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Improvement in neoantigen
prediction via integration of
RNA sequencing data for
variant calling
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Hoa Giang1, Hoai-Nghia Nguyen1* and Le Son Tran1*

1Medical Genetics Institute, Ho Chi Minh, Vietnam, 2University Medical Center Ho Chi Minh City, Ho
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Introduction: Neoantigen-based immunotherapy has emerged as a promising

strategy for improving the life expectancy of cancer patients. This therapeutic

approach heavily relies on accurate identification of cancer mutations using DNA

sequencing (DNAseq) data. However, current workflows tend to provide a large

number of neoantigen candidates, of which only a limited number elicit efficient

and immunogenic T-cell responses suitable for downstream clinical evaluation.

To overcome this limitation and increase the number of high-quality

immunogenic neoantigens, we propose integrating RNA sequencing (RNAseq)

data into the mutation identification step in the neoantigen prediction workflow.

Methods: In this study, we characterize the mutation profiles identified from

DNAseq and/or RNAseq data in tumor tissues of 25 patients with colorectal

cancer (CRC). Immunogenicity was then validated by ELISpot assay using long

synthesis peptides (sLP).

Results:We detected only 22.4% of variants shared between the twomethods. In

contrast, RNAseq-derived variants displayed unique features of affinity and

immunogenicity. We further established that neoantigen candidates identified

by RNAseq data significantly increased the number of highly immunogenic

neoantigens (confirmed by ELISpot) that would otherwise be overlooked if

relying solely on DNAseq data.

Discussion: This integrative approach holds great potential for improving the

selection of neoantigens for personalized cancer immunotherapy, ultimately

leading to enhanced treatment outcomes and improved survival rates for cancer

patients.

KEYWORDS

neoantigen, colorectal cancer (CRC), RNA sequencing (RNAseq), tumor variant calling,
neoantigen identification workflow, Neoantigen prioritization, cancer immunotherapy
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Introduction

Colorectal cancer (CRC) is a major global health concern, being the

third most common cancer in the world and the fifth leading cause of

cancer-related mortality among the Vietnamese population (1, 2).

Traditional treatments, such as surgery, chemotherapy, and radiation

therapy, have limited efficacy and are poorly tolerant, particularly in

advanced stages of CRC (3). Immunotherapy, while not a cure for

CRC, has the potential to significantly improve patient survival rates

and quality of life (4, 5). In metastatic CRC patients, immunotherapy

has demonstrated promise in improving outcomes. Immune

checkpoint inhibitors (ICIs), which block negative regulatory

pathways in T-cell activation, have been approved by the US Food

and Drug Administration (FDA) for the treatment of deficient

mismatch repair (dMMR) or high microsatellite instability (MSI-H)

CRC patients (6–8). However, alternative immunotherapy strategies

are urgently required for CRC patients, as patients with proficient

mismatch repair (pMMR) or microsatellite stability (MSS) have not

shown significant responses to immune checkpoint inhibitors (6, 9).

Neoantigens (neopeptides) have emerged as potential targets for

personalized cancer immunotherapy, including CRC (10–12).

Neoantigens are peptides resulting from somatic mutations, capable

of being presented by class I human leukocyte antigen (HLA-I)

molecules on cancer cell surface and by class II HLA molecules on

professional antigen-presenting cells, thereby activating anti-tumor

immune responses (13). Recent studies have demonstrated that the

presence of neoantigens is associated with better responses to

immune checkpoint inhibitor (ICI) therapy in CRC patients (14,

15). A high neoantigen burden has been linked to improved overall

survival and progression-free survival in patients with various solid

tumors, including CRC (14, 15). Therefore, neoantigen-based

immunotherapies are thought to have the potential to significantly

improve treatment outcomes for CRC patients.

The identification of neoantigens with strong binding affinity to

their respective HLA-I molecules and high immunogenicity is critical

for the development of effective neoantigen-based therapies. This

process involves the use of next-generation sequencing (NGS) and

bioinformatics tools. Initially, DNA sequencing of tumor tissues and

paired white blood cells enables the identification of cancer associated

genomic mutations, while RNA sequencing is used to determine

patient’s HLA-I allele profile and to quantify expression levels of

genes carrying mutations. Next, tumor somatic variant, HLA-I allele,

and gene expression data are analyzed using in silico tools based on
Abbreviations: CRC, colorectal cancer; dMMR, deficient mismatch repair;

DNAseq, DNA sequencing; FDA, the US Food and Drug Administration;

FPKM, Fragments Per Kilobase of transcript per Million mapped reads;

GATK, Genome Analysis Toolkit; HLA, human leukocyte antigens; ICI,

immune checkpoint inhibitor; IFN-g, interferon-gamma; LPs, long peptides;

MAF, mutant-allele fraction; MSI-H, high microsatellite instability; MSS,

microsatellite stability; NGS, next-generation sequencing;PBMCs, peripheral

blood mononuclear cells; pMMR, proficient mismatch repair; RNAseq, RNA

sequencing; SNPs, single nucleotide polymorphisms; TCR, T cell receptor; VAF,

variant allele frequency; WES, whole exosome sequencing.
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machine learning algorithms to predict the binding affinity of

neoantigens to patients’ HLA-I alleles and their potential to activate

T cell responses (16–18). This standard workflow has been exploited in

numerous studies to identify clinically relevant neoantigens in

melanoma, lung cancer, and other malignancies (17, 19).

Despite promising results, only small portions of patients benefit

from the current approach due to the limited number of effective

immunogenic neoantigens identified for each patient. To maximize

the detection of potential neoantigens, whole exosome sequencing

(WES) has been employed to comprehensively profile the cancer-

specific landscape (20–22). While WES allows a much larger search

space for mutations within the genome, it is not a cost- and time-

effective approach. Moreover, a significant proportion of identified

tumor DNA mutations, especially those which are not actively

transcribed or transcribed at very low levels, might not result in the

formation of neoantigens (19). Lastly, WES-based mutation calling is

inefficient in capturing all tumor somatic mutations, especially clonal

mutations with low frequencies and underrepresentation in the

sequencing data (23), while targeting combined neoantigens

derived from both clonal and subclonal mutations is necessary to

evoke efficient immune-mediated cell death in a broader range of

tumor cells. Therefore, relying solely on DNAseq data for tumor

mutation calling, which has traditionally been the basis for identifying

neoantigens, may not capture the full extent of tumor-related

mutations, resulting in an incomplete identification of neoantigens.

Genetic variants at the RNA level are frequently excluded from

conventional bioinformatic workflows, despite several studies

indicating that neoantigens can be derived from RNA mutations,

such as splicing, polyadenylation dysregulation, or RNA editing (24,

25). In addition, recent studies have shown that the presence of

variant-bearing transcripts is an important factor for accurate

identification of immunogenic neoantigen candidates (26, 27).

Therefore, integrating RNAseq data into tumor mutation calling

holds promise for unveiling a more comprehensive repertoire of

neoantigens and, consequently, advancing the development of

personalized immunotherapies for cancer. However, the feasibility

and effectiveness of this approach require further examination.

To assess the utility of RNAseq analysis for neoantigen

identification, we compared the cancer mutation profiles, binding

affinity to HLA-I of neoantigens identified from RNAseq and

DNAseq, and their predicted immunogenicity across 25 CRC

patients. Moreover, we performed experimental validation to

assess the effectiveness of utilizing RNAseq for the identification

of immunogenic neoantigens. This validation utilized the ELISpot

assay to measure the ability of neoantigen candidates, predicted

from DNAseq and RNAseq-derived variants, to activate T cells in

PBMCs obtained from four CRC patients.
Materials and methods

Tumor biopsy and peripheral
blood collection

A total of 25 patients diagnosed with colorectal cancer (CRC) were

enrolled in this study from the University Medical Center at Ho Chi
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Minh city between June 2022 and April 2023. The confirmation of

CRC was based on abnormal colonoscopies and histopathological

analysis confirming the presence of malignancy. The stages of CRC

were determined following the guidelines provided by the American

Joint Committee on Cancer and the International Union for Cancer

Control. Prior to participation, all patients provided written informed

consent for the collection of tumor and whole blood samples. Relevant

clinical data, including demographics, cancer stages, and pathology

information, were extracted from the medical records of the

University Medical Center. Detailed information regarding the

clinical factors of the patients can be found in Table S1. The Ethics

Committee of The University of Medicine and Pharmacy at Ho Chi

Minh City, Vietnam approved this study. Fresh CRC specimens were

collected immediately after biopsy or tumor resection and were placed

in microtubes containing RNAlater, an RNA stabilization solution

(Thermo Fisher Scientific, Japan). For four patients, ten mL of

peripheral blood was collected serially before surgery and stored in

Heparin tubes.
Targeted DNA and RNA sequencing

The DNA/RNA samples were isolated using either the AllPrep

DNA/RNAMini Kit or the AllPrep DNA/RNA/miRNAUniversal Kit

(Qiagen, Germany) as per the manufacturer’s protocol. In addition,

matched genomic DNA from the white blood cells (WBC) of

individuals was also extracted from the buffy coat using the

GeneJET Whole Blood Genomic DNA Purification Mini kit

(ThermoFisher, MA, USA), following the manufacturer’s

instructions. Genomic DNA samples from the patients’s paired

tumor tissues and WBCs were used to prepare DNA libraries for

DNA sequencing with the ThruPLEX Tag-seq Kit (Takara Bio, USA).

The libraries were then pooled and hybridized with pre-designed

probes for 95 targeted genes (Integrated DNA Technologies, USA).

This gene panel encompasses commonly mutated genes in CRC

tumors, as reported in the Catalog of Somatic Mutations in Cancer

(COSMIC) database. The DNA libraries were then subjected to

massive parallel sequencing on the DNBSEQ‐G400 sequencer (MGI,

Shenzhen, China) for paired-end reads of 2x100 bp with an average

target coverage of 200X (with actual coverage from 89 to 968X).

Isolated total RNA was subjected to a NEBNext Poly(A) mRNA

Magnetic Isolation Module (New England Biolabs, MA, USA) to

isolate intact poly(A)+ RNA as per manufacturer instructions. RNA

libraries were constructed using NEBNext Ultra Directional RNA

Library Prep Kit for Illumina (New England Biolabs). These

libraries were subsequently sequenced for paired end reads of

2x100 bp on an MGI system at 50X depth coverage.
Variant calling from DNAseq and
RNAseq data

To select the optimal variant calling tool for DNAseq data, we

evaluated the performance of three different pipelines including

Dragen, VarScan and MuTect2, which are commonly used for

somatic variant calling (28, 29). Among the three pipelines, Dragen
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demonstrated superior performance for detecting a set of validated

ground truth variants in a standard dataset downloaded from a

public repository, NCBI Sequencing Read Archive SRA (ID:

SRR7890830) (Figure S1A). Therefore, we utilized Dragen

(Illumina) (30) in tumor-normal mode to call somatic mutations

from DNAseq data. The default filtering thresholds of Dragen were

used to call SNPs and indels. SNPs were further filtered using the

dbSNP and 1000 Genome datasets. Germline mutations in tumor

tissues were identified by comparing them with matched WBC-

DNA samples. Mutations within immunoglobulin and HLA genes

were excluded due to alignment difficulties in these highly

polymorphic regions that require specialized analysis tools (31).

Additionally, synonymous mutations were removed from

downstream analysis. Included for analysis were somatic

mutations that surpassed a minimum threshold of ≥2% variant

allele frequency (VAF) in DNA extracted from fresh frozen tissues.

To identify the most suitable variant calling tools for RNAseq

data, we assessed the performance of two different pipelines,

VarScan and MuTect2 by comparing the proportions of variants

that overlapped with DNA-derived variants. Sequencing reads were

trimmed using Trimmomatic (32) and aligned to the human

reference genome using STAR (version 2.6.0c) (33). Prior to

alignment, the raw sequencing reads underwent quality checks

using FastQC version 0.11.9 (34). VarScan 2 (28), which accepts

both DNA and RNAseq data, was used to call mutations in paired

tumor andWBC samples in 95 cancer-associated genes, again in the

tumor-normal mode. Four filtering steps were applied: (i) only calls

with a PASS status were used, (ii) population SNPs overlapping

with a panel of normal samples from the 1000 Genome dataset were

excluded, (iii) somatic mutations included for analysis met a

minimum threshold of ≥10× read depth and ≥2% VAF in RNA

extracted from FF tissue, and (iv) synonymous mutations and those

related to HLA were removed from downstream analysis. The

resulting BAM files were sorted and indexed using Samtools

version 1.10 (35), and PCR duplicates were eliminated using

Picard tools version 2.25.6 (36). The mutations from RNAseq

data were also called using MuTect2, a variant caller from the

Genome Analysis Toolkit (GATK) pipeline. Like VarScan, the

MuTect2 pipeline was run in tumor versus normal mode,

utilizing default settings. Following variant calling, a similar

variant filtration step was also applied to eliminate potential false

positives. Somatic variants from the two pipelines were manually

checked using Integrative Genomics Viewer (v2.8.2). The VCF files

generated by Dragen (for DNAseq) and by MuTect2 and VarScan

(for RNAseq) were subsequently annotated using the Ensembl

Variant Effect Predictor (VEP version 105) (37) to extract the

potential effect of variants on the phenotypic outcome.
Gene expression quantification and tumor
purity estimation

We used the Cufflinks (38) to analyze the tumor RNAseq

data using the Ensemble human reference transcriptomes (GRCh38)

for assessing gene expression. The expression data was used to calculate

the tumor purity via ESTIMATE (v1.0.13) package, (R-v3.6.3) (39).
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In silico prediction of HLA binding affinity
and immunogenicity

Class I HLA alleles (HLA-A/B/C) with two-digit resolution

were identified from patient tumor RNAseq data using OptiType

tool (40). The annotated VCF files were analyzed using pVAC-Seq,

a tool of pVACtools (v1.5.9) (16, 41, 42) with the default settings,

except for disabling the coverage and MAF filters. We used all HLA-

I binding algorithms that were implemented in pVAC-Seq to

predict 8 to 11‐mer epitopes binding to HLA-I (A, B, or C) for

downstream analysis. Neoantigen candidates were subjected to

MHC binding predictions and subsequent prioritization based on

their binding affinity scores (measured in nM) using NetMHCpan-

4.1 (18). The prioritization process involved calculating the

percentile ranking of each neoantigen’s binding affinity score

within the distribution of scores for the corresponding HLA

allele. Neoantigen candidates with a percentile rank lower than

2% were selected for our immunogenicity analysis.

The immunogenicity of neoantigens was validated by the PRIME

tool (43) with default settings. To predict the immunogenicity of

neoantigen candidates, a two-step ranking process was employed,

involving ranking the neoantigen candidates based on their

immunogenicity score and estimating percentiles for each HLA

allele. These scores represented the predicted likelihood of a

neoantigen being immunogenic. The neoantigens were then ranked

in descending order based on their immunogenicity scores, enabling

the prioritization of neoantigen candidates with higher predicted

immunogenicity for further analysis. A ranking value for

immunogenicity was assigned to each neoantigen candidate by

determining the percentile rank of its immunogenicity score within

the group of neoantigens predicted to bind to the same HLA allele.

The percentile rank of binding affinity score in NetMHCpan or

immunogenicity score in PRIME for a peptide is the fraction of

random peptides that would have a score higher or equal to the

peptide given in input. Therefore, a peptide with lower percentile

rank value of NetMHCpan or PRIME indicate better binding affinity

and immunogenicity, respectively. To identify public neoantigens, we

conducted a comprehensive search of several databases, including

TSNAdb (44, 45), NeoPeptide (46), dbPepNeo (47, 48), NEPdb (49),

TANTIGEN (50, 51), and IEDB (52). All databases contained

epitopes from published studies where their immunogenicity was

validated by immunological assays.
Isolation, culture, and stimulation of
PBMCs with long peptides

Peripheral blood samples from four patients were collected

prior to surgery using BD Vacutainer Heparin Tubes (BD

Biosciences, NJ, USA). Peripheral blood mononuclear cells

(PBMCs) were isolated through gradient centrifugation using

Lymphoprep (STEMCELL Technologies) within 4 hours. PBMCs

were then resuspended in FBS/10% DMSO solution with

a concentration of 7-10x106 cells/mL for freezing in liquid nitrogen.

Frozen PBMCs were thawed in AIM-V media (Gibco, Thermo

Scientific, MA, USA) supplemented with 10% FBS (Cytiva, USA)
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and DNase I (Stemcell Technology, Canada) (1 mg/mL) solution.

105 PBMCs were allowed to rest in 96-round bottom well-plate

containing AIM V media supplemented with 10% FBS, 10 mM

HEPES, and 50 mM b-mercaptoethanol overnight before

stimulation with synthesized long peptides at a concentration of 5

mM in a humidified incubator at 37°C with 5% CO2. PBMCs were

further stimulated with GM-CSF (2000 IU/mL, Gibco, MT, USA)

and IL-4 (1000 IU/mL, Invitrogen, MA, USA) for 24 hours.

Following this initial stimulation, LPS (100 ng/mL, Sigma-

Aldrich, MA, USA) and IFN-y (10 ng/mL, Gibco, MT, USA)

were added to the PBMCs along with the peptides for an

additional 12 hours. On the following day, IL-7, IL-15, and IL-21

(each at a concentration of 10 ng/mL) (Peprotech, NJ, USA) were

added to the PBMC culture. The restimulation process involved

exposing the peptides to a fresh media containing IL-7, IL-15, and

IL-21 every 3 days for a total of 3 times. On day 12, PBMCs were

restimulated with peptides and cultured in media without cytokines.

ELISpot assays were performed on stimulated PBMCs on day 13.
ELISpot assay on PBMCs stimulated with
long peptides

Cultured T cells were transferred to an ELISpot plate (Mabtech,

Sweden) and incubated for 20 hours at 37°C. PBMCs cultured with

DMSO were used as a negative control group, while PBMCs

stimulated with anti-CD3 were used as a positive control group.

ELISpot assay was performed on treated PBMCs using ELISpot Pro:

Human IFN-g (ALP) kit (Mabtech, Sweden), following

manufacture’s protocol. Developed spots on the ELISpot plate

were then enumerated using an ELISpot reader (Mabtech,

Sweden). The reactivity was determined by measuring the fold

increase in the number of spots of PBMCs treated with mutant

peptides relative to those treated with wild type peptides. A fold

change of two was selected as the cut off for positivity (53).
Flow cytometry intracellular staining
for IFN-g

Cells from ELISpot plate were collected in media supplemented

with GolgiStop Protein Transport Inhibitor (BD Biosciences, NJ,

USA) and incubated for 6 hr at 37°C. Positive control group was

treated with 50 mM PMA (Abcam, UK), 1 mg/mL Ionomycin

(Abcam, UK). Cells were then washed, blocked with Fc receptor

(Biolegend, CA, USA), and stained with CD3-PE (clone HIT3a,

Biolegend), CD4-PE/Cyanine7 (clone RPA-T4, Biolegend), CD8-

FITC (clone RPA-T8, Cell Signaling) antibodies for 2 hr at 4°C.

Cells were permeabilized for 20 mins at 4°C and then stained

overnight with IFN-g-APC (clone 4S.B3, Biolegend) antibody at 4°C.
Statistical analysis

The Wilcoxon rank-sum test was used to compare the coverage,

VAF, and immunogenicity percentile among three groups for three
frontiersin.org
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mutation groups (DNA-unique, RNA-unique and Shared). All

statistical analyses were carried out using R (v2.6.3).
Results

Comparison of mutation profiles from DNA
sequencing and RNA sequencing data

RNA sequencing (RNAseq) data, which is commonly used for

analysis of mutated gene expression in the current standard workflow

of neoantigen identification, have been exploited to identify cancer-

specific mutations in recent studies (27, 54, 55). However, the

properties of RNAseq derived variants and neoantigens have not

been fully characterized. To assess the utility of RNAseq in calling

cancer-specific somatic mutations for neoantigen prediction, we

sought to compare the mutation profiles obtained from RNAseq

and DNAseq data across 25 CRC patients (Table S1), with a focus on

all single nucleotide variants (SNVs) and indel variants (Figure 1). To

achieve a balance between cost and mutation detection efficiency, we

used a targeted sequencing panel consisting of 95 commonly mutated

cancer-associated genes (Table S2). As a result, our comparison of

RNAseq and DNAseq analysis was limited to these genes (Figure 1).

The DNAseq and RNAseq data obtained from all 25 CRC patients

have successfully met quality metrics, ensuring reliable datasets for

mutation calling (Tables S3, S4). To identify mutations in DNAseq

data, we used Dragen as our primary tool due to its superior

performance in both SNV and indel mutation calling from a
Frontiers in Immunology 05
reference sample compared to other tools used in the analysis of

DNAseq data (Figure S1A) (56).

To determine the most effective tool for calling mutations from

RNAseq data, we compared the performance of VarScan and

MuTect2. We found that VarScan yielded a higher proportion of

variants overlapping with mutations detected from DNAseq

compared to MuTect2 (18.3% versus 0.8%, Figure S1B).

Furthermore, while MuTect2 tended to call a high percentage of

indels with abnormal length, VarScan yielded a higher proportion

of SNVs that were comparable to the mutation profiles identified

from DNAseq (Figures S1C, D). These data suggested that VarScan

exhibited higher sensitivity in detecting SNVs and produced fewer

artifact indels. Thus, we decided to use VarScan as the variant

calling tool for RNAseq data from the 25 CRC patients.

Out of the total 1,520 variants identified, only 340 (22.4%) were

common between the two mutation calling methods, while most

variants (77.6%) were exclusively detected by either DNAseq (DNA-

unique) or RNAseq (RNA-unique) data. DNA-unique variants were

more frequent than RNA-unique variants (56.1% versus 21.5.%,

Figure 2A). Shared variants were detected in 16 out of the 25 CRC

patients, accounting for 1% to 47% of the total identified variants

(Figure 2B, Table S5). Interestingly, we found that RNA-unique

variants were the major source of variants in 4 out of 25 (16%)

patients (Figure 2B), while DNA-unique variants were identified as

the major source of variants in the remaining 21 patients.

When comparing the distribution of variant types between

DNAseq and RNAseq, we observed a consistent pattern where

missense variants were the most prevalent variant type (>50% of all
B

A

FIGURE 1

A novel workflow for CRC neoantigen identification and validation that integrates RNAseq data into somatic mutation calling. (A). Schematic diagram
of the new workflow. Tumor biopsies and blood samples from CRC patients are subjected to targeted DNA and RNA sequencing, which focuses on
a panel of 95 genes, for somatic mutation calling. Additionally, RNAseq data is used to determine gene expression and HLA-typing information.
pVAC-Seq tool is then utilized for neoantigen prediction using DNA and RNA-derived somatic mutation data, gene expression data, and patient-
specific HLA-typing data as inputs. (B). Methods to validate the advantages of the workflow. Predicted neoantigens from the workflow are
subsequently validated by ex vivo ELISpot assay measuring IFN-g secretion from PBMCs stimulated with long peptides carrying predicted variants and
by in silico prediction of immunogenicity by PRIME tool.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1251603
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Nguyen et al. 10.3389/fimmu.2023.1251603
variants in each group, Figure 2C). However, we did notice some

notable differences. Specifically, RNA-unique variants exhibited a

higher frequency of in-frame variants (11% compared to 4.3% in

DNAseq, Figure 2C) and frameshift variants (26.3% versus 22.6%,

Figure 2C). On the other hand, DNA-unique variants had a higher

occurrence of stop-gained variants (12.2% versus 4.6%, Figure 2C).

In the shared-variant group, most variants consisted of missense

variants (80.9%) and stop-gained variants (10.6%), collectively

accounting for approximately 91.5% of all variants. To predict the

functional impact of the three variant groups, we employed the

Ensembl’s Variant Effect Predictor tool (37). Our analysis revealed

that the phenotypic outcome was most significantly affected by

RNA-unique variants in the high impact category, followed by
Frontiers in Immunology 06
DNA-unique and shared variants (Figure 2D). These results

indicate a clear distinction between the tumor variant landscapes

profiled by RNAseq and DNAseq, wherein RNAseq reveals a

greater proportion of clinically relevant variants compared to

DNAseq. Therefore, RNAseq appears to be particularly valuable

in identifying variants with potential clinical significance.

To gain deeper insights into the variants identified by both

sequencing methods, we conducted an analysis of their depth

coverage and mutation allele frequency (MAF). Despite having lower

coverage levels (P= 9.1x10-5, Figure 3A), the shared variants exhibited

significantly higher MAFs (P= 2.22x10-16, Figure 3B) compared to the

DNA-unique. This observation suggests that the shared variants are

likely derived from major clones of somatic mutation clones, while the
B

C

D

A

FIGURE 2

Comparison of identified somatic mutations between DNAseq data and RNAseq data. (A) Venn diagrams display the numbers of DNA and RNA
mutations called by the specified mutation callers on matched tumor-normal DNAseq and RNAseq data from 25 CRC patients. (B) Proportions of
each type of variants identified from both DNAseq and RNAseq data for each patient. The graph is presented in descending order based on the
proportion of shared variants. Patients marked with an asterisk exhibited a higher proportion of RNA-unique variants compared to DNA-unique
variants. (C) Pie charts presenting the percentages of mutation types. (D) The proportions of indicated types of variants in relation to their
phenotypic impacts.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1251603
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Nguyen et al. 10.3389/fimmu.2023.1251603
DNA-unique variants, characterized by significantly lower MAF (P <

2.22x10-16, Figure 3B), may originate from minor tumor clones.

RNA-unique variants displayed a notably lower median depth of

coverage (P<2.22x10-16, Figure 3A) and MAF (20% versus 40%,

p<2.22x10-6, Figure 3B) compared to the shared variants. These

findings suggest that RNA-unique variants may originate from genes

with low expression levels, resulting in a smaller number of variant

transcripts. It is notable that the majority of shared variants and RNA-
Frontiers in Immunology 07
unique variants were identified in genes with high expression levels

(FPKM >5, dashed line, Figure 3C), while unique variants identified

through DNAseq (494/853, 58%, Table S5) were more commonly

found in genes with low expression levels (FPKM <5, Figure 3C).

Furthermore, when examining the MAF of variants in relation to their

gene expression levels, shared variants (green dots, Figure 3D) exhibited

higher levels of gene expression (FPKM >5) and MAF (> 24%)

compared to other mutation types. In contrast, RNA-unique variants
B

C

D

A

FIGURE 3

Depth coverage, MAFs and gene expression levels of variants from DNAseq and RNAseq data. (A) Depth coverage of the indicated groups of variants
based on DNAseq and RNAseq data. (B) Mutation allele frequency of the indicated groups of variants. (C) A list of genes with indicated variants, along
with their corresponding FPKM. (D) Gene expression levels of different groups of variants in relation to their mutation allele frequency. In (A, B), the
boxes represent the median value, as well as the lower and upper quartiles (25th and 75th percentiles). The p-values were obtained from the
Wilcoxon rank-sum test.
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(orange dots, Figure 3D) tended to have similar gene expression levels

but lower MAF, while a substantial number of DNA-unique variants

(purple dots, Figure 3D) displayed both low gene expression and MAF.

These observations strongly suggest that the MAF and transcriptional

activity of mutated genes are significant factors contributing to the

disparities observed between RNAseq and DNAseq. Notably, shared

variants with high numbers of MAF may arise from dominant tumor

clones and are highly expressed, making them potential neoantigen

candidates. On the other hand, unique variants displaying low MAFs

may be derived from subclonal mutations or poorly expressed

mutations, further emphasizing the influence of MAF and gene

expression on the distinct characteristics of the identified variants.
In silico analysis of HLA-I binding affinity
and immunogenicity of neoantigens
derived from DNAseq and RNAseq

To identify neoantigen candidates, we utilized the pVAC-Seq

pipeline, a well-established computation tool, to predict the binding
Frontiers in Immunology 08
affinity of 8-13 mer peptides generated from DNA or RNA variants

to patient-specific HLA class I molecules (42). The HLA-I allele

profiles of 25 patients were presented in Table S6. Through

our analysis, we identified a total of 48,155 DNA-unique

variants derived neoantigen candidates (61.7%), 15,584 shared-

variant derived neoantigen candidates (20%), and 14,532 RNA-

unique derived neoantigen candidates (18.4%) (Figure 4A, Table

S7). As expected, the proportions of candidates from each group

showed a significant correlation with the proportions of nucleotide

mutations (Figure S2A).

It is well established that effective activation of T cell responses

relies on the presentation of neoantigens on the patient’s HLA-I

molecules (57). Here, we assessed the binding affinity of predicted

neoantigen candidates from each group of tumor variants to HLA-I

using NetMHCpan 4.1 (18). For this analysis, only neoantigen

candidates with predicted percentile ranks of less than 2% were

considered, in accordance with the recommendations provided by

NetMHCpan. We further considered 0.5 and 2 as percentile rank

cutoffs to identify strong binding and weak binding epitopes,

respectively. In Figure 4B, we presented the density distribution of
B

C D
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FIGURE 4

HLA-I binding affinity and immunogenicity of predicted neoantigens derived from DNAseq and RNAseq data. (A) A Venn diagram illustrates the
proportion of each type of neoantigens identified from DNAseq and RNAseq data. (B) Histograms showing the density distribution of neoantigens
with percentile ranks for HLA-I binding affinity calculated by NetMHCpan, that fall below 2%. The threshold value of 0.5% rank, designated for
distinguishing strong and weak binders, is indicated by dashed lines. This distinction aligns with the recommendation provided by NetMHCpan. (C)
Predicted immunogenicity, as calculated by the PRIME tool, for both strong binding and weak binding neoantigens. The box plot represents the
median value, along with the lower and upper quartiles (25th and 75th percentiles). Outliers are not displayed for clarity of visualization. The p-values
were estimated using the Wilcoxon rank-sum test. (D) A Lollipop plot depicts the distribution of specific groups of neoantigens based on their
percentage, focusing on indicated HLA-I alleles. These plots highlight neoantigens that fall within the top 2% in terms of strong binding affinity to
HLA-I and demonstrate high immunogenicity. (E) A map illustrates the frequency of indicated mutations on 25 CRC patients. The ones highlighted in
bold have been previously validated as highly immunogenic through immunological assays in previous studies. (F) An UpSet plot illustrates the
frequency distribution of the indicated groups of variants identified from public datasets.
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predicted neoantigen candidates originating from DNA-unique,

RNA-unique, or shared variants based on their percentile ranks of

HLA-I binding affinity as predicted by NetMHCpan 4.1 (18). We

observed that neoantigen candidates from RNA-unique variants

exhibited a lower proportion a lower proportion of strong binding

neoantigen (< 0.5%rank) compared to those from shared and DNA-

unique variants (Figure 4B). This suggests that, in comparison to

neoantigen candidates derived from DNA-unique variants, those

originating from RNA-unique variants exhibited lower HLA-I

binding affinity, as indicated by the NetMHCpan predictions. It

has been reported that the binding affinity to HLA-I is determined by

specific anchor residues in neopeptides (58). When comparing DNA-

unique and shared neoantigens with RNA-unique neoantigens, it was

observed that the latter exhibited a reduced proportion of mutations

at P2 (Figure S2B). Notably, P2 serves as a crucial anchor residue

involved in the primary interactions between the peptide and HLA-I

molecule, and mutations occured within this position increase the

binding affinity to HLA-I. This observation suggests that the

decreased frequency of RNA-unique derived neoantigens carrying

mutations at this anchor site, in comparison to other sources of

neoantigens, may account for their lower binding affinity.

To assess the immunogenicity of the predicted candidates, we

employed the PRIME tool which captures biophysical properties of

both antigen presentation and TCR recognition to evaluate their

potential to elicit a CD8+ T cell-specific immune response (43). The

predicted immunogenicity of neoantigen candidates was evaluated in

relation to their predicted binding affinity to HLA-I (Figure 4C). We

observed a positive correlation between the predicted binding affinity

to HLA-I using NetMHCpan and the predicted immunogenicity

assessed by the PRIME tool, irrespective of the neoantigen candidate

class. Notably, strong binding neoantigen candidates exhibited lower

percentile ranks of immunogenicity (Figure 4C). However, among

the neoantigen candidates with strong HLA-I binding affinity, the

RNA-unique neoantigen candidates showed significantly lower

percentiles of immunogenicity compared to both DNA-unique

(P=0.0075, Figure 4C) and shared neoantigen candidates (P=

0.0045, Figure 4C). Within the weak binding neoantigen

candidates, RNA-unique neoantigen candidates consistently

demonstrated lower percentiles of immunogenicity compared to

DNA-unique (P=0.0012, Figure 4C) and shared neoantigen

candidates (P=0.0011, Figure 4C). Subsequently, neoantigen

candidates meeting the criteria for predicted binding affinity and

immunogenicity within the top two percentile for both parameters

were profiled based on the specific HLA-I alleles identified in our

cohort of 25 CRC patients. As shown in Figure 4D, we observed that

the binding affinity of predicted neoantigen candidates to HLA-I was

influenced by both the specific neoantigen candidate’s sequence and

the HLA-I allele. For instance, we observed that the HLA-I allele

A02011 exhibited a higher binding affinity to shared neoantigen

candidates, as this allele showed the highest proportion of detected

neoantigen candidates in this group. Similarly, the HLA-I allele

A2601 displayed a stronger binding affinity for RNA-unique

derived neoantigen candidates; while the HLA-I allele A0201

showed a stronger binding affinity for DNA-unique derived

neoantigen candidates, in comparison to shared and RNA-unique

neoantigen candidates (Figure 4D). Among the neoantigen
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candidates displaying strong predicted affinity and immunogenicity,

a noteworthy subset of 16 neoantigen candidates was consistently

identified in at least two patients (Figure 4E). Of those, neoantigen

candidates derived from three shared mutations (ACVR2A_K435X,

TP53_R428W, and KRAS_G12D) have been experimentally

validated in previous studies and reported in public databases of

immunogenic neoantigens. Notably, the KMT2A_IN3105X

neoantigen candidate predicted from an RNA-unique variant,

exhibited the highest frequency among these frequently detected

neoantigen candidates, being present in 13 out of 25 (52%)

patients. This suggests that this neoantigen candidate has the

potential to serve as a public neoantigen, capable of eliciting

immune responses across multiple individuals. Additionally, a total

of 75 strong affinity and immunogenic neoantigen candidates were

previously reported in public databases of immunogenic peptides.

Among these, the majority (47/75, 62.7%%) could be found from

shared variants, while 25 and 3 neoantigens were predicted from

DNA-unique and RNA-unique variants, respectively (Figure 4F).

These findings underscore the presence of both shared and unique

neoantigen candidates with strong binding and immunogenicity in

25 analyzed patients, further highlighting the importance of

considering different sources of NGS data for mutation

identification in neoantigen-based immunotherapy approaches.

Taken together, these findings emphasize the distinct binding

affinity and immunogenic potential of neoantigen candidates

originating from different variant groups. Particularly, our data

suggests that despite their low predicted binding affinity, neoantigen

candidates derived from RNA somatic mutations still exhibit high

immunogenicity, indicating their potential to elicit an immune

response for immunotherapy. These observations underscore the

importance of considering not only DNAseq but also RNAseq

derived variants for selecting candidate neoantigens.
Experimental validation of predicted
neoantigen candidates by ELISpot

To evaluate the effectiveness of integrating RNAseq variant

calling into the current standard method, we conducted ELISpot

assay on four CRC patients using autologous PBMCs following the

procedure outlined in Figure 5A. Initially, we identified 431

nonsynonymous variants from both DNAseq and RNAseq data,

resulting in a total of 18,479 predicted neoantigen candidates using

the pVAC-Seq tool. To accommodate the limited availability of

PBMCs, only the top ten mutations resulting in neoantigen

candidates with the highest predicted binding affinity to HLA-I

were chosen for each patient. As a result, a total of 40 synthesized

long peptides (LPs) carrying the corresponding mutations were

synthesized and used in an ex vivo ELISpot assay to measure the

release of IFN-g from patients’ PBMCs (Figure 5A, Table S8).

Among the 40 designed LPs, those originating from shared

neoantigen candidates were detected in all patients, whereas LPs

derived from DNA-unique or RNA-unique variants were only

detected in three out of four patients (Figure 5B). However, no LPs

were identified within the DNA-unique group for patient PT10 and

within the RNA-unique group for patient PT03 (Figure 5B). When
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considering the cumulative number of LPs across all patients, it was

observed that shared-variants yielded the highest number (18 out of 40),

while RNA-unique variants yielded the fewest (9 out of 40, Figure 5B).

The PBMCs from four patients were subjected to three rounds

of stimulation with 40 LPs carrying mutations or their

corresponding wildtype counterparts to measure the secretion of

IFN-g. The ELISpot results for the 40 tested LPs were presented in

Figure 5C and Table S8. A fold change of two in the number of IFN-
Frontiers in Immunology 10
g spots from LPs relative to their corresponding wildtype peptides

was chosen as the positivity cutoff, with LPs resulting in an ELISpot

fold change value of two or higher considered as immunogenic (53).

Among 40 tested LPs, we identified eight immunogenic LPs, with

three originating from RNA-unique variants, three from shared

variants, and two from DNA-unique variants (Figures 5C, S3).

Notably, all four patients had at least one LP capable of inducing

IFN-g production by PBMCs. Among the LPs derived from RNA-
frontiersin.or
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FIGURE 5

Validation of neoantigens in silico identified from the modified workflow by ELISpot assays on four CRC patients. (A) A schematic diagram illustrates
the procedural steps of neoantigen prioritization and the ELISpot assay. (B) The number of each type of neoantigens identified from each CRC
patient. (C) The fold change in IFN-g spots, relative to the wildtype peptides, for 40 long peptides. Note: only the mutants that result in a positive
value in ELISpot are depicted with their corresponding amino acid change. (D) The percentage of IFN-g expressing CD4+ T cells induced by
indicated long peptides. Note: these long peptides induce a more than 2-fold change in IFN-g spots as observed in the ELISpot assay. (E) The
percentage of IFN-g expressing CD8+ T cells induced by indicated long peptides.
g
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unique variants, three out of nine (33.3%) were positive for IFN-g
activation, while the proportions of positive LPs were lower for

those derived from shared variants (three out of 18, 16.7%,

Figure 5C) or DNA-unique variants (two out of 13, 15.4%,

Figure 5C). The findings suggest that RNA-unique variants may

result in fewer neoantigen candidates with strong binding affinity to

HLA-I, but they are more likely to activate T cells compared to

shared or DNA-unique neoantigen candidates.

Intracellular flow cytometry staining of IFN-g in T cells further

demonstrated that all LPs showing positive results in the ELISpot

assay effectively activated CD8+ T cells. This activation led to a

significant increase in the percentage of IFN-g positive cells, with a

fold increase greater than 1 compared to their corresponding

wildtype peptides (Figures 5D, S4). Moreover, consistent with the

activation of CD8+ T cells, all LPs exhibited increased production of

IFN-g by CD4+T cells, except for the LP carrying STK11_K269R,

which originated from a DNA-unique variant (Figure 5E).

Although this LP did not exhibit detectable changes in

intracellular IFN- g levels in CD4+ T cells, it still demonstrated

CD8+ T cell activation. Overall, these findings suggested that the

integration of RNAseq data for variant calling into the current

neoantigen prediction workflow could enhance the identification of

effective and immunogenic neoantigen candidates for the

development of cancer immunotherapies.
Discussion

The identification of highly immunogenic neoantigens capable

of eliciting T-cell-mediated responses is essential for the

development of effective personalized immunotherapies for

cancer. However, the current challenge lies in accurately

identifying these neoantigens due to the limited number of highly

immunogenic neopeptides predicted by conventional bioinformatic

workflows. These workflows solely rely on genomic sequencing data

for tumor mutation calling, overlooking the potential contribution

of transcriptomic variants in generating neoantigens. To address

this limitation, we aimed to enhance the identification of highly

immunogenic neoantigens by integrating RNA sequencing data

into the conventional bioinformatic workflow (Figure 1). By

considering tumor mutations at the transcriptional level, we

sought to expand the pool of valuable immunogenic neopeptides

for colorectal cancer (CRC) patients. In our study, we successfully

demonstrated that integrating RNAseq data into the conventional

workflow for variant calling significantly increased the number of

valuable immunogenic neopeptides for CRC patients. This

improvement provides a promising avenue for the development

of more effective cancer treatments.

Our analysis of tumor variants using DNAseq and RNAseq data

obtained from 25 CRC patients identified a moderate proportion

(22.4%) of shared somatic variants (Figure 2A). This finding is

consistent with a previous study that reported a similar trend in two

datasets (59). The differences in variants identified by DNAseq and

RNAseq could be attributed to variations in sequencing

technologies or variant calling tools, as reported in previous

studies (60). To mitigate the impact of differences in sequencing
Frontiers in Immunology 11
technology and in silico tools on mutation results, we conducted

both DNAseq and RNAseq on the same sequencing platform and

selected the optimal variant calling tools for RNAseq data that

exhibit the highest concordance with the DNAseq mutation profile

(Figure S1A). However, we believe that more validation studies are

required to improve the variant calling tools and standardize their

use for RNA sequencing data. In addition to these technical factors,

it has been reported that RNA mutations could be generated from a

post-transcriptional modification process known as RNA editing

(61, 62). Such mutations exclusively occur in transcribed RNA and

have been shown to result in a new source of neoantigens in cancer

patients (63, 64).

Additionally, the proportions of shared mutations exhibited

significant variation among patients (Figure 2B), highlighting the

intrinsic diversity of cancer mutations and the heterogeneity of

clonal expansion within each patient. Furthermore, different variant

groups displayed distinct characteristics, with RNA-variants

showing an enrichment for frameshift and inframe variants and

displaying more profound impact on the phenotypic outcome

(Figures 2C, D). Neoantigens derived from frameshift or indel

variants, which are greatly distinct from self peptides, have been

shown to generate highly immunogenic tumor neoantigens and

thereby expand the pool of ideal candidates for immunotherapy

(65, 66).

Both DNA-unique and RNA-unique variants displayed

significantly lower MAFs compared to shared variants (Figure 3B).

This observation implies that these unique variants likely originated

from tumor clones with low frequencies, which might not be

consistently detected at both genomic and transcriptomic levels due

to the limited sensitivity of sequencing methods. Notably, our

analysis revealed that DNA-unique variants were more frequently

associated with genes characterized by low FPKMs, unlike shared or

RNA-unique variants (Figures 3C, D). These findings suggest that

DNA-unique variants may arise from genes with low expression or

those displaying mono-allelic expression of the wild-type allele.

Conversely, RNA-unique or shared variants tend to occur in genes

exhibiting high expression levels, implying their abundant

transcription. Previous studies have demonstrated a correlation

between the expression levels of neoantigens and their likelihood of

being presented by HLA-I on the surface of tumor cells, which can

trigger immune responses leading to the eradication of tumor cells

(67, 68). Hence, neoantigens arising from RNA-unique or shared

variants might be superior, as they are more likely to be presented and

recognized by the immune system. The discrepancies in mutation

profiles between RNAseq and DNAseq could be attributed to the low

MAFs, low quantities of transcripts harboring variants, and/or

insufficient sequencing coverage.

The proportions of neoantigens predicted by the pVAC-Seq

tool are similar to those of nucleotide variants (Figures 3A, 4A).

Currently, the prediction of peptide binding affinity for HLA-I is a

pivotal criterion in the selection of neoantigens for experimental

validation (18). Employing NetMHCpan 4.1, we discovered that

neoantigen candidates originating from RNA-unique variants

exhibited lower percentile ranks of binding affinity compared to

those derived from shared or DNA-unique variants (Figure 4B).

This finding suggests that neoantigen candidates resulting from
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RNA variants tend to display reduced levels of HLA-I binding

affinity in comparison to those arising from DNA variants. Prior

research has indicated that the position of mutations within mutant

peptides can influence their binding affinity to HLA-I molecules,

with specific residues in the peptides, known as anchor residues,

serving as key determinants of binding affinity (69). Therefore, it is

plausible that amino acid changes in neoantigen candidates

predicted from RNA mutations may arise from positions that do

not lead to enhanced binding affinity, in contrast to those arising

from DNA mutations. Interestingly, our findings revealed a lower

proportion of RNA-derived neoantigen candidates with mutations

occurring at the primary anchor site P2, which is recognized as a

critical factor influencing peptide affinity for various HLA-I types.

This distinction was observed when comparing RNA-derived

neoantigen candidates with both shared and DNA-unique derived

ones (Figure S2B) (70). Another possible explanation for the lower

binding affinity of RNA-unique neoantigen candidates could be

attributed to the fact that current prediction tools have not been

specifically trained on this particular group of candidates (71).

While predicted HLA-I binding affinity serves as a crucial

indicator for the presentation of neoantigens on tumor cells, it is

not the sole determinant of neoantigen immunogenicity. The

immunogenicity of neoantigens is also influenced by the

interaction between peptide-HLA complexes and T cell receptors

(TCR) (43, 72, 73). Therefore, in our study, we initially selected

neopeptides with strong binding affinity (< 2% percentile rank).

Subsequently, we employed the PRIME tool (43), which captures

molecular properties related to both antigen presentation and TCR

recognition, to estimate the immunogenicity of these selected

peptides. Interestingly, we observed that neoantigen candidates

derived from RNA-unique mutations or shared mutations

exhibited significantly higher immunogenicity compared to those

derived from DNA-unique mutations (Figure 4C). Schmidt et al.

have identified specific amino acid positions within the neopeptide

sequence, known as minimally impacting on HLA-I affinity

positions. These positions have been found to have significant

roles in binding to the T cell receptor (TCR) (43). Therefore, it is

plausible that amino acid changes in neopeptides derived from

RNA mutations may occur at such positions, resulting in enhanced

TCR affinity and consequently explaining their stronger

immunogenic i ty . Analys is of neoant igen candidates ’

immunogenicity, considering the HLA-I allele panels obtained

from our CRC patient cohort, revealed a notable dependence on

specific HLA-I alleles, thereby emphasizing the significance of

profiling the HLA-I genotype of cancer patients for personalized

immunotherapy (Figure 4D). The notable immunogenicity scores

of neoantigen candidates derived from RNA variants suggest their

potential to effectively activate T cell-mediated immune responses,

rendering them valuable candidates for clinical evaluation. Our in

silico analysis successfully identified a recurrent RNA-derived

neoantigen candidate (KMT2A_IN3105X) in 25 CRC patients.

Addit ional ly , we discovered three shared candidates

(ACVR2A_K435X, TP53_R428W, and KRAS_G12D) that have

been experimentally validated as highly immunogenic in publicly
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available databases (Figures 4E, F). These neopeptides hold

potential as public neoantigens, making them suitable candidates

for an off-the-shelf vaccine strategy. Thus, we speculate that

incorporating RNA-unique variants, which exhibit strong binding

affinity and higher transcription abundance, can serve as a strategy

to identify more effective targets for neoantigen-based vaccination.

To validate our hypothesis regarding the effectiveness of

neoantigen candidates derived from RNA variants compared to

DNA-derived candidates, we conducted ex vivo ELISpot assays on

four patients with available blood samples for PBMC collection. The

purpose was to assess the immunogenicity of predicted neoantigen

candidates originating from different mutation sources. For each

patient, we selected the top 10 mutations based on the predicted

binding affinity of the corresponding neopeptides to the patients’

HLA-I profile. To evaluate immunogenicity, we designed LPs

incorporating these mutations (Figure 5A). Consistent with our

analysis on 25 CRC patients, the proportion of LPs derived from

RNA-unique mutations with strong binding affinity was lower

compared to those derived from DNA-unique or shared

mutations (Figure 5B). However, in the ex vivo ELISpot assays,

three out of nine LPs (33.3%) carrying RNA-unique variants

triggered IFN-g production in PBMCs of three out of four

patients, while only two out of 13 LPs (15.3%) carrying DNA-

unique variants induced IFN-g production in a single patient

(Figure 5C). In line with the ELISpot data, we detected IFN-g
activation not only in CD8+ T cells but also in CD4+ T cells for most

of the tested long peptides. However, one LP derived from a DNA-

unique mutation exclusively activated CD8+ T cells (Figures 5D, E).

Our selection and design of LPs was based on the rank of

neopeptide candidates’ HLA-I binding affinity, aiming to

specifically activate CD8+ T cells. However, our findings align

with a previous study demonstrating that LPs covering target

mutations could be intracellularly processed to peptides of

differrent lengths and subsequenty presented to both CD4+ and

CD8+ T cells (74). Our ex vivo validation of neoantigens’

immunogenicity using patients’ PBMCs provides compelling

experimental evidence that relying solely on DNAseq data for

tumor mutation calling would overlook valuable neoantigen

candidates derived from RNA variants and that integrating

variant calling by RNAseq into this process significantly enhances

the likelihood of detecting immunogenic neoantigens.

This study has several l imitat ions that should be

acknowledged. Firstly, in order to develop a cost-effective

workflow for neoantigen identification, the analysis was focused

on SNV and indel variants within only 95 cancer-associated genes.

Consequently, other types of mutations, such as gene fusions and

alternative splicing, and other genes were not explored (75, 76).

Secondly, while RNAseq holds the potential to identify mutations

on a genome-wide scale, its sensitivity and specificity are

influenced by many factors such as sequencing depth, tumor

purity, and the variant calling pipeline. To mitigate the potential

impact of these biases, we carefully selected the optimal mutation

caller for RNAseq data, VarScan, after comparing its performance

with MuTect2. However, more validation studies are necessary to
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improve the variant calling tools for RNAseq data and standardize

their use. Thirdly, the study was conducted with a limited sample

size of 25 CRC patients, and the experimental validation of

predicted neoantigens through ex-vivo ELISpot assays was

performed on only four patients due to the availability of blood

samples. As a result, the generalizability of the findings may be

constrained. Finally, the assessment of the immunogenicity of

candidate LPs relied exclusively on ex-vivo stimulation of patients’

PBMCs, which may not accurately reflect the natural presentation

of neoantigens by HLA-I molecules expressed in patients’ tumor

cells. Therefore, additional experimental validation using liquid

chromatography mass spectrometry-based immunopeptidomics

may be required to confirm the presentation of predicted

neoantigens on HLA-I molecules in tumor cells.

Taken together, in this proof-of concept study, we provide

compelling evidence for the benefits of utilizing RNAseq-guided

mutations for neoantigen prediction, as it allows for the

identification of a larger pool of potential and highly

immunogenic neoantigens by leveraging additional information

from RNAseq data beyond conventional gene expression levels.
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SUPPLEMENTARY FIGURE 1

Evaluation of mutation calling tools for DNAseq and RNAseq data (A)
Comparison of performance of three indicated mutation callers on a

reference DNAseq dataset. (B) A Venn diagram illustrates the number of
mutations identified by Dragen and two RNA mutation callers, VarScan and

MuTect2. (C) Proportions of SNV and indel mutations called by indicated
tools. (D) Length distribution of INDEL mutations called by indicated tools

SUPPLEMENTARY FIGURE 2

Distribution ofmutation positions of DNAseq and RNAseq derived neoantigen

(A) Correlation between the numbers of variants and neoantigens within the
indicated groups. (B) A lollipop plot displays the percentage of neoantigens

from the indicated groups that contain mutations at positions 1 to 12. The
blue box represents the anchor site of the peptide and HLA-I molecule.

SUPPLEMENTARY FIGURE 3

ELISpot assays on eight long peptides which result in 2-fold change of IFN-

g spots.

SUPPLEMENTARY FIGURE 4

Gating strategy for detecting IFN-g production fromCD4+ and CD8+ T cells in

LP-stimulated PBMCs of 4 CRC patients.
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