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Background: Machine learning radiomics models are increasingly being used to

predict gastric cancer prognoses. However, the methodological quality of these

models has not been evaluated. Therefore, this study aimed to evaluate the

methodological quality of radiomics studies in predicting the prognosis of gastric

cancer, summarize their methodological characteristics and performance.

Methods: The PubMed and Embase databases were searched for radiomics

studies used to predict the prognosis of gastric cancer published in last 5 years.

The characteristics of the studies and the performance of the models were

extracted from the eligible full texts. The methodological quality, reporting

completeness and risk of bias of the included studies were evaluated using the

RQS, TRIPOD and PROBAST. The discrimination ability scores of the models

were also compared.

Results: Out of 283 identified records, 22 studies met the inclusion criteria. The

study endpoints included survival time, treatment response, and recurrence, with

reported discriminations ranging between 0.610 and 0.878 in the validation

dataset. The mean overall RQS value was 15.32 ± 3.20 (range: 9 to 21). The mean

adhered items of the 35 item of TRIPOD checklist was 20.45 ± 1.83. The

PROBAST showed all included studies were at high risk of bias.

Conclusion: The current methodological quality of gastric cancer radiomics

studies is insufficient. Large and reasonable sample, prospective, multicenter and

rigorously designed studies are required to improve the quality of radiomics

models for gastric cancer prediction.

Study registration: This protocol was prospectively registered in the Open

Science Framework Registry (https://osf.io/ja52b).
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1 Introduction

Gastric cancer (GC) is the fifth most common cancer and the

fourth most common cause of cancer death worldwide (1). Systemic

chemotherapy, radiotherapy, surgery, immunotherapy, and

targeted therapy have all been shown to be viable treatment

options for GC (2–5). However, due to the heterogeneous nature

of GC and the high rate of recurrence and metastasis, the current

advances in diagnostic techniques and treatment modalities for GC

are not yet satisfactory. Current standard treatment strategies often

lead to over-treatment with unnecessary toxicity or under-

treatment in cases of tumor progression. Therefore, there is an

urgent need to develop tools that could be used to clarify the

treatment response and prognosis of GC patients before surgery.

Radiomics involves the extraction of quantitative metrics

(radiomics features) from medical images. This data can be used

on its own or combined with demographic, histological, genomic,

or proteomic data to build models to solve clinical problems (6). Its

main workflow (Figure 1) includes data acquisition and curation,

region of interest segmentation, feature extraction, analysis and

model creation (7). Radiomics is increasingly being used to predict

clinical outcomes, particularly in GC (8). However, although

numerous studies have evaluated the accuracy of the radiomics

model in predicting treatment response in GC, the methodological

quality of these studies was not evaluated.

Several tools have been developed to assess the methodological

quality of radiomics studies, including the Radiomics Quality Score

(RQS) (9), the Transparent Reporting of a multivariable prediction

model for Individual Prognosis Or Diagnosis (TRIPOD) (10)

assessment tools and the Prediction Risk Of Bias Assessment

Tool (PROBAST) (11). The RQS is a standardized assessment

tool commonly used to evaluate the scientific integrity and

clinical relevance of radiomics oncology studies (12, 13). The

TRIPOD tool consists of a checklist designed to evaluate the
Frontiers in Oncology 02
transparency and completeness of predictive modeling research

reports. This tool has been used to evaluate the integrity of

numerous oncology radiomics studies (14, 15). The PROBAST

was developed to assess the risk of bias and thereby provide a

comprehensive evaluation of the methodological quality of primary

studies that report predictive model development, validation, or

updating (11, 16).

Therefore, this cross-sectional study of the literature aimed to

use the RQS, TRIPOD and PROBAST to assess the methodological

quality of prognostic radiomics studies related to GC.
2 Materials and methods

2.1 Eligibility criteria

This study was conducted following the PRISMA guidelines

(Supplementary Material 1) (17). Due to the rapid advancement in

machine learning and radiomics in recent years, only peer-review

studies published in last 5 years (between September 2017 and

September 2022) were included in this Study. Furthermore, only

studies evaluating the prognosis of primary GC in humans based on

radiomics features extracted by handcraft or deep learning from

clinical images, including computed tomography (CT), magnetic

resonance (MR), and positron emission tomography/computed

tomography (PET/CT) were included in this study.

Radiomics studies used for diagnostic purposes or to evaluate

the degree of differentiation within the tumor were excluded.

Studies using models based on non-radiomics features (e.g.,

standardized uptake values (SUV), clinical parameters, dosimetric

parameters, and gene expression data) and those that did not

predict prognosis directly were excluded. In addition, case

reports, systematic reviews, conference abstracts, editorials, and

expert opinion papers were also excluded.
FIGURE 1

“Flowchart of application of AI in radiology for GI cancers.”, by Azadeh Tabari, licensed under CC BY 4.0.
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2.2 Search methods

The initial literature search was performed using the PubMed

and EMBASE electronic databases on 11 September 2022. Since the

radiomics studies do not involve randomized controlled studies

(RCTs), the Cochrane central database was not searched. Medical

Subject Headings (MeSH) and Emtree terms related to GC,

radiomics, artificial intelligence, deep learning, and prognosis

were used to perform the search. The search strategy is described

in more detail in Supplementary Material 2.
2.3 Selection process

Two researchers (T.J and Z.Z.) searched the PubMed and

Embase databases to identify relevant articles. The titles and

abstracts of the identified studies were screened independently by

the 2 researchers to confirm the eligibility of the studies. Any

disagreements in the selection of the studies were resolved via

discussion until a consensus was reached. A third researcher (X.L.)

was consulted if no consensus was reached. The full texts of the

eligible studies were then obtained through an institutional journal

subscription and examined by 2 researchers (T.J and Z.Z.)

independently for their eligibility based on the criteria described

above. The articles that met all the eligibility criteria were included

for data extraction and methodological evaluation.
2.4 Data extraction

Data extraction was performed independently by two

researchers (T.J and Z.Z.) from the included publications. The

extracted information comprised general information and

methodological characteristics of the studies, including author,

year, research design (prospective and retrospective), the number

of collaborating institutes, outcome measures, sample size, the

radiomics feature extraction method employed (deep learning or

handcrafted), the number of features retained in the final model,

any additional non-radiomics features used for model development,

the performance metrics utilized to assess the model, and the

calibration results (if provided).
2.5 Analysis of the methodological quality

Two researchers (T.J and Z.Z) evaluated the methodological

quality independently using the RQS, TRIPOD and PROBAST.

Any disagreements were resolved by consulting with a third

researcher (X.L.).

The RQS model proposed by Lambin et al. (9) is based on the

steps used to construct a radiomics model and consists of 16 items

across 6 domains. The RQS ranges from -8 to 36. The TRIPOD

checklist (10) can be used to assess the completeness of the included

studies while using RQS (18). This tool consists of 22 main criteria

with 37 items. Items 21 and 22 were not evaluated in this study

because they assess the supplementary and funding information,
Frontiers in Oncology 03
respectively. Based on the TRIPOD criteria, the prediction models

were classified as development only (type 1a), development and

validation using resampling (type 1b), random split sample

validation (type 2a), non-random split sample validation (type

2b), validation using separate data (type 3), or validation only

(type 4). To assess the risk of bias and applicability of the

included studies, PROBAST was employed (16), which includes

20 signaling questions distributed among 4 domains (participants,

predictors, outcome, and analysis).
2.6 Statistical analysis

The RQS for each item and the total RQS were presented as

mean +/- standard deviation (SD). When an item obtained a score

of at least 1, it was described as basic adherence. The basic

adherence rate was calculated as the percentage number of studies

with basic adherence. When an item obtained was higher than the

average score, it was considered the ideal score. The percentage

number of ideal scores was defined as the number of studies

obtaining an ideal score from the total number of studies. The

basic adherence rate for TRIPOD was calculated using the same

method. TRIPOD item 5c (if completed) and validation items 10c,

10e, 12, 13c, 17, and 19a were excluded from the calculation of the

overall adherence rate. The results of PROBAST were summarized

as percentages and presented in a visual plot. Signaling question 4.9,

“Do predictors and their assigned weights in the final model

correspond to the results from the reported multivariable

analysis?” was not included as it only applies to regression-based

studies. The analyses were conducted using R version 4.2.1.
3 Results

3.1 Literature search results

Figure 2 illustrates the PRISMA process used to conduct the

study. The initial online database search revealed 305 records, of

which 205 were retrieved from PubMed, and the rest were retrieved

from EMBASE. After removing the 22 duplicates, 283 studies

remained for further screening. The screening of the titles and

abstracts revealed 28 eligible studies. Six of these studies were

excluded after evaluating the full text, and a total of 22 studies

(19–40) were finally included in this study.
3.2 Basic and methodological
characteristics of the included studies

The basic and methodological characteristics of all included

studies are summarized in Table 1. All studies included in our

study were retrospective. Only 8 were multi-institutional, of which 6

included patients from 2 different institutions, and 2 studies included

patients from 3 different institutions. Interestingly, almost all of the

studies come from Chinese researchers. Some studies did not

mention the specific histological type of gastric cancer, while
frontiersin.org
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others (5/22) targeted gastric adenocarcinoma. The number of

sample size of the included studies ranged from 30 to 2320.

The treatments involved are divided into two types: surgery and

medications. Surgery includes partial or total gastrectomy with or

without D2 lymphadenectomy. Medications include neoadjuvant

chemotherapy or adjuvant chemotherapy with specific regimens such

as SOX (S-1 plus oxaliplatin), XELOX (capecitabine plus oxaliplatin),

FOLFIRI (folinic acid, fluorouracil, and irinotecan)/FOLFOX (folinic

acid, fluorouracil, and oxaliplatin), and a study investigated the impact

of PD-1 inhibitors on prognosis of gastric cancer (31).

Different study endpoints were reported in the studies. These

were broadly divided into prognosis, treatment response, and other.

The prognosis was reported in 18 studies and was artificially

classified as poor and good (37) based on overall survival (OS),

progression-free survival (PFS), disease-free survival (DFS)/

recurrence-free survival (RFS). The pathological treatment

response was reported in 3 studies. This category included tumor

regression grade (TRG) after neoadjuvant chemotherapy, complete

remission (CR), partial remission (PR), stable remission (SR), and

progressive remission (PR). The other category included

lymphovascular invasion (LVI) (19), early recurrence (40), and

peritoneal recurrence (25). The model by Liang et al. was used to

predict both the prognosis and treatment response (31).

Seven studies used deep learning models (21, 23, 25, 27, 38–40),

and all other studies used only handcrafted features based on Cox
FIGURE 2

Flowchart of the literature search and study selection (PRISMA 2020).
TABLE 1 Basic and methodological characteristics of the included studies.

Study Data

type

# of insti-

tution (s)

Country Cancer type (his-

tology & basal

staging)

Sample

size

Treatment Predicted

outcome (s)

Type of

fea-

tures

Non-radiomics

cofactors

Reported

performance

Model cal-

ibration

test

Jiang,

Y, 2018

-1

R 2 China Gastric

adenocarcinoma;

T1-4 N0-3 M0-1

228

(train)

186

(internal

val)

1177

(external

val)

Total or partial radical

gastrectomy

OS, DFS HF Clinical factors AUC=0.892

(train)

AUC=0.804

(internal val)

AUC=0.821

(external val)

Yes

Jiang,

Y, 2018

-2

R 1 China Primary gastric

cancer;

T1-4 N0-3 M0-1

132

(train)

82 (val)

Total or partial radical

gastrectomy

OS, DFS HF Clinical factors AUC=0.796

(train)

AUC=0.806

(val)

Yes

Li, Z,

2018

R 1 China Gastric

adenocarcinoma;

stage IIA−IIIC: T3

−T4 and/or N+

30 Neoadjuvant chemotherapy GR (TRG 0-1);

non-GR (TRG 2-

3)

DLF No AUC=0.722 No

Li, W,

2019

R 1 China Gastric cancer;

T2-4 N0-3 M0

115

(train)

66 (val)

Radical gastrectomy with D2

lymphadenectomy and R0

resection

OS HF Clinical factors C-index=0.82 Yes

Chen,

X, 2020

R 1 China Gastric cancer;

T1-4 N0-3 M0

112

(train)

48 (test)

Radical gastrectomy LVI, OS, PFS HF Clinical factors (AP+VP)

AUC=0.856

(train)

AUC=0.792

(test)

Yes

Li, J,

2020-1

R 1 China Gastric

adenocarcinoma;

NA

136

(train)

68 (test)

Gastrectomy plus lymph node

dissection

OS, PFS DLF and

HF

Clinical factors AUC=0.84

(train)

AUC=0.82

(test)

Yes

Li, J,

2020-2

R 1 China Gastric cancer;

T1-4 N0-3 M0

286

(train)

453 (val)

Radical gastrectomy DFS HF Clinical factors AUC=0.746

(train)

AUC=0.754

(val)

Yes

Sun, K.

Y, 2020

R 1 China Gastric

adenocarcinoma;

T2-4 N0-3 M0-1

74

(train)

32 (val)

Neoadjuvant chemotherapy (SOX) responders (TRG

1-2), non-

responders (TRG

3-5)

HF Clinical factors AUC=0.77

(train)

AUC=0.82

(val)

No

(Continued)
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TABLE 1 Continued

Study Data

type

# of insti-

tution (s)

Country Cancer type (his-

tology & basal

staging)

Sample

size

Treatment Predicted

outcome (s)

Type of

fea-

tures

Non-radiomics

cofactors

Reported

performance

Model cal-

ibration

test

Wang,

S, 2020

R 2 China Gastric cancer;

T1-4 N0-3 M0

166

(train)

83

(internal

val)

104

(external

val)

Curative surgery DFS HF Clinical factors C-index=0.760

(train)

C-index=0.720

(internal val)

C-index=0.727

(external val)

Yes

Wang,

X, 2020

R 1 China Gastric cancer;

T1-3 N0-3 M0

124

(train)

119 (val)

Radical gastrectomy Poor prognosis,

good prognosis

HF Clinical factors C-index=0.88 No

Zhang,

L, 2020

R 3 China Gastric cancer;

T1-4 N0-3 M0

518

(train)

122

(external

val)

Radical gastrectomy OS DLF and

HF

Clinical factors C-index=0.82

(train)

C-index=0.78

(external val)

Yes

Zhang,

W,

2020

R 2 China Gastric cancer;

T2-4 N0-3 M0

302

(train)

219

(internal

test)

148

(external

test)

Radical gastrectomy with D2

lymphadenectomy and R0

resection

Early recurrence DLF and

HF

Clinical factors AUC=0.831

(train)

AUC=0.826

(internal test)

AUC=0.806

(external test)

Yes

Jiang,

Y, 2021

R 2 China &

America

Gastric cancer;

T0-4 N0-3 M0-1

457

(train)

1158

(external

val)

Total or partial radical

gastrectomy

DFS, OS DLF and

HF

Clinical factors C-index=0.787

(train)

C-index=0.724

(external val)

Yes

Jin, Y,

2021

R 1 China Primary gastric

cancer;

T0-4 N0-3 M0-1

172

(train)

245 (val)

Gastrectomy; adjuvant

chemotherapy (including S1 alone,

XELOX and FOLFIRI/FOLFOX)

DFS, OS HF Clinical and genetic

factors

AUC=0.965 Yes

Shin, J,

2021

R 2 South

Korea

Gastric cancer;

T2-4 N0-3 M0

349

(train)

61

(external

val)

R0 gastrectomy with D2

lymphadenectomy

RFS HF Clinical factors AUC=0.733

(train)

AUC=0.878

(external val)

Yes

Wang,

S, 2021

R 1 China Gastric cancer;

T1-4 N0-3 M0

166

(train)

83

(internal

val)

Curative surgery DFS HF Clinical factors C-index=0.707 No

Zhang,

L, 2021

R 3 China Gastric cancer;

T1-4a N0-3 M0

337

(train)

181 (val)

122 (test)

Radical gastrectomy OS DLF and

HF

Clinical factors C-index=0.77

(train)

C-index=0.74

(val)

C-index=0.76

(test)

No

Chen,

Y, 2022

R 1 China &

Germany

Gastric cancer;

T3-4a/b Nx M0

104

(train)

52 (test)

Neoadjuvant chemotherapy

(SOX); total or partial radical R0

gastrectomy

DFS, OS HF Clinical factors C-index=0.833

(train)

C-index=0.810

(test)

Yes

Hao,

D,

2022

R 1 America Gastric cancer;

T1-4 N0-3 M0

743

(train)

318 (test)

Total or partial radical

gastrectomy

PFS, OS DLF Clinical factors C-index=0.703

(OS)

C-index=0.743

(PFS)

No

Jiang,

Y, 2022

R 2 China &

America

Gastric cancer;

T1-4 N0-3 M0

510

(train)

767

(internal

val)

1043

(external

val)

Gastrectomy Peritoneal

recurrence, DFS

DLF Clinical factors C-index=0.654

(train)

C-index=0.668

(internal val)

C-index=0.610

(external val)

Yes

Liang,

Z, 2022

R 1 China Relapsed or

metastatic inoperable

gastric

adenocarcinoma

58

(train)

29 (val)

PD-1 inhibitor Non-PD (CR, PR,

SD), PD, PFS, OS

HF Clinical factors and

immunohistochemistry

AUC=0.865

(train)

AUC=0.778

(val)

Yes

Liu, H,

2022

R 1 China Gastric cancer;

T1-4 N0-3 M0-1

45

(TCGA)

196

(train)

196 (val)

Partial or total radical gastrectomy OS HF Clinical and genetic

factors

AUC = 0.838

(train)

AUC=0.744

(val)

Yes
F
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R, retrospective; PD-1, programmed cell death 1; LVI, lymphovascular invasion; OS, overall survival; PFS, progression-free survival; GR, good response; non-GR, non-good response; TRG, tumor
regression grade; DFS, disease-free survival; RFS, recurrence-free survival; CR, complete remission, PR, partial remission, SD, stable disease; PD, progressive disease; val, validation; HF,
handcrafted features; DLF, deep learning-based feature; AUC, area under the receiver operating characteristic curve; C-index, concordance index.
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proportional hazards, logistic regression (LR), linear regression,

support vector machine (SVM) and random forest (RF) models.

Most studies (n=21) have combined radiomics features with non-

radiomics features (most often clinical factors) to create the models

(19–29, 31–40). Of note, the study by Jin et al. used genetic factors

(26), and the study by Liang et al. used immunohistochemistry (31).

The discriminatory performance of the prognostic prediction model

was assessed on the training and validation datasets using either the

concordance (C-index) or the area under the curve (AUC). For the

training cohort, the C-index ranged from 0.654 (25) to 0.880 (37),

and the AUC ranged from 0.722 (30) to 0.965 (26). For the

validation cohort, the C-index ranged between 0.610 (25) and

0.810 (20), and the AUC ranged between 0.744 (32) and 0.878 (33).
3.3 Assessment of the methodological
quality of the studies based on RQS

Based on the steps involved in constructing a radiomics model,

the RQS assesses the quality of radiomics studies across 16 projects

in 6 key domains. These 6 areas include protocol quality and
Frontiers in Oncology 06
stability in image and segmentation, feature selection and

validation, model performance, biologic/clinical validation and

utility, high level of evidence, and open science and data (Details

in Supplementary Table S1). The overall mean RQS value was 15.32

± 3.20 (range 9 to 21), which is 42.55% of the ideal 36 scores. Of the

6 domains, domain 5 had the lowest score at 0. Domain 2 achieved

the highest mean ideal score (72.16%) of all the six domains. Table 2

shows the basic adherence rate to the 16 RQS criteria for the 6

domains. The total basic adherence RQS was 59%.

For domain 1, all studies followed the well-documented

imaging protocol criteria. Fourteen studies (64%) used multiple

segmentation methods (by different physicians/algorithms/

software) (19, 21–26, 28, 29, 31, 32, 34, 38, 39), and 10 studies

(45%) used images obtained at different time points (19, 20, 24, 27–

29, 35, 36, 38, 40). None of the studies conducted phantom studies

to assess the feature reliability of the different CT scanners.

For domain 2, all 22 studies conducted feature reduction or

adjustment of multiple tests and validation. Fourteen studies (64%)

only performed internal validation (19–21, 24, 26–32, 34, 35, 37),

and 1 of the studies used the training cohort to validate the model

(30). Only 8 studies (36%) were validated using both internal and
TABLE 2 Radiomics quality score according to the six key domains.

Basic adherence rate
(%)

Mean
score

Percentage of the ideal score
(%)

Total (ideal score 36) 206 (0.59) 15.32 ± 3.20 42.55

Domain 1: protocol quality and stability in image and segmentation (0
to 5 points)

46 (0.52) 2.09 ± 0.79 41.82

Protocol quality (2 points) 22 (1.00) 1.14 ± 0.34 56.82

Multiple segmentations (1 point) 14 (0.64) 0.64 ± 0.48 63.64

Test–retest (1 point) 10 (0.45) 0.45 ± 0.50 45.45

Phantom study (1 point) 0 (0.00) 0.00 ± 0.00 0.00

Domain 2: feature selection and validation (-8 to 8 points) 44 (1.00) 5.77 ± 1.08 72.16

Feature reduction or adjustment of multiple testing (-3 or 3 points) 22 (1.00) 3.00 ± 0.00 100.00

Validation (-5, 2, 3, 4, or 5 points) 22 (1.00) 2.77 ± 1.08 55.45

Domain 3: model performance index (0 to 5 points) 57 (0.86) 3.36 ± 0.83 67.27

Cut-off analysis (1 point) 19 (0.86) 0.86 ± 0.34 86.36

Discrimination statistics (2 points) 22 (1.00) 1.50 ± 0.50 75.00

Calibration statistics (2 points) 16 (0.73) 1.00 ± 0.74 50.00

Domain 4: biologic/clinical validation and utility (0 to 6 points) 50 (0.57) 3.50 ± 1.62 58.33

Non-radiomics features (1 point) 21 (0.95) 0.95 ± 0.21 95.45

Biologic correlations (1 point) 2 (0.09) 0.09 ± 0.29 9.09

Comparison to ‘gold standard’ (2 points) 13 (0.59) 1.18 ± 0.98 59.09

Potential clinical utility (2 points) 14 (0.64) 1.27 ± 0.96 63.64

Domain 5: high level of evidence (0 to 8 points) 0 (0.00) 0.00 ± 0.00 0.00

Prospective study (7 points) 0 (0.00) 0.00 ± 0.00 0.00

Cost-effectiveness analysis (1 point) 0 (0.00) 0.00 ± 0.00 0.00

Domain 6: open science and data (0 to 4 points) 9 (0.41) 0.59 ± 0.94 14.77
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external datasets (22, 23, 25, 33, 36, 38–40). In one of these studies, 2

external datasets from different centers were used to validate the

algorithm (39).

For domain 3, 19 studies (86%) made use of cut-off analysis (19,

21–27, 30–40). All 22 studies used the AUC of a receiver operating

characteristic curve for discrimination analysis, and 16 studies

(73%) used calibration statistics (19, 20, 22–29, 31–33, 36, 38, 40).

For domain 4, multivariate analysis of non-radiomics features

was performed in almost all studies (n=21, 95%). Biological

correlations were involved in 2 (9%) studies (26, 32). The

performance of the radiomics models was assessed by comparing

the results with “gold standards” in 13 (59%) studies (19–25, 27, 31,

32, 35, 36, 39). The potential clinical utility of the model was

assessed in 14 studies (19, 20, 22–26, 28, 29, 31, 32, 34, 36, 38).

For domain 5, none of the included studies were prospective.

Furthermore, no studies conducted a cost-effectiveness analysis.
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For domain 6, 9 studies (41%) (20, 21, 23, 25, 26, 31–33, 39)

used an open-source code to develop the model.
3.4 Analysis of reporting completeness
based on the TRIPOD checklist

In order to increase the transparency of research reports on

predictive modeling, the TRIPOD statement has developed a

checklist in 5 areas: title and abstract, introduction, methods,

results, and discussion. The reporting completeness of the

included studies according to the TRIPOD checklist is

summarized in Table 3 and Supplementary Table S2. After

excluding both the “if done” in item 5c and the validation items

10c, 10e, 12, 13c, 17, and 19a from the numerator and denominator,

the mean number of adherences with the 35 items on the TRIPOD
TABLE 3 Adherence to individual TRIPOD items in radiomics studies.

All articles
(n =22)

Total (35 items)

Title and abstract

1. Title: identify developing/validating a model, target population, and the outcome 22 (100)

2. Abstract: provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and
conclusions 18 (81.82)

Introduction

3a. Explain the medical context and rationale for developing/validating the model 22 (100)

3b. Specify the objectives, including whether the study describes the development/validation of the model or both 22 (100)

Methods

4a. Source of data: describe the study design or source of data (randomized trial, cohort, or registry data) 22 (100)

4b. Source of data: specify the key dates 21 (95.45)

5a. Participants: specify key elements of the study setting including number and location of centers 22 (100)

5b. Participants: describe eligibility criteria for participants (inclusion and exclusion criteria) 21 (95.45)

5c. Participants: give details of treatment received, if relevant (n = 4) 4 (18.18)

6a. Outcome: clearly define the outcome, including how and when assessed 17 (77.27)

6b. Outcome: report any actions to blind assessment of the outcome 3 (13.64)

7a. Predictors: clearly define all predictors, including how and when assessed 17 (77.27)

7b. Predictors: report any actions to blind assessment of predictors for the outcome and other predictors 0 (0)

8. Sample size: explain how the study size was arrived at 1 (4.55)

9. Missing data: describe how missing data were handled with details of any imputation method 2 (9.09)

10a. Statistical analysis methods: describe how predictors were handled 22 (100)

10b. Statistical analysis methods: specify type of model, all model-building procedures (any predictor selection), and method for internal validation 21 (95.45)

10d. Statistical analysis methods: specify all measures used to assess model performance and if relevant, to compare multiple models (discrimination
and calibration) 20 (90.91)

11. Risk groups: provide details on how risk groups were created, if done (yes or no, n = 14) 14 (63.64)

(Continued)
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checklist was 20.45 ± 1.83, and the adherence rate was 73.05%

± 6.53%.

Figure 3 shows the AUC/C-index and RQS reported by the

included studies classified by TRIPOD. The different TRIPOD

classifications are illustrated using different colors. The studies

with the higher RQS had a better TRIPOD classification [usually
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2a (19, 32) or 3 (22, 23, 36, 38, 39)]. Furthermore, these studies also

had a higher AUC or C-index ranging from 0.760 (36) to 0.892 (22).
3.5 Assessment of the risk of bias based
on PROBAST

The risk of bias assessment based on PROBAST is summarized

in Table 4 and Supplementary Table S3. Almost all studies (95.45%)

were classified as low risk in the participant domain, except for one

study that did not mention the inclusion and exclusion criteria for

participants (35). In the predictors domain, half of the studies (50%)

were rated as high risk due to the lack of blinding in accessing

predictors (19, 24, 25, 27, 29, 31, 33, 35, 36, 38, 39). All studies were

rated as low risk in the outcome domain. However, in the analysis

domain, only one study (36) was rated as low risk, while most

studies (95.45%) were rated as high risk due to do not perform

reasonable sample size estimating (19–35, 37–40). In addition, some

studies did not provide information on the handling of continuous

and categorical predictors (27.27%) (21, 27, 32, 33, 35, 39) and

participants with missing data (86.36%) (19, 21–35, 38–40).

All studies had at least one high-risk domain, with participants

and analysis sections being the most frequent. Therefore, all studies
TABLE 3 Continued

All articles
(n =22)

Total (35 items)

Results

13a. Participants: describe the flow of participants, including the number of participants with and without the outcome. A diagram may be helpful 14 (63.64)

13b. Participants: describe the characteristics of the participants, including the number of participants with missing data for predictors and outcome 21 (95.45)

14a. Model development: specify the number of participants and outcome events in each analysis 22 (100)

14b. Model development: report the unadjusted association between each candidate predictor and outcome, if done (yes or no, n = 1) 1 (4.55)

15a. Model specification: present the full prediction model to allow predictions for individuals (regression coefficients, intercept) 3 (13.64)

15b. Model specification: explain how to the use the prediction model (nomogram, calculator, etc.) 17 (77.27)

16. Model performance: report performance measures (with confidence intervals) for the prediction model 22 (100)

Discussion

18. Limitations: Discuss any limitations of the study 21 (95.45)

19b. Interpretation: Give an overall interpretation of the results 21 (95.45)

20. Implications: Discuss the potential clinical use of the model and implications for future research 21 (95.45)

For validation (types 2a, 2b, 3, and 4)

10c. Methods-Statistical analysis methods: describe how the predictions were calculated 14 (63.64)

10e. Methods-Statistical analysis methods: describe any model updating (recalibration), if done 1 (4.55)

12. Methods-Identify any differences from the development data in setting, eligibility criteria, outcome, and predictors 0 (0)

13c. Results-show a comparison with the development data of the distribution of important variables 17 (77.27)

17. Results-Model updating: report the results from any model updating, if done 1 (4.55)

19a. Discussion-Interpretation: discuss the results with reference to performance in the development data and any other validation data 21 (95.45)
FIGURE 3

The AUC/C-index and RQS reported by the included studies
classified by TRIPOD.
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were ultimately rated as high risk of bias. The four domains and the

overall risk of bias of the included studies are visualized in Figure 4.
4 Discussion

This study aimed to assess the methodological characteristics

and quality of radiomics studies predicting the prognosis of patients

with GC published in the last 5 years, using RQS, TRIPOD, and

PROBAST. All studies included in this study were retrospective,
TABLE 4 PROBAST signaling questions in 22 included studies.

Signaling
question

Yes or
probably
yes (%)

No or
probably
no (%)

No
information

(%)

Participants domain

1.1. Were
appropriate data
sources used, for
example, cohort,
randomized controlled
trial, or nested case-
control study data?

22 (100) 0 0

1.2. Were all
inclusions and
exclusions of
participants
appropriate?

21 (95.45) 1 (4.55) 0

Predictors domain

2.1. Were predictors
defined and assessed in
a similar way for all
participants?

22 (100) 0 0

2.2. Were predictor
assessments made
without knowledge of
outcome data?

11 (50.00) 11(50.00) 0

2.3. Are all predictors
available at the time the
model is intended to be
used?

22 (100) 0 0

Outcome domain

3.1. Was the
outcome determined
appropriately?

22 (100) 0 0

3.2. Was a
prespecified or standard
outcome definition
used?

22 (100) 0 0

3.3. Were predictors
excluded from the
outcome definition?

22 (100) 0 0

3.4. Was the
outcome defined and
determined in a similar
way for all participants?

22 (100) 0 0

3.5. Was the
outcome determined
without knowledge of
predictor information?

22 (100) 0 0

3.6. Was the time
interval between
predictor assessment
and outcome
determination
appropriate?

22 (100) 0 0

(Continued)
TABLE 4 Continued

Signaling
question

Yes or
probably
yes (%)

No or
probably
no (%)

No
information

(%)

Analysis domain

4.1. Were there a
reasonable number of
participants with the
outcome?

1 (4.55) 21 (95.45) 0

4.2. Were continuous
and categorical
predictors handled
appropriately?

16 (72.73) 0 6 (27.27)

4.3. Were all enrolled
participants included in
the analysis?

21 (95.45) 1 (4.55) 0

4.4. Were
participants with
missing data handled
appropriately?

3 (13.64) 0 19 (86.36)

4.5. Was selection of
predictors based on
univariable analysis
avoided? (Development
studies only)

21 (95.45) 1 (4.55) 0

4.6. Were
complexities in the data
(e.g., censoring,
competing risks,
sampling of control
participants) accounted
for appropriately?

2 (9.09) 1 (4.55) 19 (86.36)

4.7. Were relevant
model performance
measures evaluated
appropriately?

21 (95.45) 1 (4.55) 0

4.8. Were model
overfitting, underfitting,
and optimism in model
performance accounted
for? (Development
studies only)

22 (100) 0 0
Signaling question 4.9 “Do predictors and their assigned weights in the final model
correspond to the results from the reported multivariable analysis?” was not included as it
applies to regression-based studies.
PROBAST, prediction risk of bias assessment tool; NA, not applicable to external validation.
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which may have introduced inaccuracies in prognosis-focused

follow-up. Furthermore, the included studies mainly focused on

the prognosis of GC patients after gastrectomy, with only a few

studies evaluating the prognosis after adjuvant chemotherapy,

neoadjuvant chemotherapy, or PD-1 inhibitor therapy.

Additionally, the sample size of most studies was insufficient for

building stable predictive models and lacked reasonable sample size

estimation in advance. Clinical factors were incorporated in almost

all currently available radiomics prognostic models for GC, with

some models also incorporating genetic factors (26, 32) or

immunohistochemistry (31). The integration of radiomics with

clinical and genetic features has been shown to improve the

predictive performance of prognostic models (41). However, most

studies did not perform external validation, potentially limiting the

generalizability of the models. The lack of standardized practices for

analyzing radiomics models, limited data sharing between

institutions, and the lack of automated segmentation are

currently limiting the adoption of these models in prospective

clinical studies (42). Thus, further prospective multicenter studies

with larger and adequately powered samples are necessary to

improve the quality and generalizability of prognostic radiomics

models for GC.

Upon evaluating the radiomics prognostic prediction models

for GC using the RQS, our study revealed a lack of scientific quality

in the current models, particularly in domain 1, domain 5, and

domain 6. Notably, none of the included studies conducted a

phantom study on all scanners, despite previous research showing

that the variability of the values of radiomic features calculated on

CT images from different CT scanners can be comparable to the

variability of these features found in CT images of other tumor (43).

Consequently, future radiomic studies in gastric cancer should

consider and minimize the impact of differences between

scanners. Additionally, none of the included studies met the high

level of evidence criteria, as all were retrospective and lacked cost-

effectiveness analyses. Our analysis also showed low scores in

biologic correlations (9.09%) and open science/data (14.77%),

which are similar to the limitations observed in radiomics models

used for other purposes (44–46).
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Upon assessment of reporting completeness using the TRIPOD

checklist, the included studies showed poor basic adherence rates,

particularly for items such as blinding when assessing results,

demonstrating how the required sample size was reached,

handling of missing data, and presenting the entire prediction

model. These results are consistent with previous reviews on

radiomics and oncology studies that also utilized TRIPOD (45–

47). Therefore, there is a pressing need to address these aspects to

ensure that reporting of prognostic GC radiomics prediction

models is more transparent, complete, and standardized. It

should be noted, however, that the current TRIPOD checklist is

mainly focused on regression-based predictive model approaches,

limiting its applicability to artificial intelligence and machine

learning research, which typically do not require regression

analysis. To address this limitation, a new version of the TRIPOD

statement for machine learning is currently in development (48).

The evaluation of included studies using PROBAST revealed

that all of them were at high risk of bias. Contributing factors to bias

included a failure to use blinding to obtain predictors, a lack of

reasonable sample size estimation in advance, and improper

handling of participants with missing data. Similarly, most of the

radiomics studies examining other diseases were also found to be at

high risk of bias. A systematic review of radiomic prognostic

prediction models for breast cancer showed that 95.7% of the

included studies were at high risk of bias (49). Similarly, a

systematic review of radiomic prognostic prediction studies for

non-small cell lung cancer found that all of the included studies

were at high risk of bias (50). Furthermore, these reviews also

identified participant and analytic domains as the primary sources

of bias.

This study has some limitations that have to be acknowledged.

Due to the small number of existing studies and the wide range of

mathematical tools used to assess the performance of the models, it

was not possible to perform a quantitative meta-analysis. In

addition, several items on the RQS and TRIPOD tools could not

be assessed as they do not apply to prognostic radiomics models. It

is also important to acknowledge that some items on the RQS are

over-idealistic and are difficult to achieve in practice (51).

Furthermore, the TRIPOD checklist was designed to facilitate the

reporting of radiomics studies and not to assess the methodological

quality of radiomics studies (52). Finally, although we did our best

to use objective criteria, independent raters, and dissent

negotiations to evaluate the methodological quality of the

radiomics studies, there may still be some unavoidable bias in our

evaluation. We searched for worldwide studies in this area and

found that the main country of publication was China, which may

lead to geographical bias and may not have broad extrapolation.

Our findings indicate that the current methodological quality of

radiomics studies for prognosis prediction in GC is insufficient.

Therefore, larger and reasonable sample size, prospective,

multicenter, and rigorously designed studies are required to

improve the generalizability of the models. Future radiomics

studies should also include phantom studies on the scanners,

more biological correlations, and open science/data.
FIGURE 4

Risk of bias of included studies.
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