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Abstract. This paper deals with the convergence and stability of Galerkin finite
element method for a hyperbolic partial differential equations with piecewise contin-
uous arguments of advanced type. First of all, we obtain the expression of analytic
solution by the method of separation variable, then the sufficient conditions for sta-
bility are obtained. Semidiscrete and fully discrete schemes are derived by Galerkin
finite element method, and their convergence are both analyzed in L2-norm. More-
over, the stability of the two schemes are investigated. The semidiscrete scheme can
achieve unconditionally stability. The sufficient conditions of stability for fully dis-
crete scheme are derived under which the analytic solution is asymptotically stable.
Finally, some numerical experiments are presented to illustrate the theoretical results.
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1 Introduction

In this paper, we consider the following differential equation with piecewise
continuous arguments (EPCA)

utt(x, t) = a2uxx(x, t) + buxx(x, [t]) + cuxx(x, [t+ 1]) in Ω × J,

u(x, 0) = v(x), ut(x, 0) = w(x) in Ω,

u(x, t) = 0 on ∂Ω × J,

(1.1)
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where a, b ∈ R, Ω = [0, π] with smooth boundary ∂Ω, J denotes the time
interval [0,+∞) and [·] denotes the greatest integer function. In the past few
decades, EPCA has been applied successfully in economy [2], competition [12],
population growth [11] and so on. This class of equations is a hybrid of contin-
uous and discrete dynamical systems, combining the properties of differential
and difference equations. The continuity of solution at the points connecting
any two continuous intervals implies the recurrence of the value of the solution
at those points. Hence, the EPCA is essentially closer to difference equation
than differential equation. The studies of these kinds of equations were initially
mentioned in [20] and [5]. In the following years, qualitative properties such
as the stability and convergence [32, 34], oscillation [4, 8], periodicity [4, 6] of
solutions of EPCA have been discussed deeply. Although the numerical study
of EPCA starts late, it has gradually become more and more popular since
EPCA can hardly be solved by analytical methods or much complicated to
deal with. Many numerical methods have been applied to EPCA, such as the
θ-methods [26], the Runge-Kutta methods [24,35], the Euler-Maclaurin meth-
ods [18], spectral collocation methods [33] and the linear multistep methods [16]
and so on.

However, the literatures mentioned above only focus on the EPCA in case
of ordinary differential equations. To the best of our knowledge, there are few
publications concerning partial differential equation with piecewise continuous
arguments (PEPCA) solved by numerical methods except for [14,15,22,23,25].
Liang et al. investigated PEPCA with the θ-methods [14] and Galerkin finite
element method [15], numerical stability was analyzed, respectively. In [23],
the θ-methods were also applied to another PEPCA of mixed type and the suf-
ficient conditions for numerical stability were established. In addition, Wang
and Wang [25] considered the analytical and numerical stability of PEPCA of
alternately retarded and advanced type in the θ-schemes and achieved the cor-
responding stability conditions. It’s worth noticing that published papers men-
tioned above concerning parabolic PEPCA. Different from them, in this paper,
we will investigate a hyperbolic PEPCA of advanced type with homogeneous
Dirichlet boundary conditions by Galerkin finite element method. The conver-
gence and stability of numerical schemes are both discussed. For more infor-
mation on PEPCA, the interested readers can refer to pubications [1,29,30,31]
and the references contained therein. As a numerical method for partial dif-
ferential equation, finite element method is regarded as an improvement of
Galerkin method with using finite-dimensional spaces consisting of globally
continuous piecewise polynomial functions, which make the application of fi-
nite element method more extensive and practical. Specially, Galerkin finite
element method for spatial direction and other technique for time direction
were proposed to discrete different equations and displayed excellent approx-
imation effects [3, 13, 17]. In addition, Galerkin finite element method is also
widely applied in many different fields, including physics [27], medicine [7, 19]
and elasticity problems [10]. In our work, we will carry out the numerical ap-
proximation scheme for a hyperbolic PEPCA of advanced type by Galerkin
finite element method and study its convergence and stability.

The organization of this paper is as follows. In Section 2, some preliminar-
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ies are provided. In Section 3, we obtain the expression of analytic solution in
vector form and the analytical stability is analyzed. In Sections 4 and 5, the
convergence and stability analysis for semidiscrete and fully discrete scheme
are discussed and some numerical experiments are presented to verify the the-
oretical results in Section 6. Finally, we get some conclusions in Section 7.

2 Preliminaries

Definition 1. [28] A function u(x, t) is called a solution of (1.1) if it satisfies
the conditions:

(i) u(x, t) is continuous in Ω × J ;

(ii) ∂ku/∂xk and ∂ku/∂tk (k = 1, 2) exist and are continuous in Ω × J with
the possible exception of the points (x, n), where one-sided derivatives
exist (n = 0, 1, 2, . . .);

(iii) u(x, t) satisfies utt(x, t) = a2uxx(x, t) + buxx(x, [t]) + cuxx(x, [t + 1]) in
Ω × J with the possible exception of the points (x, n), and conditions
u(x, 0) = v(x), ut(x, 0) = w(x) in Ω and u(x, t) = 0 on ∂Ω × J .

Lemma 1. [9] The sets of eigenvalues of the matrix S consist of all the eigen-
values of the following family of matrices

S =


S11 S12 S13 · · · S1n

S21 S22 S23 · · · S2n

. . .
. . .

. . .

S(n−1)1 · · · S(n−1)(n−2) S(n−1)(n−1) S(n−1)n

Sn1 · · · Sn(n−2) Sn(n−1) Snn

 .

Lemma 2. [9] The polynomial x2 − e1x− e2 (e1, e2 ∈ R) is Schur polynomial
if and only if |e1| < 1− e2 < 2.

3 Analytic solution and stability

Definition 2. If any solution u(x, t) of (1.1) satisfies limt→∞ u(x, t) = 0, x ∈
Ω, the zero solution of (1.1) is asymptotically stable.

Application of the method of separation of variables to look for the solution
of (1.1) with the form u(x, t) = T (t)X(x) gives

T
′′
(t)X(x) = a2T (t)X

′′
(x) + bT ([t])X

′′
(x) + cT ([t+ 1])X

′′
(x),

so
T

′′
(t)

a2T (t) + bT ([t]) + cT ([t+ 1])
=

X
′′
(x)

X(x)
= −P 2,

that is

X
′′
(x) + P 2X(x) = 0, (3.1)

T
′′
(t) + a2P 2T (t) = −bP 2T ([t])− cP 2T ([t+ 1]). (3.2)
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(3.1) and the boundary conditions of (1.1) yield P = i, Xi = sin(xi) (i =
1, 2, . . .). So, (3.2) changes into

T
′′

i (t) + a2i2Ti(t) = −bi2Ti([t])− ci2T ([t+ 1]), i = 1, 2, . . . . (3.3)

For convenience, we take T ′
i (t) = Vi(t), so, (3.3) gives

W ′
i (t) = AWi(t) +BWi([t]) + CWi([t+ 1]), i = 1, 2, . . . , (3.4)

where

Wi =

(
Ti

Vi

)
, A =

(
0 1

−a2i2 0

)
, B =

(
0 0

−bi2 0

)
, C =

(
0 0

−ci2 0

)
.

On the interval [n, n+ 1), (3.4) becomes

W ′
i (t) = AWi(t) +BCn + CCn+1, i = 1, 2, . . . , (3.5)

where Cn = Wi([t]), Cn+1 = Wi([t+ 1]). From (3.5) we have

Wi(t)=
(
A−1BCn+A−1CCn+1+Cn

)
eA(t−n)−A−1BCn−A−1CCn+1, i ≥ 1,

that is
Wi(t) = M(t− n)Cn +N(t− n)Cn+1, i = 1, 2, . . . ,

where

M(t−n)=eA(t−n)+
(
eA(t−n)−I

)
A−1B, N(t−n)=

(
eA(t−n)−I

)
A−1C.

Let t = n+ 1, we have Cn+1 = M(1)Cn +N(1)Cn+1, where

M(1) = eA +
(
eA − I

)
A−1B =

(
(1 + b

a2 ) cos(η)− b
a2

sin η
η

−(1 + b
a2 )η sin η cos η

)
,

N(1) =
(
eA − I

)
A−1C =

(
− c

a2 (1− cos(η)) 0
− c

a2 η sin η 0

)
, η = ai, i = 1, 2, . . . ,

so,
Cn+1 = (I −N(1))−1M(1)Cn, (3.6)

where

(I −N(1))−1M(1) =

(
− c sin2(η)−(a2+b) cos(η)+b

a2+c(1−cos(η))
sin(η)

η

− (a2+b)η sin(η)+cη sin(η) cos(η)
a2+c(1−cos(η)) cos(η)

)
,

and we arrive at

Cn+1 =
(
(I −N(1))

−1
M(1)

)n+1

C0, Cn =
(
(I −N(1))

−1
M(1)

)n
C0.

Therefore, we obtain

Wi(t) = M(t− n)Cn +N(t− n)Cn+1 = M(t− n)
(
(I −N(1))

−1
M(1)

)n
C0

+N(t−n)
(
(I−N(1))

−1
M(1)

)n+1

C0=M(t−[t])
(
(I−N(1))

−1
M(1)

)[t]
C0

+N(t− [t])
(
(I −N(1))

−1
M(1)

)[t+1]

C0. (3.7)
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Then the analytic solution u(x, t) is the first component of the following
vector in series form û(x, t) =

∑∞
i=1 Di sin(xi)Wi(t). Let t = 0, we have

û(x, 0) =

∞∑
i=1

Di sin(xi)C0 =

∞∑
i=1

Di sin(xi)

(
Ti(0)

T
′

i (0)

)
. (3.8)

From (3.8) and the initial conditions of (1.1) we have

∞∑
i=1

Di sin(xi)Ti(0) = v(x),

∞∑
i=1

Di sin(xi)T
′

i (0) = w(x),

so, we get

DiTi(0) =
π

2

∫ π

0

v(x) sin(xi)dx, DiT
′

i (0) =
π

2

∫ π

0

w(x) sin(xi)dx.

Thus, û(x, t) =
∑∞

i=1 sin(xi)Wi(t)di, where

di =

(
DiTi(0)

DiT
′

i (0)

)
=

(
π
2

∫ π

0
v(x) sin(xi)dx

π
2

∫ π

0
w(x) sin(xi)dx

)
.

Theorem 1. The zero solution of Problem (1.1) is asymptotically stable if and
only if

c > 0, b < c, a2 + b+ c > 0. (3.9)

Proof. From (3.6), we know that the zero solution of Problem (1.1) is
asymptotically stable if and only if max

∣∣λ(I−N(1))−1M(1)

∣∣ < 1. According to
Lemma 1, the eigenvalues of (I −N(1))−1M(1) are the roots of the following
characteristic equations

λ2 +
(b+ c)(1− cos(η))− 2a2 cos(η)

a2 + c(1− cos(η))
λ+

a2 + b(1− cos(η))

a2 + c(1− cos(η))
= 0, η = ai, i ≥ 1.

From Lemma 2, we need to verify 1− e2 < 2 and |e1| < 1− e2 under some
conditions. Here

e1=− (b+c)(1− cos(η))− 2a2 cos(η)

a2 + c(1− cos(η))
, 1−e2=

2a2 + (b+ c)(1− cos(η))

a2 + c(1− cos(η))
.

If (
2a2 + (b+ c)(1− cos(η))

)
/
(
a2 + c(1− cos(η))

)
< 2,

we can derive

(b− c)(1− cos(η))/
(
a2 + c(1− cos(η))

)
< 0.

(i) When a2+c(1−cos(η)) > 0, we obtain c > 0, b−c < 0. From e1 < 1−e2 we
get a2+b+c > 0, while 1+cos(η) > 0 holds obviously from e1 > −(1−e2).

(ii) When a2 + c(1 − cos(η)) < 0, we get the contradiction 1 + cos(η) < 0 in
the process of deducing e1 > −(1− e2). Hence, this case does not exist.

The proof is finished. ⊓⊔



Convergence and Stability of Galerkin ... 439

4 Semidiscrete scheme for Galerkin FE method

Denote Hs(Ω) be the Sobolev space on Ω and ∥ · ∥s is the related norm. We
define H1

0 = {ϕ ∈ H1(Ω) : ϕ = 0 on ∂Ω}, which is the completion of C∞
0 (Ω)

under L2(Ω)-norm ∥ · ∥.
Let r be integer with r ≥ 2, consider a family of partitions x0 < x1 < · · · <

xNh
(h ∈ N+) ofΩ into subintervals In = [xn−1, xn], set h = max

1≤n≤Nh

(xn−xn−1),

and Sh be the piecewise polynomial spline space

Sh = {uh ∈ C(Ω) : uh|In ∈ P (r−1)(In), 1 ≤ n ≤ Nh},

where P (r−1)(In) denotes the space of all (real) polynomials on In of degree no
more than r − 1.

In the first step of defining the spatial semi-discrete approximate solution of
Problem (1.1), we write it in weak form: Find u: J̄ → H1

0 , and apply Green’s
formula to the second, third and fourth term, we have

(utt(x, t), ϕ) + a2(∇u(x, t),∇ϕ) + b(∇u(x, [t]),∇ϕ)

+ c(∇u(x, [t+ 1]),∇ϕ) = 0, ∀ϕ ∈ H1
0 , t > 0,

u(0) = v, ut(0) = w, (4.1)

where

(f, g) =

∫
Ω

fg dx, (∇f,∇g) =

∫
Ω

∂f

∂x

∂g

∂x
dx.

Then, we give the approximate problem to find uh(t) = uh(·, t) : J̄ → Sh,
belonging to Sh for each t

(uh
tt(x, t), χ) + a2(∇uh(x, t),∇χ) + b(∇uh(x, [t]),∇χ)

+ c(∇uh(x, [t+ 1]),∇χ) = 0, ∀χ ∈ Sh, t > 0,

uh(0) = vh, uh
t = wh, (4.2)

where vh and wh are some approximations of v and w in Sh, respectively.

4.1 Convergence analysis

We introduce the Ritz projection Rh : H1
0 (Ω) → Sh as the orthogonal projec-

tion with respect to the inner product (∇φ,∇χ), so that

(∇Rhφ,∇χ) = (∇φ,∇χ), ∀χ ∈ Sh, for φ ∈ H1
0 . (4.3)

Lemma 3. [21] For φ ∈ Hs ∩H1
0 , if

inf
χ∈Sh

{∥φ− χ∥+ h∥∇(φ− χ)∥} ≤ Chs∥φ∥s, for 1 ≤ s ≤ r

holds, then

∥Rhφ− φ∥+ h∥∇(Rhφ− φ)∥ ≤ Chs∥φ∥s, for φ ∈ Hs ∩H1
0 , 1 ≤ s ≤ r,

where Rh is defined in (4.3), C denotes a positive constant.
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Theorem 2. Let u and uh be the solutions of (4.1) and (4.2), respectively, for
t ∈ [n, n+ 1)(n ∈ Z), if ∥vh − v∥ ≤ Chr∥v∥r and ∥wh − w∥ ≤ Chr∥w∥r, then

∥uh(t)−u(t)∥≤C(t)hr
{
∥v∥r+∥w∥r+

∫ t

0

∥us(s)∥ds+
∫ t

0

(∫ t

0

∥uss(s)∥2rds
) 1

2

ds
}
,

where C(t) is a function with respect to t.

Proof. Let

uh(t)− u(t) = (uh(t)−Rhu(t)) + (Rhu(t)− u(t)) ≜ θ(t) + ρ(t). (4.4)

For t ∈ [n, n+ 1), according to Lemma 3 we get

∥ρ(t)∥ = ∥Rhu(t)− u(t)∥ ≤ Chr||u(t)∥r = Chr
∥∥∥u(0) + ∫ t

0

usds
∥∥∥
r

≤ Chr
(
∥v∥r +

∫ t

0

∥us∥rds
)
. (4.5)

In addition, from (Rh(u))tt = Rhutt (see [21]) and (4.3) we have

(θtt(t), χ) + a2(∇θ(t),∇χ) + b(∇θ([t]),∇χ) + c(∇θ([t+ 1]),∇χ)

= (uh
tt(t), χ)− ((Rhu)tt(t), χ) + a2(∇uh(t),∇χ)− a2(∇Rhu(t),∇χ)

+ b(∇uh([t]),∇χ)− b(∇Rhu
h([t]),∇χ) + c(∇uh([t+ 1]),∇χ)

− c(∇Rhu
h([t+ 1]),∇χ) = −((Rhu)tt(t), χ)− a2(∇Rhu(t),∇χ)

− b(∇Rhu([t]),∇χ)− c(∇Rhu([t+ 1]),∇χ)

= −(Rhutt(t), χ)− a2(∇u(t),∇χ)− b(∇u([t],∇χ)− c(∇u([t+ 1]),∇χ)

= (utt(t)−Rhutt(t), χ) = −(ρtt(t), χ). (4.6)

Take χ = a2θt(t) + bθt([t]) + cθt([t+ 1]), from (4.6) we derive

(θtt(t), a
2θt(t)+bθt([t])+cθt([t+ 1]))+

1

2

d

dt

∣∣∣∣a2∇θ(t)+b∇θ([t])+cθ([t+1])
∣∣∣∣2

= −(ρtt(t), a
2θt(t)+bθt([t]) + cθt([t+ 1])),

then,
a2

2

d

dt
∥θt(t)∥2 + b

d

dt
(θt(t), θt(n)) + c

d

dt
(θt(t), θt(n+ 1))

≤ ∥ρtt(t)∥∥a2θt(t) + bθt(n) + cθt(n+ 1)∥.
(4.7)

Integrating (4.7) from n to t, we get

a2

2
∥θt(t)∥2 −

a2

2
∥θt(n)∥2 + b(θt(t), θt(n))− b∥θt(n)∥2

+ c(θt(t), θt(n+ 1))− c(θt(n), θt(n+ 1))

≤
∫ t

n

∥ρss(s)∥∥a2θs(s) + bθs(n) + cθs(n+ 1)∥ds.
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By using Schwarz inequality and Cauchy inequality we have

b(θt(t), θt(n)) ≤ |b|∥θt(t)∥∥θt(n)∥ ≤ |b|ε1
2

∥θt(t)∥2 +
|b|
2ε1

∥θt(n)∥2,

c(θt(t), θt(n+ 1)) ≤ |c|∥θt(t)∥∥θt(n+ 1)∥ ≤ |c|ε2
2

∥θt(t)∥2 +
|c|
2ε2

∥θt(n+ 1)∥2,

c(θt(n), θt(n+ 1)) ≤ |c|∥θt(n)∥∥θt(n+ 1)∥ ≤ |c|ε3
2

∥θt(n)∥2 +
|c|
2ε3

∥θt(n+ 1)∥2,

∥ρss(s)∥∥a2θs(s)∥ ≤ a2ε4
2

∥ρss(s)∥2 +
a2

2ε4
∥θs(s)∥2,

∥ρss(s)∥∥bθs(n)∥ ≤ |b|ε5
2

∥ρss(s)∥2 +
|b|
2ε5

∥θs(n)∥2,

∥ρss(s)∥∥cθs(n+1)∥≤|c|ε6
2

∥ρss(s)∥2+
|c|
2ε6

∥θs(n+ 1)∥2, εi > 0, i = 1, 2, . . . , 6,

so,

a2

2
∥θt(t)∥2 −

a2

2
∥θt(n)∥2 −

|b|ε1
2

∥θt(t)∥2 −
|b|
2ε1

∥θt(n)∥2 − b∥θt(n)∥2

− |c|ε2
2

∥θt(t)∥2 −
|c|
2ε2

∥θt(n+ 1)∥2 − |c|ε3
2

∥θt(n)∥2 −
|c|
2ε3

∥θt(n+ 1)∥2

≤ a2ε4
2

∫ t

n

∥ρss(s)∥2ds+
a2

2ε4

∫ t

n

∥θs(s)∥2ds+
|b|ε5
2

∫ t

n

∥ρss(s)∥2ds

+
|b|
2ε5

∫ t

n

∥θs(n)∥2ds+
|c|ε6
2

∫ t

n

∥ρss(s)∥2ds+
|c|
2ε6

∫ t

n

∥θs(n+ 1)∥2ds,

further,(
a2 − |b|ε1 − |c|ε2

2

)
∥θt(t)∥2 ≤

(
|c|
2ε2

+
|c|
2ε3

+
|c|
2ε6

(t− n)

)
∥θt(n+ 1)∥2

+

(
a2

2
+

|b|
2ε1

+ |b|+ |c|ε3
2

+
|b|
2ε5

(t− n)

)
∥θt(n)∥2

+
a2ε4 + |b|ε5 + |c|ε6

2

∫ t

n

∥ρss(s)∥2ds+
a2

2ε4

∫ t

n

∥θs(s)∥2ds.

So, we can take ε1, ε2 suitably to make a2 − |b|ε1 − |c|ε2 > 0 hold, and let
ã = (a2 − |b|ε1 − |c|ε2)/2, then

∥θt(t)∥2 ≤
(

|c|
2ãε2

+
|c|
2ãε3

+
|c|
2ãε6

(t− n)

)
∥θt(n+ 1)∥2

+

(
a2

2ã
+

|b|
2ãε1

+
|b|
ã

+
|c|ε3
2ã

+
|b|
2ãε5

(t− n)

)
∥θt(n)∥2

+
a2ε4 + |b|ε5 + |c|ε6

2ã

∫ t

n

∥ρss(s)∥2ds+
a2

2ãε4

∫ t

n

∥θs(s)∥2ds.

Math. Model. Anal., 28(3):434–458, 2023.



442 Y.T. Chen and Q. Wang

Gronwall inequality implies that

∥θt(t)∥2 ≤
(

|c|
2ãε2

+
|c|
2ãε3

+
|c|
2ãε6

(t− n)

)
e

a2

2ãε4
(t−n)∥θt(n+ 1)∥2

+

(
a2

2ã
+

|b|
2ãε1

+
|b|
ã

+
|c|ε3
2ã

+
|b|
2ãε5

(t− n)

)
e

a2

2ãε4
(t−n)∥θt(n)∥2

+
a2ε4 + |b|ε5 + |c|ε6

2ã
e

a2

2ãε4
(t−n)

∫ t

n

∥ρss(s)∥2ds.

Let t = n+ 1 and denote

b̃ =

(
|c|
2ãε2

+
|c|
2ãε3

+
|c|
2ãε6

)
e

a2

2ãε4 , d̃ =

(
a2ε4 + |b|ε5 + |c|ε6

2ã

)
e

a2

2ãε4 ,

c̃ =

(
a2

2ã
+

|b|
2ãε1

+
|b|
ã

+
|c|ε3
2ã

+
|b|
2ãε5

)
e

a2

2ãε4 ,

then we obtain

(1− b̃)∥θt(n+ 1)∥2 ≤ c̃∥θt(n)∥2 + d̃

∫ n+1

n

∥ρss(s)∥2ds.

Similarly, we take ã, ε2, ε3, ε6 suitably to make 1− b̃ > 0 hold. Therefore,

∥θt(n+ 1)∥2 ≤ c̃

1− b̃
∥θt(n)∥2 +

d̃

1− b̃

∫ n+1

n

∥ρss(s)∥2ds ≤
c̃

1− b̃

×

(
c̃

1− b̃
∥θt(n− 1)∥2 + d̃

1− b̃

∫ n

n−1

∥ρss(s)∥2ds

)
+

d̃

1− b̃

∫ n+1

n

∥ρss(s)∥2ds

=

(
c̃

1−b̃

)2

∥θt(n−1)∥2 + c̃d̃

(1− b̃)
2

∫ n

n−1

∥ρss(s)∥2ds+
d̃

1− b̃

∫ n+1

n

∥ρss(s)∥2ds

≤
(

c̃

1− b̃

)n+1

∥θt(0)∥2 +
n+1∑
j=1

c̃n−j+1d̃

(1− b̃)
n−j+2

∫ j

j−1

∥ρss(s)∥2ds,

here

∥θt(0)∥ = ∥wh −Rhw∥ ≤ ∥wh − w∥+ ∥Rhw − w∥ ≤ ∥wh − w∥+ Chr∥w∥r,
∥ρtt(t)∥ = ∥Rhutt − utt∥ ≤ Chr∥utt∥r,

so,

∥θt(n+1)∥2 ≤
(

c̃

1−b̃

)n+1

∥wh−w∥2+Ch2r
n+1∑
j=1

c̃n−j+1d̃

(1− b̃)
n−j+2

∫ j

j−1

∥uss(s)∥2ds,

∥θt(t)∥2 ≤ C(t)∥wh − w∥2 + C(t)h2r∥w∥2r + C(t)h2r

∫ t

0

∥uss(s)∥2rds,



Convergence and Stability of Galerkin ... 443

where C(t) is a function with t ∈ [n, n+1). Therefore, if ∥wh−w∥ ≤ Chr∥w∥r,
then,

∥θt(t)∥ ≤ C(t)∥wh − w∥+ C(t)hr∥w∥r + C(t)hr

(∫ t

0

∥uss(s)∥2rds
) 1

2

≤ C(t)hr
(
∥w∥r +

(∫ t

0

∥uss(s)∥2rds
) 1

2 )
.

Due to

∥θ(t)∥ = ∥θ(0) +
∫ t

0

θs(s)ds∥ ≤ ∥θ(0)∥+
∫ t

0

∥θs(s)∥ds,

∥θ(0)∥ = ∥vh −Rhv∥ ≤ ∥vh − v∥+ ∥Rhv − v∥ ≤ ∥vh − v∥+ Chr∥v∥r, (4.8)

we can get

∥θ(t)∥ ≤ C(t)hr(∥v∥r + ∥w∥r) + C(t)hr

∫ t

0

(∫ t

0

∥uss(s)∥2rds
) 1

2

ds.

Hence,

∥uh − u∥ ≤ ∥θ(t)∥+ ∥ρ(t)∥

≤ C(t)hr
(
∥v∥r + ∥w∥r +

∫ t

0

∥us(s)∥ds+
∫ t

0

(∫ t

0

∥uss(s)∥2rds
) 1

2

ds
)
.

When h → 0, we have uh → u. This completes the proof. ⊓⊔

4.2 Stability analysis

Considering the basis {Φj}Nh
1 of Sh, for any uh ∈ Sh, we have

uh(x, t) =

Nh∑
j=1

βj(t)Φj(x),

where βj(t) is undetermined coefficient, such that

Nh∑
j=1

β
′′

j (t)(Φj , Φk)+

Nh∑
j=1

(
a2βj(t)+bβj([t])+cβj([t+1])

)
(∇Φj ,∇Φk)=0,

βk(0) = αk, β
′

k(0) = γk, k = 1, 2, . . . , Nh, (4.9)

where αk and γk are the components of the given initial approximation vh and
wh, respectively. (4.9) can be expressed as the following matrix form

A1β
′′
(t) + a2A2β(t) + bA2β([t]) + cA2β([t+ 1]) = 0, t > 0,

β(0) = α, β
′
(0) = γ, (4.10)
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where A1 = (ajk) is the mass matrix with elements ajk = (Φj , Φk), A2 = (bjk)
is the stiffness matrix with bjk = (∇Φj ,∇Φk), β(t) is the vector of unknown βj ,
and α = (αk), γ = (γk). The dimension of all these items equals Nh = dim(Sh).

Since A1 and A2 are Gram matrices, positive definite and invertible ( [21]),
so the equation in (4.10) can be written as

β
′′
(t) + a2A−1

1 A2β(t) + bA−1
1 A2β([t]) + cA−1

1 A2β([t+ 1]) = 0.

Definition 3. If any solution uh(x, t) of (4.2) satisfies

lim
t→∞

uh(x, t) = 0, x ∈ Ω,

then the zero solution of (4.2) is asymptotically stable.

Here, we introduce µ(t) = β
′
(t), together with (4.2), we have

Z
′
(t) = B1Z(t) +B2Z([t]) +B3Z([t+ 1]),

where

Z(t) =

(
β(t)
µ(t)

)
, B1 =

(
O I

−a2A−1
1 A2 O

)
,

B2 =

(
O O

−bA−1
1 A2 O

)
, B3 =

(
O O

−cA−1
1 A2 O

)
.

From (3.4) we obtain

Z(t) = M1(t− n)Zn +N1(t− n)Zn+1, t ∈ [n, n+ 1), (4.11)

where

M1(t− n) = eB1(t−n) +
(
eB1(t−n) − I

)
B−1

1 B2,

N1(t− n) =
(
eB1(t−n) − I

)
B−1

1 B3, Zn = Z(n), Zn+1 = Z(n+ 1),

and let t = n+ 1, (4.11) can be written as

Zn+1 = (I −N1(1))
−1

M1(1)Zn. (4.12)

Theorem 3. Under the condition (3.9), the zero solution of (4.2) is asymp-
totically stable.

Proof. From (4.12), we know that the zero solution of (4.2) is asymptotically
stable if and only if max |λ(I−N1(1))

−1M1(1)
| < 1. Since A2 is a positive definite

matrix, there exists an invertible matrix G, such that A2 = GTG. Moreover,

GA−1
1 A2G

−1 = GA−1
1 GTGG−1 = GA−1

1 GT , (4.13)
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which implies that A−1
1 A2 is positive definite. Therefore, we can find a positive

definite matrix K such that A−1
1 A2 = K2. We compute that

(I −N1(1))
−1

M1(1)

=

(
− c sin2(aK)−(a2+b) cos(aK)+bI

a2+c(1−cos(aK)) (aK)−1 sin(aK)

− (a2+b)(aK) sin(aK)+c(aK) sin(aK) cos(aK)
a2+c(1−cos(aK)) cos(aK)

)
.

From Lemma 1, we can conclude that the eigenvalues of (I −N1(1))
−1

M1(1)
are the roots of the following characteristic equation

λ2 +
(b+ c)(1− cos(λ̃))− 2a2 cos(λ̃)

a2 + c(1− cos(λ̃))
λ+

a2 + b(1− cos(λ̃))

a2 + c(1− cos(λ̃))
= 0, (4.14)

where λ̃ is the eigenvalue of aK. Under the condition (3.9), it is obvious that
coefficients of (4.14) satisfy the requirements of Lemma 2. Therefore, we can
get max |λ(I−N1(1))

−1M1(1)
| < 1. The proof is complete. ⊓⊔

5 Fully discrete scheme for Galerkin FE method

Let p = 1/m,m ≥ 1 be the time step size, {tn} be the uniform partition of
[0,+∞) with tn = np, n = 0, 1, 2, . . ., Un be the approximation in Sh of u(t) at
tn and denote ∂ttU

n = (Un+1 − 2Un +Un−1)/p2, then Galerkin finite element
method to (1.1) reads

(∂ttU
n, χ)+a2(∇Un,∇χ)+b(∇Un,p,∇χ)+c(∇Un+1,p,∇χ)=0,∀χ∈Sh, (5.1)

where Un,p and Un+1,p denote a given approximation to u(x, [tn]) and
u(x, [tn+1]), respectively (n = 1, 2, 3, . . .).

Let n = km+ l, k = 0, 1, 2, . . . , l = 1, 2, . . . ,m, then Un,p and Un+1,p can be
written as Ukm and U (k+1)m according to Definition 1. Therefore, (5.1) turns
into

(∂ttU
km+l, χ)+a2(∇Ukm+l,∇χ)+b(∇Ukm,∇χ)+c(∇U (k+1)m,∇χ)=0,∀χ∈Sh,

that is

(Ukm+l+1, χ) =2(Ukm+l, χ)− a2p2(∇Ukm+l,∇χ)− (Ukm+l−1, χ)

− bp2(∇Ukm,∇χ)− cp2(∇U (k+1)m,∇χ).
(5.2)

Similar to the semidiscrete case, (5.2) can be written as

A1β
km+l+1 = (2A1−a2p2A2)β

km+l−A1β
km+l−1−bp2A2β

km−cp2A2β
(k+1)m,

(5.3)
where A1, A2 are defined in (4.10).
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5.1 Convergence analysis

Theorem 4. Let Un and u be the solutions of (5.1) and (4.1), respectively. If
∥vh − v∥ ≤ Chr∥v∥r, then

∥Un−u(tn)∥≤Chr
(
∥v∥r+

p

6

n∑
i=0

∫ ti+2

ti

∥uttt∥rdt+
n∑

i=0

∥u(ti)∥r+
∫ tn

0

∥us∥ds
)

+ Cp
( n∑

i=0

1

6

∫ ti+2

ti

∥utttt∥dt
)
,

where C is independent of h and p.

Proof. In analogy with (4.4), take n = km+ l then we have

Ukm+l − u(tkm+l) = (Ukm+l −Rhu(tkm+l)) + (Rhu(tkm+l)− u(tkm+l))

≜ θkm+l + ρkm+l,

and ρkm+l = ρ(tkm+l) is bounded as claimed in (4.5). Then, a calculation
similar to (4.6) yields

(∂ttθ
km+l, χ)+(a2∇θkm+l+b∇θkm+c∇θ(k+1)m,∇χ)=− (qkm+l, χ), χ ∈ Sh,

(5.4)
where

qkm+l = Rh∂ttu(tkm+l)− utt(tkm+l)

= (Rh − I)∂ttu(tkm+l) + (∂ttu(tkm+l)− utt(tkm+l)) ≜ qkm+l
1 + qkm+l

2 .

Let χ = a2(θkm+l+1−θkm+l)+bθkm+cθ(k+1)m, by the Schwarz inequality and
Cauchy inequality:

(a2(θkm+l+1 − θkm+l), θkm+l − θkm+l−1) ≤ a2r1
2

∥θkm+l+1 − θkm+l∥2

+
a2

2r1
∥θkm+l − θkm+l−1∥2,

(θkm+l+1 − θkm+l, bθkm) ≤ |b|r2
2

∥θkm+l+1 − θkm+l∥2 + |b|
2r2

∥θkm∥2,

(θkm+l − θkm+l−1, bθkm) ≤ |b|r3
2

∥θkm+l − θkm+l−1∥2 + |b|
2r3

∥θkm∥2,

(θkm+l+1 − θkm+l, cθ(k+1)m) ≤ |c|r4
2

∥θkm+l+1 − θkm+l∥2 + |c|
2r4

∥θ(k+1)m∥2,

(a2∇(θkm+l+1 − θkm+l), a2∇θkm+l) ≤ a4r5
2

∥∇(θkm+l+1 − θkm+l)∥2

+
a4

2r5
∥∇θkm+l∥2,
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(a2∇θkm+l, b∇θkm) ≤ a2|b|r6
2

∥∇θkm+l∥2 + a2|b|
2r6

∥∇θkm∥2,

(a2∇θkm+l, c∇θ(k+1)m) ≤ a2|c|r7
2

∥∇θkm+l∥2 + a2|c|
2r7

∥∇θ(k+1)m∥2,

(a2∇(θkm+l+1 − θkm+l), b∇θkm) ≤ a2|b|r8
2

∥∇(θkm+l+1 − θkm+l)∥2

+
a2|b|
2r8

∥∇θkm∥2, (b∇θkm, c∇θ(k+1)m) ≤ |b||c|r9
2

∥∇θkm∥2

+
|b||c|
2r9

∥∇θ(k+1)m∥2, (a2∇(θkm+l+1 − θkm+l), c∇θ(k+1)m) ≤ a2|c|r10
2

× ∥∇(θkm+l+1 − θkm+l)∥2 + a2|c|
2r10

∥∇θ(k+1)m∥2,

a2∥qkm+l∥∥θkm+l+1 − θkm+l∥ ≤ a2r11
2

∥θkm+l+1 − θkm+l∥2 + a2

2r11
∥qkm+l∥2,

|b|∥qkm+l∥∥θkm| ≤ |b|r12
2

∥θkm∥2 |b|
2r12

∥qkm+l∥2,

|c|∥qkm+l∥∥θ(k+1)m|≤|c|r13
2

∥θ(k+1)m∥2 |c|
2r13

∥qkm+l∥2, ri>0, i=1, 2, . . . , 13,

we have

a2∥θkm+l+1 − θkm+l∥2 ≤ a2r1
2

∥θkm+l+1 − θkm+l∥2 + a2

2r1
∥θkm+l − θkm+l−1∥2

+
|b|r2
2

∥θkm+l+1 − θkm+l∥2 + |b|
2r2

∥θkm∥2 + |b|
2r3

∥θkm∥2 + |c|
2r4

∥θ(k+1)m∥2

+
|b|r3
2

∥θkm+l − θkm+l−1∥2 + |c|r4
2

∥θkm+l − θkm+l−1∥2 + a4p2

2r5
∥∇θkm+l∥2

+
a4p2r5

2
∥∇(θkm+l+1 − θkm+l)∥2 + a2|b|p2r6

2
∥∇θkm+l∥2 + a2|b|p2

2r6
∥∇θkm∥2

+
a2|c|p2r7

2
∥∇θkm+l∥2 + a2|c|p2

2r7
∥∇θ(k+1)m∥2 + a2|b|p2r8

2

× ∥∇(θkm+l+1 − θkm+l)∥2 + a2|b|p2

2r8
∥∇θkm∥2 − b2p2∥∇θkm∥2

+ |b||c|p2r9∥∇θkm∥2+ |b||c|p2

r9
∥∇θ(k+1)m∥2+a2|c|p2r10

2
∥∇(θkm+l+1−θkm+l)∥2

+
a2|c|p2

2r10
∥∇θ(k+1)m∥2 − c2p2∥∇θ(k+1)m∥2

+
a2p2r11

2
∥θkm+l+1 − θkm+l∥2 + a2p2

2r11
∥qkm+l∥2 + |b|p2r12

2
∥θkm∥2

+
|b|p2

2r12
∥qkm+l∥2 + |c|p2r13

2
∥θ(k+1)m∥2 + |c|p2

2r13
∥qkm+l∥2,

that is (
a2 − a2r1

2
− |b|r2

2
− |c|r4

2
− a2p2r11

2

)
∥θkm+l+1 − θkm+l∥2
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≤
(

a2

2r1
+

|b|r3
2

)
∥θkm+l − θkm+l−1∥2 +

(
|b|
2r2

+
|b|
2r3

+
|b|p2r12

2

)
∥θkm∥2

+

(
|c|
2r4

+
|c|p2r13

2

)
∥θ(k+1)m∥2 +

(
a4p2

2r5
+

a2|b|p2r6
2

+
a2|c|p2r7

2

)
× ∥∇θkm+l∥2+

(
a4p2r5

2
+
a2|b|p2r8

2
+
a2|c|p2r10

2

)
∥∇(θkm+l+1−θkm+l)∥2

+

(
a2|c|p2

2r7
+

|b||c|p2

r9
+

a2|c|p2

2r10
− c2p2

)
∥∇θ(k+1)m∥2

+

(
a2|b|p2

2r6
+

a2|b|p2

2r8
− b2p2 + |b||c|p2r9

)
∥∇θkm∥2

+

(
a2p2

2r11
+

|b|p2

2r12
+

|c|p2

2r13

)
∥qkm+l∥2. (5.5)

From (5.5), it’s necessary to estimate ∥∇(θkm+l+1 − θkm+l)∥2, ∥∇θkm+l∥2,
∥∇θ(k+1)m∥2 and ∥∇θkm∥2. Let χ = θkm+l, χ = bθkm and χ = cθ(k+1)m, then
we have

a2∥∇θkm+l∥2 ≤ ∥qkm+l∥∥θkm+l∥+ |b|∥∇θkm∥∥∇θkm+l∥
+ |c|∥∇θ(k+1)m∥∥∇θkm+l∥+ ∥∂ttθkm+l∥∥θkm+l∥, (5.6)

b2∥∇θkm∥2 ≤ |b|∥qkm+l∥∥θkm∥+ a2|b|∥∇θkm+l∥∥∇θkm∥
+ |b||c|∥∇θ(k+1)m∥∥∇θkm∥+ |b|∥∂ttθkm+l∥∥θkm∥, (5.7)

c2∥∇θ(k+1)m∥2 ≤ |c|∥qkm+l∥∥θ(k+1)m∥+ a2|c|∥∇θkm+l∥∥∇θ(k+1)m||
+ |b||c|∥∇θkm∥∥∇θ(k+1)m∥+ |c|∥∂ttθkm+l∥∥θ(k+1)m∥. (5.8)

Similar to (5.5), a calculation on (5.6), (5.7) and (5.8) with Poincaré inequality

∥θkm+l∥ ≤ C2∥∇θkm+l∥, C2 = C2(Ω),

∥θ(k+1)m∥ ≤ Ĉ2∥∇θ(k+1)m∥, Ĉ2 = Ĉ2(Ω), ∥θkm∥ ≤ C̃2∥∇θkm∥,

which implies that the value range of ∥∇θkm+l∥2, ∥∇θkm∥2 and ∥∇θ(k+1)m∥2
relate to items

∥qkm+l∥, ∥θkm+l+1 − θkm+l∥, ∥θkm+l − θkm+l−1∥.

Moreover, subtracting a2(∇θkm+l+1,∇χ) on both sides of (5.4) and taking
χ = θkm+l+1 − θkm+l and χ = θkm+l+1 + θkm+l, respectively, we can derive

a2∥∇(θkm+l+1 − θkm+l)∥2 ≤ ∥∂ttθkm+l∥∥θkm+l+1 − θkm+l∥
+ a2∥∇θkm+l+1∥∥∇(θkm+l+1 − θkm+l)∥+|b|∥∇θkm∥∥∇(θkm+l+1 − θkm+l)∥
+ |c|∥∇θ(k+1)m∥∥∇(θkm+l+1−θkm+l)+∥qkm+l∥∥θkm+l+1−θkm+l∥,
a2∥∇θkm+l+1∥2 − a2∥∇θkm+l∥2 ≤ ∥qkm+l∥∥θkm+l+1 + θkm+l∥
+ ∥∂ttθkm+l∥∥θkm+l+1+θkm+l∥+a2∥∇θkm+l+1∥∥∇(θkm+l+1+θkm+l)∥
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+|b|∥∇θkm∥∥∇(θkm+l+1+θkm+l)∥+|c|∥∇θ(k+1)m∥∥∇(θkm+l+1+θkm+l)∥.
(5.9)

Similar to the above process we can also obtain the value range of item
∥∇(θkm+l+1 − θkm+l)∥2 relate to items

∥qkm+l∥, ∥θkm+l+1 − θkm+l∥, ∥θkm+l − θkm+l−1∥.

Based on the discussion about ∥∇(θkm+l+1 − θkm+l)∥2, ∥∇θkm+l∥2,
∥∇θ(k+1)m∥2 and ∥∇θkm∥2, (5.5) turns into

∥θkm+l+1 − θkm+l∥2 ≤ s1∥θkm+l − θkm+l−1∥2 + s2∥qkm+l∥2 + s2∥qkm+l∥2

≤ s1(s1∥θkm+l−1 − θkm+l−2∥2 + s2∥qkm+l−1∥2) = s21∥θkm+l−1 − θkm+l−2∥2

+ s1s2∥qkm+l−1∥2 + s2∥qkm+l∥2 ≤ sl1∥θkm+1 − θkm∥2

+

l∑
j=1

sl−j
1 s2∥qkm+j∥2 ≤ sl1∥θkm+1∥2 + sl1∥θkm∥2 +

l∑
j=1

sl−j
1 s2∥qkm+j∥2,

where s1, s2 are positive numbers and determined by inequalities (5.5)–(5.9).
Hence, we have

∥θkm+l+1∥ ≤ ∥θkm+l∥+ sl1∥θkm+1∥+ sl1∥θkm∥+
l∑

j=1

sl−j
1 s2∥qkm+j∥2|

≤ ∥θkm+1∥+ lsl1∥θkm+1∥+ lsl1∥θkm∥+ l

l∑
j=1

sl−j
1 s2∥qkm+j∥2

=
(
1 + lsl1

)
∥θkm+1∥+ lsl1∥θkm∥+ l

l∑
j=1

sl−j
1 s2∥qkm+j∥2

≤
(
1+lsl1

)2 ∥θkm∥+l(1+lsl1)s
l
1∥θkm∥+ l

(
1 + lsl1

) l∑
j=1

sl−j
1 s2∥qkm+j∥2

+ lsl1∥θkm∥+ l

l∑
j=1

sl−j
1 s2∥qkm+j∥2

=
((

1 + lsl1
)2

+ l(2 + lsl1)s
l
1

)
∥θkm∥+ l

(
2 + lsl1

) l∑
j=1

sl−j
1 s2∥qkm+j∥2.

Denote

H1 =
(
1 + (m− 1)sm−1

1

)2
+ (m− 1)(2 + (m− 1)sm−1

1 )sm−1
1 ,

H2 = (m− 1)
(
2 + (m− 1)sm−1

1

)
,

then,

∥θ(k−1)m∥ ≤ H1∥θkm∥+H2

m−1∑
j=1

sm−1−j
1 s2∥qkm+j∥ ≤ H2

1∥θ(k−1)m∥
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+H1H2

m−1∑
j=1

sm−1−j
1 s2∥q(k−1)m+j∥+H2

m−1∑
j=1

sm−1−j
1 s2∥qkm+j∥

≤ Hk+1
1 ∥θ(0)∥+Hk

1H2

m−1∑
j=1

sm−1−j
1 s2∥qj∥+ · · ·+H2

m−1∑
j=1

sm−1−j
1 s2∥qkm+j∥.

Here, θ(0) = θ(0) is bounded as desired in (4.8). We write

qi1 = (Rh − I)∂ttu(ti) = (Rh − I)p−2(u(ti+1)− 2u(ti) + u(ti−1))

=
1

6p2

(∫ ti

ti−1

(t− ti−1)
3(Rh − I)utttdt−

∫ ti+1

ti

(t− ti+1)
3(Rh − I)utttdt

+ 6p2(Rh − I)u(ti)
)
,

and obtain

∥qi1∥≤
1

6p2

(
p3
∫ ti

ti−1

∥(Rh−I)uttt∥dt+ p3
∫ ti+1

ti

∥(Rh−I)uttt∥dt+6p2∥(Rh−I)u(ti)∥
)

≤ 1

6

(
p

∫ ti

ti−1

Chr∥uttt∥rdt+ p

∫ ti+1

ti

Chr∥uttt∥rdt+ 6Chr∥u(ti)∥r
)

= Chr
(p
6

∫ ti+1

ti−1

∥uttt∥rdt+ ∥u(ti)∥r
)
.

Further,

qi2 = ∂ttu(ti)− utt(ti) =
1

p2
(u(ti+1)− 2u(ti) + u(ti−1)− p2utt(ti))

=
1

6p2

(∫ ti

ti−1

(t− ti−1)
3uttttdt−

∫ ti+1

ti

(t− ti+1)
3uttttdt

)
,

so that,

∥qi2∥ =
1

6p2

∥∥∥ ∫ ti

ti−1

(t− ti−1)
3uttttdt−

∫ ti+1

ti

(t− ti+1)
3uttttdt

∥∥∥
≤ 1

6p2

(
p3
∫ ti

ti−1

∥utttt∥dt+ p3
∫ ti+1

ti

∥utttt∥dt
)
≤ p

6

∫ ti+1

ti−1

∥utttt∥dt.

Thus, we have

∥Un − u(tn)∥ ≤ ∥ρn∥+ ∥θn∥

≤ Chr

(
∥v∥r +

p

6

n∑
i=0

∫ ti+2

ti

∥uttt∥rdt+
n∑

i=0

∥u(ti)∥r +
∫ tn

0

∥us∥ds

)

+ Cp

(
n∑

i=0

1

6

∫ ti+2

ti

∥utttt∥dt

)
.

So, Un → u(tn) as h → 0 and p → 0. The proof is complete. ⊓⊔



Convergence and Stability of Galerkin ... 451

5.2 Stability analysis

Definition 4. If any solution Un of (5.1) satisfies

lim
n→∞

Un = 0, x ∈ Ω,

then the zero solution of (5.1) is asymptotically stable.

From (5.3) we obtain

βkm+l+1 = (2I − a2p2A−1
1 A2)β

km+l − βkm+l−1 − bp2A−1
1 A2β

km

− cp2A−1
1 A2β

(k+1)m.

For convenience, we introduce ūkm+l+1 = βkm+l, so

zkm+l+1 = R1z
km+l +R2z

km +R3z
(k+1)m,

where zkm+l = (βkm+l, ūkm+l)T and

R1 =

(
2I − a2p2A−1

1 A2 −I
I O

)
, R2 =

(
−bp2A−1

1 A2 O
O O

)
,

R3 =

(
−cp2A−1

1 A2 O
O O

)
.

Therefore, we derive that

zkm+l+1 = R1z
km+l +R2z

km +R3z
(k+1)m

= R2
1z

km+l−1 + (R1 + I)R2z
km + (R1 + I)R3z

(k+1)m

=
(
Rl+1

1 +(Rl+1
1 −I)(R1−I)−1R2

)
zkm+(Rl+1

1 −I)(R1 − I)−1R3z
(k+1)m,

that is,
z(k+1)m = Mzkm, (5.10)

where

M =
I + (Rm

1 − I)(I + (R1 − I)−1R2)

I − (Rm
1 − I)(R1 − I)−1R3

.

From Lemma 1 we know that the eigenvalues of matrix I + (R1 − I)−1R2 are
ξ1 = 1, ξ2 = 1 + b/a2, and the eigenvalues of matrix (R1 − I)−1R3 are η1 = 0,
η2 = c/a2. So, we have the following result.

Theorem 5. Under the condition

p2 < min 2/(a2λA−1
1 A2

), (5.11)

the eigenvalue of R1 satisfies |λR1 | < 1.

Proof. From (4.13), we know that λA−1
1 A2

> 0. By Lemma 1, we obtain the

eigenvalue of R1 consist of the roots of the following equation

λ2 − (2− a2p2λA−1
1 A2

)λ+ 1 = 0. (5.12)
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It’s obvious to notice that neither λ = 0 nor λ = 1 is the root of (5.12). Thus,
we need to verify eigenvalue of R1 satisfying 0 < |λ| < 1 under some conditions.
Firstly, we denote the function

f(λ) = λ2 − (2− a2p2λA−1
1 A2

)λ+ 1.

(i) When m is even, we can obtain p2 < min 4/(a2λA−1
1 A2

) from (5.11) as

well as 0 < (2−a2p2λA−1
1 A2

)/2 < 1 holds, which means the root of (5.12)

exists in the interval (0, 1) under f(0) = 1 > 0, f(1) = a2p2λA−1
1 A2

> 0.

In addition, inequality p2 < min 4/(a2λA−1
1 A2

) guarantees −1 < (2 −
a2p2λA−1

1 A2
)/2 < 0 and f(−1) > 0 so that the root of (5.12) also exists

in the interval (−1, 0). Therefore, we get 0 < |λ| < 1.

(ii) When m is odd, by (5.11), 0 < (2− a2p2λA−1
1 A2

)/2 < 1 holds so that the

root of (5.12) is in the interval (0, 1). Hence, we obtain 0 < λ < 1.

The proof is finished. ⊓⊔

Theorem 6. Under the conditions (3.9) and (5.11), if

−a2 < b < a2, 0 < c < a2, a2 + c− b > 0 (5.13)

hold, then the zero solution of (5.1) is asymptotically stable.

Proof. From (5.10) we know that the zero solution of (5.1) is asymptotically
stable if and only if the eigenvalue of matrix M satisfies

|λM | < 1, (5.14)

that is, ∣∣∣∣1 + (λm
R1

− 1)ξi

1− (λm
R1

− 1)ηi

∣∣∣∣ < 1, i = 1, 2. (5.15)

From (5.15) we have

(1 + (λm
R1

− 1)ξi)
2 < (1− (λm

R1
− 1)ηi)

2, i = 1, 2,

so,

(1− λm
R1

)(ξi + ηi)
(
2− (1− λm

R1
)(ξi − ηi)

)
> 0. (5.16)

Under the condition (3.9), if (5.13) holds, we get

ξi + ηi > 0, ξi − ηi < 2, i = 1, 2.

When m is even, in view of (5.11), we can get λR1
̸= 0 and −1 < λR1

< 1.
Then together with (3.9) and (5.13), we know that (5.16) is satisfied. So, (5.14)
holds. Hence, the zero solution of (5.1) is asymptotically stable. When m is
odd, a similar analysis can be obtained. This completes the proof. ⊓⊔
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6 Numerical experiments

In this section, some experiments are provided for verifying the theoretical
results. Consider the following problem

utt(x, t) = 144uxx(x, t)− 2uxx(x, [t]) + uxx(x, [t+ 1]), [0, π]× [0,+∞),

u(x, 0) = sin(x), ut(x, 0) = 0, x ∈ [0, π],

u(0, t) = u(π, t) = 0, t ∈ [0,+∞).

(6.1)

It is not difficult to verify that the coefficients a, b and c satisfy the conditions
(3.9) and (5.13). The analytic solution of (6.1) is the first component of

û(x, t) = sin(x)W1(t)d1, (6.2)

where d1 = (1, 0)T , W1(t) is defined in (3.7). When t is an integer, (6.2) gives

û(x, t) = sin(x)
(
(I −N(1))−1M(1)

)t
d1,

where

(I −N(1))
−1

M(1) =

(
− c sin2(a)−(a2+b) cos(a)+b

a2+c(1−cos(a))
sin(a)

a

− (a2+b)a sin(a)+ca sin(a) cos(a)
a2+c(1−cos(a)) cos(a)

)
.

Moreover, we consider piecewise linear functions as the bases of Sh

Φi−1(x) =

{
(xi − x)/(xi − xi−1), x ∈ [xi−1, xi],

0, elsewhere,

Φi(x) =

{
(x− xi−1)/(xi − xi−1), x ∈ [xi−1, xi],

0, elsewhere,

where i = 1, 2, · · · , Nh, That is, we obtain the convergence order of semidiscrete
case O(h2) and fully discrete case O(h2 + p).

In semidiscrete scheme and fully discrete scheme, the order of convergence
is defined as

order =
log(AE∗(hi)/AE∗(hi+1))

log(hi/hi+1)
,

where AE∗(hi) is the error calculated in L∞ norm and L2 norm by the following
formulas when taking step-size hi and ∗ represents 2-norm or ∞-norm:

L∞ = ∥u− U∥L∞ = max
0≤i≤N

|u(xi, t)− U(xi, t)|,

L2 = ∥u− U∥L2 =
(∫

Ω

(u− U)2dx
)1/2

≈
(
h

N−1∑
i=1

(u(xi, t)− U(xi, t))
2
)1/2

.

We take step-size h = π/Nh and obtain numerical results in 2-norm and infinite
norm at t = 7, which are shown in Table 1.
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Table 1. Semidiscrete error estimations of Problem (6.1) at t = 7.

h AE2 rate AE∞ rate

π/8 3.5988e-1 - 2.8714e-1 -
π/16 1.1944e-2 1.5912 9.5298e-2 1.5912
π/24 5.6868e-2 1.8301 4.5374e-2 1.8301
π/32 3.3821e-2 1.8064 2.6985e-2 1.8203
π/64 1.1058e-2 1.6128 8.8823e-3 1.6128

a) b)

Figure 1. The semidiscrete numerical solution of Problem (6.1) with a) Nh = 20, b)
Nh = 40.

From this table, we can see that the semidiscrete scheme is convergent
with second order. Thus, these numerical results validate the theoretical error
estimates in Theorem 2.

From Figure 1 we see that the numerical solution of (6.1) is asymptotically
stable under the condition (3.9), which is consistent with Theorem 3.

Furthermore, in order to obtain the second-order for fully discrete case, we
take p = 1/N2

h and good convergence is shown in Table 2 at t = 2 in different
norms when h and p decreasing simultaneously. So, Theorem 4 is verified.

Table 2. Fully discrete error estimations of Problem (6.1) at t = 2.

h p AE2 rate AE∞ rate

1/8 1/64 3.1037e-1 - 2.4764e-1 -
1/16 1/256 7.3422e-2 2.0797 5.8582e-2 2.0797
1/32 1/1024 1.8017e-2 2.0269 1.4375e-2 2.0269
1/64 1/4096 4.4820e-3 2.0071 3.5761e-3 2.0071
1/128 1/16384 1.1183e-3 2.0028 8.9224e-4 2.0029

Figures 2–3 are presented to illustrate the stability of numerical solution
under fully discrete case by different time steps. These figures are in accordance
with Theorem 6. Some detailed analysis are as follows.
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Let m = 100 and m = 110, then we have

p2 = 1e−4 < min
2

a2λA−1
1 A2

= 1.0349e−4

p2 = 8.2645e−5 < min
2

a2λA−1
1 A2

= 1.0349e−4,

respectively, so the condition (5.11) is satisfied and the numerical solution of
Problem (6.1) is asymptotically stable according to Theorem 6, see Figure 2.
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Figure 2. The fully discrete numerical solution of Problem (6.1) with a)
Nh = 10,m = 100, b)Nh = 10,m = 110 .

However, when m = 17 and m = 20, the condition (5.11) is not satisfied. As
we observe from Figure 3 the numerical solution of Problem (6.1) is unstable,
which is also in accordance with Theorem 6.
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Figure 3. The fully discrete numerical solution of Problem (6.1) with a)
Nh = 12,m = 17, b) Nh = 12,m = 20.

7 Conclusions

This paper deals with the numerical approximation of semidiscrete scheme and
fully discrete scheme of hyperbolic PEPCA of advanced type by Galerkin finite
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element method (for spatial derivatives) and finite difference scheme (for time
derivative). Rigorous theoretical analysis for convergence and stability of the
two numerical schemes are presented. The results show that the semidiscrete
scheme can achieve unconditionally stability and some sufficient conditions are
put to guarantee the asymptotical stability of numerical solution for fully dis-
crete scheme. In the future study, we will focus on high dimension problem
and nonlinear problem.
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vergence and positivity of finite element methods for a haptotaxis
model of tumoral invasion. Comput. Math. Appl., 89:20–33, 2021.
https://doi.org/10.1016/j.camwa.2021.02.007.

[20] S.M. Shah and J. Wiener. Advanced differential equations with piecewise
constant argument deviations. Int. J. Math. Math. Sci., 6(4):671–703, 1983.
https://doi.org/10.1155/S0161171283000599.

[21] V. Thomée. Galerkin Finite Element Methods for Parabolic Problems. Springer-
Verlag, New York, 1986.

[22] Q. Wang. Stability analysis of parabolic partial differential equations with piece-
wise continuous arguments. Numer. Meth. Part. D. E., 33(2):531–545, 2017.
https://doi.org/10.1002/num.22113.

[23] Q. Wang. Stability of numerical solution for partial differential equations
with piecewise constant arguments. Adv. Differ. Equ., 2018(1):1–13, 2018.
https://doi.org/10.1186/s13662-018-1514-1.

[24] Q. Wang and X.M. Wang. Runge-Kutta methods for systems of
differential equation with piecewise continuous arguments: conver-
gence and stability. Numer. Func. Anal. Opt., 39(7):784–799, 2018.
https://doi.org/10.1080/01630563.2017.1421554.

[25] Q. Wang and X.M. Wang. Stability of θ-schemes for partial differen-
tial equations with piecewise constant arguments of alternately retarded

Math. Model. Anal., 28(3):434–458, 2023.

https://doi.org/10.1016/j.aml.2017.02.014
https://doi.org/10.1002/mma.3196
https://doi.org/10.1007/s11075-016-0160-5
https://doi.org/10.1016/j.aml.2009.09.012
https://doi.org/10.1016/j.amc.2010.06.028
https://doi.org/10.1016/j.amc.2017.11.014
https://doi.org/10.1016/j.camwa.2015.05.015
https://doi.org/10.1016/j.cam.2015.11.019
https://doi.org/10.1016/j.camwa.2021.02.007
https://doi.org/10.1155/S0161171283000599
https://doi.org/10.1002/num.22113
https://doi.org/10.1186/s13662-018-1514-1
https://doi.org/10.1080/01630563.2017.1421554


458 Y.T. Chen and Q. Wang

and advanced type. Int. J. Comput. Math., 96(12):2352–2370, 2019.
https://doi.org/10.1080/00207160.2018.1562059.

[26] Q. Wang, Q.Y. Zhu and M.Z. Liu. Stability and oscillations of numerical solu-
tions for differential equations with piecewise continuous arguments of alternately
advanced and retarded type. J. Comput. Appl. Math., 235(5):1542–1552, 2011.
https://doi.org/10.1016/j.cam.2010.08.041.

[27] A. Westerkamp and M. Torrilhon. Finite element methods for the linear regular-
ized 13-moment equations describing slow rarefied gas flows. J. Comput. Phys.,
389:1–21, 2019. https://doi.org/10.1016/j.jcp.2019.03.022.

[28] J. Wiener. Generalized Solutions of Functional Differential Equations. World
Scientific, Singapore, 1993.

[29] J. Wiener and L. Debnath. A wave equation with discontinu-
ous time delay. Int. J. Math. Math. Sci., 15(4):781–788, 1992.
https://doi.org/10.1155/S0161171292001017.

[30] J. Wiener and L. Debnath. Boundary value problems for the diffusion equation
with piecewise continuous time delay. Int. J. Math. Math. Sci., 20(1):187–195,
1997. https://doi.org/10.1155/S0161171297000239.

[31] J. Wiener and W. Heller. Oscillatory and periodic solutions to a diffusion
equation of neutral type. Int. J. Math. Math. Sci., 22(2):313–348, 1999.
https://doi.org/10.1155/S0161171299223137.

[32] H.Z. Yang, M.H. Song and M.Z. Liu. Strong convergence and exponential stabil-
ity of stochastic differential equations with piecewise continuous arguments for
non-globally Lipschitz continuous coefficients. Appl. Math. Comput., 341:111–
127, 2019. https://doi.org/10.1016/j.amc.2018.08.037.

[33] C.J. Zhang, B.C. Liu W.S. Wang and T.T. Qin. A multi-domain Legen-
dre spectral collocation method for nonlinear neutral equations with piece-
wise continuous argument. Int. J. Comput. Math., 95(12):2419–2432, 2018.
https://doi.org/10.1080/00207160.2017.1398321.

[34] C.J. Zhang and X.Q. Yan. Convergence and stability of extended BBVMs for
nonlinear delay-differential-algebraic equations with piecewise continuous argu-
ments. Numer. Algor., 87:921–937, 2021. https://doi.org/10.1007/s11075-020-
00993-8.

[35] G.L. Zhang. Oscillation of Runge-Kutta methods for advanced impulsive dif-
ferential equations with piecewise constant arguments. Adv. Differ. Equ.,
2017(1):13–31, 2017. https://doi.org/10.1186/s13662-016-1067-0.

https://doi.org/10.1080/00207160.2018.1562059
https://doi.org/10.1016/j.cam.2010.08.041
https://doi.org/10.1016/j.jcp.2019.03.022
https://doi.org/10.1155/S0161171292001017
https://doi.org/10.1155/S0161171297000239
https://doi.org/10.1155/S0161171299223137
https://doi.org/10.1016/j.amc.2018.08.037
https://doi.org/10.1080/00207160.2017.1398321
https://doi.org/10.1007/s11075-020-00993-8
https://doi.org/10.1007/s11075-020-00993-8
https://doi.org/10.1186/s13662-016-1067-0

	Introduction
	Preliminaries
	 Analytic solution and stability 
	Semidiscrete scheme for Galerkin FE method
	Convergence analysis
	Stability analysis

	Fully discrete scheme for Galerkin FE method
	Convergence analysis
	Stability analysis

	Numerical experiments
	Conclusions
	References

