(𝐾𝑁) 
𝛼 

Numerical Model 420 0.84 337 0.86 

Experimental 424 0.73 326 0.75 

Rate difference (%) 0.94 13.09 3.37 12.7 

 

5. ANALYSES AND DISCUSSION 

5.1 Comparison Results 

 The numerical results obtained from the proposed 

model were compared with those obtained from 

experimental tests (Frings et al., 2011). The fluid 

considered in the model is of type F-1 as it presents the 

closest behaviour to that used in the experimental tests 

where its initial viscosity is 𝜂0=1 pa.s. 

 Figure 12 shows the force-velocity and force-

displacement relationships of the damper tested with an 

amplitude of 12.4 cm and a frequency of 0.21 Hz 

(Referred as Test 1), and also with an amplitude of 2 cm 

and a frequency of 1 Hz (Referred as Test 2).  

 The figures also include the force-velocity and force-

displacement relationships provided by the numerical 

model. The maximum forces as well as the non-linearity 

exponents are shown in Table 6. 

 It can be seen from Table 6 that the analytical results 

agree fairly well with those obtained experimentally. 

However, the maximal difference values were observed in 

the exponent α. This difference may be related to the shear 

thinning behaviour. This is mainly due to the viscosity-

shear rate relationship of the fluid. Indeed, Silicone oils of 

similar initial viscosity may sometimes not have the same 

shear thinning behaviour. 

5.2 Parametric Analysis 

5.2.1 Effect of the Fluid Shear Thinning Behaviour 

 To illustrate the difference that the two fluids can 

cause on the behaviour of the damper, two simulations 

were carried out for each type of fluid with a frequency of 

1 Hz. Figure 13 shows the force-velocity and force-

displacement relationships. Table 7 indicates the values of 

the nonlinearity exponent and the maximum force for each 

case.  

 On closer examination, it appears that the model 

incorporating the F-5 fluid exhibits more pronounced 

nonlinear behaviour than that using the F-1 fluid. This 

disparity can be attributed to the shear-thinning behaviour 

of the fluid, which is slightly more pronounced in the case  
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Fig. 13 Force-velocity and Force-displacement relationships 

  

Fig. 14 Force-velocity and force-displacement relationships using F-5 with and without considering fluid 

compressibility 

 

Table 7 Values of 𝑭𝒎𝒂𝒙 and 𝜶 corresponding for 

each fluid. 

 𝑭𝒎𝒂𝒙 (𝑲𝑵) 𝜶 

F-1 66 0.84 

F-5 152 0.67 

 

of F-5 than in that of F-1. In fact, the shear thinning 

behaviour is influenced by the shear rate experienced by 

the fluid inside the damper. In the case of the F-5 fluid, the 

higher shear rates achieved inside the damper result in a 

greater reduction in viscosity compared to the F-1 fluid. 

This results in a more pronounced nonlinear behaviour of 

the damper when using F-5 fluid. 

 In addition, analysis of the maximum damping force 

shows that it is also influenced. The F-5 fluid model gave 

the highest maximum force value. This result can be 

attributed to the viscosity of the fluid, with higher 

viscosity impeding the passage of the fluid through the 

orifice, thereby increasing stress. This in turn increases the 

pressure differential between the two chambers and 

therefore the output force of the damper.  

 On the other hand, the examination of the results 

shows that the hysteresis observed in the force-velocity 

relationship is indicative of a behaviour of the FVD that is 

not purely viscous. Indeed, a force of a rigid elastic nature 

is also involved generating a viscoelastic behaviour. This 

behaviour is much more visible in the F-5. This can be 

explained by the compressibility of the fluid, which is 

proportional to the pressure difference between the two 

sides of the piston. That is, high viscosity silicone oil 

requires more pressure to allow passage through the 

orifice. This implies an additional compression of the 

fluid, which results in the appearance of stiffness. 

 To better understanding this phenomenon, Fig. 14 

displays the computational result of F-5 solved with and 

without taking into account the compressibility of the 

fluid. 

 Assuming incompressibility, the force-displacement 

hysteresis has a symmetrical shape, and no hysteresis 

shape is observed in the force-velocity relationship. This 

indicates that the behaviour is purely viscous, as described 

in Eq. 1. However, when compressibility is taken into 

account, hysteresis appears in the force-velocity 

relationships. In addition, the shape of the force-

displacement hysteresis becomes slightly asymmetric, 

which means that an elastic force is also involved in 

generating viscoelastic behaviour. Therefore, accounting 

for compressibility through the Murnaghan EOS 

effectively describes the viscoelastic behaviour 

commonly observed in viscous fluid dampers.  

 Figure 15 shows the pressure and density contours 

inside the damper for the F-5 fluid. They were captured at 

several points in the simulation. 

 When the piston reaches its maximum velocity with a 

displacement from left to right, the oil will be compressed 

in the right compartment of the damper, generating a high  
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Fig. 15 Pressure (a) and density (b) contours at different times of the simulation 

 

 

Fig. 16 Velocity contour at (𝒕 = 𝟏 𝒔) where the piston reaches its maximum velocity 

 

fluid pressure. At the same time, the left compartment 

expands, resulting in a very low pressure. As a result, a 

pressure gradient appears along the annular orifice to 

overcome the stresses resisting the fluid movement 

(Fig.15.a). On the other hand, as already mentioned, 

silicone oil is a compressible fluid, means that its density 

varies. The analysis of the density contour (Fig. 15.b) 

shows that it is very similar to that of the pressure contour. 

This resemblance can be attributed to the fact that, when 

neglecting heat effects, variation in density is only 

dependent on pressure (Eq.7) 

 In addition, by analysing the velocity contour 

represented in Fig. 16, it can be noted that the flow is 

mainly restricted to the vicinity of the piston. The fluid 

pushed by the piston walls rises rapidly, passes through 

the orifice at very high velocity and immediately goes into 

the compartment behind. The oil further away remains 

relatively at rest. 

 The pressure difference between the two sides of the 

piston causes the pressure force 𝐹𝑝, which opposes its 

motion. The forces 𝐹𝑓𝑝 and 𝐹𝑓𝑣  due to the friction applied 

to the piston-rod assemblage (Fig. 6) also resist to the 

piston motion. However, the contribution of 𝐹𝑝 to the total 

force is much greater. As shown in Table 8, 𝐹𝑝 is almost 

27 times greater than 𝐹𝑓𝑝, while the contribution of the 

force 𝐹𝑓𝑣 exerted on the two piston rods is negligible. 

 Figures 17 show the velocity, shear rate, and viscosity 

profiles of the two fluids passing through the orifice when 

the piston reaches its maximum velocity 𝑽𝒑. All profiles 

have a symmetrical appearance because the piston 

velocity (12.5 cm/s) is negligible compared to that of the 

fluid flow through the orifice (about 650 cm/s). The flow 

velocity profile of fluid F-1 is almost similar to a parabolic 

curve, which indicates that the behaviour of the fluid F-1 

is still very close to that of a Newtonian fluid (Fig. 17.a). 

This is in contrast to the profile of fluid F-5, deviates 

significantly from the parabolic curve. This is also 

displayed in Fig. 17.b where the variation of the shear rate 

is almost linear in the case of F-1 than in F-5. Furthermore, 

the viscosity profile shows a value very close to 𝜼𝟎 at the 

middle of the orifice for the fluids considered (Fig. 17.c). 

This is because the shear rate is zero in the middle of 

orifice (Fig.17.b). Near the orifice walls, the viscosity 

decrease in the case of F-5 is larger than that of F-1 (31.1% 

for F-1; 78.4% for F-5), which can be explained by the fact 

that the value of the shear rate at the walls of the orifice 

(about 30,000) causes a larger viscosity reduction in F-5 

than in F-1. This can be seen by projecting this value onto 

the viscosity-shear rate relationships of the fluids 

considered in Fig. 3. 

5.2.2. Effect of Geometric Parameters 

 After analysing the shear-thinning behaviour of 

silicone oil, it is found that the nonlinearity exponent is 

inversely proportional to the fluid’s shear thinning rate, 

which is also proportional to the value of the shear rate 

achieved in the annular orifice. Since shear thinning is 

being the main cause of deviation of the linear behaviour, 

 

Table 8 Contribution of 𝑭𝒑, 𝑭𝒇𝒑, and 𝑭𝒇𝒗 to the total 

force in the cas of F-5 

Force Intensity (KN) 
Contribution to 

total force (%) 

𝐹𝑝 146.98 96.48 

𝐹𝑓𝑝 5.36 3.52 

𝐹𝑓𝑣 0.01 <0.01 

(a) (b) 
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Fig. 17 Profiles of (a): velocity. (b): shear rate. (c): viscosity 

 

the shear rate is the most appropriate to correlate with 𝛼. 

It is obvious that the geometrical parameters have a great 

influence on the shear rate. Thus, in order to extract these 

parameters, we consider a unidirectional flow of a 

Newtonian fluid through the orifice. In this case, equation 

5 is simplified allowing to calculate the shear rate 𝛾̇ =
𝜕𝑢

𝜕𝑦
. 

The parabolic equation for the velocity profile of fluid 

passing through the orifice is: 

𝑢(𝑦) = 2. 𝑉𝑓[1 − (2𝑦/ℎ)2]                                        (17) 

 The derivative of 𝑢(𝑦) then gives: 

𝛾̇(𝑦) =
𝜕𝑢(𝑦)

𝜕𝑦
= −

16𝑉𝑓

ℎ²
𝑦                                              (18) 

 The result is a linear function that takes its maximum 

and minimum at the orifice walls with a different sign and 

is cancels at the middle of the orifice, negative values of 

the shear rate indicate that the shear direction is reversed. 

An average value of the shear rate in the orifice 

corresponds to 𝑦 = ℎ/4. Let us replace in Eq.18: 

𝛾̇𝑐 = 𝛾̇(ℎ/4) =
2(𝑅𝑐

2−𝑅𝑣
2)

𝑅𝑐ℎ2 𝑉𝑝                                         (19) 

 This shows that the shear rate in the orifice is 

dependent on the piston velocity 𝑉𝑝, as well as on the 

transverse dimensions of the cylinder and the damper rod-

piston assembly (𝑅𝑐,𝑅𝑣, ℎ). while the longitudinal 

dimensions have no influence.  

 Subsequently, several computations were conducted 

with the same sinusoidal motion of 4 Hz of frequency. The 

geometric ratio between the width of the orifice and the 

radius of the cylinder ℎ/𝑅𝑐 was taken as a variable, while 

the radius of the rod 𝑅𝑣 was fixed at 25 mm. The value of 

𝛼 was extracted for each computation and plotted against 

its average shear rate for both fluid cases. The results are 

given in Fig. 18.  

 

Fig. 18 Variation of the exponent 𝜶 with shear rate 

 

 At first sight, F-1 indicates a gradual decrease in 𝛼 as 

a function of shear rate, unlike F-5, which presents a sharp 

decrease with stabilization of 𝛼 at 0.55. This is related to 

the rheological behaviour of the fluids. Indeed, these two 

curves tend towards the parameters 𝑛 of equation 6 of the 

corresponding fluids (0.651 for F-1 and 0.545 for F-2). 

Although this trend is very clear for F-5, F-1 requires 

much higher shear rates to make it visible. Consequently, 

the rheological parameter 𝑛 is the limit that the exponent 

of nonlinearity can reach in an FVD. The rapidity with 

which the value of 𝑛 is reached, is linked to the parameters 

𝑎 and 𝜅 (Eq.6). More their values are higher, more 𝛼 

quickly reaches the parameter 𝑛. 

 As shown in Fig. 19, the silicone oils that are 

characterised by a relatively short Newtonian plateau and 

a transition zone to shear thinning (higher values of 𝑎 and 

𝜅), as well as a steep slope (lower value of 𝑛), have more 

of an advantage in producing a low non-linearity 

exponent. This can be achieved for low values of shear 

rate, hence with a reasonable ℎ/𝑅𝑐 ratio. The output force  
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Fig. 19 Relationship between the fluid shear thinning behaviour and the FVD nonlinear behaviour 

  

Fig. 20 Variation of alpha and the maximum force in function of the ratio 𝒉/𝑹𝒄. (a) F-1, (b) F-5 

of the damper is also influenced by the variation of the 

geometrical parameters. For this purpose, the variation of 

the maximum force with the exponent α as a function of 

the ratio ℎ/𝑅𝑐 is plotted in Fig. 20.  

 This allows to visualize at the same time the values of 

the force and the exponent for all geometrical variants and 

thus to extract the ratio ℎ/𝑅𝑐 reflecting the optimal 

behaviour of the damper. i.e. a minimum exponent that 

corresponds to a reasonable output force (about 650 KN 

for this damper configuration). For both fluid variants, it 

can be seen that the output force increases exponentially 

by reducing ℎ/𝑅𝑐. In contrast, a stabilization bearing of 

alpha value (𝛼 =  𝑛) appeared for low ℎ/𝑅𝑐  ratios in the 

case of F-5.  

 The advantage of this bearing is to ensure the lowest 

exponent that the F-5 fluid can develop while maintaining 

a normal output force. The presence of this bearing is not 

apparent for F-1 which requires a much lower ℎ/𝑅𝑐. 

Indeed, to produce an exponent close to the n-value in the 

case of F-1, an extremely low ℎ/𝑅𝑐 ratio is required, 

which is very complicated to achieve. On the other hand, 

this increases the pressure in the chambers considerably, 

which leads to an unrealistic output force. 

6. CONCLUSION 

 In conclusion, the aim of this study was to determine 

the design conditions governing the non-linear behaviour 

of a viscous fluid damper subjected to sinusoidal 

excitation by means of a parametric study. A numerical 

model based on the finite volume method was developed, 

allowing simulations of the fluid flow inside an FVD 

containing silicone oils of different behaviours. The 

Carreau-Yasuda (CY) constitutive equation was used to 

capture the shear thinning behaviour of the fluid. In 

addition, the inherent compressibility of silicone oil was 

taken into account using the Murnaghan equation of state. 

To the best of the author's knowledge, the Murnaghan 

equation of state has been used for the first time to model 

the behaviour of the fluid inside an FVD, and has been 

shown to be effective in representing the stiffness of the 

damper. The conclusions drawn from the analysis of the 

numerical model results are as follows: 

- The shear-thinning behaviour of the fluid has a 

significant effect on the nonlinear behaviour of the fluid 

viscous damper characterized by a low exponent of 

nonlinearity (𝛼 < 1), i. e., silicone oils with lower shear 

thinning behaviour tend to give a nonlinearity exponent 

value close to 1 whereas silicone oils with faster shear 

thinning tend to give lower exponents.  

 The stiffness of the damper is not solely governed by 

the viscoelasticity of the fluid, as most previous research 

has assumed. In fact, the compressibility of the fluid can 

also contribute to the elastic stiffness of the damper. This 

phenomenon can be observed when a significant pressure 

difference is reached in the two chambers of the damper. 

 The ability of a silicone oil to deviate the behaviour of 

the damper towards nonlinearity is limited by its 

parameters reflecting its rheological behaviour. Silicone 
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oils that are favourable for providing nonlinear behaviour 

(with a low exponent) to the damper should be 

characterised by the flowing:  

- A lower value of the parameter 𝑛 (a sharp drop in 

viscosity), as this is the limit that the exponent 𝛼 can reach.  

- A larger value of the relaxation time 𝜅 (short Newtonian 

plateau) in order to permit the damper to deviate from 

linear behaviour (i.e.  𝛼 < 1) at low values of the fluid 

shear rate.  

- In addition, a larger value of the parameter 𝑎 (short 

transition zone from Newtonian and shear-thinning 

behaviour) for the exponent 𝛼 to reaches parameter 𝑛 at a 

reasonable shear rate value.  

- The geometrical parameters have a significant influence 

on the overall behaviour of the FVD. The lower the 

geometric ratio ℎ/𝑅𝑐, the more exponentially the output 

force of the damper increases. At the same time, this leads 

to a lower exponent α that tends towards the value of the 

parameter 𝑛. The favourable silicone oils described above 

permit α to reach the value of 𝑛 more quickly without 

having to reduce ℎ/𝑅𝑐 excessively. Because too small 

geometric ratio leads to an extremely large output force. 
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