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Background: In magnetic resonance imaging (MRI), lumbar disc herniation (LDH)
detection is challenging due to the various shapes, sizes, angles, and regions
associated with bulges, protrusions, extrusions, and sequestrations. Lumbar
abnormalities in MRI can be detected automatically by using deep learning
methods. As deep learning models gain recognition, they may assist in
diagnosing LDH with MRI images and provide initial interpretation in clinical
settings. YOU ONLY LOOK ONCE (YOLO) model series are often used to train
deep learning algorithms for real-time biomedical image detection and
prediction. This study aims to confirm which YOLO models (YOLOv5, YOLOv6,
and YOLOv7) perform well in detecting LDH in different regions of the lumbar
intervertebral disc.

Materials and methods: The methodology involves several steps, including
converting DICOM images to JPEG, reviewing and selecting MRI slices for
labeling and augmentation using ROBOFLOW, and constructing YOLOv5x,
YOLOv6, and YOLOv7 models based on the dataset. The training dataset was
combined with the radiologist’s labeling and annotation, and then the deep
learning models were trained using the training/validation dataset.

Results: Our result showed that the 550-dataset with augmentation (AUG) or
without augmentation (non-AUG) in YOLOv5x generates satisfactory training
performance in LDH detection. The AUG dataset overall performance provides
slightly higher accuracy than the non-AUG. YOLOv5x showed the highest
performance with 89.30% mAP compared to YOLOv6, and YOLOv7. Also,
YOLOv5x in non-AUG dataset showed the balance LDH region detections in
L2-L3, L3-L4, L4-L5, and L5-S1 with above 90%. And this illustrates the
competitiveness of using non-AUG dataset to detect LDH.

Conclusion: Using YOLOv5x and the 550 augmented dataset, LDH can be
detected with promising both in non-AUG and AUG dataset. By utilizing the
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most appropriate YOLOmodel, clinicians have a greater chance of diagnosing LDH
early and preventing adverse effects for their patients.
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Highlight

1. The YOLOv5x in the dataset with augmentation (AUG)
successfully performed the highest mAP compared to all
YOLO models tested, which indicated the model with the
highest performance model to detect lumbar disc
herniation (LDH).

2. YOLOv5x without augmentation (non-AUG) dataset performed
well in detecting LDH in L2-L3, L3-L4, L4-L5, and L5-S1 regions
with values above 90%, which showed effectiveness in using a
non-AUG dataset for training.

3. YOLOv5x showed the shortest training duration and the lightest
weight compared to YOLOv6 and YOLOv7, indicating the most
efficient LDH detection model.

1 Introduction

Lumbar disc herniation (LDH) is caused by the bulging or
rupture of a spinal disc segment, misaligning its position, and
irritating the nerve roots, which causes sciatica (Vialle et al.,
2010; Amin et al., 2017). In particular, the lumbar vertebrae are
more susceptible to misalignment since they support the body’s
weight (Mushtaq et al., 2022). LDH occurs in 2%–3% of the
worldwide population, interfering with everyday activities and
productivity (Vialle et al., 2010). The cost of treating lumbar disc
herniation in the United States with medications and surgery
amounted to $4.0 billion in 2015 (Martin et al., 2019).

Four most commonly occurring forms of LDH include bulging,
protrusion, extrusion, and sequestration (Gopalakrishnan et al.,
2015). These forms are caused by a rupture of the fibrous layers
of the annulus (the bony outer shell), which can cause a leak of the
nucleus pulposus (soft inner core) and irritate adjacent nerve roots
(Gopalakrishnan et al., 2015). An early diagnosis of LDH can assist
in curing the disease in its earliest stages and protect the patient from
harmful repercussions. One of the most used medical imaging
techniques for diagnosing LDH is magnetic resonance imaging
(MRI) (Choi et al., 2017). The use of MRI in diagnosing LDH
has been widely adopted because of its ability to reveal the shape of
intervertebral discs. Intervertebral discs with elliptical shapes are
robust, whereas discs with abnormal shapes are deformed and
flattened (Alomari et al., 2014; Chen et al., 2021).

However, clinicians must undergo extensive training to interpret
and analyze MRI of LDH. Although well-trained medical
professionals can analyze the MRI, the diagnosis results might be
inconsistent (Alomari et al., 2014). Radiologists are reported to be
biased in their interpretation of MRIs, with disagreement on a
variation of bulging discs, which indicates the need for
standardized mechanisms in MRI interpretations (Alomari et al.,
2014). Researchers have demonstrated that MRI LDH can be
detected automatically by using deep learning methods, which

can increase radiology practice efficiency (Azimi et al., 2020). By
using deep learning to interpret MRI images, the existing bias
variability can be reduced, and diagnostic decisions can be
standardized (Alomari et al., 2014). It has been shown that deep
learning architectures can successfully address image recognition
and classification accurately from MRI using automated learning
features (Tsai et al., 2021). Consequently, researchers strive to
improve performance results while designing different deep
learning architectures (Azimi et al., 2020).

In the past, two-stage detectors deep learning models were used
to classify and detect LDH in MRI. Alomari et al. (2014) proposed
utilizing a coordinated active shape and a gradient vector flow active
contour models to extract shape features for detecting LDH. Wang
et al., proposed a two-stage detector fusion model that utilizes
DenseNet and Inception-Resnet-V2 models to increase the
number of image features and improve image recognition
accuracy (Wang et al., 2020). Su et al., developed another two-
stage detector model using ResNet-50 that consists of three fully
connected networks based on a backbone network for feature
extraction and performs classification tasks on lumbar MRI of
LDH (Su et al., 2022).

Several studies adopted the single-stage detector YOU ONLY
LOOK ONCE (YOLO) model to train deep learning algorithms
for real-time biomedical image detection and prediction
established on anchor base and intersection over union
techniques (Tsai et al., 2021; Guinebert et al., 2022; Mushtaq
et al., 2022). Our previous study tested only YOLOv3 in Darknet
to detect LDH in MRI (Tsai et al., 2021). However, a variety of
more recent YOLO models have been developed, including
YOLOv5, YOLOv6, and YOLOv7 (Jocher, 2020; Li et al., 2022;
Wang et al., 2022). Contrary to previous releases based on
Darknet, these models are based on PyTorch, which is more
typically used for computer vision and natural language
processing (Jocher, 2020; Li et al., 2022; Wang et al., 2022).

YOLOv5 has been used in biomedical image detection with
promising results (Mushtaq et al., 2022). According to Mushtaq
et al., YOLOv5 performance has been reported to be higher in
accuracy than YOLOv3 at identifying lumbar lordotic angles (LLA)
and lumbosacral angles (LSA) (Mushtaq et al., 2022). However,
YOLOv6 and YOLOv7 were published in June and July 2022 and
remain relatively novel (Li et al., 2022; Wang et al., 2022). An
evaluation of YOLOv5, YOLOv6, and YOLOv7 has been conducted
to determine which model detects safety helmets the most
effectively. YOLOv7 outperformed YOLOv5 and YOLOv6 in
detecting safety helmets (Yung et al., 2022). However, further
research is required to confirm YOLOv6 and
YOLOv7 effectiveness compared to YOLOv5 in detecting
biomedical images.

To the best of our knowledge, YOLOv5, YOLOv6, and
YOLOv7 have not yet been evaluated for their ability to detect
LDH in MRI, although the three models provide promising object
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detection performance. In YOLOv5, several features performed well
on the validation set and were more efficient during
interpretation (Jocher, 2020). YOLOv6 also outperforms
YOLOv5 in detection accuracy and is more confident about its
label in industrial applications (Li et al., 2022). YOLO7 is also
reported to be more accurate in detecting Microsoft common
objects in context (MS COCO) than previous YOLO models
(Wang et al., 2022).

Our previous study has shown that YOLOv3 could detect LDH
in MRI best with image augmentation (Tsai et al., 2021). However,
since YOLOv5, YOLOv6, and YOLOv7 have improved image
detection features, we hypothesized our study aims as follows:

• Based on YOLO metrics performance, we would like to
compare YOLOv5, YOLOv6, and YOLOv7models for LDH
detection to determine which model would provide the
highest level of accuracy.

• To assess further how well YOLO models perform, we
would like to compare them with and without the
augmentation dataset.

• The three YOLO models will be used to determine the
optimal training duration for clinical use.

An accurate model can assist clinicians in determining the LDH
earlier in MRI images. Following this, we will discuss the materials
and methods used for the proposed deep learning models, which
include datasets and detailed methodologies. In addition, we will

discuss the performance results of models which achieved the LDH
detection results and explain them in greater detail.

2 Materials and methods

2.1 Image dataset

MRI images were derived from a publicly available dataset of
lumbar spines by Sudirman et al. (2019a) (https://data.mendeley.
com/datasets/k57fr854j2/2) based on an anonymized clinical study.
The dataset was collected from patients at the Irbid Specialty
Hospital in Jordan who reported symptomatic back pain between
September 2015 and July 2016 (Al-Kafri et al., 2019; Sudirman et al.,
2019a). The lumbar MRI images were stored in Digital Imaging and
Communications in Medicine (DICOM) files. In order to ensure
similar physiology for the lumbar spine, the MRI images were taken
from patients at least 17 years of age (Al-Kafri et al., 2019). MRI
images include T1 and T2 weighted images with sagittal and axial
views. Most images have a resolution of 320x320 pixels with a
precision of 12-bit per pixel (Sudirman et al., 2019a). We extracted
the DICOM data and converted the images to JPEG by using the
provided MATLAB code from the dataset source (Sudirman et al.,
2019b).

Before deep learning model training, all images must be
examined, standardized, and transformed into organized data
(Tsai et al., 2021) (Figure 1). From the DICOM raw data, we

FIGURE 1
Process flow of data processing for object detection in deep learning.
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used T2-weighted images to obtain better brightness and darkness
features. A clinical trial has been conducted to demonstrate the
acceptable equivalent of using T2-WI in sagittal to assess LDH
(Alomari et al., 2014). Therefore, we used the T2-WI in the sagittal
view in this study. In this study, a total of 550 images were used from
110 different subjects. The ground truth andMATLAB code for data
extraction were also provided from the source (Sudirman et al.,
2019b). We supervised the selection of subjects for this study based
on the ground truth, which included only individuals with disc
herniations between L1 and S1. We used five midsagittal slices for
each subject, including the middle slice and two symmetrical slices
on either side of the vertebral body, representing approximately the
full transverse diameter of the vertebral body (Friska and Sudirman,
2021). We selected five slices that provided clear views of the lumbar
region. The 550 images were divided into 80% training images
(440 images from 88 subjects) and 20% validation images
(110 images from 22 subjects). The sagittal view of upper and

lower lumbar MRI has been used in a clinical trial for the
detection and segmentation of lumbar MRI (Ghosh and
Chaudhary, 2014). Hence in this study, we use the sagittal view
as the initial identification of LDH. Further analysis was performed
by combining the training and validation datasets with radiologists’
diagnosis records.

2.2 Object detection architecture

Object detection techniques have been widely utilized in many
medical diagnostic applications, such as YOLO algorithms for
detecting medical images in MRI (Tsai et al., 2021; Mushtaq
et al., 2022). The YOLO framework uses a single-stage detection
approach for real-time object recognition. Single-stage detectors are
designed to detect objects using relatively simple architecture by
focusing on all the spatial regions. It improves detection accuracy

FIGURE 2
YOLO series Network Architecture; (A) YOLOv5Network Architecture; (B) YOLOv6Network Architecture; (C) YOLOv7Network Architecture. YOLO,
You Only Look Once. CSP, Cross Stage Partial. SPP, Spatial Pyramid Pooling. Rep, reparameterized. CBS, Convolutional, Batch normalization, SiLu
activation blocks; E-ELAN, Extended efficient layer aggregation network; MP1/MP2, Max Pool-1/Max Pool-2; Sppcspc, Spatial Pyramid Pooling and
Convolutional Spatial Pyramid Pool structure.
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and reduces the time required for inferences (Jocher, 2020; Li et al.,
2022; Wang et al., 2022). Advances in YOLO models over the years
have resulted in different performance levels among the models.
This study assesses the MRI lumbar image and determines the
bounding box based on the performance of the YOLOv5, YOLOv6,
and YOLOv7 models.

YOLOv5 uses an adaptive anchor strategy known as the auto
anchor, in which the backbone comprises a focused structure and a
CSP backbone. As a pre-training tool, auto anchor checks and
adjusts anchor boxes if their fit is not optimal for the dataset and
training settings. YOLOv5 network also uses a PANet neck to
improve localization within layers (Jocher, 2020) (Figure 2A).
Our study uses the YOLOv5x model, which is ideal for datasets
containing smaller objects and is designed to provide high
performance. According to a test using the MS COCO dataset
test-dev 2017, YOLOv5x achieved an average percentage of
50.7% with an image size of 640 pixels and 200 frames per
second (FPS) speed using an NVIDIA V100 (Terven and
Cordova-Esparza, 2023). In YOLOv6, there are two scaled re-
parameterizable backbones and necks to accommodate models of
different sizes and a decoupled head efficiently implemented with a
hybrid channel method. The hybrid channel has both single and
multiple channels with enhanced quantization techniques that
employ post-training quantization and channel-wise distillation.
This has resulted in faster and more accurate detectors than
previous versions of YOLOv5 (Li et al., 2022; Terven and
Cordova-Esparza, 2023) (Figure 2B). According to a test using
the MS COCO dataset test-dev 2017, the largest model of
YOLOv6 achieved an average percentage of 57.2% with a speed
of 29 FPS using an NVIDIA Tesla T4. Yolov7 proposed several
architecture changes and a number of “bag-of-freebies,” which
significantly increased the model’s accuracy without affecting its
inference speed (Terven and Cordova-Esparza, 2023). YOLOv7 uses
the extended efficient layer aggregation network (E-ELAN)
backbone, model scaling, and model re-parameterization. The
E-ELAN combines the characteristics of different groups by

shuffling and merging cardinality in order to enhance the
network’s learning capability without destroying the gradient
path. The target detector in YOLOv7 is also implemented with
extend and compound scaling, resulting in a substantial acceleration
in detection (Wang et al., 2022) (Figure 2C). According to a test
using the MS COCO dataset test-dev 2017, YOLOv7-E6 achieved an
average percentage of 55.9% and AP50 of 73.5% with an image size of
1,280 pixels and 50 FPS on an NVIDIA V100 (Terven and Cordova-
Esparza, 2023).

We used boundary box labeling in Roboflow to detect LDH
of the lumbar intervertebral disc in 5 regions, the first and
second lumbar vertebrae (L1-L2), the second and third
lumbar vertebrae (L2-L3), third and fourth lumbar vertebrae
(L3-L4), fourth and fifth lumbar vertebrae (L4-L5), the fifth
lumbar vertebrae and the first sacral vertebrae (L5-S1). We put
the LDH location labels on both the training and validation
dataset. The lumbar vertebrae and disc sections are identified on
the MRI scans, namely, L1-L2, L2-L3, L3-L4, L4-L5, and L5-S1
(Figure 3). YOLOv5x, YOLOv6, and YOLOv7 were trained to
locate the LDH region on MRI images. This study was conducted
using Windows 10 running Python 3.7.6 on a machine with the
following specifications: Core (TM) i7-11700 CPU, 32 GB RAM,
and an NVIDIA GeForce RTX 3090 GPU with 24 GB of
GDDR6X memory. In this study, we trained the annotated
dataset of YOLOv5, YOLOv6, and YOLOv7 using 16 batch
sizes and 100 epochs.

2.3 Images augmentation

The dataset’s insufficient quantity of images can cause
overfitting or underfitting and is one of many factors that affect
deep learning performance. Earlier studies have used data
augmentation to prevent and mitigate overfitting for deep
learning (Ciregan et al., 2012; Abdelhafiz et al., 2019). During
training, the augmentation addressed the issue of an excessively

FIGURE 3
(A) The lumbar vertebrae and disc sections are from L1-L2, L2-L3, L3-L4, L4-L5, and L5-S1; (B) The same lumbar MRI displays LDHdetection at L4-L5
and L5–S1. L1, first lumbar vertebra; L2, second lumbar vertebra; L3, third lumbar vertebra; L4, fourth lumbar vertebra; L5, fifth lumbar vertebra; S1, first
sacral vertebra; LDH, lumbar disc herniation.
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homogeneous dataset and improved the performance of deep
learning models by simulating real-world situations.

In image processing, the augmentation type and range settings are
used to increase the volume and features of the image (Dao, 2019;
Sánchez-Peralta et al., 2020). Our study selected the augmentation types
in brightness, hue, exposure, and rotation to achieve the best results
(Hussain, 2017; Sánchez-Peralta et al., 2020).We augmented the images
with Roboflow after we had finished labeling them. The brightness, hue,
and exposure adjustments represent various magnetic resonance
machines and room lighting. The image rotation feature simulates
various patient positions duringMRI capture. Configuration images for
YOLOv5, YOLOv6, and YOLOv7 were set to the brightness 10%
and −10%, hue 10° and −10°, exposure 10% and −10%, and rotation
5° and −5° (Figure 4).

2.4 Deep learning performance

In most cases, The YOLO algorithm predicts the bounding box of
the training and validation of the YOLO results using the average

precision (AP) and the mean average precision (mAP) parameters
on the LDH regions from L1-L2, L2-L3, L3-L4, L4-L5, and L5-S1
(Tsai et al., 2021). AP can be used as a comprehensive evaluation
index to balance the effects of Precision and Recall. And we use a simple
average F1 score and the AP value as an additional measure to
demonstrate how well the methods perform on a complete dataset
(Haque and Neubert, 2020). We selected the following metrics to assess
the algorithm’s performance: Precision, Recall, AP, mAP, and F1 score.
We then compared the Precision, Recall, AP, mAP, and F1 score for all
LDH regions of YOLOv5x, YOLOv6, and YOLOv7 from L1-L2, L2-
L3, L3-L4, L4-L5, and L5-S1, to determine which model was most
suitable. A larger performance value indicates a more accurate model
(Loram et al., 2020). It is also essential to use the mAP index to
determine the network model’s overall performance as well as to
prevent extreme and weak functioning during the evaluation process.
This study further calculates and validates the performance of
YOLOv5x, YOLOv6, and YOLOv7 to detect LDH. The three
models were evaluated using the Accuracy metric.

The formula of the Precision (Eq. 1), Recall (Eq. 2), AP (Eq. 3),
mAP (Eq. 4), F1 score (Eq. 5), Accuracy (Eq. 6) are as follows:

FIGURE 4
Lumbar images augmentation: (A) Original image, (B) Brightness 10%, (C) Brightness −10%, (D) Hue 10°, (E) Hue −10°, (F) Exposure 10%, (G)
Exposure −10%, (H) rotation 5°, and (I) rotation −5°.
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Precision � Correctly PredictedDisease Pixels

TotalNumber ofPredictedDisease Pixels

� TP

TP + FP
(1)

Precision, as defined above, measures the percentage of correctly
predicted disease pixels corresponding to the ground truth.
Precision is an important performance measure since it is
sensitive to over-segmentation, leading to low precision scores
[29]. TP, True Positive; FP, False Positive.

Recall � Correctly PredictedDisease Pixels

TotalNumber ofGroundTruth
� TP

TP + FN
(2)

Recall, as defined above, is an indicator of the proportion of
correctly predicted disease pixels corresponding to the ground truth.
It is susceptible to under-segmentation, resulting in low recall scores
(Haque and Neubert, 2020). TP, True Positive; FN, False Negative.

AP � ∑
n
Rn − Rn−1( )Pn (3)

AP is the area under the precision-recall curve. It can be used as a
comprehensive evaluation index to balance the effects of Precision
and Recall. AP is calculated for each class separately (Tsai et al.,
2021). AP; average precision; R, Recall; P, Precision; n, threshold
number.

mAP � 1
N

∑
N

i�1
APi (4)

The mAP is the average of AP over all detected classes and is
used to evaluate the training, validate the results, and determine
the overall model performance (Tsai et al., 2021). N, total
number of the class; i, a score function to show an object
similarity.

F1 score � 2
Precision × Recall

Precision + Recall
(5)

F1 score, is a weighted average of Precision versus Recall. One
point is added to Precision if the result is relevant, and one point
is added to Recall if at least one result is relevant. This way, a
model’s performance can be measured effectively (Tsai et al.,
2021).

Accuracy � TP + TN

TP + TN + FP + FN
(6)

Accuracy, as defined above, is calculated by taking the
number of correctly predicted samples out of all possible
samples. TP, True Positive; TN, True Negative; FP, False
Positive; FN, False Negative.

3 Results

This study examined the performance of YOLOv5x, YOLOv6,
and YOLOv7 in non-augmented (non-AUG) and augmented
(AUG) dataset, compared the overall performance and the
detection of regions on L1-L2, L2-L3, L3-L4, L4-L5, and L5-S1,
and observed the training durations of YOLOv5x, YOLOv6, and
YOLOv7.

3.1 Performance of the non-AUG and AUG
dataset

The dataset includes 550 trained images without augmentation
(550-non-AUG) and 550 trained images with 3 times augmentation
(550-AUG). We compared the increased performance rates of the
550-non-AUG dataset to the 550-AUG dataset of all YOLO models
by evaluating the increment rate of the mAP, which we calculated
manually. The mAP is calculated based on Precision and Recall and
thus can be used to determine the better model between the non-
AUG and AUG YOLO models. There was a 0.34% increment rate
between YOLOv5x and YOLOv5x-AUG, a 12.35% increment rate
between YOLOv6 and YOLOv6-AUG, and a 1.51% increment rate
between YOLOv7 and YOLOv7-AUG. While YOLOv6-AUG has
the highest increment, its mAP performance remains slightly lower
than YOLOv5x-AUG, with 2% less performance. Based on the
metrics performance evaluation, the 550-AUG dataset
outperforms the 550-non-AUG dataset on all YOLO models
(Table 1).

3.2 Performance of deep learning model

When comparing the model performance in Table 1, YOLOv5x
in 550-AUG dataset has the highest performance value amongst all
the YOLO models tested. Hence, we further compared the
performance of YOLO models to other deep learning models in
550-AUG. The results revealed that YOLOv5x showed the highest
Recall, F1-score, and mAP compared to all YOLO models, with
90.00%, 81.82%, and 89.30%, respectively. YOLOv5x only fell short
in the Precision compared to YOLOv6, with 75% for YOLOv5x and
90.70% for YOLOv6. We then examined the mAP difference to
evaluate the overall model performance on all models. YOLOv5x
showed the highest mAP at 89.30%, YOLOv6 showed a lower mAP
at 87.30%, and YOLOv7 showed the lowest mAP at 60.60%
(Figure 5).

3.3 Performance of region detection

We observed the different AP outcomes in each lumbar region
on all the models in the non-AUG and AUG dataset. YOLOv5x non-
AUG showed AP values above 90% in 4 regions, L2-L3, L3-L4, L4-
L5, and L5-S1 at 90.20%, 93.60%, 96.80%, and 94.90%, respectively,
except in L1-L2, which is 69.30%. YOLOv6 showed the highest AP
amongst all YOLO models tested in L3-L4, L4-L5, and L5-S1 at
95.80%, 97.80%, and 90.20%, respectively. Amongst all YOLO
models during training, YOLOv7 showed the lowest performance
on all L1-S1 regions (Figure 6).

Furthermore, we also calculated and validated the accuracy
performance of YOLOv5x, YOLOv6, and YOLOv7 models. The
YOLOv5x and YOLOv7 in non-AUG and AUG dataset showed
accuracy above 70% in all L1-S1 lumbar regions. In comparison,
YOLOv6 in the AUG dataset showed lower accuracy with a value
of 69.77% in L3-L4, and in the non-AUG dataset showed the
lowest accuracy with values of 69.77%, 67.24%, 63.60%, and
67.75% in L1-L2, L2-L3, L3-L4, and L4-L5 respectively (Table 2).
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3.4 Performance in training duration and
weight

We also observed the performance in training duration and the
weight difference on all YOLO models according to non-AUG and

AUG dataset. YOLOv5x non-AUG showed the shortest duration and
the lightest folder weight after training, with 0.097 h and 14.8 MB,
respectively. YOLOv5x AUG showed a slightly longer training duration
and weight than YOLOv5x non-AUG by 3 times value, but the weight
after training was similar. YOLOv6 non-AUG showed a slightly longer

TABLE 1 YOLOv5x, YOLOv6, YOLOv7, metrics performance comparison in the 550-trained dataset.

Metrics performance comparison Model performance evaluation in the 550-trained dataset

YOLOv5x YOLOv6 YOLOv7

Non-AUG (%) AUG (%) Non-AUG (%) AUG (%) Non-AUG (%) AUG (%)

Precision 82.20 75.00 62.60 90.70 44.10 46.30

Recall 84.40 90.00 86.00 72.00 75.80 68.40

F1 score 83.29 81.82 72.50 80.30 55.76 55.22

mAP 89.00 89.30 77.70 87.30 59.70 60.60

AP (L1-L2) 69.30 82.80 65.10 79.30 37.40 24.50

AP (L2-L3) 90.20 84.10 58.70 73.60 37.90 50.00

AP (L3-L4) 93.60 94.70 84.70 95.80 49.20 50.20

AP (L4-L5) 96.80 97.30 97.30 97.80 93.50 93.00

AP (L5-S1) 94.90 87.60 82.80 90.20 80.30 85.20

Note: YOLO, you only look once; AUG, with augmentation; non-AUG, without augmentation; mAP,mean average precision; AP, average precision; L1, first lumbar vertebra; L2, second lumbar

vertebra; L3, third lumbar vertebra; L4, fourth lumbar vertebra; L5, fifth lumbar vertebra; S1, first sacral vertebra.

FIGURE 5
The 550-non-AUG and 550-AUG metric performance comparison of Precision, Recall, F1 score, mAP using YOLOv5x, YOLOv6, and YOLOv7.
YOLO, You Only Look Once; AUG, with augmentation; non-AUG, without augmentation; mAP, mean average precision.
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duration and heavier weight than YOLOv5x non-AUG with 0.140 h
and 264MB, respectively. However, YOLOv6 AUG showed a shorter
duration than YOLOv5x AUG, although the weight is still far heavier
than YOLOv5x AUG by 16 times value. And, YOLOv7 non-AUG and
YOLOv7 AUG showed the longest duration and heaviest folder weight
after training compared to all YOLOv5x and YOLOv6 models
(Table 3).

4 Discussion

We demonstrated the possibility of using the YOLOv5x,
YOLOv6, and YOLOv7 to determine the LDH in MRI images
based on bulging, protrusion, extrusion, and sequestration. In
this study, YOLOv5x AUG was considered the most suitable
model among the other YOLO models tested, showing the

FIGURE 6
The 550-non-AUG and 550-AUGmetrics performance comparison of L1-L2, L2-L3, L3-L4, L4-L5, and L5-S1 using YOLOv5x, YOLOv6, and YOLOv7.
YOLO, You Only Look Once; AUG, with augmentation; non-AUG, without augmentation; AP, average precision; L1, first lumbar vertebra; L2, second
lumbar vertebra; L3, third lumbar vertebra; L4, fourth lumbar vertebra; L5, fifth lumbar vertebra; S1, first sacral vertebra.

TABLE 2 Comparison of lumbar disc region detection accuracy.

Models Dataset Lumbar disc region detection accuracy

L1-L2 (%) L2-L3 (%) L3-L4 (%) L4-L5 (%) L5-S1 (%)

YOLOv5x non-AUG 77.00 72.00 70.00 73.00 72.00

YOLOv5x AUG 75.75 70.69 72.00 72.81 70.48

YOLOv6 non-AUG 69.77 67.24 63.60 67.75 74.04

YOLOv6 AUG 74.93 70.77 69.77 72.63 72.18

YOLOv7 non-AUG 76.21 75.92 72.52 71.61 70.14

YOLOv7 AUG 73.95 71.05 71.33 70.88 72.34

Note: YOLO, you only look once; AUG, with augmentation; non-AUG, without augmentation; L1, first lumbar vertebra; L2, second lumbar vertebra; L3, third lumbar vertebra; L4, fourth

lumbar vertebra; L5, fifth lumbar vertebra; S1, first sacral vertebra.
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highest mAP performance. Moreover, our study showed that
YOLOv5x non-AUG was an efficient LDH region predictor, as it
had the highest AP scores in 4 regions, L2-L3, L3-L4, L4-L5, and L5-
S1. YOLOv5x also showed the shortest training duration and the
lightest weight compared to all YOLO models tested.

Based on the results from the current study, the YOLOv5x AUG
had the best mAP performance among all YOLO models trained.
YOLOv5x network architecture with PANet neck combines the 550-
AUG images before they are sent for prediction, increasing the
accuracy (Jocher, 2020). During training, YOLO models provide
several parameters such as Precision, Recall, F1-Score, mAP, AP per
lumbar disc region (L1-S1). The Precision and Recall are parameters
that indicated the data sensitivity and predicted pixels accordingly,
which are not enough to determine the overall performance of a
deep learning model. The efficiency balance performance measured
by F1-score and overall performance measured by mAP is calculated
based on Precision and Recall to determine the best model among
YOLOv5x, YOLOv6, and YOLOv7. From Table 1, YOLOv6-AUG
has the highest detection region in L2-L3, L4-L5, and L5-S1.
However, the overall performance of YOLOv6-AUG measured by
mAP is still slightly lower than YOLOv5x-AUG. Thus based on the
results of this study, YOLOv5x demonstrated a promising
performance as a deep learning model for identifying LDH in
MRI compared to all models trained. The greater mAP value
observed with YOLOv5x proved the model is more accurate in
predicting the presence of LDH in the MRI, indicating its potential
for clinical use. Although YOLOv6 and YOLOv7 are the latest
versions of YOLO, their effectiveness in biomedical applications
is not substantially better. Our results are consistent with a study
that found YOLOv6 and YOLOv7 to be less effective at detecting
biomedical images than YOLOv5, possibly as a result of preliminary
experiments, tune-ups, and revisions since these versions were
published recently (Chen et al., 2022).

Our study found that the 550-AUG dataset had an improved
performance compared to the 550 non-AUG dataset. However,
other parameters in AUG dataset results, such as Precision, and
F1 score of YOLOv5x, and Recall and F1 score of YOLOv7, were less
accurate than the non-AUG dataset, as shown in Table 1. In this
study, augmentation is performed using Roboflow, which randomly
places the augmentation following the parameters we specify.
However, a problem with random augmentation is that each
image will have different combinations assigned, and not every
augmentation will be applied to every image (Iwana and Uchida,
2021). It is possible for some images to be assigned a brightness and

rotation augmentation, while others might be assigned a hue and
exposure augmentation or a combination of these four
augmentations. In general, the results of the augmentation were
mixed. Several data augmentation methods have improved the
accuracy, but some combinations with rotation methods might
be detrimental (Iwana and Uchida, 2021). Based on our result in
Table 1, we demonstrated the efficiency of training YOLOv5x model
using a non-AUG dataset.

In the lumbar regions, our training result showed that YOLOv5x
non-AUG had a more stable performance compared to all models,
as it had detection performance above 90% in 4 regions, such as L2-
L3, L3-L4, L4-L5, and L5-S1. In these regions, the disc herniation
might cause radicular pain, which may compress the nerve root,
resulting in pain and dysfunction symptoms (Reihani-Kermani,
2003; Fang et al., 2016). Deep learning’s ability to recognize small
objects, such as bulging, protrusion, extrusion, and sequestration in
MRI lumbar, helps identify the LDH on different sizes and scales
(Liu et al., 2020). During training, YOLOv5x non-AUG only
demonstrated slightly low detection in L1-L2, which is not in the
lower region where disc disease is commonly found (Katz et al.,
2022). However, we validate the accuracy performance of YOLOv5x
non-AUG and further confirm the potential to use the non-AUG
dataset for LDH detection with all regions detection above 70%.
Therefore, deep learning utilization may contribute to the early
identification of spine abnormalities with greater accuracy in the
four lower regions: L2-L3, L3-L4, L4-L5, and L5-S1, thereby helping
clinicians determine the appropriate therapy in the earliest possible
time and protecting patients from harmful consequences.

Deep learning models can be challenging and expensive to train,
taking hours or weeks to complete (Lee et al., 2017). Our results
showed that YOLOv5x had the shortest training duration and the
lightest weight, showing that this model is most efficient in detecting
LDH. To the best of our knowledge, this is the first study to compare
the training duration of LDH detection across YOLOv5x, YOLOv6,
and YOLOv7 models. A model’s performance during training will
determine how well it is able to perform when a user eventually uses
it. Clinical settings could certainly benefit from using this as a
computational reference in the future.

This study compared related studies to evaluate the LDH
detection performance and total dataset used in MRI based on
other models’ performances (Table 4). Alomari et al. (2014) showed
a high accuracy detection using four classification stages and
detection in a two-stage detector model to identify LDH). Wang
et al., and Su et al., also showed a high accuracy detection using a

TABLE 3 The 550-non-AUG and 550-AUG training duration and weight using YOLOv5x, YOLOv6, and YOLOv7.

Models Dataset Epoch Batch size Total image Training duration (hours) Weight (MB)

YOLOv5x non-AUG 100 16 550 0.097 14.8

YOLOv5x AUG 100 16 1,650 0.274 14.8

YOLOv6 non-AUG 100 16 550 0.140 264.0

YOLOv6 AUG 100 16 1,650 0.258 239.0

YOLOv7 non-AUG 100 16 550 0.361 5,290.0

YOLOv7 AUG 100 16 1,650 0.959 5,290.0

Note: YOLO, you only look once; AUG, with augmentation; non-AUG, without augmentation.
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two-stage detector model to identify LDH (Wang et al., 2020; Su
et al., 2022). Compared with other studies, (Zhou et al., 2019) used
2,739 images; (Su et al., 2022) used 15,254 and 1,273 images; and
(Guinebert et al., 2022) used 40 volumes of MRI (3,660 images) to
train for deep learning. Their dataset included more than a thousand
images. This study used 550 (non-AUG) and 1,650 (AUG) lumbar
MRI images to train YOLOv5x, YOLOv6, and YOLOv7. Our
previous study showed a higher accuracy with YOLOv3 than our
current study, but it used twice as many slices to test the deep
learning (Tsai et al., 2021). As our current dataset contains more
patients, we will see a greater variation of LDH in MRI during the
training process, which produces a reasonable result with a similar
small-scale dataset. Compared to other studies, these results
demonstrate the competitiveness of non-AUG dataset. In
addition, we also used a single-stage detector, whereas some of
the others used a two-stage detector model.

In recent years, clinical practice has significantly changed due to
the use of deep learning models in diagnosis assistance, including the
automatic detection of LDH (Lee and Yoon, 2021). In medical
imaging, deep learning can provide efficient and accurate results and
is regarded as one of the most promising methods for future
application in the healthcare sector (Razzak et al., 2018). To
prevent misdiagnosis, patients with borderline LDH visibility may
require multiple MRI, which can be very costly (Bruno et al., 2015).
However, even in the presence of blurriness or noise, deep learning
models can be trained to be more robust at identifying LDH
(Guinebert et al., 2022). Consequently, these deep learning
models could provide clinicians with a helpful LDH prediction
for more accurate diagnosis, thus reducing hospital visits and
optimizing healthcare costs.

Our first limitation is the lack of AP value of the L1-L2 region
during training using our most efficient model YOLOv5x in the
non-AUG dataset. Such an issue might be because the LDH
development in MRI may not be visible in these regions, or the
protrusion may be too small to be noticed. In addition, the number
of subjects with LDH in L1-L2 regions from the dataset was also
limited. There were 226 LDH cases separated from L1 to S1 at 9, 25,
54, 88, and 50 (Figure 7A). Based on the number of cases, our study
was also consistent with the findings of other studies about LDH
(Faur et al., 2019; Tsai et al., 2021). L1-L2 had the lowest frequency
of LDH, while L4-L5 had the highest frequency of symptoms. As a
whole, the AP value for L4-L5 was more distinguishable than the
number of LDH for each of the lumbar vertebrae regions. The
training results indicate that the number of symptoms affects deep
learning in each LDH region (Figure 7B). Insufficient image
numbers in the small dataset result in limited detection due to
deep learning underfitting and overfitting.

Our second limitation is the LDHmulti-labeling format on all
YOLO models. In this study, we put the label only on the discs
with bulges, protrusions, extrusions, and sequestrations as
indicators of LDH in the MRI. Detailed labeling on each disc
from L1-S1 to confirm the appearance of LDH might provide
more specificity on the clinical diagnosis. However, putting
confirmation labels on each disc in MRI might be challenging,
as different regions will be affected by LDH. A multi-label
classification typically requires additional effort in extracting
and describing the associated label information to achieve
satisfactory training results (Rastogi and Kumar, 2023).
Furthermore, more labels require a larger dataset to avoid
missing labels that could hinder the deep learning process. If

TABLE 4 The comparison of LDH detection performance with the related literature study using lumbar MRI with different deep learning algorithms.

References Method Precision Recall F1-
score

mAP Accuracy Total
images

No. of
patients

No. of
slices

Alomari et al. (2014) ASM + GVF-Snake — — — — 93.90% 390 65 6

Zhou et al. (2019) Siamese Network 98.90% — — — 98.60% 2,739 2,739 1

Wang et al. (2020) DenseNet + Inception-
Resnet-V2

96.65% 95.13% — — 96.22% 790 395 2

Tsai et al. (2021) YOLOv3 (AUG) 87.20% 91.70% 89.40% 92.40% 81.10% 714 65 11

Su et al. (2022) ResNet-50 + 3 FC
networks (1)

— — — — 84.17% 15,254 1,115 —

ResNet-50 + 3 FC
networks (2)

— — — — 74.20% 1,273 100 —

Guinebert et al.
(2022)

YOLOv5x 75.00% 76.50% — — — 3,660 244 15

Our study YOLOv5x 82.20% 84.40% 83.29% 89.00% 72.80% 550 110 5

YOLOv6 62.60% 86.00% 72.50% 77.70% 68.48% 550 110 5

YOLOv7 44.10% 75.80% 55.76% 59.70% 73.28% 550 110 5

YOLOv5x (AUG) 75.00% 90.00% 81.82% 89.30% 72.35% 1,650 110 5

YOLOv6 (AUG) 90.70% 72.00% 80.30% 87.30% 72.06% 1,650 110 5

YOLOv7 (AUG) 46.30% 68.40% 55.22% 60.60% 71.91% 1,650 110 5
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incomplete labeled data is used for training, it may result in noisy
classifiers with inadequate prediction capabilities (Wu et al.,
2014).

As of today, YOLO is one of the fastest-growing and best
algorithms available, with the current YOLOv8 algorithm being
released in 2023. Our initial speculation by utilizing detection
feature improvements in YOLOv8 may increase the accuracy of
the LDH detection. Due to the speed, accuracy, and ease of use of
YOLOv8, it is an excellent choice for several object detection,
instance segmentation, and image classification applications (Ju
and Cai, 2023). Despite this, Ju and Cai (2023) found that when
they trained YOLOv8 on biomedical images, the accuracy range of
the system was still 60%, which is still considered to be low in terms
of detection accuracy. Because of these reasons, it is still uncertain
whether YOLOv8 is capable of detecting LDH. It would be worth

investigating the accuracy of YOLOv8 to detect the LDH accuracy in
the L1-L2 region and to also implement a more detailed multi-
labeling image of the LDH region in the future.

Our third limitation is using the MRI sagittal view, which lacks
LDH visualization of the specific annular tear angle. A deep learning
algorithm can identify the annular tears in which the nucleus
pulposus protrudes and compresses the lumbar discs (Su et al.,
2022). From our sagittal view results, we were able to detect the LDH
development based on the protrusion on the MRI image. A sagittal
view is also used by neuroradiologists for the initial examination of
the three lowest intervertebral discs—L3/L4, L4/L5, and L5/S1 (Katz
et al., 2022). However, in most cases, neuroradiologists diagnose
neural foraminal stenosis based on an axial view of the spine. Neural
foraminal stenosis is important to indicate where an annular tear
begins, which compresses the disc at a specific angle, either

FIGURE 7
(A) LDH cases in different lumbar vertebrae regions. (B) LDH cases and average precision (AP) related trend in different lumbar vertebrae regions. L1,
first lumbar vertebra; L2, second lumbar vertebra; L3, third lumbar vertebra; L4, fourth lumbar vertebra; L5, fifth lumbar vertebra; S1, first sacral vertebra.
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symmetrical or asymmetrical (Amin et al., 2017). Future studies
might confirm the LDH development based on the annular tear on
axial views. As such, we believe that deep learning detection does not
replace medical personnel but provides fast access to additional
information that accelerates initial diagnosis and helps focus on
specific areas of concern. In this manner, the diagnosis may be made
more quickly and with greater certainty before the team of
multidisciplinary professionals decides on future surgery or
treatment.

5 Conclusion

This study contributes to the automatic detection of LDH using
deep learning and further identifies the best model for the YOLO series.
Our study showed that YOLOv5x, YOLOv6, and YOLOv7 are
promising deep learning methods for detecting LDH from MRI. In
the present study, we observed that YOLOv5x AUG showed the highest
overall performance based on mAP value. In addition, the YOLOv5x
non-AUG showed stable LDH detection levels in L2-L3, L3-L4, L4-L5,
and L5-S1 based on AP values which show competitiveness in using the
non-AUG dataset for training. Further, YOLOv5x showed the most
efficient training duration, which may prove useful in clinical settings
where a computational application is required. Finally, this study
demonstrated that YOLOv5x can detect LDH, and its application in
biomedical imaging may be beneficial.
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