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Introduction: Dynamic contrast-enhanced (DCE) MRI has important clinical value
for early detection, accurate staging, and therapeutic monitoring of cancers.
However, conventional multi-phasic abdominal DCE-MRI has limited temporal
resolution and provides qualitative or semi-quantitative assessments of tissue
vascularity. In this study, the feasibility of retrospectively quantifying multi-phasic
abdominal DCE-MRI by using pharmacokinetics-informed deep learning to
improve temporal resolution was investigated.
Method: Forty-five subjects consisting of healthy controls, pancreatic ductal
adenocarcinoma (PDAC), and chronic pancreatitis (CP) were imaged with a 2-s
temporal-resolution quantitative DCE sequence, from which 30-s temporal-
resolution multi-phasic DCE-MRI was synthesized based on clinical protocol. A
pharmacokinetics-informed neural network was trained to improve the temporal
resolution of the multi-phasic DCE before the quantification of pharmacokinetic
parameters. Through ten-fold cross-validation, the agreement between
pharmacokinetic parameters estimated from synthesized multi-phasic DCE after deep
learning inference was assessed against reference parameters from the corresponding
quantitative DCE-MRI images. The ability of the deep learning estimated parameters
to differentiate abnormal from normal tissues was assessed as well.
Results: The pharmacokinetic parameters estimated after deep learning have a high
level of agreement with the reference values. In the cross-validation, all three
pharmacokinetic parameters (transfer constant Ktrans, fractional extravascular
extracellular volume ve, and rate constant kep) achieved intraclass correlation
coefficient and R2 between 0.84–0.94, and low coefficients of variation (10.1%, 12.3%,
and 5.6%, respectively) relative to the reference values. Significant differences were
found between healthy pancreas, PDAC tumor and non-tumor, and CP pancreas.
Discussion: Retrospective quantification (RoQ) of clinical multi-phasic DCE-MRI is
possible by deep learning. This technique has the potential to derive quantitative
pharmacokinetic parameters from clinical multi-phasic DCE data for a more objective
and precise assessment of cancer.
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1. Introduction

Pharmacokinetic parameters estimated from quantitative DCE-

MRI provide quantitative measurements of tissue perfusion and

flow characteristics and are promising imaging biomarkers to

help differentiate tumor stages and assess prognosis before

treatment (1, 2). However, quantitative analysis of clinical multi-

phasic abdominal DCE-MRI has been limited (3) due to low

temporal resolution (approximately 30 s) with a small number of

phases (e.g., n = 4).These limitations result from the intrinsic

trade-off of MRI between spatial resolution, temporal resolution,

and spatial coverage, as well as the need for breath-holding in

abdominal MRI. Such low temporal resolution constraints hinder

the accurate tracking of dynamic contrast changes, necessitating

improved methods for temporal interpolation to enable precise

pharmacokinetic parameter estimation.

Semi-quantitative or quantitative analyses with a population-

based arterial input function (AIF) are possible (4, 5). However,

these methods are subject to various factors that affect signal

intensities such as the specific scanner and imaging protocol.

While qualitative analysis typically categorizes the type of

enhancement curve, quantitative analysis uses mathematical

models to derive precise parameters describing physiological

processes such as blood flow, permeability, and extravascular

extracellular space volume. Although advanced techniques such

as multiparametric MRI (mpMRI) (6) and Multitasking DCE (7)

have sufficient temporal resolution for quantification, they

require special sequences and reconstruction pipelines that are

not routinely available on clinical systems. Therefore, parametric

quantification based on conventional DCE-MRI is highly

desirable, as it has the potential to improve DCE-MRI

applications without changing the clinical imaging protocols.

In the last few years, deep learning (DL) techniques have been

actively explored for applications in medical imaging (8), such as

image registration, spatial super-resolution, denoising, and disease

prediction. Several studies investigated the potential of applying

DL to DCE-MRI, including tumor segmentation (9), therapy

response prediction for cancer (10), lesion malignancy

classification (11), and pharmacokinetic parameter estimation from

time-resolved DCE-MRI (12–17). These studies demonstrated the

capability of DL to extract information and simplify post-

processing, as well as the growing interest in pharmacokinetic

modeling. However, most of these studies were conducted in

qualitative or semi-quantitative DCE-MRI, which will suffer from

the limitations of the qualitative or semi-quantitative analysis.

Studies conducted in quantitative time-resolved DCE-MRI might

not be directly translated into clinical application since most

standard-of-care protocols still adopt multi-phasic DCE-MRI.

In this work, we describe a novel quantification method for

multi-phasic abdominal DCE-MRI from standard-of-care

protocols, retrospectively improving temporal resolution via

pharmacokinetics-informed deep learning. Multi-phasic abdominal

DCE-MRI was synthesized from Multitasking DCE acquisitions, a

novel quantitative DCE technique capable of 2-s temporal

resolution (7). The proposed method was able to recover 2-s

temporal resolution DCE-MRI and estimate pharmacokinetic
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parameters from the synthesized multi-phasic data. The agreement

of the estimated pharmacokinetic parameters (transfer constant

K trans, fractional extravascular extracellular volume ve, and rate

constant kep) was assessed against the references estimated from 2-

s temporal resolution Multitasking DCE. The ability of

pharmacokinetic parameters estimated using synthesized multi-

phasic abdominal DCE-MRI to differentiate abnormal from

normal tissues was examined. By addressing the low temporal

resolution challenge, this work paves the way for broader clinical

applicability of quantitative analysis, enhancing the utility of

standard DCE-MRI protocols in tumor assessment.
2. Materials and methods

The work hypothesized that pharmacokinetics-informed deep

learning could recover high-temporal-resolution DCE-MRI from

clinical multi-phasic DCE-MRI, which may allow accurate

estimation of pharmacokinetic parameters. Forty-five subjects

underwent Multitasking DCE-MRI. Multi-phasic DCE-MRI data

were synthesized by downsampling the 2-s temporal-resolution

Multitasking DCE data to match the clinical imaging protocol. A

deep learning pharmacokinetic quantification network was pre-

trained by simulation, then a pharmacokinetics-informed deep

learning network was trained to improve the temporal resolution

for pharmacokinetic parameter estimation. We name the whole

proposed methodology as retrospective quantification (RoQ). The

performance of kinetic parameters estimated using synthetic

multi-phasic DCE-MRI based on deep learning was assessed in

two aspects: (1) agreement against the 2-s temporal-resolution

reference. (2) capability in differentiating pancreas in healthy

subjects and patients with pathologically confirmed pancreatic

ductal adenocarcinoma (PDAC) and chronic pancreatitis (CP).

Implementation code of the proposed method was made

available asopen-source at https://github.com/LockyChao/RoQ-

DCE-DL/tree/master.
2.1. In-vivo data acquisition and synthesized
data generation

2.1.1. In vivo data acquisition
The in vivo study was approved by the local institutional review

board. Written informed consent was obtained in all subjects.

Forty-five subjects were imaged, including 22 healthy volunteers,

14 patients with pathologically confirmed PDAC, and 9 patients

with chronic pancreatitis.

All imaging data used in training and validation were collected

on a 3 T clinical MR scanner (Biograph mMR, Siemens Medical

Solutions, Erlangen, Germany). The routine protocol for

pancreas and tumor delineation was acquired first. It included

3D T1W volumetric interpolated breath-hold examination

(VIBE) with Dixon fat suppression, multi-slice T2W half-Fourier

acquisition single-shot turbo spin echo (HASTE), a multi-slice

single-shot (SS) EPI DWI, and a 2D MOLLI T1-mapping

sequence. A six-dimensional free-breathing Multitasking
frontiersin.org
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sequence was used for DCE MRI (7). 0.1 mmol/kg gadolinium-

based contrast media (Gadavist, 0.1 mmol/kg; Bayer Schering

Pharma, Berlin, Germany) was administered 3 min after the start

of data acquisition with an injection rate of 2 ml/s. Multitasking

imaging parameters include FOV = 380 × 268 mm2, spatial

resolution = 1.4 mm × 1.4 mm × 6.0 mm, number of slices = 48,

TR/TE = 5.60/2.45 ms, flip angle = 10°, and a total imaging time

of 12 min. Image reconstruction and post-processing were

performed offline by the built pipeline in our prior work (7) in

MATLAB (R2018a, MathWorks, Natick, MA), resulting in

dynamic T1 maps at 2-s temporal resolution. The pancreas and

tumors were manually delineated by an experienced radiologist.
2.1.2. Clinical abdominal multi-phasic DCE data
synthesis

The data preprocessing pipeline is illustrated in Figure 1A.

Multitasking DCE generates dynamic T1 maps whereas clinical

DCE-MRI acquires T1W images. The FLASH signal equation was

therefore used to convert high-temporal resolution T1 maps to

high-temporal resolution T1W signals, which served as the

reference for deep learning. Multi-phasic DCE-MRI was synthesized

from a high-temporal resolution T1W signal based on a typical

clinical abdominal DCE-MRI protocol (18), as shown in Figure 2.

Abdominal multi-phasic DCE-MRI has one pre-contrast and

three post-contrast phases: arterial, portal, and delayed

enhancement. A test bolus scan is usually acquired after the pre-
FIGURE 1

(A) This figure illustrates the data preprocessing pipeline. The T1W DCE-MRI sig
resolution R1 from Multitasking DCE data via the FLASH signal equation. These
according to the clinical protocol. During the neural network training process, S
Different temporal interpolation methods. The synthesized multi-phasic DCE-
upper), where the time steps between two clinical phases were set to be the
time steps between two clinical phases were linearly interpolated; by RoQ
temporal super-resolution method. (C) Simulation pipeline for the bolus arri
time shift, where the first post-contrast phase was sampled at the AIF pea
contrast phase was sampled with displacement Dt to the AIF peak. The temp
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contrast phase to estimate contrast agent arrival time to the region

of interest, which is used to time the start of the arterial phase in a

full-dose DCE scan, such that the central k-space is acquired at

peak arterial contrast agent concentration. Subsequent post-contrast

phases are timed based on the clinical protocol used at our

institution, resulting in a 30-s temporal resolution (10-s acquisition

and 20-s gap).

The standard Tofts model was used for pharmacokinetic

modeling in the pancreas, as it is well suited to PDAC (19). To

linearly convert T1W signal intensity to contrast agent

concentration for parametric quantification, it was baseline-

corrected and normalized by the pre-contrast signal S0.

DL-based DCE quantification was performed on a voxel-by-voxel

basis. Because that the standard Tofts model is not appropriate for all

tissues, especially voxels with high noise level, voxels were pre-

screened based on the normalized fitting error of the standard Tofts

model, i.e., by dividing the fitting error by peak signal intensity

(Figure 3). This also removed voxels with low SNR which may not

be useful inputs for training. An empirical threshold of 0.7 was

chosen as a trade-off of dataset size and data quality, resulting in

57,891 voxels for training the DL model. A total time step of 130

or a total time duration of 260-s in the DCE time course was used.
2.1.3. Low-temporal resolution data synthesis
We utilized two temporal interpolation methods from low

temporal resolution data for comparison. Illustrated in
nal Sref and arterial input function AIFref are generated from 2-s temporal-
signals were downsampled to multi-phasic DCE-MRI signals Sin and AIFin
in or AIFin served as inputs and Sref or AIFref served as reference signals. (B)
MRI Sin (left) was temporally interpolated by constant interpolation (right
phase before time step; by linear interpolation (right middle), where the
(right bottom), where the curves were obtained from the proposed

val time displacement. Upper figure showed the downsampling without
k. Lower figure showed the scenario with time shift, where first post-
oral resolution and number of phases were kept the same.

frontiersin.org

https://doi.org/10.3389/fradi.2023.1168901
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/


FIGURE 2

A typical abdominal DCE-MRI protocol. The pre-contrast phase is followed by a test bolus, from which the contrast media bolus delay time is measured
and then used to time the subsequent arterial phase. Portal and delayed phases are acquired after respiratory rest time gaps.

FIGURE 3

Data screening pipeline. The synthesized T1W DCE-MRI Sref (upper left) was fitted using the standard Tofts model, resulting in a normalized fitting error
map (lower left). Example plots for well-fitted (red circle) and poorly-fitted pixels (blue circle) are shown.
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Figure 1B, the first interpolation method, referred to as constant

interpolation, applied a step-like approach, creating a distinct

separation between each phase. The second method implemented

linear interpolation, where each pair of neighboring phases

formed a linear segment, providing a smoother transition

between the stages. These methods allowed for comparisons of

different strategies for handling low-temporal resolution data,

thus assessing their impact on the analysis.
Frontiers in Radiology 04
2.2. The pharmacokinetics quantification
network

Inspired by existing research (14, 15) on the direct estimation of

pharmacokinetics, we developed a pharmacokinetics quantification

network. Trained by simulation prior to the temporal super-

resolution network, this network provides pharmacokinetics

constraints during training and enables a more efficient
frontiersin.org
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quantification process. Figure 4 illustrates the simulation flowchart.

Random arterial input function (AIF) model parameters (20) were

generated to create a population-based AIF curve, which was then

randomly scaled for data augmentation. We generated random

pharmacokinetic parameters within a physically reasonable range

(K trans: 0.01–12 1/min, kep:0.01–24 1/min, ve: 0.1–0.8) using the

standard Tofts model to obtain the tissue contrast curve Ct(t).

Gaussian noise was added to Ct(t), then Ct(t) and AIF was passed

to the network to learn the underlying pharmacokinetic parameters,

forming a training dataset consisting of a million simulated pairs.

The architecture of the pharmacokinetics quantification

network is presented in Figure 5C. The network utilized a mixed

loss function, combining mean absolute error (MAE) and mean

absolute percentage error (MAPE), expressed as:

L ¼ l �MAEþ (1� l) �MAPE

Here, the weight λ was empirically chosen as 0.998 to balance

the two loss terms. We trained the network with the Adam

optimizer (21), setting an initial learning rate of 10−3. After 10
FIGURE 4

Pipeline for pre-training the pharmacokinetics quantification network. AIF wa
parameters, then randomly scaled. A set of pharmacokinetic parameters was r
tissue contrast curve Ct(t). Gaussian noise was then applied to Ct(t). Afterward
parameters.
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initial epochs, we reduced the learning rate by a factor of e−0.1

per epoch. The batch size was set to 64, and the network was

trained for a total of 100 epochs. Implementation was carried out

using Tensorflow (22) on a Linux workstation using a single

Nvidia GeForce RTX 2080 TI GPU.
2.3. The pharmacokinetics-informed super-
resolution network

A pharmacokinetics-informed deep learning-based pipeline

was constructed for temporal super-resolution and parameter

quantification. The reference signal was the synthesized high-

temporal resolution T1W signal, as described before, and the

input was downsampled from the reference at timings

corresponding to the clinical protocol. Thus, the neural network

converts a temporally-downsampled input signal to a temporally

super-resolved output signal. After the output signal was

determined, pharmacokinetic parameters were estimated using

the standard Tofts model.
s simulated by applying randomly generated population-based AIF model
andomly generated, which was applied to standard Tofts model to obtain
s, Ct(t) and AIF were passed to the network to learn the pharmacokinetic
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FIGURE 5

(A) Input and output data flow. Sin or AIFin was passed to the upsampling block resulting in a temporally super-resolved signal curve Sout or AIFout. The
upsampling outputs, along with AIFout , were passed through the pre-trained pharmacokinetics quantification network to output pharmacokinetic
parameters Ktrans

out , ve,out , and kep,out . Data consistency loss and pharmacokinetics constraint loss were applied during training. (B) Illustration of the
upsampling block. (C) Illustration of the pre-trained pharmacokinetics quantification network architecture.

Wu et al. 10.3389/fradi.2023.1168901
Figure 5 illustrates the neural network architecture and the

pipeline. The upsampling block converted synthesized signals

with a 30-s temporal resolution, Sin, to a temporally-super-

resolved signal Sout. Subsequently, Sout and the reference AIF

(AIFref ) were input into the pre-trained quantification network

described in Section 2.2 to output kep,out and K trans
out ; ve,out was

then calculated as K trans
out =kep,out.

A combination of mean squared error, data consistency loss,

and pharmacokinetic constraint loss was used as the loss

function. The data consistency loss was used as a regularization

term to enforce the data fidelity between the input samples and

the corresponding samples of the outputs at the clinically

available phases. The pharmacokinetic constraint loss was

additionally used as regularization to leverage known

pharmacokinetic models during super-resolution training.

In brief, the cost function was:

L ¼ jjSout � Sref jj22 þ l1jjSin �VSoutjj22 þ l2jjSout
� fTofts(AIFout, kep,out, K

trans
out )jj22

With standard Tofts model fTofts(Cp(t), kep, K trans) ¼
K transCp(t)�e�kept and temporal down-sampling operator V. The

weighting factors l1 and l2 were empirically determined to be

0.1, which achieved a good balance between different loss terms.

The network was trained with the Adam optimizer (21) with an

initial learning rate of 10−3. The learning rate was reduced by a

factor of e−0.1 per epoch after 10 initial epochs. The training was

finished after 100 epochs. Voxel-wise training was used with a

batch size of 1. The models have been implemented in
Frontiers in Radiology 06
Tensorflow (22) and trained on a Linux workstation using a

single Nvidia GeForce RTX 2080 TI GPU.

A variation of the neural network was trained independently

with same settings to validate the effect of pharmacokinetic

constraint loss, namely RoQ without pharmacokinetic constraint.

The cost function was:

L ¼ jjSout � Sref jj22 þ l1jjSin �VSoutjj22
2.4. Performance assessment and statistical
analysis

2.4.1. Assessment of the pharmacokinetics
quantification network

The performance of the pharmacokinetics quantification

network was evaluated using both simulated data and in-vivo

data. For both scenarios, two classic fitting methods were

deployed for comparison: classic non-linear least-square fitting,

and least-square fitting with variable projection (VARPRO) (23).

Within the simulated data, the agreement between the estimated

and true parameters was measured by the coefficient of

determination (R2), the intraclass correlation coefficient (ICC),

and the coefficient of variation (CV), with these metrics averaged

across all three parameters. Additionally, the normalized root-

mean-squared-error (NRMSE) between the predicted curve and

the ground truth curve, as well as the average processing time for

every 1,000 samples, was examined. For in-vivo data, where

ground truth parameters were unavailable, only NRMSE and the

averaged elapsed time were assessed.
frontiersin.org
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2.4.2. Cross-validation
Ten-fold cross-validation was employed to evaluate the

alignment between RoQ pharmacokinetic parameters and those

derived with 2 s temporal resolution Multitasking DCE (used as

a reference). In each cross-validation cohort, approximately 40 of

the 45 subjects were utilized as training data, and the remainder

as validation data. Each fold was structured to contain roughly

the same number of pixel data. The cross-validation was

conducted in such a way that each data fold served once as

validation data, with all statistical analyses performed exclusively

on this subset.
2.4.3. Assessment of agreement between
retrospective and reference pharmacokinetic
maps

The agreement between RoQ pharmacokinetic parameters and

the reference values was thoroughly assessed. Four temporal-

interpolation methods were contrasted: (1) constant

interpolation, (2) linear interpolation, (3) RoQ without

pharmacokinetics constraint during training, and (4) RoQ itself.

The NRMSE between the temporal-interpolated curves and the

reference was evaluated, and additional metrics including R2,

ICC, and CV were utilized to gauge the agreement between the

estimated and reference parameters. For the proposed RoQ

method, a Bland-Altman analysis was additionally carried out for

individual ROIs.
2.4.4. Assessment of ability in differentiating
abnormal tissues

The capacity of the deep learning-generated pharmacokinetic

maps to distinguish abnormal tissues was analyzed through an

unpaired t-test at a significance level of P = .05 across various

ROI groups. The pharmacokinetic parameters were averaged

within specific ROIs. For healthy volunteers and CP patients, the

ROI was the entire pancreas (marked as control and CP,

respectively), while in PDAC patients, the ROIs consisted of the

tumor and non-tumor parenchymal regions within the pancreas
FIGURE 6

Results of the pre-trained pharmacokinetics quantification network in simulat
NLLS (left to right, respectively) compared to the ground truth. Each metric
pre-trained network, VARPRO, and NLLS (left to right, respectively) between
(C) Average elapsed time for estimating 1,000 samples of pre-trained networ
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(labeled as tumor and non-tumor). These ROI masks were

carefully delineated by an experienced radiologist.

2.4.5. Assessment of the sensitivity to bolus arrival
time displacement

Although the bolus arrival time estimated by the test bolus is

generally considered accurate (24), minor variations can occur

due to the small volume of the test bolus. To account for this,

we constructed scenarios by shifting the sampling timings of the

input curves within a span of −10 s–+8 s. This simulates the

arterial phase being either slightly slower or faster than the actual

phase, while keeping the other phases aligned to conserve the

temporal gap relative to the simulated arterial phase (as depicted

in Figure 1C). Both the NRMSE of the temporal super-resolved

curves and the agreement (R2, ICC, CV) between the RoQ

estimated parameters, considering time displacement and

reference parameters without it, were assessed.
3. Results

The pre-trained pharmacokinetics quantification network was

initially assessed. Figure 6A reveals that, for simulated data, the

network outperformed both VARPRO and NLLS in terms of R2

and ICC and achieved a CV comparable to those methods.

Figure 6B illustrates a respectable NRMSE for the network,

comparable to VARPRO and superior to NLLS. Most notably,

the network’s inference speed was substantially faster than

VARPRO and NLLS, as demonstrated in Figure 6C. For in-vivo

data, the network showed an NRMSE similar to VARPRO but

much better than NLLS, as depicted in Figure 7A, along with a

significantly quicker estimation, seen in Figure 7B.

Our ten-fold cross-validation experiments further underscored

the proposed method’s efficiency. Representative examples of high-

temporal-resolution DCE curves in a PDAC patient estimated from

synthesized multi-phasic DCE-MRI using deep learning are shown

in Figure 8. The estimated DCE signal curves closely resemble

those of the high-temporal-resolution reference for all three
ed data. (A) The R2, ICC, and 1-CV of pre-trained network, VARPRO, and
was averaged over the three pharmacokinetic parameters. (B) NRMSE of
the fitted curve by the predicted parameters and the ground truth curve.
k, VARPRO, and NLLS (left to right, respectively).
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FIGURE 7

Results of the pre-trained pharmacokinetics quantification network in in-vivo data. (A) NRMSE of pre-trained network, VARPRO, and NLLS (left to right,
respectively) between the fitted curve by the predicted parameters and the reference curve. (C) Average elapsed time for estimating one subject of pre-
trained network, VARPRO, and NLLS (left to right, respectively).

FIGURE 8

Representative temporal super-resolution example from a 57-year-old PDAC patient. In the upper left image, the tumor mass is marked by a yellow
boundary on the synthesized arterial phase image and the abdominal aorta is depicted by a red dashed circle. The non-tumor pancreas body is
outlined by a green boundary. In the right three plots, the synthesized multi-phasic DCE-MRI signals used as inputs are shown as black crosses,
whereas the network output and reference (2-s temporal-resolution Multitasking DCE data) signals are shown as blue curves and red curves,
respectively. The curves plot temporal signal S(t) vs. time step (2-s/step).

Wu et al. 10.3389/fradi.2023.1168901
ROIs, aside from some deviations which occur in the extrapolation

region after the three synthesized post-contrast phases.

One example of RoQ pharmacokinetic maps and reference

pharmacokinetic maps from a healthy control is shown in

Figure 9. One example from the same PDAC patient is shown in

Figure 10. The delineation of the tumor and cyst by the

proposed method resembles the reference very well. One example

from a CP patient is shown in Figure 11. In all the examples,

pharmacokinetic maps estimated by the proposed RoQ

pharmacokinetic maps excellently resemble the reference maps.

Figure 12 compares different temporal interpolation methods,

including constant interpolation, linear interpolation, RoQ without

pharmacokinetic constraint, and RoQ. Three of them, linear

interpolation, RoQ without pharmacokinetic constraint, and RoQ

showed good estimation for K trans with similar metrics in R2 and

ICC. Moreover, RoQ outperformed the other two methods for

higher R2, ICC, and 1-CV in kep, ve, as well as smaller NRMSE.

These results indicated a smaller difference in temporal

interpolation by RoQ, thus better parameter agreement against

the reference. Specifically, the R2 and ICC between RoQ

pharmacokinetic parameters and the reference ranged between

0.84–0.94, with corresponding CVs of 10.1% for K trans, 12.3% for

kep, and 5.6% for ve. A Bland-Altman plot, which visualizes the
Frontiers in Radiology 08
agreement of these methods using ROIs distinguished by

different colors, is illustrated in Figure 13.

Figure 14 contains box plots showing the median and quartiles of

the RoQ pharmacokinetic parameters (top) and reference parameters

(bottom) from the control, PDAC tumor and non-tumor, and CP.

Unpaired t-tests indicated that all 3 parameters were significantly

different (P < 0.05) between control and tumor and between control

and non-tumor for both the RoQ pharmacokinetic parameters and

the reference values. Unpaired t-tests further indicated that K trans

and kep were significantly different between PDAC tumor and non-

tumor, and kep and ve were significantly different between the

healthy control and CP, for both the RoQ pharmacokinetic

parameters and references. K trans between control and CP and ve
between PDAC tumor and non-tumor showed significant

differences for the reference values (P = 0.001, 0.050, respectively),

but did not for the RoQ pharmacokinetic parameters (P = 0.134,

0.151, respectively). The directions of differences in all findings

were consistent with the references and were in general agreement

with published findings (25–28.) To be more specific, compared to

the control group, K trans and kep were lower in the PDAC non-

tumor, and even lower in the PDAC tumor, whereas ve showed the

opposite; compared to the control group, K trans and kep were lower

in the CP, while ve showed the opposite.
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FIGURE 9

Pancreatic pharmacokinetic mapping in one healthy control. The gray-scale images display the anatomical structure of a representative slice at the
arterial phase. The overlaid colored voxels show the pharmacokinetic maps from RoQ (top) and Multitasking DCE reference maps (bottom). Top row:
retrospectively estimated Ktrans (left), kep (middle) and ve (right). Bottom row: reference Ktrans (left), kep (middle) and ve (right).
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Figure 15 illustrates the NRMSE and parameter agreement

metrics’ sensitivity to bolus arrival time displacement. The

NRMSE appears relatively robust to this displacement, although

an increase in NRMSE is noted with more extended

displacement times. Moreover, all of K trans, kep, ve demonstrate

resilience within a narrow range (−6 to +4 s), maintaining

reasonable R2, ICC and CV (lower bound 0.81,0.83, 0.81,

respectively).
4. Discussion

Quantification of pharmacokinetic parameters in DCE-MRI has

important advantages over qualitative imaging as it allows direct

characterization of tissue vascularity. A major challenge that limits

the broad application of quantitative DCE-MRI in clinical practice

is the conflicting requirement of high temporal resolution, high

spatial resolution, and sufficient spatial coverage. In addition, body

DCE-MRI requires breath-holding to deal with respiratory motion,

which further limits the temporal and spatial resolution. Therefore,

clinical DCE-MRI typically acquires only three or four post-

contrast phases, each with a breath-hold and an around 30-s

pause between breath-holds, sacrificing temporal resolution for

sufficient spatial resolution and coverage. Due to the limited

temporal resolution and the number of phases, DCE signals are

usually evaluated qualitatively or semi-quantitatively. Quantitative
Frontiers in Radiology 09
DCE-MRI techniques have been developed in recent years, such as

multiparametric MRI (mpMRI) (6) and Multitasking DCE (7).

However, their clinical application is limited because of the need

for specialized software, advanced imaging systems, and a lack of

rigorous clinical validation at this time.

In this proof-of-concept study, the feasibility of retrospective

pharmacokinetic parametric quantification of conventional multi-

phasic DCE-MRI using deep learning is demonstrated. Clinical 3-

phase DCE-MRI data were synthesized by downsampling

high-temporal-resolution multitasking DCE data. Pharmacokinetics-

informed based deep learning was used to recover the high-

temporal-resolution DCE signal curves for both arterial blood and

tissue, which were then used to estimate the pharmacokinetic

parameters K trans, kep, and ve with the standard Tofts model (29).

A high level of agreement was found between RoQ

pharmacokinetic parameters and reference parameters measured

using high-temporal-resolution Multitasking DCE images. RoQ

pharmacokinetic parameters also demonstrated the ability to

differentiate tumor and non-tumor tissues in pancreatic cancer

patients as well as pancreas in CP patients from normal pancreatic

tissue in healthy subjects. Upon further validation in a prospective

study, this method has the potential to derive pharmacokinetic

parameters from clinical multi-phasic DCE images, thus providing

the benefits of quantitative DCE-MRI without changing the clinical

protocol. This approach may find applications in improving tumor

detection, staging, and therapy response prediction.
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FIGURE 10

Pancreatic pharmacokinetic mapping in PDAC subject. The gray-scale images display the anatomical structure of a representative slice at the arterial
phase. The overlaid colored voxels show the pharmacokinetic maps from RoQ (top) and Multitasking DCE reference maps (bottom). The yellow arrow
points out a benign cyst while the red arrow points out the tumor mass. Top row: retrospectively estimated Ktrans (left), kep (middle) and ve (right) by
the neural network. Bottom row: reference Ktrans (left), kep (middle) and ve (right).
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The proposed scheme had shown better performance than two

classic temporal interpolation schemes. Moreover, the

pharmacokinetics constraint was proven to benefit both temporal

interpolation and parameter estimation. As shown in Figure 12,

even though the K trans metrics were similar, which could be due

to the assumption that the arterial phase is well captured, more

accurate estimation of kep, ve was observed in RoQ by adding

pharmacokinetics constraint.

RoQ pharmacokinetic parameters had good agreement with

those of the 2-s temporal resolution Multitasking DCE reference

using R2, ICC, and CV as evaluation metrics. However, CVs were

relatively large for K trans, kep (10.1% and 12.3%, respectively). One

possible reason could be that the proposed scheme was voxel-wise,

and it, therefore, did not take into consideration of spatial

information in the local region. Voxel-wise processing could be

more susceptible than image-wise processing to factors such as the

partial volume effect, motion, and noise. Datasets with large

sample sizes and image-based deep learning may reduce CVs in

the future. In particular, spatiotemporal networks which also

consider spatial information in model prediction (30), and the

attention mechanism-based networks which already show great

performance in various image processing tasks (31), are promising

directions for further improving the current work.

In the ROI-based comparison shown in Figure 7, K trans

between control and CP and ve between PDAC tumor and
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non-tumor showed significant differences for the reference but

did not for the retrospectively estimated. One potential reason

for these inconsistencies could be the insufficient data, given the

overall percentage of tumor voxels in the whole dataset were

small, and the CP patients cohort is small. A prospective study

with a larger sample size may help further clarify.

In this study, the standard Tofts model was chosen as the

pharmacokinetic model in the application of abdominal imaging,

as supported by the literature (19). The main reason was its

simplicity and robustness. Furthermore, pancreatic cancer

tumors, typically characterized by mild to medium

vascularization and hypo-intensity, align well with this model.

Models with more compartments and parameters are alternative

options, but performance may suffer from the limited number of

phases of clinical multi-phasic DCE-MRI. Different models may

be more suitable for other applications such as breast (32) and

vessel walls (33) which have different vascularity properties (34)

and imaging protocols.

The pre-trained pharmacokinetics quantification network was

employed for the direct estimation of pharmacokinetic

parameters, and its performance in both simulated and in-vivo

data revealed prompt and precise parameter estimation.

Furthermore, the pharmacokinetics constraint within this

network was proven to enhance the temporal super-resolution

process, underlining its potential value.
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FIGURE 11

Pancreatic pharmacokinetic mapping in one CP patient. The gray-scale images display the anatomical structure of a representative slice at the arterial
phase. The overlaid colored voxels show the pharmacokinetic maps from RoQ (top) and Multitasking DCE reference maps (bottom). Top row:
retrospectively estimated Ktrans (left), kep (middle) and ve (right) by the proposed method from low temporal resolution data. Bottom row: reference
Ktrans (left), kep (middle) and ve (right).

FIGURE 12

Assessment of pharmacokinetic parameters estimated from different temporal interpolation methods (upper left: Ktrans, upper right: kep , lower left: ve) and
NRMSE of the temporal interpolated curves (lower right).
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FIGURE 13

Bland-Altman plot: comparison of RoQ pharmacokinetic parameters vs. reference values for different regions and patient types.

FIGURE 14

Box plots of pharmacokinetic parameters within different ROIs. Top figure: group comparison of the RoQ pharmacokinetic maps. Bottom figure: group
comparison of reference parameters. Left to right: Ktrans , kep , ve. P values from unpaired t-tests comparing control vs. tumor, control vs. non-tumor, tumor
vs. non-tumor, and control vs. CP were labeled in each box plot.

Wu et al. 10.3389/fradi.2023.1168901
A bolus arrival time displacement was simulated to test the

robustness of the proposed method. Within a modest range of

displacement time, the method demonstrated resilience,

maintaining a reasonable NRMSE for temporally super-resolved

curves and consistent agreement metrics for parameters. This

finding underscores the potential applicability and reliability of
Frontiers in Radiology 12
the method, even in scenarios where slight variations in bolus

arrival times may occur.

The K trans and kep values calculated in this work were on the

order of those reported in literature (7, 19), whereas the ve values

calculated in this work were in general lower. One potential

reason could be the pharmacokinetic model selection, in which
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FIGURE 15

Assessment of sensitivity to the bolus arrival time displacement for NRMSE (upper left) and pharmacokinetic parameters agreement metrics (upper right:
Ktrans , lower left: kep , lower right: ve).
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case using a different model (e.g., extended Tofts or two-

compartment exchange model) may perform more similarly. This

also could be due to the relatively short imaging duration

(260-s), especially because the difference was seen in ve, which is

associated with late enhancement. However, given the short

imaging duration of the clinical abdominal DCE-MRI protocol, it

is challenging to extrapolate over even longer durations.

The clinical imaging protocol used in this study was based on

that used routinely at our institution, so the trained deep

learning model in this study is currently limited to that

imaging protocol. A different imaging protocol will require the

training of a new deep learning model. Future work will

explore the option of integrating imaging parameters (such as

TR/TE, temporal resolution, and the number of phases) as

additional inputs to the network for more general application

to multiple protocols.

There were several limitations in this study. First, we only used

retrospectively synthesized multi-phasic DCE-MRI in training and

validation. However, conducting a prospective study in which

reference Multitasking and clinical DCE-MRI are sequentially

acquired is challenging in practice because of the slow
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gadolinium washout and the limited contrast dose allowed in

each imaging session. A potential solution could be to use a low-

dose Multitasking DCE protocol as the reference, which has been

shown to allow accurate DCE quantification in breast cancer

imaging (32). This would conceivably allow deep learning to

train on prospective data, overcoming this limitation. Secondly,

the dates of MR imaging and clinical diagnosis have a gap of up

to one or two years, so the diagnosis report could be inaccurate

at the time of imaging. Therefore, the tumor and non-tumor

labels may not be accurate and might lead to errors in

quantitative analysis. Most importantly, the dataset was relatively

small. A dataset with a larger cohort would be desired in a

prospective study to validate this approach in the future.
5. Conclusion

A deep learning-based approach was developed for the

retrospective quantification of pharmacokinetic parameters by

improving the temporal resolution of clinical abdominal DCE-

MRI. The retrospective quantitative parameters were capable of
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differentiating normal pancreas and abnormal pancreas, including

PDAC and CP. Tumor delineation was well-preserved in estimated

parameter maps. Upon further validation in a prospective study,

this technique has the potential to unlock the benefits of

quantification of conventional DCE-MRI retrospectively in

cancer imaging.
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