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Obstructive sleep apnea (OSA) is a severe sleep disorder associated with

intermittent hypoxia and sleep fragmentation. Cognitive impairment is a signifi-

cant and common OSA complication often described in such patients. The most

commonly utilized methods in clinical OSA treatment are oral appliances and

continuous positive airway pressure (CPAP). However, the current therapeutic

methods for improving cognitive function could not achieve the expected efficacy

in same patients. Therefore, further understanding the molecular mechanism

behind cognitive dysfunction in OSA disease will provide new treatment methods

and targets. This review briefly summarized the clinical manifestations of

cognitive impairment in OSA disease. Moreover, the pathophysiological molecular

mechanism of OSA was outlined. Our study concluded that both SF and IH could

induce cognitive impairment by multiple signaling pathways, such as oxidative

stress activation, inflammation, and apoptosis. However, there is a lack of effective

drug therapy for cognitive impairment in OSA. Finally, the therapeutic potential

of some novel compounds and herbal medicine was evaluated on attenuating

cognitive impairment based on certain preclinical studies.
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1. Introduction

Obstructive sleep apnea (OSA) is a common sleep disorder characterized by intermittent
hypoxia (IH) and sleep fragmentation (SF) due to upper airway collapse during sleep
(Hoyos et al., 2017). Clinical studies indicate that OSA has a high incidence rate, with an
estimated prevalence of 7% among adult men and 2–5% among adult women (Lumeng and
Chervin, 2008). OSA patients have many symptoms related cognitive impairment, including
spatial learning and memory impairment, executive function decline, and behavioral changes
(Patel and Chong, 2021).

The most commonly used methods in the clinical treatment of OSA are oral appliances,
surgery, and continuous positive airway pressure (CPAP) (Li et al., 2019; Toraldo et al.,
2019). However, these methods have their shortcomings. First, surgical treatment must
be strictly applied, as it needs to consider other factors, including apnea-hypopnea index
(AHI), age, and mental state (Epstein et al., 2009). Second, although oral appliances and
CPAP are commonly used practices for OSA therapy, it is ineffective in some patients.
Some patients refuse to use them due to uncomfortable feelings (Carlucci et al., 2015).
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Finally, cognitive impairment or cognitive dysfunction could not be
fully recovered in OSA patients through current therapy methods
(Epstein et al., 2009). For example, one clinical trial described that
most of scores neuropsychological tests for did not significantly
improve after CPAP treatment in OSA patients (Bardwell et al.,
2001). It is consistent with other RCTs demonstrating that CPAP
treatment did not depict overall beneficial cognitive effects (Hui
et al., 2000; Lim et al., 2007). Therefore, an in-depth understanding
of the molecular mechanism of cognitive dysfunction in OSA
disease will provide new treatment methods and targets. This
article reviews the progress mechanism of cognitive dysfunction in
OSA patients and summarizes some novel compounds and herbal
medicine for treating cognitive impairment due to OSA.

2. Disease definition

Overnight polysomnography (PSG) is the standard diagnostic
test for obstructive sleep apnea (St Louis, 2010). During
PSG, electroencephalogram, electrooculogram, electromyogram,
oronasal airflow, and oxyhemoglobin saturation can identify sleep
stages, airflow, respiratory effort, body position, limb movements,
ECG, and oxygen saturation. Whether the pharyngeal collapse
is completely blocked or not, it is called sleep-related apnea
and hypopnea, respectively (Jordan et al., 2014). An apnea is
the complete cessation of airflow for at least 10 s. Hypopnea
is defined as airflow reduction. "Obstructive" means breathing is
frequently interrupted by upper airway obstruction, and more than
90% of airflow is reduced. AHI measures the number of apneas
and hypopneas per hour of sleep to assess the severity of OSA
disease. Based on the guidelines of the American Academy of Sleep
Medicine (AASM), AHI < 5 indicates no disease, 5 ≤ AHI < 15
depicts a mild disease, 15 ≤ AHI < 30 represents a moderate
disease, and AHI≥ 30 characterizes a severe disease form (Muraja-
Murro et al., 2014).

3. Symptoms of cognitive
impairment in OSA

Obstructive sleep apnea is commonly associated with cognitive
impairments, such as attention, verbal and visual episodic memory,
and executive function (Sateia, 2003; Bucks et al., 2013). A meta-
analysis revealed that vigilance, motor coordination, and executive
functions were significantly impaired in OSA adults, whereas
intelligence, verbal, and visual perceptual abilities were unaffected
(Beebe et al., 2003). Some studies have characterized attention
(Aloia et al., 2004; Bubu et al., 2020; Vanek et al., 2020), episodic
memory, working memory, and executive functions (Olaithe
and Bucks, 2013) as the most affected cognitive domains in
OSA.

3.1. Attention

Attention refers to the psychological abilities of people to focus
on relevant stimuli. Attention processing involves multiple aspects,

such as reaction time, selective attention, and divided attention
(Gagnon et al., 2014). These processes are associated with midline
frontal areas and dorsolateral prefrontal cortices (Muller-Oehring
and Schulte, 2014). Several studies have indicated that OSA subjects
have attention impairment in all aspects (Aloia et al., 2004; Bubu
et al., 2020; Vanek et al., 2020). For instance, OSA patients have
more lapses and longer reaction times in tasks demanding sustained
attention (Mazza et al., 2005; Gelir et al., 2014; Karimi et al.,
2015) while significantly less reaction time after CPAP treatment
(Djonlagic et al., 2015). Furthermore, according to the Test of
Attentional Performance (TAP), OSA patients manifest deficits in
divided and selective attention processes (Angelelli et al., 2020;
Alkan et al., 2021).

3.2. Executive function

Executive function is an individually controlled and conscious
effort to escort the operation of various cognitive processes. These
include different cognitive abilities, such as concept formation,
decision-making, mental flexibility, and problem-solving. A meta-
analysis reported that executive functions across multiple tasks
were impaired among OSA patients (Olaithe and Bucks, 2013).

Concept formation is a high cognitive function often
operationalized as transferring the matching rule to new
stimuli in a matching-to-sample task (Sukova et al., 2013).
Concept formation is clinically assessed using the Wechsler
Adult Intelligence Scale-Revised (WAIS-R) with these subtests:
information, digit span, similarities, picture completion,
block design, and digit symbol. WAIS-R demonstrated that
OSA subjects had poorer scores than controls on block
design, digit symbol, and picture completion (Saunamaki
et al., 2009a,b, 2010). However, CPAP treatment did
not significantly improve neuropsychological assessment
(Saunamaki et al., 2009b, 2010).

Decision-making is reaching decisions assessed with the Iowa
Gambling Task (IGT), in which participants select cards from one
of four decks. IGT characterized that scores were significantly lower
in patients than in controls (Daurat et al., 2013). Furthermore, a
higher rate of road traffic accidents was observed in OSA patients,
impairing decision-making (Udholm et al., 2022). Moreover, OSA
patients are inattentive, showing reduced reaction times on choice
reaction tests (George, 2004) and decreased brain activation during
an attention task involving decision-making leading to mistakes
while driving (Ayalon et al., 2009).

Mental flexibility is an essential executive function underlying
the ability to adapt to changing situations and respond to new
information. Several investigations demonstrated a significant
reduction of mental flexibility in OSA subjects (Verstraeten and
Cluydts, 2004; Olaithe and Bucks, 2013). Meanwhile, the speed
of mental flexibility was also enhanced after CPAP treatment
(Dalmases et al., 2015).

Problem-solving is evaluating and selecting a sequence of
actions to achieve a goal clinically assessed by tower test with
more steps for OSA patients to solve problems (Naegele et al.,
1995). Additionally, a deficit of executive functions in other aspects
was observed in OSA patients, including easy impulsivity, reduced
processing speed, and elevated perseverance.

Frontiers in Cellular Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fncel.2023.1222626
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-17-1222626 September 2, 2023 Time: 10:36 # 3

He et al. 10.3389/fncel.2023.1222626

3.3. Working memory

Working memory is the cognitive system temporarily
maintaining and storing information, a short-term memory.
Working memory impairment is always observed in OSA
(Cosentino et al., 2008; Lau et al., 2015). Although the underlying
mechanism is not fully classified, it could be related to the damage
of frontoparietal connectivity since complete working memory
tasks recruited a frontoparietal network of brain areas (Owen
et al., 2005). A neuroimaging study revealed that the functional
connectivity of the frontoparietal network showed abnormality in
OSA patients (Liu et al., 2022).

3.4. Episodic memory

Episodic memory is remembering verbal or visual
information in a space-time long-term memory. Multiple
tasks could assess the ability of episodic memory, such as
immediate recall, total recall for multiple steps or learning,
delayed recall, free recall, and auditory task. OSA patients
suffered impairment in free recall, delayed free recall, and
transformed auditory span (Naegele et al., 2006). Moreover,
based on the visuospatial episodic memory tasks results, there
was a deficit in immediate and delayed recalls (Wallace and
Bucks, 2013). Although CPAP improved the immediate and
delayed memory performances, it could not ameliorate all
the episodic memory components (Alchanatis et al., 2004;
Bucks et al., 2013).

As discussed above, multiple cognitive ability was affected
in OSA patients. However, OSA prevalence varied between 11
and 71% with cognitive impairment which was affected by
OSA diagnostic methods. For example, the prevalence rates
of cognitive impairment in OSA were 11, 27, 59, and 71%,
respectively detected by self-report, home sleep apnea testing,
Berlin questionnaire and polysomnography (Mubashir et al.,
2019). Furthermore, the prevalence of cognitive impairment in
OSA is related with other factors, such as severity of OSA,
age and gender. Patients POSSESSING moderate to severe
OSA had more severe sleep disturbances and a lower score
on delayed recall test than the mild OSA group (Cai et al.,
2023). Moreover, age is a significant risk factor for cognitive
decline. Therefore, middle-aged OSA individuals are more likely
to suffer cognitive impairment than younger ones with the similar
severity of OSA (Alchanatis et al., 2008; Mathieu et al., 2008).
Although several previous studies have assessed the gender-
specific relationship between OSA and cognitive impairment,
the conclusion need more consistency. One study described
that female OSA patients had a higher risk of possessing poor
prospective memory (Qiu et al., 2022). Meanwhile, OSA in
women significantly reduced cortical and subcortical white matter
than in men (Macey et al., 2012). However, another study
indicated OSA men displayed had decreased power of extensive
frequency range (sigma, beta and gamma) during sleep than
in women, which plays a critical role in cognition formation
(Munoz-Torres et al., 2020).

4. Pathophysiology of cognitive
impairment in OSA

The causal mechanism of cognitive impairment remains
debatable, and the existing literature has been primarily
descriptive rather than based on well-defined theories. SF
and intermittent blood gas abnormalities have been the most
immediate physiological disturbances. They are associated with the
exaggerated enhancement in upper airway resistance with sleep
onset in OSA patients (Lin et al., 2019). Therefore, SF and IH are
the two independent factors affecting cognitive function in OSA
patients (Sforza and Roche, 2012).

4.1. Sleep fragmentation

Sleep fragmentation refers to sleep architecture disruption
in OSA disease with poor sleep efficiency in OSA patients.
This included a smaller proportion of sleep period time and
reduced slow-wave sleep (SWS) (Walter et al., 2011). SF in
OSA patients results in significant cognitive impairments, such
as decreased mental flexibility, sustained attention, and spatial
memory (Stepanski, 2002; Djonlagic et al., 2014). However, the
underlying mechanisms remain poorly understood. The primary
theory is that SF elicits oxidative stress and cellular damage
(Shamsuzzaman et al., 2003). Since increased antioxidant activity
promotes brain protection against free radicals during sleep, and
wakefulness, reactive oxygen species (ROS) and other oxidative
stress markers could be accumulated in the brain tissue (Mamelak,
2022). A study reported spatial learning deficits in mice exposed
to SF by significantly activating oxidative stress. This could be
associated with NADPH oxidase activity since mice without
NADPH oxidase had normal learning after SF exposure (Nair
et al., 2011b). NADPH oxidase is a vital source of generating
intracellular ROS. SF could induce oxidative stress by activating
NADPH oxidase to impair cognition and learning ability. The
activity of nitric oxide synthase (iNOS), which regulate electron
flow to enhance ROS production, was also increased in the SF
model (Pandey and Kar, 2018). Then, oxidative stress results in
cognitive impairment by inhibiting some neurotrophic factors
expression and antioxidant genes, including BDNF and Nrf-2
(Zhang et al., 2013; Lee et al., 2022). Some synapse proteins, such as
growth-associated protein 43 (GAP-43), post-synaptic density-95
(PSD-95), synapsin 1 (SYN-1), and synaptophysin (SYP), were also
inhibited by SF-induced oxidative stress (Farajdokht et al., 2021).

Sleep fragmentation could also trigger an inflammatory
response (Mishra et al., 2022). SF induced the expression of
pro-inflammatory cytokines, such as IL-1 and TNF-α (Bertrand
et al., 2020). On the other hand, long-term SF could cause
vascular endothelial dysfunction by enhancing the recruitment of
inflammatory cells and IL-6 expression (Carreras et al., 2014). In
the SF model, multiple signaling pathways were responsible for
pro-inflammatory cytokines expression, such as Toll-like receptor
4 (TLR4)/myeloid differentiation primary response protein 88
(MyD88) pathway (Xu et al., 2021b), TNF-α/NF-κB pathway
(Zhang et al., 2022) and p38 MAPK pathway (Cui et al., 2019). One
report indicated that SF could activate some microglial expression,
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vital in the inflammatory response (Kaneshwaran et al., 2019).
Additionally, SF induced a selective increase in pro-inflammatory
M1 macrophages by enhancing the NADPH oxidase 2 (NOX2)
activity (Zhang et al., 2014).

Furthermore, SF significantly reduced rapid eye movement
(REM) sleep in the SF rodent model, which is associated
with impairing spatial learning and the losing the NMDA
receptors (Tartar et al., 2006). Therefore, the loss of the NMDA
receptor could be another underlying mechanism of inducing
cognitive impairment in the SF model. SF could also disrupt
neurotransmitter release, such as adenosine, monoamine, and
dopamine (Ramesh et al., 1999; Proenca et al., 2014). Adenosine
receptor antagonists could attenuate the decline in memory-
induced sleep deprivation by increasing BDNF expression in
the hippocampus region (Chauhan et al., 2016). Activating the
dopaminergic D2 receptor helped counteract memory impairment
in the sleep deprivation model (Proenca et al., 2014; Figure 1).

4.2. Intermittent hypoxia

Intermittent hypoxia (IH) is also a substantial variable
associated with cognitive deficits (Dewan et al., 2015). However,
IH and SF simultaneously occur in OSA, dissecting the influences
of these two factors on cognitive functions, which is challenging
in human subjects. An IH animal model was developed to
assess the neurobehavioral effects of IH in the absence of SF,
which many researchers widely accepted (Gozal et al., 2001; Row
et al., 2002). Multiple mechanisms, including oxidative stress,
inflammation, apoptosis, and reduction of neurotrophic factor,
have been proposed to induce neurocognitive deficits due to IH
(Figure 2).

4.2.1. Oxidative stress
Previous studies have demonstrated increased oxidative stress

in OSA, including MDA and protein carbonyl upregulation (Xu
et al., 2015), excessive lipid peroxidation production (Maniaci
et al., 2021) and decline of reduced glutathione (Almendros
et al., 2011). Therefore, inhibiting oxidative stress is a potential
therapeutic target. Under IH conditions, ROS production, as
indicated by oxidative stress, is elevated due to the reduced activity
of oxidoreductases in mitochondrial respiration (Xu et al., 2020).
Then, elevated ROS could affect some important gene expression,
such as heme oxygenase-1 (HO-1), hypoxia-inducible factor-1α

(HIF-1α), and NF-κB, which also aggravate oxidative stress (Lavie,
2012). For example, stabilizing HIF-1α by IH promotes ROS
synthesis in mitochondria to induce apoptosis. The inhibition of
HIF-1α can reduce neuronal apoptosis (da Rosa et al., 2015).
In addition, Beta-secretase 1 (BACE1), as a primary agonist to
generate amyloid β (Aβ), is activated by HIF-1α. Therefore, OSA
patients were highly associated with Alzheimer’s (Andrade et al.,
2018). Finally, increased HIF-1α production disrupts long-term
potentiation (LTP) of the hippocampus and impaired spatial
memory function by downregulating the N-methyl d-aspartate
receptor (NMDAR) (Arias-Cavieres et al., 2020). Thus, HIF-1α

could be a potential target for future OSA therapy.
Other than altering the expression of some genes, oxidative

stress could cause mitochondrial dysfunction since ROS is

primarily generated in mitochondria. In IH conditions, enhanced
ROS production inhibits the electron transport chain activity in
mitochondria and damages mitochondrial function (Prabhakar,
2011). However, suppressing ROS production rescued the
mitochondrial morphology and function in the brain (Xu et al.,
2015). A previous study observed a significant correlation between
OSA severity and a significant decrease in mitochondrial DNA
(mtDNA) copy number in OSA patients associated with oxidative
stress (Kim et al., 2014). This finding is consistent with another
study that revealed that mitochondrial bioenergetics are impaired
in the frontal brain regions in OSA patients (Vakulin et al., 2022).

Furthermore, ER is another region partially producing ROS.
Approximately 25% of ROS are derived from the ER and are
required for oxidative protein folding (Gorlach et al., 2015).
Furthermore, an oxidative environment favors protein folding,
particularly the formation of disulfide bonds between two cysteine
residues in proteins through thiol oxidation. Therefore, increased
ROS production may lead to ER homeostasis loss and accumulation
of misfolded proteins. This process is called ER stress (Mello et al.,
2016). Moreover, additional synthesis of misfolded or unfolded
proteins could deplete glutathione (GSH) due to ER stress (Tu and
Weissman, 2002). After GSH is utilized, the oxidizing environment
facilitates the reoxidation of protein thiols by interacting with
protein disulfide isomerase (PDI) and endoplasmic reticulum
oxidoreduction (ERO-1) (Bhandary et al., 2012). These steps lead
to repetitive cycles of disulfide bond breakage and formation, with
each process generating additional ROS as a byproduct (Higa
and Chevet, 2012). This evidence strongly implies that ER stress
and ROS could reciprocally activate each other under chronic IH
conditions. Increased oxidative and ER stress levels were confirmed
by our previous works, contributing to the impairment of learning
and memory by inducing neuronal apoptosis (Xu et al., 2015,
2021a). Thus, decreasing oxidative stress could attenuate cognitive
deficits induced by hypoxia.

4.2.2. Inflammation
A large number of inflammatory cytokines, such as interleukin

(IL)-1, IL-6, IL-8, tumor necrosis factor-α (TNF-α), nuclear
factor kappa B (NF-κB), etc., are activated in OSA patients (Liu
et al., 2020). Although many factors could be implicated in the
activation and progression of inflammation in OSA patients, a close
relationship exists between inflammation and chronic IH (Dewan
et al., 2015).

Hypoxia-inducible factor-1α, induced under IH condition,
could increase NO synthesis by activating iNOS gene expression.
NO is critical in initiating and regulating the inflammatory process
(Abe et al., 2017). Then, excessive NO generation induced by IH
could enhance neuronal apoptosis in the hippocampal CA1 region
by generating lipid peroxidation (Yuan et al., 2015b). Moreover,
the pro-inflammatory transcription factor NF-κB was enhanced
in neutrophils and monocytes of OSA patients (Htoo et al.,
2006). Meanwhile, IH treatment increased NF-kB expression in
hippocampal neurons of rodent OSA model (Fei et al., 2021; Zhang
C. Q. et al., 2021). However, the underlying mechanism was not
elusive, with two significant explanations. One is that ROS could
directly elevate NF-κB expression by activating the phosphorylation
of IκBα and releasing p50 and RelA, binding to the DNA-binding
domains of NF-κB and activating NF-κB transcription (Hayden and
Ghosh, 2008). Another reason is that the dysregulation of leptin
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FIGURE 1

The underlying sleep fragmentation (SF) mechanism induces cognitive impairment in OSA disease. SF increases reactive oxygen species (ROS)
production by enhancing NADPH oxidase activity, triggering the inflammatory response and releasing inflammatory cytokines (IL-1β, IL-6, TNF-α)
from microglial and macrophages. ROS overproduction also affects various gene expressions, including neurotrophic factors, antioxidant genes, and
synapse proteins. Finally, SF disrupts neurotransmitter release.

FIGURE 2

The molecular mechanism of inducing cognitive impairment in OSA patients through intermittent hypoxia (IH). IH increases reactive oxygen species
(ROS) production and the nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasomes, triggering the inflammatory response and
releasing inflammatory cytokines (IL-1β, IL-6, TNF-α) by activating the nuclear factor kappa B (NF-κB) signaling pathway. ROS overproduction
induces apoptosis by causing mitochondrial damage and endoplasmic reticulum (ER) stress. Additionally, ROS overproduction induces the
production of hypoxia-inducible factor-1α (HIF 1α) and beta-secretase 1 (BACE1). HIF-1α downregulates the N-methyl d-aspartate receptor
(NMDAR) and BACE1, generating amyloid β (Aβ). Finally, the inflammatory cytokines aggravate neuronal axons, leading to synaptic damage. Blocking
arrow indicated the molecular target by current therapeutic drugs.
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levels in OSA patients could increase the production of TNF-α,
stimulating NF-κB activity (Berger and Polotsky, 2018).

How could these inflammatory cytokines aggravate cognitive
deficits in chronic IH? There were two major theories to classify
the inflammation mechanism leading to cognitive impairment
under the IH condition. One is activating microglia-mediated
neuroinflammation. Microglia, as inflammatory cells in the CNS,
were also activated, leading to in neurocognitive and behavioral
deficits caused by the IH of the animal model. IH exposure
could significantly increase the density and morphological features
of microglia, secreting cytokines such as IL-1β, IL-6, TNF-α,
adhesion molecules, and other signaling mediators (Kiernan et al.,
2016). These high cytokine levels produced by microglia can
aggravate neuronal axon and synaptic damage, impairing the
integrity of white matter across multiple brain regions (Hong et al.,
2016). BDNF levels, crucial in neural plasticity, were decreased
under IH conditions (Xie et al., 2010). Although pro-BDNF was
partially released by microglia, pro-BDNF cannot change into
BDNF during the persistent inflammatory phase to impair spatial
memory performance (Mohammadi et al., 2020). Increasing BDNF
expression can improve synaptic plasticity and decrease apoptosis
caused by IH (Yin et al., 2015).

The mRNA levels of toll-like receptors-4 (TLR-4) were
significantly upregulated by IH (Smith et al., 2013). Meanwhile,
the monocytes from OSA patients significantly increased TLR-
4 surface expression (Akinnusi et al., 2013). Therefore, TLR4 is
an essential factor in IH-induced inflammation, produced by glial
cells, and promotes inflammatory disorders. Glial cells are another
significant category of cells activated by the IH condition (Liu
et al., 2020). Then, the NF-κB signaling pathway can be activated
by TLR4, enhancing the release of TNF-α and IL-1β. Moreover,
TLR4 could bind with myeloid differentiation protein (MyD88) to
induce cell apoptosis (Xue et al., 2017). Meanwhile, suppressing
TLR4 expression could attenuate IH-induced neuronal apoptosis
(Deng et al., 2015).

The nucleotide-binding domain-like receptor protein 3
(NLRP3) is a necessary inflammation interacting with procaspase-
1 and apoptosis-associated speck-like protein (ASC) within the
NLRP3 inflammation complex. Then, it leads to the release of
caspase-1 and IL-1β (He et al., 2016). A recent study indicated that
the NLRP3 inflammasome expression was increased in the brain
tissue after IH treatment (She et al., 2022). Meanwhile, NLRP3
deletion elicited neuroprotection against IH treatment eliminating
damaged mitochondria and reducing oxidative stress levels (Wu
et al., 2021). Finally, inhibiting the NLRP3 inflammasome could
suppress neuroinflammation and enhance cognitive function
which was impaired by IH (Zhang et al., 2023). Therefore, NLRP3
inflammasome may be a potential target to ameliorate cognitive
impairment.

4.2.3. Apoptosis
Many factors involved apoptosis under IH conditions,

including oxidative stress, ER stress, and inflammation response
(da Rosa et al., 2015; Deng et al., 2015; Xu et al., 2015, 2021a).
However, there were also other signaling pathways involved in
IH-induced apoptosis. For instance, cyclic AMP response element-
binding protein (CREB) activity decreased in the hippocampal CA1
after IH exposure with increased cleaved caspases-3-positive cells.
Meanwhile, enhanced phosphorylation of CREB could attenuate

IH-induced neurocognitive impairments by suppressing neuronal
apoptosis (Wang et al., 2015). Moreover, IH-induced autophagy
attenuates apoptosis by activating AMP-activated protein kinase
(AMPK) and enhancing the expression levels of Bax and
cleaved caspase 3. Furthermore, 3-methyladenine, as an autophagy
inhibitor, could suppress these alterations (Guo et al., 2021).
More factors and signaling pathways would be associated with
IH-induced apoptosis with further research.

5. Current drug therapies for
neurocognitive dysfunction in OSA
patients

Presently, some drugs are adjunctive therapy for treating OSA
disease, achieving good efficacy in improving cognitive impairment
(Table 1).

5.1. Modafinil

Modafinil is a novel wake-promoting agent that improves
wakefulness in various clinical models. The American Academy
of Sleep Medicine has recommended modafinil as a ’golden
standard’ treatment for this patient population (Littner et al.,
2001). Modafinil is used as an adjunct therapy in OSA disease.
A randomized, double-blind, placebo-controlled trial indicated
that modafinil improved performance on behavioral alertness tests
and reduced functional impairments in OSA patients assessed
using the psychomotor vigilance task (PVT) and the Functional
Outcomes of Sleep Questionnaire (Dinges and Weaver, 2003).
Meanwhile, modafinil also reduces the incidence of adverse events,
including headaches, nervousness (Pack et al., 2001), and daytime
sleepiness (Schwartz et al., 2003; Bittencourt et al., 2008; Inoue
et al., 2013). Although modafinil did not affect sleepiness measured
by the Epworth Sleepiness Scale or the Multiple Sleep Latency
Test, a significant improvement in alertness was observed on the
Maintenance of Wakefulness Test (Kingshott et al., 2001).

5.2. Armodafinil

Armodafinil is the (R)-enantiomer of the wake-promoting
compound modafinil, approved for treating excessive sleepiness,
OSA, and shift work disorder (Nishino and Okuro, 2008).
In this 12-week, randomized, double-blind study, armodafinil
significantly enhanced episodic secondary memory, patient-
estimated wakefulness, and decreased fatigue with fewer adverse
events (Hirshkowitz et al., 2007). Furthermore, armodafinil
enhanced simulated driving safety performance in OSA patients
awaiting CPA therapy (Kay and Feldman, 2013). Although the
underlying mechanism is elusive, one study indicated that it could
be related to increased sleep latency (Roth et al., 2006). However, no
significant differences were observed in armodafinil treatment for
2 weeks compared with the placebo group according to the 2-back
working memory task. Meanwhile, the neuroimaging study also
indicated that armodafinil could not improve functional magnetic
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TABLE 1 Summary of the drug medicine treated for OSA in clinical trials.

Name Operation
mode

Research
design

Diagnosis Treatment method Treatment
duration

Outcome References

Treatment group (n) Control
group (n)

Modafinil Oral administration Randomized
controlled trial

Polysomnography Modafinil (200 mg/day) (77) Placebo (80) 4 weeks Improved performance on a test of
behavioral alertness and reduced

functional impairments

Dinges and
Weaver, 2003

Oral administration Randomized
controlled trial

Polysomnography Modafinil (400 mg/day) (77) Placebo (80) 4 weeks Normalized daytime sleepiness,
reduce the incidence of headache,

nervousness

Pack et al., 2001

Oral administration Open-label trial Polysomnography Modafinil (200-400 mg/day)
(58)

Placebo (67) 12 weeks Reduced daytime sleepiness Schwartz et al.,
2003

Oral administration Randomized
controlled trial

Polysomnography Modafinil (100 mg/day) (9) Placebo (11) 4 weeks Reduced daytime sleepiness Bittencourt et al.,
2008

Oral administration Randomized
controlled trial

Polysomnography Modafinil (200 mg/day) (62) Placebo (52) 4 weeks Reduced daytime sleepiness Inoue et al., 2013

Oral administration Randomized
controlled trial

Polysomnography Modafinil (400 mg/day) (30) Placebo (30) 7 weeks A significant improvement in
alertness

Kingshott et al.,
2001

Armodafinil Oral administration Randomized
controlled trial

Polysomnography Armodafinil (150 mg/day)
(129)

Placebo (130) 12 weeks Improved alertness, overall clinical
condition, and long-term memory

Hirshkowitz et al.,
2007

Oral administration Randomized
controlled trial

Polysomnography Armodafinil (150 mg/day)
(35)

Placebo (34) 6 weeks Improved driving safety performance
and sleep quality

Kay and Feldman,
2013

Oral administration Randomized
controlled trial

Polysomnography Armodafinil (150 mg/day)
(133), Armodafinil
(250 mg/day) (131),

Placebo (130) 12 weeks Improved sleep latency Roth et al., 2006

Oral administration Randomized
controlled trial

Polysomnography Armodafinil (200 mg/day)
(20)

Placebo (19) 2 weeks Reduced sleepiness, improved the
performance on standardized

memory and attention

Greve et al., 2014

Atomoxetine and
Oxybutynin

Oral administration Randomized
controlled trial

Polysomnography Atomoxetine (80 mg/day)
and Oxybutynin (5 mg/day)

(10)

Placebo (10) 1 days Reduced the number of obstructive
events, improved the overnight

oxygen desaturation and enhanced
the genioglossus muscle activity

Taranto-
Montemurro et al.,

2017b

Oral administration Randomized
controlled trial

Polysomnography Atomoxetine (80 mg/day)
and Oxybutynin (5 mg/day)

(7)

Placebo (7) 7 days Improved the measures of upper
airway collapsibility, increased
breathing stability, and slightly
reduced the arousal threshold

Taranto-
Montemurro et al.,

2020

(Continued)
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resonance imaging (fMRI)-measured functional brain activation
(Greve et al., 2014). Another clinical trial also described that
6 months of armodafinil treatment could not improve driving
task performance but affected weight loss (Chapman et al., 2018).
Therefore, armodafinil did not improve all the cognitive ability
aspects.

5.3. Anti-inflammatory drugs

Inflammation is essential in cognitive impairment, with some
anti-inflammatory drugs used in clinical trials. Though AHI and
rhinorrhea symptoms in OSA patients significantly decreased
after treatment with intranasal fluticasone propionate, a common
corticosteroid, cognitive function was not assessed (Kiely et al.,
2004; Segsarnviriya et al., 2021). Montelukast, a leukotriene
receptor antagonist, also affects reducing AHI (Goldbart et al.,
2012). Although fluticasone and montelukast did not decrease
AHI in one study, total sleep time and percent of rapid eye
movement (REM) sleep were significantly elevated (Smith et al.,
2019). Additionally, intranasal budesonide, another effective anti-
inflammatory drug, enhances sleep latency, SWS, and REM sleep
among children (Kheirandish-Gozal and Gozal, 2008). However,
these clinical trials did not reveal the effect of anti-inflammatory
drugs on cognitive function, which needs further investigation.

5.4. Atomoxetine

Atomoxetine is a selective norepinephrine reuptake inhibitor
reducing hypoglossal motoneuron excitability by blocking
G-coupled inwardly rectifying the potassium channels (Taranto-
Montemurro et al., 2017a). Oxybutynin is an antimuscarinic
with mixed effects on suppressing exceeding nicotinic excitation
(Liu et al., 2005). One study demonstrated that a combination
of atomoxetine with oxybutynin could decrease the number of
obstructive events, enhance the overnight oxygen desaturation,
elevate the genioglossus muscle activity, and reduce AHI (Taranto-
Montemurro et al., 2019, 2020). However, the effect of atomoxetine
and oxybutynin on reducing cognitive function is still unknown.

5.5. Tiagabine

Tiagabine is a γ-aminobutyric acid (GABA) reuptake receptor
inhibitor increasing GABA concentration at the synaptic level of
the central nervous system. Tiagabine enhanced slow-wave activity
(SWA) (Taranto-Montemurro et al., 2017b) with a crucial cognitive
role (Wilckens et al., 2018). On the other hand, γ-hydroxybutyrate
derived from GABA also increases SWS and REM sleep time
(Series et al., 1992).

5.6. Desipramine

Desipramine is a common tricyclic antidepressant reducing
the sleep-related loss of genioglossus activity and improving
pharyngeal collapsibility (Taranto-Montemurro et al., 2016a).
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A placebo-controlled, double-blind, randomized trial described
that desipramine could mitigate the sleep-related loss of muscle
activity and AHI (Taranto-Montemurro et al., 2016b). There
is direct evidence to enhance the protective effect on rescuing
the cognition ability of OSA patients. However, some literature
depicts that desipramine improves working memory (Clinton
et al., 2006; Wang et al., 2016). The impact of desipramine on
improving cognition ability in OSA requires further investigation.
Furthermore, other neurological drugs, such as physostigmine and
mirtazapine, could reduce the AHI in diabetes patients. However,
these studies did not investigate whether these drugs could improve
cognitive function (Hedner et al., 2003; Carley et al., 2007).

6. The therapeutic mechanisms of
other agents to attenuate cognitive
impairment due to OSA

A few drugs were used to ameliorate cognitive deficits induced
by OSA. However, experimental studies on OSA animal models
indicate that chemical substances and natural products from
Chinese herbs improve cognitive impairment (Table 2). Based on
the action and molecular target mechanisms, these compounds are
divided into: anti-oxidative properties, anti- inflammatory effects
and anti-apoptosis effects.

6.1. Anti-oxidative property

Erythropoietin (EPO), a prototypic cytokine and hypoxia-
sensitive gene, has been implicated in improving cognitive
ability through multiple signaling pathways (Sanchez et al., 2009;
Dayyat et al., 2012). For instance, mice treated with exogenously
administered erythropoietin (EPO) had protection from IH-
induced spatial learning deficits caused by attenuating oxidative
stress responses and suppressing NADPH oxidase expression
(Dayyat et al., 2012). Another study indicated that this beneficial
effect elevated glutathione levels and glutathione peroxidase
activity (Al-Qahtani et al., 2014).

Edaravone is another potent free radical scavenger used
to treat acute attacks of cerebral infarction and improve
neurological symptoms with cognitive impairment. Edaravone
attenuated IH-induced cognitive impairment and elevated the
number of mitochondria by upregulating the expression of SOD
and phosphorylated-cAMP response element-binding (p-CREB)
(Ling et al., 2020).

One study revealed Huperzine A (Hu A) elevated T-SOD and
GSH-Px abilities and reduced MDA content to resist oxidative
stress damage with PKAα/Erk/CREB/BDNF signaling pathway
(Yang et al., 2023).

Growth hormone (GH) modulates memory and cognitive
functions and is impaired in OSA (Gianotti et al., 2002). GH
could attenuate IH-induced cognitive deficits by elevating the
expression of IGF-1, EPO, and VEGF (Li et al., 2011). GH
secretion is controlled by growth hormone-releasing hormone
(GHRH) (Schussler et al., 2006). JI-34 is an agonist of GHRH,
attenuating IH- induced neurocognitive deficits. The underlying

mechanism is associated with increased expression of HIF-1α and
EPO (Nair et al., 2013).

Sulforaphane (SFN) is extracted from cruciferous vegetables of
the Brassica genus, exerting neuroprotective effects by activating
autophagy or transcription factor Nrf2 (Uddin et al., 2020). SFN
treatment ameliorated neurocognitive dysfunction within IH mice
by downregulated cleaved PARP, cleaved caspase 3, and upregulated
Bcl-2 and Nrf2 (Li et al., 2022).

6.2. Anti-inflammatory effects

Sesamol can alleviate cognitive impairments in chronic IH-
exposed rats. This beneficial effect could reduce hippocampal
TNF-α and IL-1β levels (Zhang P. et al., 2021).

6.3. Anti-apoptosis effects

Based on our previous research, Tauroursodeoxycholic
acid (TUDCA) can decrease neuronal apoptosis and enhance
hippocampal synaptic plasticity by inhibiting endoplasmic
reticulum stress activation (Xu et al., 2015).

Some natural products extracted from herbal medicine are also
beneficial. Apocynin is a plant drug derived from Picrorhiza kurroa.
Apocynin attenuated IH-induced spatial learning deficits and
oxidative stress by inhibiting NADPH oxidase subunit p47phox
mRNA and ameliorating cell apoptosis (Hui-guo et al., 2010; Yuan
et al., 2015a).

Hu A is isolated from the Chinese herb Huperzia serrata and
could cross the blood-brain barrier (BBB). Hu A could improve
cognitive impairment and neuronal damage induced by IH by
increasing the Bcl-2/Bax ratio and inhibiting caspase-3 cleavage
(An et al., 2020).

Protocatechuic acid (PCA) is abundant in edible fruits and
vegetables and is naturally present in various herbal medicine,
including Hibiscus sabdariffa and Salvia miltiorrhiza. PCA could
enhance learning and memory ability and alleviate oxidative stress
and apoptosis in IH-treated rats by improving the expression of
Bcl-2, BDNF, and pro-BDNF and reducing cleaved caspase-3 and
IL-1β (Yin et al., 2015).

Shashen-Maidong Decoction (SMD) is an herbal formula with
eight Chinese medicines [Ophiopogon japonicus (Thunb.) Ker
Gawl. (9 g); Glehnia littoralis (A.Gray) F.Schmidt ex Miq. (9 g);
Lablab purpureus (L.) Sweet (4.5 g); Morus indica L. (4.5 g);
Polygonatum odoratum (Mill.) Druce (6 g); Trichosanthes kirilowii
Maxim (4.5 g); Glycyrrhiza uralensis Fisch. Ex DC. (3 g)]. SMD
treatment in a previous study improved performance assessed using
the Morris Water Maze and Y-Maze test in mice exposed to IH by
enhancing ERK/CREB phosphorylation and elevating PSD-95 and
BDNF expression (Zhao et al., 2021).

Finally, Dl-3n-Butylphthalide (NBP) is extracted from Apium
graveolens L with a broad spectrum of neuroprotective properties.
One study described that NBP could inhibit apoptosis and promote
IH-induced autophagy by activating the SIRT1/PGC-1a signaling
pathway (Min et al., 2014).
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TABLE 2 The mechanisms by which some chemical substances and herbs medicine treat cognitive impairment in OSA animal model.

Property Drug
name

Type of study Treatment method Treatment
duration

Outcomes Targets or
pathways

References

Experiment
group

Control group

Anti-oxidation EPO Intermittent hypoxia in mice
(a cyclical pattern of 5.7%

and 21% oxygen every 90 s)

EPO (5000 IU/kg/day,
i.p., n = 24)

PBS i.p. injection
(n = 24)

12 h/day for 14 days Improved spatial learning
and attenuated oxidative

stress

Elevated levels of NADPH
oxidase expression

Dayyat et al., 2012

Intermittent hypoxia in rat
(a cyclical pattern of 5.7%

and 21% oxygen every 90 s)

EPO (500, 1000
IU/kg/day, i.p., n = 10)

PBS i.p. injection
(n = 10)

12 h/day for 6 weeks Improved spatial learning
and attenuated oxidative

stress

Increased glutathione levels
and glutathione peroxidase

activity

Al-Qahtani et al., 2014

Edaravone Intermittent hypoxia in rat
(a cyclical pattern of 6%

and 21% oxygen every 120 s)

Edaravone
(5 mg/kg/day, i.p.,

n = 20)

Saline injection
(n = 20)

8 h/day for 4 weeks Attenuated IH-induced
cognitive impairment

Upregulated the expression
of SOD and p-CREB

Ling et al., 2020

Hu A Intermittent hypoxia in mice
(5% and 21% oxygen

20 times/h)

Hu A (0.1 mg/kg/day,
i.p., n = 10)

Empty liposomes
(n = 10)

8 h/day for 3 weeks Improved cognitive
impairment and resisted

oxidative stress

Activated the
PKAα/Erk/CREB/BDNF

signaling pathway

Yang et al., 2023

GH Intermittent hypoxia in rat
(a cyclical pattern of 10%

and 21% oxygen every 90 s)

GH (50 µg/kg/day, s.c.,
n = 8)

Vehicle injection
(n = 8)

12 h/day for 2 weeks Attenuated IH-induced
cognitive deficits

Increased the expression of
IGF-1, EPO and VEGF

Li et al., 2011

JI-34 Intermittent hypoxia in mice
(a cyclical pattern of 5.7%

and 21% oxygen every 90 s)

JI-34 (50 mg/kg/day,
s.c., n = 12)

0.1% DMSO in 10%
aqueous propylene

glycol solution
(n = 12)

12 h/day for 3 weeks Improved neurocognitive
deficits, anxiety, and

depression

Increased the expression of
HIF-1α and EPO

Nair et al., 2013

SFN Intermittent hypoxia in mice
(a cyclical pattern of 10%

and 21% oxygen every 90 s)

SFN (0.5 mg/kg/day,
i.p., n = 10)

Saline injection
(n = 10)

7 h/day for 4 weeks Decreased memory errors
and apoptosis

Downregulated cleaved
PARP, cleaved caspase 3,

and upregulated Bcl-2 and
Nrf2

Li et al., 2022

Anti- inflammation Sesamol Intermittent hypoxia in rat
(a cyclical pattern of 10%

and 21% oxygen every 120 s)

Sesamol
(20 mg/kg/day, i.p.,

n = 15)

Saline injection
(n = 15)

8 h/day for 2, 4,
6,8 weeks

Improved spatial learning
assessed by Morris water

maze

Reduced the levels of
TNF-α and IL-1β

Zhang P. et al., 2021

Anti-apoptosis TUDCA Intermittent hypoxia in mice
(10% and 21% oxygen every

90 s)

TUDCA
(100 mg/kg/day, i.p.,

n = 15)

PBS injection
(n = 15)

8 h/day for 2,
4 weeks

Improved spatial learning
and reduced apoptosis

Inhibited endoplasmic
reticulum stress

Xu et al., 2015

Apocynin Intermittent hypoxia in rat
(a cyclical pattern of 10%

and 21% oxygen every 90 s)

Apocynin
(3 mg/kg/day, i.g.,

n = 10)

Saline injection
(n = 10)

10 h/day for 4 weeks Improved spatial learning
and reduced apoptosis

Inhibiting NADPH oxidase Hui-guo et al., 2010

(Continued)
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7. Discussion

Cognitive impairment is a common symptom of OSA,
irrespective of age (Vardanian and Ravdin, 2022). Neuroimaging
studies depicted cerebral cortex morphology in multiple affected
regions (Kizilgoz et al., 2013), with clinical impairment across
various cognition aspects. Since the cognitive impairment
mechanism in OSA is complex, SF and IH are significant factors
activating multiple downstream signaling pathways while causing
cognitive impairment (Figures 1, 2). Some signaling pathways and
proteins were targeted by SF and IH, such as excessive NADPH
oxidase activity (Nair et al., 2011a,b), inducing the expression
of pro-inflammatory cytokines (Bertrand et al., 2020; Liu et al.,
2020) and activating the TNF-α/NF-κB pathway (Berger and
Polotsky, 2018; Zhang et al., 2022). These processes do not function
alone and are affected by each other. For example, HIF-1α an
oxidative stress marker, could activate inflammation response by
inducing NO expression (Abe et al., 2017). Initially, oxidative
stress is induced by impaired antioxidant capacity. Then, some
pro-inflammation cytokines are generated, accelerating oxidative
stress injury and triggering neuronal apoptosis.

Although some traditional methods, including oral appliances,
surgery, and CPAP, have improved certain aspects of cognitive
functioning, they do not fully alleviate cognitive complaints
(Vardanian and Ravdin, 2022). Therefore, drug therapy could
enhance treatment outcomes and be used with other therapy
methods. Some drugs have beneficial effects on improving sleep
quality (Taranto-Montemurro et al., 2016b, 2017b). However,
more large clinical trials are required to validate these findings.
Meanwhile, some chemical substances and herbal medicine could
improve cognitive ability in animal studies, while could become a
complementary method based on successful clinical trials.

8. Conclusion and perspectives

Multiple cognitive aspects are affected in OSA, which current
therapy cannot improve. This review summarized the randomized
controlled trials of drugs for treating OSA-related cognitive
impairment. Although these drugs could improve cognition, the
studies have several limitations.

First, the sample size is very small for clinical studies. There
is a lack of large-scale, multicenter, randomized controlled trials
on drugs treating OSA-induced cognitive impairment. Second, a
wide variation occurs in the characteristics of referred patients,
such as age, disease history, and disease severity. Third, the drug
treatment duration is short, and the prolonged effect has yet to be
investigated. Fourth, there is a lack of preclinical studies examining
the possible drug targets.

Future research should be directed toward these aspects to
overcome these limitations. First, some large-scale, multicenter,
and controlled trials are required to determine the efficacy of
these drugs. Second, standardization of the clinical drug use
process should be established in treating OSA-induced cognitive
impairment. Lastly, additional studies should be performed
in clinical trials for some novel chemical substances and
herbal medicine.
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