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The recently launched Surface Water and Ocean Topography (SWOT) satellite will
simultaneously measure river surface water widths, elevations, and slopes. These
novel observations combined with assumptions for unobserved bathymetry and
roughness enable the derivation of river discharge. Derived discharge data will not
be available until the fall of 2023, despite the satellite having completed
approximately 6 months of observations for validation and calibration and
transitioning into the nominal orbit phase. SWOT has an irregular flyover
frequency, ranging from roughly 1 to 10 times per 21 days. Here, we present
how best to use SWOT data when it becomes live, including consideration of how
best to accommodate or utilize the irregular flyover frequency of SWOT as it
intersects with river reaches. We investigate the predicted capabilities of SWOT for
several major rivers using synthetic/theoretical SWOT time series data and
evaluate how the characteristics of river discharge dynamics and SWOT
sampling frequency impact discharge estimates. This analysis indicates the
irregular frequency of SWOT best captures the hydrology of larger, more
stable, rivers but presents challenges in smaller, flashier rivers, particularly
when sampling frequency decreases (i.e., falls to once per 21 days). Further, the
use of SWOT discharge for quantifying constituent fluxes is considered. We
provide recommendations concerning how to best use SWOT data for
applications related to hydrology and biogeochemistry, including how to
design studies to accommodate its irregular orbit cycle.
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1 Introduction

River discharge is a significant component of the hydrologic cycle. However, in situ
measurements are in decline mainly as a result of the cost and effort of maintaining
monitoring infrastructure (Gleason and Durand, 2020; Samboko et al., 2020; Gehring et al.,
2022), leaving few regions with concentrated in-stream networks and some major rivers
ungauged (Pavelsky et al., 2014; Frasson et al., 2021) Monitoring river discharge improves
understanding of stream ecosystem health, water quality, potential for flooding, and water
supply. Such measurements are critical for water resource management, plus the monitoring
and modeling of changing hydrologic conditions due to anthropogenic climate forcing
(Gleason and Durand, 2020; Gehring et al., 2022). Thus, there is a need for remote sensing as
a means to augment the limited availability of in situ streamflow measurements.
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The Surface Water and Ocean Topography (SWOT) mission
launched in December 2022 and is dedicated to measuring Earth’s
surface waters (Biancamaria et al., 2016), predominantly utilizing
data from the KaRIn (Ka-band Radar Interferometer) instrument in
its application to hydrology. SWOT followed a 6 month fast-
sampling orbit (1-day repeat) in which the calibration and
validation mission objectives were completed; the nominal orbit
phase, which follows a 21-day repeat cycle, began in mid-July of
2023. While the operational period is only expected to last 3 years,
many satellites tend to out-live such estimations (Nickles et al.,
2019). The 21-day orbit and the unprecedented wide swath (120 km
width) will provide global coverage and frequent sampling of major
water bodies, including an average revisit time of 10–11 days at the
equator (i.e., observations 1–2 times per 21-day orbit) that decreases
to 1–2 days in the Arctic (i.e., observations 10+ times per 21-day
orbit) (Biancamaria et al., 2016; Nickles et al., 2019). As SWOT will
sample different areas at different frequencies, it is instructive to
consider how best to utilizes these novel, temporally irregular
observations for hydrologic and related research (Revel et al., 2021).

To enable estimations of river discharge, SWOT will
simultaneously measure river water surface widths, elevations,
and slopes (Biancamaria et al., 2016). Initial research focused on
algorithms for processing SWOT data and deriving river discharges,
with uncertainty mainly related to the flow laws used and unknown
parameters such as bathymetry (Yoon et al., 2016). Biancamaria
et al. (2016) report SWOT water surface elevation to have a
minimum error of 10 cm for most rivers. Approximation of
average SWOT discharge in ungauged basins is expected to be
within 35% relative error (Durand et al., 2016). While SWOT has
the potential to improve upon current remote sensing capabilities, it
will not sample all rivers at the same temporal frequency—varying in
both the frequency of return (i.e., the number of returns per 21-day
orbit cycle will vary between 0- to 10-times depending on location)
and the distribution of returns (e.g., if a river is sampled 3 times per
21 day orbit it may be sampled on days 1, 4, and 20 or days 1, 10, and
15—not every 7 days).

Although other studies have attempted to predict SWOT based
discharge algorithm performance (Durand et al., 2016; Hagemann
et al., 2017; Revel et al., 2021), there has not been a study highlighting
the temporal nature of SWOT within the context of broader
hydrological or biogeochemical studies. For instance, Nickles
et al. (2019) focused only on temperate tributaries of the
Mississippi with return cycles of 1–4 days and Elmer et al. (2021)
used 10 Alaskan sub-basins with return cycles of 4–7 days and
similar hydrologic patterns. Solander et al. (2016) evaluated SWOT
temporal sampling in 63 California reservoirs, and determined the
conversion of water storage data to monthly values would not cause
severe aliasing effects. We move beyond these studies by considering
the average annual discharges and the volume of water export
captured using SWOT-based discharge for rivers of vastly
different discharges, hydrographs, and latitudes, and do so while
considering the impact of sampling frequency for each.

We also discuss the impact of the quality of discharge data
attained upon resultant fluvial fluxes of other relevant materials
including dissolved organic carbon (DOC) and sediment. The
instantaneous and annual loads of materials exported by rivers is
impacted by ephemeral hydrologic events, particularly floods
(Moatar et al., 2020) which can be missed by the non-continuous

sampling returns of satellites. For instance, DOC concentrations
increase with increasing discharge making flood events more
important for DOC fluxes annually than for water fluxes
annually (Raymond et al., 2016).

In this study, we aim to highlight the significance of SWOT on a
broader scale—demonstrating the potential of SWOT to capture
river discharge for reaches around the world, including Arctic rivers,
temperate rivers, and the largest river in the world, the Amazon, that
drains the equatorial Amazon rainforest. Daily discharge from
gauges were used to develop synthetic and “theoretical” SWOT
discharge time series, with the intention of evaluating the effects of
irregular sampling on the discharge estimated for rivers of different
sizes, hydrologic patterns, and latitudes. The following research
questions were evaluated: 1) How does the reliance on irregular
sampling impact discharge timeseries and annual water fluxes? and
2) What do the captured flow dynamics mean in terms of the flux of
materials (e.g., dissolved organic matter or sediment transport)?

2 Methodology

2.1 Site selection

In order to determine how frequently different river reaches will
be observed by the SWOT satellite, the SWOT orbit shapefile
(Centre National d’Etudes Spatiales) was overlain by the SWOT
River Database (SWORD), which divides river reaches into
approximately 10 km segments and archives spatial and reach
attributes for SWOT-observable rivers (Altenau et al., 2021).
Figure 1 displays the resulting observations for each reach per
21-day orbit cycle. Rivers at different latitudinal gradients were
then considered for analysis, following the goal of demonstrating the
applicability of SWOT in different areas. The resulting SWOT
observations per 21-day orbit at select gauge locations were
paired using the point location of the gauge and the orbit shapefile.

This study focuses on 4 rivers that span the latitudinal gradient
from the Arctic to the equator and a large range in river size:
Mackenzie (Canada), Iowa and Mississippi (United States), and
Amazon (Brazil). At their gauging stations, these rivers’ reaches are
SWOT observable, being greater than 50–100 m in width (Pavelsky
et al., 2014; Durand et al., 2016). The rivers range in size, hydrologic
patterns, and latitude providing valuable insights into how the flow
dynamics of rivers interact with the different temporal frequencies of
sampling by SWOT to impact remote sensed estimates of discharge
(Table 1).

Starting in the Arctic, the Mackenzie River is gauged at
Tsiigehtchic, has a watershed area of 1.8 million km2, and is the
4th largest Arctic River based on annual discharge (McClelland
et al., 2023). Discharge data were accessed from ArcticGRO
(McClelland et al., 2023). The temperate Iowa River is a tributary
to the Mississippi River with a watershed of 32,300 km2 upstream of
the gauging station in Wapello, IA (USGS 05465500). The
Mississippi River was sampled at Vicksburg (USGS 07289000),
where it has an upstream watershed area of 2.9 million km2,
which is similar to that of the Mackenzie. Daily discharge data
for the Iowa and Mississippi Rivers were accessed through the
United States Geological Survey (USGS) National Water Quality
Information System (USGS, 2023). The Amazon River is the largest
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river on Earth with a watershed of approximately 6.3 million km2.
Daily discharge data for the Amazon River were downloaded from
the Óbidos gauging station supported by the Brazilian National
Agency for Water. Table 1 shows the point coordinates for the
gauged river locations, as well as the SWOT information obtained
using the intersections of the SWOT orbit shapefile.

2.2 SWOT synthetic timeseries

Three years of gauge and modeled SWOT discharge data
(2019–2021) are analyzed in this study to reflect the expected
lifetime of SWOT. The approach of Nickles et al. (2019) for
generating synthetic SWOT discharges at each gauge location is
used, which follows obtaining discharge measurements at
corresponding SWOT overpass dates and the incorporation of
random uncertainty based on the described errors (Relative Root-
Mean-Square Error and relative bias) in the Bayesian AMHG-
Manning algorithm (Hagemann et al., 2017). In this study, one
hundred iterations of uncertainty were added to each synthetic
SWOT time series using normal distributions transformed in the
log-space to capture the uncertainty in large and small discharge
measurements (Nickles et al., 2019). This methodology allows the
evaluation of the synthetic time series with respect to 1) temporal
frequency and 2) uncertainty of the discharge related to the selected

discharge algorithm [in this case, the uncertainty reported from the
Bayesian AMHG-Manning algorithm from Hagemann et al. (2017),
with an emphasis on the former in this study]. Realistically, the
accuracy of real-time SWOT discharge will mainly be governed by
flow laws used to derive discharge, discharge inversion algorithms for
unobserved parameters, and physical observations of elevation, width,
and slope (Yoon et al., 2016; Frasson et al., 2021). Notably, SWOT
discharge estimates will be limited by bias (systematic error) that is not
accounted for using the synthetic time series (Durand et al., 2023).
Other studies have evaluated the accuracy of discharge and the
sensitivity of measurements to selected algorithms in depth
(Durand et al., 2016; Gleason and Durand, 2020; Altenau et al., 2021).

2.3 Effects of sub-sampling

In addition to generating synthetic SWOT time series at select
gauge locations using the SWOT orbit, the impact of SWOT’s irregular
temporal frequency on estimated hydrology is evaluated by sampling
gauge discharge time series throughout its 21-day interval. The objective
of this methodology is to demonstrate the effects of temporal sampling
in rivers where flow characteristics vary. Using the gauge data, monthly
maximum flows and subsequent reductions in flows from 0 to 21 days
after the peak event were determined to assess how sensitive to under
sampling a given river might be (i.e., to determine the percentage of

FIGURE 1
Number of observations per orbit cycle for the Surface Water and Ocean Topography (SWOT) satellite along rivers more than 50–100 km in width
(represented by SWORD river reaches).

TABLE 1 Gauge metadata and the days of SWOT observations used for the synthetic time series for the rivers used in the study. The average annual flows (Q)
observed by the gauge and synthetic time series are also shown.

River Lat Long Area (km2) Gauge Q (m3·s−1) SWOT Q (m3·s−1) Day of Obs

Mackenzie 67.433 −133.75 1.8 × 106 8,700 7,600 1, 2, 6, 12, 16

Iowa 41.178 −91.18 3.2 × 104 344 304 8, 17, 19

Mississippi 32.315 −90.90 2.9 × 106 23,000 20,500 7, 18

Amazon −1.933 −55.5 6.3 × 106 168,000 153,000 6
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peak discharge missed if the river is sampled 0–21 days after peak
discharge).

Further exploring the various effects of sampling for different
rivers, “conceptual” SWOT time series were generated by assuming
SWOT will observe the rivers 1-, 3-, and 6-times per its 21-day cycle
(representing a range fromminimal to near-maximum observations
for the selected rivers). Including these three observation rates per
river allows the impact of theoretical observation frequency upon
estimated discharge to be determined. Included in these
observations is the actual observation rate for each river, which
ranges from once per 21 days for the Amazon to five times per
21 days for the Mackenzie River (Table 1).

3 Results

3.1 Annual water flux

Daily discharge data available from the select gauges are used
here as the “truth” time series. The synthetic SWOT time series for
the four rivers (one hundred iterations) are shown in Figure 2, where
random uncertainty has been added to simulate possible error from
SWOT. In order to compare SWOT time series to the gauge time
series, linear interpolation is assumed between observations for the
SWOT synthetic data, allowing for a “daily” to daily comparison.

Using a random synthetic time series (Figure 2), average discharge
was 2.24 × 108 m3·yr−1 for the Mackenzie, 8.77 × 106 m3·yr−1 for the

Iowa, 5.92 × 108 m3·yr−1 for the Mississippi, and 4.41 × 109 m3·yr−1 for
the Amazon. Comparing to gauge-based estimates (Table 1), SWOT
underestimated annual discharge by 11.7%, 11.5%, 10.6%, and 9%, for
theMackenzie, Iowa,Mississippi, and Amazon Rivers, respectively. The
percent difference in average discharge from SWOT to gauge time series
for each year ranges from −13% to −8% for the Mackenzie, −13%
to−9% for the Iowa,−15% to−3% for theMississippi, and−19% to−1%
for the Amazon.

3.2 Sampling frequency and bias

Figure 4 displays the various effects of observation frequency for the
rivers in this study. Here, the maximum monthly discharge is
determined and subsequent discharge values are recorded,
simulating what would happen if SWOT were to observe the river
within x days of the peakmonthly flow. The Amazon River displays the
smallest change in discharge (~10%) as the number of days from peak
increase. The Mackenzie and Mississippi Rivers display a similar trend,
although the differences in discharge were greater as observations move
farther from the day of the peak. More than 15% of the peak monthly
flow is not captured in the observation 10 days from the peak for the
Mackenzie and Mississippi Rivers. In the Mackenzie River, the
maximum percent difference occurs 19-days post peak (42%) and
decreases (27%) 20-days post peak, although this is likely an artificial
improvement. The Iowa River exhibited the greatest sensitivity to
sampling frequency, with a 50% drop in estimated discharge

FIGURE 2
Example time series for the (A)Mackenzie River (Tsiigehtchic) in the Northwest Territories of Canada, (B) Iowa River (USGS 05465500), (C)Mississippi
River (USGS 07289000) in the United States, and (D) Amazon River (Óbidos) in Brazil, where the gauge discharge is shown in black and the range in
uncertainty on the time series is shown in grey using random normal distribution in the log space. 100 iterations of uncertainty were run for each time
series.
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between monthly peak discharge and a theoretical sampling occurring
10- or 20-days later.

The effects of sampling frequency are further evaluated in
Figure 5, where the volume of water captured by each
incremental flow value is compared to the volume of flow from
the gauge. Across all four rivers, the cumulative volumes of water
from the various SWOT time series are less than that of the gauges
(i.e., annual discharge is underestimated by SWOT compared to
gauges; Table 1). If the Mississippi River were to be observed once
per SWOT’s 21-day orbit, the satellite would capture 68% of the total
volume of water. In comparison, the Amazon River could be
observed at any of the theoretical frequencies (1, 3, or 6), and at
least 93% of the total volume would be accounted for.

Figure 6 displays flow exceedance curves for the gauged
discharge data and SWOT time series. Flow exceedance curves
show how frequently a given discharge value will occur, or how
often this value is exceeded (i.e., by some percentage of time). The
median daily flow is shown at 50% exceedance. In most of the rivers,
the median flow values given by the curves of various SWOT
temporal time series differ from those of the gauge. The median
daily flow values given by the gauges for the Mackenzie, Iowa,
Mississippi, and Amazon Rivers are approximately 6,600, 300,
23,000, and 188,600 m3·s−1, respectively. Median flow values given
by the SWOT time series are between 5,500 and 6,6,00 m3·s−1 for the
Mackenzie, 290–320 m3·s−1 for the Iowa, 18,900 and 20,000 m3·s−1
for the Mississippi, and 156,000 to 160,000 m3·s−1 for the Amazon.

4 Discussion

4.1 Variations in sampling frequency

On average, higher latitude reaches will be observed at higher
frequencies, though the mainstems of some major tropical rivers will
also include sites that are observed 4 to 5 times per orbit (Figure 1). In
the tropics and elsewhere, the exact physical point location of a river’s
gauging station may be observed infrequently in an orbit cycle.
However, nearby reaches may be observed more frequently and
used as surrogates to increase sampling frequency when desired
(Patil and Stieglitz, 2012). The Amazon at Óbidos provides one such
example, where although there is only one observation per 21-day orbit
directly at Óbidos, nearby sites on the mainstem (15–20 km upstream)
could provide surrogate observations at least 3 times per cycle. In such a
case, SWOT data might be tuned to predict discharge three times per
21 days and performance assessed against the nearby gauge, an
improvement of 5% on average discharge from sampling frequency
alone for the Amazon. This observation is the basis for evaluating how
different riversmay be observed by SWOT (e.g., using 1 observation per
orbit cycle, 3 observations per orbit cycle, etc.).

4.2 The influence of sampling frequency
upon estimate discharge in the Amazon

The method used here to add uncertainty to the synthetic SWOT
time series (Nickles et al., 2019) added a large amount of error
(Figure 2). This effect was most pronounced in the Amazon due to
its high flow rate (Figure 3). This added error may overestimate or

incorrectly scale true errors with discharge (Figure 3). Actual
uncertainty for the future SWOT-derived discharge will result
mainly from physical measurement precision and the algorithms
used to calculate discharge (Yoon et al., 2016). However, the
adopted approach (Nickles et al., 2019) provides a useful estimate of
error. Beyondmeasurement and algorithm error, the irregular sampling
and river hydrologic patterns and size interact to impact the accuracy of
discharge estimates. For the Amazon, discharge was least sensitive to
sampling frequency, only falling by 5.4% 10-days post peak monthly
discharge and 11.1% nearly 20-days post monthly discharge. This result
is likely due to the large size and stable hydrologic flow of the Amazon
(Revel et al., 2021), which only varies by 20%–25% across its annual
hydrograph (Figure 2). The synthetic and theoretical time series
(Figures 5, 6) represent how well SWOT can capture the dynamics
of flow for a given river (under different sampling regimes), with respect
to the volume of water captured and the probability of flow events
occurring. The total volume of water does not vary much across SWOT
time series compared to the gauge in the Amazon (Figure 5). However,
lower flows (e.g., 80,000 to 140,000 m3·s−1) account for nearly 40%of the
total volume when using 3 SWOT observations per cycle as opposed to
29% using the minimal SWOT observations (e.g., once per 21-days).
For the gauge flow, these discharge values account for only 20% of the
total volume. This discrepancy points to the added uncertainty playing a
greater role in the derived discharge than temporal frequency for the
Amazon. Assuming uncertainty will be less for SWOT-derived
discharge measurements on larger rivers given the larger widths and
slopes of the channel reducing impact of cross-sectional averaging
(Wilson et al., 2015), total errors will likely be lower that shown here for
the Amazon and other major tropical rivers (e.g., Congo, Orinoco).

4.3 The influence of sampling frequency
upon estimate discharge in the Mackenzie
and Mississippi

The Mackenzie and Mississippi are large rivers (annual average
discharge of 8,700 and 23,000 m3·s−1), though considerably smaller than

FIGURE 3
Cumulative distribution function (CDF) illustrating uncertainty in
the river reaches used in this study. The CDF displays how larger errors
using the random uncertainty distribution method are associated with
rivers with larger discharge measurements.
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the Amazon (annual average discharge of 168,000 m3·s−1). Annual
discharge across the 3-year range varies in these rivers by 58% and
45% (Figure 2). These rivers show considerably more sensitivity to
sampling frequency than the Amazon, with an underestimation of at
least 10% if peak discharge is missed by a week and increasing error (up
to 42% for the Mackenzie and 23% for the Mississippi) as the lag

increases to nearly 19 days after the peak (Figure 4). It is likely the
improvement shown for the Mackenzie River 20 days after the peak
occurs is artificial, given it does not make sense mechanistically for
rivers and does not occur in the other three rivers in this analysis.
Despite the similar size of these rivers, the hydrographs of the
Mackenzie and Mississippi are quite different. The Mackenzie River,

FIGURE 4
The percent change in discharge from themaximummonthly discharge compared to the subsequent discharge values observed 1–20 days later for
the Amazon, Mississippi, Mackenzie, and Iowa Rivers.

FIGURE 5
Ratio of the cumulative flow from the synthetic SWOT time series to the total volume of flow accumulated for the gauge for the (A)Mackenzie, (B)
Iowa, (C)Mississippi, and (D) Amazon Rivers. The solid black line shows gauge data, the solid colored line shows conceptual SWOT data at the frequency
SWOT will observe the site, and dashed lines are conceptual discharge time series (e.g., if SWOT were to observe the river x times per orbit cycle).
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like other Arctic rivers, has a large spring freshet fueled by snowmelt,
exhibits other discharge peaks through summer into fall due to rainfall
events, and then returns to winter baseflow conditions as the watershed
freezes in winter (Figure 2; Lesack et al., 2013). Although theMississippi
River also receives some inputs of snowmelt from its northern
tributaries during the spring, this is followed by periods of lowest
flow in the driest summer months (Reiman and Xu, 2019), and
moderate flows in winter (Figure 2). The Mississippi River also
demonstrates more variability on a year-to-year basis compared to
theMackenzie (Figure 2). In theMackenzie River, nearly half of the total
volume of water is accounted for, in all of the time series (gauge and
SWOT), within flows between 2,000 and 12,000 m3·s−1 (Figure 5).
Higher flows are not observed in the synthetic SWOT time series, as
the cumulative volumes are between 81% and 91% of the gauge total.
Daily values are generally underestimated across SWOT theoretical
frequencies in the Mississippi River, resulting in significantly smaller
cumulative volumes of water (Figure 5). Even for the SWOT time series
which represents frequent observations (e.g., 6 times every 21 days),
SWOT-estimated discharge values are lower for the Mississippi River
(Figure 6).

4.4 The influence of sampling frequency
upon estimate discharge in the Iowa

The Iowa River was the smallest river in our analysis and the
flashiest, with variability of 74% in discharge values across the 3-year

time period (Figure 2). As a result, the Iowa had the greatest sensitivity
to sampling frequency with a difference in discharge underestimated by
9.1% should an observation occur just 1 day after peak discharge
(Figure 4). This is consistent with research which concludes
hydrologic regimes are often more difficult to capture using
discontinuous satellite data in smaller, more variable rivers (Solander
et al., 2016; Donchyts et al., 2022; Nielsen et al., 2022). Underestimation
of peak discharge increased further to 51.2% assuming peak monthly
discharge is missed by 10 days and 52% when missed by 20 days. The
underestimation in peak discharge when sampled 10- or 20-days too
late increasing with decreasing river size indicates that river size and the
related river flashiness is a key driver of this trend and is a consequence
of scale-dependent factors (flood routing and runoff) within the
watershed (Baker et al., 2004). This is demonstrated further by the
differences in the hydrograph of the Iowa versus the hydrographs of the
Mackenzie andMississippi River—given these two similarly sized rivers
are similarly sensitive to sampling frequency (Figure 4). Further,median
flow values of the Iowa River do not differ drastically between SWOT
time series, but higher flows (e.g., near 0% exceedance) are consistently
underestimated, likely as a result of being unobserved (Figures 5, 6).
Flow duration curves, used here to describe the probability of daily
discharge occurring, do not capture seasonal changes as hydrographs
often do. Flashier rivers will have different exceedance curves at variable
temporal scales (e.g., weekly, monthly; Searcy, 1969). Given the nature
of some of the selected sites, there are a multitude of factors further
impacting river discharge that could be explored further once SWOT
data is released.

FIGURE 6
Flow exceedance curves for each site using the gauged time series and the synthetic SWOT time series for the (A) Mackenzie, (B) Iowa, (C)
Mississippi, and (D) Amazon Rivers. The solid black line shows gauge data, the solid colored line shows conceptual SWOT data at the frequency SWOTwill
observe the site, and the dashed lines are conceptual SWOT time series. Linear interpolation was assumed for the days where there is no observation in
order to make the comparison between daily observations.
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Previous research concluded the combination of SWOT
temporal frequency and derived uncertainty was likely the cause
of higher error in discharge (Nickles et al., 2019). Our findings
suggest smaller rivers such as the Iowa may be subject to greater
errors because the sampling frequency of SWOT will miss short-
lived high discharge events in these flashy systems, while larger
rivers which are relatively insensitive to sampling frequency, such as
the Amazon, may be more sensitive to derived uncertainty in
instantaneous discharge. Finally, even if SWOT is able to
accurately measure instantaneous discharge for small rivers, a
river that is minimally observed by SWOT (e.g., once or twice
per orbit cycle) is expected to have larger errors in discharge.

4.5 How will irregular sampling impact
constituent fluxes?

A broader question, branching out of hydrology, is what
becomes of river discharge measurements? Discharge data are
necessary for water management (e.g., flood protection; Wohl,
2020), biogeochemical studies (e.g., constituent or sediment
transport; Bogen, 1980; Raymond et al., 2016), and monitoring
environmental changes (e.g., climate or anthropogenic impacts;

Depetris, 2021). Quantifying constituent transport through rivers
is a significant field of research that is often limited to areas where
gauges (or in situ measurements) are present (Glysson, 1988).
Hydrologic events are critical for material export. For instance,
dissolved organic carbon (DOC) concentrations generally increase
with increasing river discharge, amplifying the importance of large
events for DOC export (Raymond et al., 2016). In smaller rivers, this
effect is perhaps most pronounced, with studies suggesting that the
largest events that occur across less than 20 days can export over
70% of annual DOC fluxes (Raymond and Saiers, 2010). This trend
is also observed in large Arctic Rivers, where nearly 60% of the total
fluxes of sediment and DOC occur during the freshet (Fabre et al.,
2019). Thus, it is critical that large events are captured and captured
accurately when discharge data is used to estimate fluvial export of
DOC and other biogeochemically relevant materials.

Here, we consider what would happen to constituent fluxes if we
rely on irregular sampling using the volume of water captured with
varying observations per orbit cycle. It appears there is the potential
for underestimation. In the Amazon River, more than 20% of the
annual discharge occurs when instantaneous discharge exceeds
220,000 m3·s−1, according to gauged time series; SWOT time
series indicate less than 10% of the total flux occurs at these
higher discharge values (Figure 7). For the Mississippi River,

FIGURE 7
Sum of the total water flux for the instantaneous discharge represented at each bin for the (A)Mackenzie, (B) Iowa, (C)Mississippi, and (D) Amazon
Rivers. The secondary axis displays the percent of flux for each of the SWOT time series compared to the total flux derived from the gauge. Dashed lines
represent conceptual SWOT time series.
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nearly 15% of the total estimated water flux using SWOT comes
from discharge of approximately 20,000 m3·s−1. In comparison, the
annual discharge estimated using gauged discharge data show most
of the water (~30%) is exported by instantaneous discharges of
35,000 to 40,000 m3·s−1. For the Iowa River, higher discharge values
(>1,600 m3·s−1) account for 10% of the annual discharge, but these
high flows are missing completely in the SWOT time series
(regardless of frequency), further demonstrating the sensitivity of
smaller rivers to missing large events. Thus, in each of these three
cases, across a wide range of river sizes, discharges at high flows are
underrepresented in the SWOT discharge record. As DOC
concentrations increase with discharge in most rivers and makes
large events disproportionately important to DOC export with
respect to water export, missing or underestimating period of
high instantaneous discharge in SWOT data will lead to similarly
disproportionate underestimates of DOC fluxes.

This effect appears less pronounced in the Mackenzie River,
where fluxes at higher instantaneous discharges (20,000 to
30,000 m3·s−1) are comparable between gauge (~15% of total) and
SWOT data (~11% of total), resulting in a more realistic estimate of
both water and other constituent fluxes at higher discharges. The
Mackenzie is included here as a representative of other large, Arctic
rivers. The Arctic rivers export large amounts of water (and thus
organic matter) to the Arctic oceans—more than previously thought
according to a recent study (Feng et al., 2021), considering the
hydrology of these rivers is generally complex and poorly
understood (Lesack et al., 2013). Given the significance of the
Arctic rivers to global biogeochemistry, more frequent SWOT
observations at higher latitudes are promising (Biancamaria et al.,
2016).

5 Conclusion

The novel observations provided by the Surface Water and
Ocean Topography (SWOT) mission will improve remote sensed
estimates of water discharge and should also improve flux estimates
of the material water carries. However, to make the most of SWOT
data, it is important to consider how sampling frequency will impact
derived water and other fluxes at a given site on a given river. The
error added to instantaneous estimates of discharge in our synthetic
SWOT data may prove an overestimate of errors or at least an
incorrect scaling, such that errors globally may be lower or may at
least be much lower in important major world rivers such as the
Amazon. We will soon know the answer to this question with the
culmination of SWOT data calibration and the release of calibrated
data. Many regions will benefit from additional discharge
information and the frequency of this novel data will scale from
highest sampling frequency (~10 per 21 days) in the Arctic to low
sampling frequencies in the tropics and throughout much of the
southern hemisphere (Figure 1). For the Arctic Rivers, this will mean
monthly peak discharge events may be observed within a few days of
the event, improving our ability to observe water fluxes for these
critical, remote, and climate-sensitive systems. Although rivers at
lower latitudes will sampled less frequently, our findings suggest
larger, more stable rivers will not be impacted by the temporal
frequency of the satellite. In general, discharge in smaller, flashier
systems may prove harder to observe in high fidelity. Thus, smaller

tropical and southern hemisphere systems will likely benefit least
from the SWOT mission. SWOT and any satellite or gauge
measuring at lower frequency than a river’s flood response time
will under sample short-lived periods of highest flow. As a result,
annual discharge will likely be underestimated, and the fluxes of
other materials rivers carry to the sea will likely be underestimated
further still. These limitations need to be considered when using
SWOT data but are inherent to all current satellites. Despite these
limitations, SWOT provides a novel and powerful new tool with
which to see Earth’s waters and determine the flows of ungauged
rivers. We hope the insight provided here aids in realizing this
potential.
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