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Editorial on the Research Topic

Role of membrane-bound and circulating endoglin in disease

Introduction

Since its discovery and characterization in the early 1990s, a growing body of evidence
supports the involvement of endoglin in a broad range of patho-physiological conditions,
including physiological and pathological angiogenesis, vascular pathology, preeclampsia,
tumor vascularization, hemostasis or tumor malignancy (1–3). This Research Topic
draws together a series of reports focusing on different and novel aspects of endoglin
on etiology, diagnostics, prognosis, or predictive purposes in several conditions such
as hereditary hemorrhagic telangiectasia, endothelial dysfunction, cancer, hyperglycemia,
hypercholesterolemia, septic syndrome, and systemic sclerosis.

Endoglin protein and function

Endoglin is a type 1 transmembrane glycoprotein, encompassing an extracellular region
of 561 amino acids, a hydrophobic transmembrane domain, and a 47-residue cytoplasmic
tail (4). Approximately 90% of the protein is located within its extracellular region, which
upon being targeted, at least by metalloproteases (MMP) MMP-14 and MMP-12, can
be shed as a circulating form of endoglin also named as soluble endoglin (sEng) (5, 6).
Thus, it is not surprising that the extracellular region has attracted many structural and
functional studies (1–3). The extracellular region of endoglin encompasses two distinct
domains: (i) a juxtamembrane Zona Pellucida (ZP) domain expanding ∼260 amino acids
at the C-terminus, with eight conserved cysteine residues and divided into two well-defined
subdomains (ZP-C and ZP-N); and (ii) an orphan domain (OD) at the N-terminus, named
so due to its lack of significant homology with other protein families (7, 8). These two
domains differ from each other in their functional activities. Thus, the OD is involved in
the recognition and signaling of members from the transforming growth factor-β (TGF-
β) family, like bone morphogenetic protein (BMP)-9 and BMP-10 (8, 9). On the other
hand, the ZP domain is involved in cell adhesion through its interaction with integrins of
the arginine-glycine-aspartic acid (RGD) subfamily, like α5β1 and αIIbβ3, which recognize
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the RGDmotif located within the ZP-N subdomain of endoglin (3).
In addition, the short (14 residues) cytoplasmic domain of endoglin
is constitutively phosphorylated in serine and threonine residues
and is involved in the organization of the actin cytoskeleton and
TGF-β/BMP signaling (10–12).

Hereditary hemorrhagic telangiectasia

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal
dominant vascular dysplasia with a prevalence of ∼1:5,000
inhabitants. HHT is characterized bymucocutaneous telangiectases
and arteriovenous malformations (AVMs) in the brain lung or
liver (13, 14). Heterozygous mutations in several genes are known
to cause different variants of HHT (15). Among these, mutations
in the endoglin gene (ENG) cause HHT1 (MIM #187300) while
mutations in activin receptor-like kinase 1 (ACVRL1 or ALK1)
result in HHT2 (MIM #600376). It is of note that over 85% of
all patients with HHT present with mutations in either ENG or
ACVRL1. A combined syndrome of juvenile polyposis (JP) and
HHT was reported to be caused by mutations in SMAD4 (JP-
HHT; MIM 600993), which accounts for ∼2% of HHT patients. In
addition, rare mutations in GDF2, coding for BMP9, a member of
the TGF-β family, may cause anHHT-like phenotype (HHT5;MIM
615506). Overall, all the HHT variants share common symptoms,
but they differ from each other in the frequency of the specific
vascular lesions. All genes involved in HHT code for components
of the TGF-β signaling pathway (16) and their targeting in different
animal models have focused most of the research and preclinical
studies in HHT, as these proteins represent potential therapeutic
targets to find novel treatments for the disease. Arthur and Roman
have updated the current knowledge about disease mechanisms
and potential therapeutic strategies using preclinical animal models
of HHT. Recent work has revealed new insights into the cellular
and molecular mechanisms causing this disease. Loss of ENG,
ALK1, or SMAD4 genes in endothelial cells (ECs) result in AVMs,
which can be modulated by the altered directional migration
in response to shear stress (17) and increased proliferation of
ECs, as well as the crosstalk between ECs and vascular smooth
muscle cells, and different angiogenesis factors like VEGF (18)
or Angiopoietin 2 (19). To account for the localized and tissue-
specific vascular lesions, emerging evidence supports the existence
of a second hit (16), including somatic mutations of HHT genes
leading to biallelic loss of function (20). Egido-Turrión et al. has
analyzed the mechanisms underlying the bleeding in HHT using
haplodeficient Eng and Alk1 mouse models. This is a relevant point
as HHT is characterized by fragile mucocutaneous telangiectases
prone to breaks in the mucosa, causing recurrent and spontaneous
epistaxis and gastrointestinal bleeding. However, in addition to the
fragility of telangiectases, abnormal hemostasis was reported in
HHT1 cellular and animal models owing to an impaired interaction
between endothelial endoglin and integrin aIIbβ3 from platelets
(21). Given the severity of hemorrhages in some HHT patients,
the study of hemostasis appears to be key to finding therapies for
this disease. In their exploration of this, Egido-Turrión et al. found
that both Eng+/− (HHT1) and Alk1+/− (HHT2) mouse models
present abnormal hemostasis, but that the hemostasis mechanism
involved is different between HHT1 and HHT2. While in Eng+/−

mice an impaired platelet adhesion to endoglin haplodeficient
ECs occurs, in Alk1+/− mice an overactivation of the fibrinolysis
system was observed, as evidenced by elevated levels of D-dimers.
These results open new therapeutic avenues to treat bleeding in
HHT patients.

Cancer: squamous cell carcinomas
and head and neck neoplasms

Endoglin is highly expressed by tumor-associated vascular
endothelium and the expression levels of sEng correlate with poor
survival in certain cancer patients (22–24). In addition, endoglin
can be expressed by some tumor cells and diverse cell types from
the tumor microenvironment (TME) such as cancer-associated
fibroblasts (CAFs) or tumor-associated macrophages (TAMs) and
lymphocytes (TALs) (25). These characteristics have prompted
several lines of investigation to explore endoglin as a potential
therapeutic target in cancer. Some of these studies have tested the
endoglin neutralizing antibody TRC105 (Carotuximab R©, Tracon
Pharmaceuticals, San Diego, CA, USA), mostly in the context
of anti-angiogenic therapies, using a wide variety of preclinical
cancer models as well as phase I-III clinical studies of cancer
patients (23, 24). Additional studies of cancer development have
analyzed the role of endoglin in tumor cells themselves (26).
Hakuno et al. analyzed the expression of endoglin in three types of
human squamous cell carcinoma (SCC): head and neck (HNSCC),
esophageal (ESCC), and vulvar (VSCC) cancers. Analysis of
tumor specimens showed that endoglin is selectively expressed by
individual SCC cells in tumor nests, while patient-derived HNSCC,
ESCC, and VSCC cell lines displayed varying levels of endoglin
with high interpatient variation. Endoglin overexpression in SCC
cell lines was associated with increased sEng levels, which in turn
decreased BMP9 signaling. However, in a ligand-dependent or
independent manner, endoglin did not affect the proliferation or
migration of the SCC cells. Litwiniuk-Kosmala et al. summarize
current data on endoglin expression in head and neck (HN)
tumors, which comprise a heterogeneous group of pathologies,
including various benign lesions and malignant neoplasms. The
reported role of endoglin as amarker in variousmalignant and non-
malignant HN tumors, including HNSCC, salivary gland tumors,
paragangliomas, rhabdomyosarcoma, and vestibular schwannomas
was briefly reviewed. It is noteworthy that several studies have
demonstrated that a high expression of endoglin in these tumor
tissues was an independent risk factor that correlates with a lower
5-year overall survival rate.

Hyperglycemia and
hypercholesterolemia

Hyperglycemia and hypercholesterolemia are hallmarks of the
so-called metabolic syndrome and risk factors for the development
of endothelial dysfunction. Metabolic syndrome is often associated
with cardiometabolic disorders such as atherosclerosis, ischemic
heart disease, or type II diabetes mellitus (27). Previous studies have
shown that sEng combined with hypercholesterolemia aggravates
endothelial and vessel wall dysfunction in mouse aorta (2),
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and sEng combined with a high-fat diet alters NO production.
Also, increased levels of sEng have been found in patients with
different hyperglycemic conditions, including diabetes mellitus
(28) and other hyperglycemic conditions (2). Interestingly, in

vivo studies have shown that endoglin is critically involved
in vascular endothelial pathophysiology, including endothelial
dysfunction development (2). Tripska et al. have investigated the
effects of the anti-endoglin antibody TRC105 on the development
of endothelial dysfunction induced by 7-ketocholesterol or high
glucose using human aortic endothelial cells. Their results
demonstrate that TRC105-mediated neutralization of endoglin
counteracts the hypercholesterolemia- and hyperglycemia-induced
endothelial dysfunction, suggesting that endoglin might be a
therapeutic target in disorders associated with elevated cholesterol
and glucose levels.

Septic shock and severe COVID-19

Sepsis is a life-threatening condition that arises from a
dysregulated host response to infection. It can progress, first to
severe sepsis, and then to septic shock, leading to a blood pressure
drop and multiple organ damage and failure (29, 30). The World
Health Organization (WHO) has recognized sepsis as a major cause
of preventable morbidity andmortality worldwide, highlighting the
common and nosocomial pathogens involved in this condition,
and alarming pathogen resistance to antibiotics (31). Sepsis is
associated with dysregulation of hemostasis and vascular reactivity,
likely due to EC dysfunction and inflammation, processes in which
endoglin and sEng are involved (2, 32). Interestingly, sEng is a
biomarker of several pathologic conditions, including sepsis, where
its increased levels are associated with endothelial dysfunction.
Indeed, patients with septic shock present 1.5-fold higher levels
of sEng compared to healthy individuals (33). More recently,
sEng was found to be independently associated with complicated
course and acute renal dysfunction in pediatric septic shock (34).
Tomášková et al. analyzed the prognostic value of sEng in patients
with septic shock and severe COVID-19. In patients with COVID-
19, the main clinical manifestation observed was acute respiratory
distress syndrome (ARDS), and sEng did not predict mortality or
correlate with markers of organ dysfunction. By contrast, in septic
shock, sEng levels were significantly higher in patients with early
mortality and correlated with signs of circulatory failure. These
results suggest that sEng could be used for the early identification
of patients with severe endothelial dysfunction who would benefit
from an individualized endothelium-targeted therapy.

Systemic sclerosis

Systemic sclerosis (SSc), also known as scleroderma, is a group
of rare autoimmune diseases that affects the connective tissue
with widespread vasculopathy and inflammation. SSc is associated
with an excess of collagen fiber deposition, leading to hardening
and tightening of the skin. Other common symptoms include
calcinosis, skin telangiectases, pulmonary arterial hypertension
(PAH), fatigue, weight loss, musculoskeletal inflammation, and
gastrointestinal involvement (35). Unfortunately, the etiology of

SSc is still poorly understood. A pathogenic role TGF-β signaling
pathway has been postulated in this disease due to its stimulatory
properties on fibroblasts and extracellular matrix production.
In this context, several lines of evidence suggest the potential
involvement of endoglin in SSc: (i) endoglin is involved in TGF-β
signaling modulating ECM production, which is critically involved
in SSc; (ii) the existence of common symptoms (ie, telangiectases)
between SSc and HHT1 (caused by mutations in ENG); and (iii)
the reported role of sEng as a biomarker of several inflammatory
conditions similar to SSc. Accordingly, the possible link between
endoglin and SSc has been analyzed in over thirty different
publications, which have now been reviewed by Grignaschi et al.
following the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines. This systematic review
revealed a dysregulated expression of endoglin in SSc-affected cells
and tissues, while clinical studies support the notion that levels
of circulating sEng correlate with different disease phenotypes,
suggesting that endoglin plays a role in disease-relatedmechanisms,
including the involvement in different TGF-β-stimulated pathways
that can be crucial in SSc pathogenesis and progression.

Conclusions

In recent years emerging aspects of membrane-bound endoglin
and circulating endoglin on etiology, diagnostics, or prognosis
in several conditions have been reported. The collection of
articles on this Research Topic encompasses new findings and
major advances in disease mechanisms as well as scientific and
clinical research on hereditary hemorrhagic telangiectasia, cancer,
hyperglycemia, hypercholesterolemia, septic shock, severe COVID-
19, and systemic sclerosis. Further translational studies on endoglin
are needed in order to integrate the results of these investigations
into clinical practice.
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