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I. INTRODUCTION 

Electromagnetic compatibility (EMC) testing is essential for 

ensuring the normal operation of electronic equipment in com-

plex electromagnetic interference environments [1]. Among the 

several EMC tests, the conductive disturbance immunity test 

measures the tolerance of a device under test (DUT), such as 

automotive components, active integrated circuits (ICs), and 

system-level circuits comprising several active ICs from the 

conductive noise applied by external cables or power lines. Con-

ducted disturbance immunity tests are performed according to 

international immunity test standards; this includes the com-

mercial, military, and automotive sections that deal with meas-

urement-based test setup configuration and evaluation methods, 

the definition of the conducted disturbance source as noise [2–4]. 

Measurement-based conducted disturbance immunity tests are 

performed on ICs, virtual instruments (VIs), and digital acquisi-

tion systems using the various tests modes listed in the standards 

[5–7]. Additionally, a novel, standards-based device has previ-

ously been developed to obtain measurement reproducibility and 

measure the effects of various disturbance injection methods [8, 9]. 

However, measurement-based immunity tests are inefficient in 
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terms of cost, time consumption, measurement reproducibility, 

and test setup configuration, which requires shielding enclosures 

and anechoic chambers. 

Recently, simulation-based disturbance immunity testing 

methods have been proposed to overcome the drawbacks of 

measurement-based tests. To predict the IC-level immunity of 

DUTs, such as ICs and automotive components, both the noise 

source and the DUTs themselves have been modeled using 

equivalent circuit models and applied to immunity evaluation 

tests [10–16]. In system-level simulation-based immunity testing, 

three-dimensional (3D) models of the measurement setup and 

testing environment have been employed with electromagnetic 

field analyses and circuit simulation [15–17]. In conducted dis-

turbance immunity testing, radio-frequency (RF) and time-

domain disturbances are employed as noise sources. Since RF 

disturbance noise sources are composed of carrier and modulation 

signals in the frequency domain, it is relatively simple to design an 

RF conducted disturbance source in adherence with the standard 

source requirements by applying the frequency modulation theory 

with a closed form [17]. However, unlike RF noise sources, time-

domain noise sources are required to satisfy the source pulse re-

quirements corresponding to the various combinations of source 

impedance and pulse waveform requirements in the time domain. 

In particular, as a time-domain noise source defined by the high-

altitude electromagnetic pulse (HEMP) test standards, ultrawide-

band pulse (UWB), and lightning electromagnetic pulse (LEMP). 

As specified by the testing standards, the double exponential pulse 

should be designed to satisfy the various test modes along with 

several time-domain pulse requirements, such as the rise time, the 

full width at half magnitude (FWHM), and the time at the peak 

pulse amplitude [18–20]. The case-by-case design of the conducted 

noise source for all the different combinations of source pulse 

requirements is tedious and time-consuming, undermining the 

advantages of simulation-based testing. Therefore, a general design 

methodology for time-domain noise sources is urgently required 

to achieve the completion of simulation-based conducted disturb-

ance testing. 

In this study, an equivalent circuit model of double exponential 

pulse generators is proposed. The proposed equivalent circuit 

model consists of double RC branch circuits that generate positive 

and negative step-pulse currents. To generate double exponential 

pulses that satisfy the time-domain source pulse requirements, 

the relationship between the source pulse requirements and the 

proposed equivalent circuit model is derived. Based on this rela-

tionship, a design methodology is proposed for the equivalent 

circuit model to determine the equivalent circuit components. 

The proposed design methodology comprises two parts: source 

impedance requirement design and pulse waveform requirement 

design. To validate the proposed method, a simulation-based 

conducted disturbance testing platform based on the IEC 

61000-4-24 standard was employed with a double exponential 

pulse generator designed using the proposed method. 

II. PROPOSED EQUIVALENT CIRCUIT MODEL FOR 

DOUBLE EXPONENTIAL PULSE GENERATOR 

In this section, the development of an equivalent circuit model 

of a double exponential pulse generator is presented. The pro-

posed circuit model comprises double RC branch circuits and 

step pulse generators to generate the double exponential pulse 

specified in the conducted disturbance immunity testing stand-

ard. The relationship between the source pulse requirements in 

the standard and the proposed equivalent circuit models is de-

rived to model the proposed equivalent circuit components. 

 

1. Double Exponential Pulse as Conducted Disturbance Noise Source 

Fig. 1 illustrates a time-domain conducted disturbance noise 

source defined as a double exponential pulse waveform in the 

IEC 61000-4-24 conducted disturbance immunity testing 

standard, as represented by Eq. (1): 
 

    𝐼(𝑡) = 𝐾  𝐼 (𝑒 − 𝑒 ). (1)
 

When the current of the double-exponential pulse is positive, 

the exponential coefficient 𝛼 should be less than 𝛽, as shown 

in Eq. (2) [18]: 
 0 < 𝛼 <  𝛽 , 𝑡 0. (2)
 

Table 1 lists the various test modes depending on the source 

pulse requirements presented in the IEC 61000-4-24 standard. 

Each value of the requirement includes an error, which indicates 

 
Fig. 1. Double exponential pulse waveform. 

Table 1. Conducted early-time HEMP (CEP) source pulse requirements 

in IEC 61000-4-24 standard 

Type Rise time, tr 

(ns)

FWHM, 

tFWHM (ns) 

Peak current, 𝐼 (kA) 

Source imped-

ance, Zsource ( Ω )

CEP1 <10 100 ± 30% 4 ± 10% 400 ± 15

CEP2 <10 100 ± 30% 1.5 ± 10% 400 ± 15

CEP3 <10 100 ± 30% 0.5 ± 10% 400 ± 15

CEP4 <10 500 ± 30% 0.4 ± 10% 50 ± 5

CEP5 ≤10 500 ± 10% 2.5 ± 10% ≥60

CEP6 ≤10 500 ± 10% 5 ± 10% ≥60
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a specification that the double exponential pulse must satisfy. 

With a range-based specification, the double exponential pulse 

can be obtained with a set of design ranges using the proposed 

design methodology. The pulse parameters are defined as follows: 

KDE: Modifying factor; 𝐼: Maximum peak current; 

α, β: The characteristic parameters; 

tr: The interval of the time required for the leading edge of a 

pulse to rise from 10% to 90% of the peak pulse amplitude; 

tFWHM : The time interval from 0.5𝐼 to half of the maximum 

peak current 𝐼; 

tpeak: The time at the maximum peak current 𝐼. 

 

2. Proposed Equivalent Circuit Model 

Fig. 2 presents the proposed equivalent circuit model. With 

step pulse generators, each RC branch circuit generates positive 

and negative step pulse currents. The circuit components deter-

mine the magnitude and time constant of the step pulses to 

generate a double exponential pulse that satisfies the various 

source pulse requirements. The definitions of the equivalent 

circuit components are as follows: 

Rs: Source impedance resistance; 

Rp, Cp: Pulse shaping circuit resistance, capacitor; 

Vg: Magnitude of the step pulse generator; 

Pulse shaping circuit: Part of the equivalent circuit to deter-

mine the time constant and sign of the step pulse; 

Underscore p, n: Circuit components belonging to a positive 

or negative RC branch circuit. 

 

3. Double Exponential Pulse Modeling 

To model a double exponential pulse with the proposed 

equivalent circuit model, the relationship between the output 

current of the proposed circuit model and the analytical formula 

of the output current specified in the standard is obtained. The 

positive and negative step pulse currents generated in each RC 

branch circuit are defined in Eq. (3). The output pulse current, 

I(t), can be obtained by combining the two step pulse currents, 

as expressed in Eq. (4). 
 

     𝐼 (𝑡) =   __ _ (1 − 𝑒   ), (3-1)

     𝐼 (𝑡) = __ _ (1 − 𝑒  ), (3-2)𝐼(𝑡) = 𝐼 (𝑡) +  𝐼 (𝑡), (4)
 

where, 
 𝜏 = (𝑅 _  ||𝑅 _ )𝐶 _ ,𝜏 = (𝑅 _  ||𝑅 _ )𝐶 _  
 

As the total current, I(t), converges to zero when it reaches 

the steady state, as expressed in Eq. (5), the relationship between 

the magnitude of the step pulses and the resistance of the pro-

posed model is obtained, as expressed in Eq. (6). 
 

  𝑙𝑖𝑚→ 𝐼(𝑡) = 0, (5)

    
__ _  + 

__ _ = 0. (6)
 

Using Eq. (6) with the coefficient comparisons of Eqs. (1) 

and (4), the relationship between the pulse current, I(t), derived 

from the proposed circuit and the current equation defined in 

the standard is determined, as listed in Table 2. 

III. PROPOSED DESIGN METHODOLOGY FOR 

EQUIVALENT CIRCUIT MODEL 

In this section, a design methodology for equivalent circuit 

models is proposed to design various double exponential pulses 

based on the source pulse requirements. As shown in Fig. 3, two 

 
Fig. 2. Proposed equivalent circuit model. 

Table 2. Relationship between source pulse requirements and equiva-

lent circuit model 

Source pulse requirements Equivalent circuit model𝛼 
1(𝑅 _ ||𝑅 _ ) 𝐶 _  

𝛽 
1(𝑅 _ ||𝑅 _ ) 𝐶 _  

tpeak  ln ( ) 𝐼 𝑉 _𝑅 _ + 𝑅 _ 𝑒 −𝑒  

KDE (𝛼𝛽)  − (𝛼𝛽)  

 

 
Fig. 3. Proposed design methodology. 
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design requirements regarding the source impedance and pulse 

waveform are employed to determine the equivalent circuit 

components. The characteristic parameters are key elements in 

the determination of double exponential pulse characteristics 

and are modeled using the source pulse requirements in the 

specified standard. Based on the characteristic parameters, the 

quantitative ranges of the equivalent circuit components are 

derived by applying the low-impedance condition for the source 

impedance and capacitance range for the pulse waveform. 

 

1. Characteristic Parameter 𝛼, 𝛽 Modeling 

To design the equivalent circuit components, the characteris-

tic parameters 𝛼, 𝛽 should first be modeled, because the rela-

tionship derived in Table 2 simply defines the correlation with 

the source pulse requirements and equivalent circuit model, not 

the characteristic parameters 𝛼  and 𝛽 . If the characteristic 

parameters 𝛼  and 𝛽  can be obtained using analytical ap-

proaches, the design process of a double exponential pulse can 

be simplified. However, as the current equation in Eq. (1) is 

nonlinear, it cannot be solved analytically. In this case, approxi-

mation methods for the characteristic parameters, such as Eqs. 

(7)–(8), are applied. Eqs. (7)–(8) are derived with approxima-

tion parameters X and Y, extracted using an iterative approach 

based on a Nelder-Mead algorithm [21–23]. 
 

     𝛼 =   ×  (( ⁄ ) ) , (7)𝛽 =  1𝑡  × [𝑌  −  𝑌 × 𝑒 ×  −  𝑌  

                × 𝑒 ×  − 𝑌 × 𝑒 ×
. (8)

 

2. Proposed Equivalent Circuit Model Design Methodology 

This section presents two requirements design process of the 

proposed methodology. By applying this methodology, the rang-

es of the circuit components corresponding to the design limits 

of the double exponential pulse, represented by the error in the 

source pulse requirements, are derived. The designer can then 

determine the circuit component values according to their de-

sign environment within the derived ranges. 

 

1) Source impedance requirement design 

As per the standard, the source impedance requirement, Zsource, 

is defined as a combination of the reference impedance, Zref, and 

the impedance error, Ze, as indicated in Table 1. The overall out-

put impedance, Zs, of the proposed equivalent circuit model is 

represented by the parallel synthesis of the impedance of each 

RC branch circuit, as depicted in Fig. 4.  

To match Zsource and Zs, a low-impedance condition limiting 

the impedance of the pulse shaping circuit composed of Rp and 

Cp is proposed to approximate the output impedance of double 

RC branch circuit, Zp and Zn, by two times Zsource. In terms of the 

impedance value, because the impedance error, Ze, is negligibly 

small, the impedance of the pulse shaping circuit can be approx-

imated, as shown in Eq. (9), to convert Zp and Zn to 2Zsource. 
 

    |𝑅 | || |𝑍 | ≤ 2𝑍 . (9)
 

Assuming that the low-impedance condition is applied be-

cause 2Ze is significantly smaller than Rs, the output impedance 

of one RC branch circuit can be approximated using Rs, as 

shown in Eqs. (10)–(11). 

Subsequently, the source impedance requirements Zsource can 

be satisfied by determining Rs to 2Zsource, as shown in Eq. (12). 
 

   𝑍 ≅ 𝑅 _ , (10)

   𝑍 ≅ 𝑅 _ , (11)

         𝑍 ≅  𝑅 _  ||  𝑅 _ . (12)
 

When determining Rs, it should be considered that Zsource has 

impedance error Ze. Rs should also be set according to Ze because 

a low-impedance condition should be established even if Zsource 

changes according to Ze. By applying the impedance error, Ze, in 

Eq. (9), Rs according to Ze can be obtained using Eqs. (13)–(14). 
 

   𝑅 = 2(𝑍  - 2𝑍 ), (13)𝑅 = 2𝑍 , (14)
 

Rs can be determined using Eqs. (9)–(14), with further analy-

sis of the low-impedance condition being performed to obtain 

the range of Rp. The low-impedance condition can be described 

in terms of Rp_p in the positive RC branch circuit, as shown in 

Eq. (15). In the case of Rp_n of the negative RC branch circuit, 

the same result was obtained, as shown in Eq. (16). 
 1 − 𝐵 𝑅 _ − 2𝑅 _ 𝐵 𝑅 _ − 4𝑍 + 𝐵 𝑅 _ < 0, (15)(1 − 𝐵 )𝑅 _ − 2𝑅 _ 𝐵 𝑅 _ − 4𝑍 + 𝐵 𝑅 _ < 0. (16)
 

To solve Eqs. (15)–(16), the parameters B and K are defined, 

as expressed in Eq. (17). The parameter B indicates the coeffi-

cient of inequality and determines the direction of Eqs. (15)–

(16). Parameter K is the result of Eqs. (15)–(16) can be replaced 

 
Fig. 4. Output impedance of equivalent circuit model.
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by the following equation:  
 𝐵 =  _ , 𝐾 = 0.5  _ + ( _ ) + 4( _ ) , (17-1)𝐵 =  _ , 𝐾 = 0.5  _ + ( _ ) + 4( _ ) . (17-2)
 

With regard to parameter Bp, Eq. (15) can be expressed in 

two ways: when Bp is larger than one, Kp is always negative, and 

the result of the inequality becomes invalid. In the other case, Bp 

is smaller than one, and the range of Rp_p can be defined using 

Kp, as expressed in Eq. (18). An identical process can be applied 

to the negative RC branch circuit to derive the range of Rp_n for 

Bn and Kn, as expressed in Eq. (19). Depending on the source 

requirements in the various test modes in the standard, parame-

ter B may be larger than one. In this case, the Rp and Cp pairs 

that satisfy the low-impedance condition, which is the premise 

of the source impedance requirement design, can be determined 

by adopting a repetitive approach. 
 

    𝑅 _ < 𝐾 , (18)

    𝑅 _ < 𝐾 . (19)

 

2) Pulse waveform requirement design 

The previously derived relationship presented in Table 2 is re-

written in terms of Rp_p and Rp_n, with the characteristic parame-

ters having minimum and maximum values according to the pulse 

waveform requirements tr and tFWHM, as shown in Eqs. (20)–(21). 
 _( _ _ _ )  < 𝑅 _ < _( _ _ _ ) , (20)

_( _ _ _ )  < 𝑅 _ < _( _ _ _ ) . (21)
 

 

To quantify the range of Eq. (20), the available capacitance 

ranges are employed in the pulse waveform requirement design. 

The available capacitance ranges are defined as Cp_p_min and 

Cp_p_max, which are applicable to actual conducted disturbance 

immunity testing. However, because the capacitance range used 

to quantify Eq. (20) should be determined by considering all 

conditions of Cp_p, the available capacitance range is combined 

with the range of Cp_p, which prevents Rp_p from being negative 

in Eq. (20). Using the combined capacitance range, Eq. (22) can 

be derived using Rs_p as a variable in Eq. (20). The same process 

can also be applied to a negative RC branch circuit to derive the 

range of Rp_n, as expressed in Eq. (23): 
 

   𝑅 _ _ (𝑅 _ ) < 𝑅 _ < 𝑅 _ _ (𝑅 _ ), (22)

   𝑅 _ _ (𝑅 _ ) < 𝑅 _ < 𝑅 _ _ (𝑅 _ ). (23)

 

3) Proposed equivalent circuit model design 

The proposed equivalent circuit model design methodology 

combines the results of each requirement design and determines 

other equivalent circuit components. The range of Rp derived 

from the combination of each requirement design is defined in 

Eqs. (24)–(25). When determining the maximum range, a 

smaller value of each design result should be chosen to minimize 

the impedance of the equivalent circuit model. 
 𝑅 _ _ 𝑅 _ < 𝑅 _ < min (𝐾  ,  𝑅 _ _ (𝑅 )), (24)𝑅 _ _ 𝑅 _ < 𝑅 _ < 𝑚𝑖𝑛 (𝐾  ,  𝑅 _ _ (𝑅 _ )). (25)
 

The range of Cp can be determined using the quantified range 

in Eqs. (24)–(25) and the relationships in Table 2, as expressed 

in Eqs. (26)–(27).  
 

  ( _ _ || _ ) < 𝐶 _ < ( _ _ || _ ) , (26)

  ( _ _ || _ ) < 𝐶 _ < ( _ _ || _ ) . (27)
 

 

Once Rs, Rp, and Cp are determined in the obtained ranges, the 

amplitude of the step pulse generator, Vg, can be estimated using 

the relationship of 𝐼 defined in Table 2 and the boundary condi-

tion of the double exponential pulse, as shown in Eqs. (28)–(29). 
 

 𝑉 _ = 𝐴(𝑅 _ + 𝑅 _ ), (28)

  𝑉 _ = − 𝐴(𝑅 _ + 𝑅 _ ). (29)

where 

   𝐴 = ( )  ( ) . 

 

3. Design Example 

To validate the proposed equivalent circuit model and the de-

sign methodology, a design example is presented using one of 

the test modes suggested in the IEC 61000-4-24 standard. The 

design parameters of the equivalent circuit are derived using the 

proposed design methodology and applied to a circuit simulator 

to investigate the double exponential pulse designed by the pro-

posed method. The circuit simulation results and the source 

pulse requirements of the standard are compared to validate the 

proposed equivalent circuit model and design methodology. 

The design procedure is the same as that described in Section 3. 

Step 1 (The characteristic parameters 𝛼, 𝛽 modeling): The source 

pulse requirements of the CEP1 test mode and modeled 

characteristic parameters, 𝛼, 𝛽, derived from Eqs. (7)–(8) 

are listed in Table 3. The frequency range applied in the de-

sign example is 100 kHz–200 MHz, which is the common 

HEMP environment frequency range. 

Step 2 (Source impedance requirement design): The low-impedance 

condition is applied, and Rs is determined to be 800 Ω 
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using Eqs. (13)–(14). With the modeled characteristic 

parameters and the value of Rs, the maximum range of 

Rp_n is determined to be 30 Ω using Eq. (19), where Kn = 

30. In the case of the CEP1 test mode, Bp is larger than 

one, and the range of Rp_p can be set equal to the range of 

Rp_n to satisfy the low-impedance condition. 

Step 3 (Pulse waveform requirement design): The available ca-

pacitance ranges are set to Cp_min = 1 pF, Cp_max = 1 mF. 

The range of Cp for positive Rp can be calculated using 

Eq. (20) along with the circuit components in Step 1. 

The combined capacitance range is determined as 0.13 

nF < Cp_p < 1 mF and 1pF < Cp_n < 1 mF. With the de-

termined capacitance range, 0.1 mΩ < Rp_p < 0.5 MΩ and 

6.1 μΩ < Rp_n < 0.23 Ω, is obtained from Eq. (19). 

Step 4 (Proposed equivalent circuit model design): The design 

parameters determined in Step 1 to Step 3 are summa-

rized in Table 4. Circuit simulation is performed with 

the determined circuit components. In Fig. 5, the pulse 

waveform characteristics of the generated double exponen-

tial pulses vary according to the ranges of Cp obtained using 

the proposed design methodology. The resistance values, 

Rp_p and Rp_n, were chosen to be 20 Ohms and 0.2 Ohms, 

respectively, as nominal values within the range derived 

in Step 3. Table 5 presents a comparison of the parameters 

of the source pulse requirements and the circuit simulation 

results. As presented in Fig. 5 and Table 5, with the 

proposed equivalent circuit model and design methodol-

ogy, it is confirmed that it is possible to design a double 

exponential pulse satisfying the standard error of the 

source pulse requirements. 

IV. APPLICATION TO SIMULATION-BASED CONDUCTED 

DISTURBANCE IMMUNITY TESTING 

A simulation-based disturbance testing platform based on the 

IEC 61000-4-24 standard is employed to validate the proposed 

equivalent circuit model and design methodology. To configure 

a simulation-based testing platform, recommendations and re-

quirements in the standard are applied to the testing platform; 

this includes the minimum separation distance between the 

ground plane and signal line, the shielding enclosure, 3D elec-

tromagnetic modeling of the sensing probe, and the protective 

device, as shown in Fig. 6 [24]–[27]. The protective device is 

applied as a ferrite core for testing simplicity. Fig. 7 illustrates 

the simulation-based conducted disturbance testing platform. 

The proposed equivalent circuit model of the double exponen-

tial pulse generator and the s-parameter symbol of the 3D test 

setup, which is shown in Fig. 6, are combined to achieve the test 

platform. A conducted disturbance immunity test is performed 

along with the double exponential pulse of the CEP1 test mode 

Table 3. CEP1 mode source pulse requirements and modeled charac-

teristic parameters 

Parameter Value 

tr (ns) <10 

tFWHM (ns)     100 ± 30%

Source impedance, Zsource ( Ω )   400 ± 15

Peak current, 𝐼 (kA)      4 ± 10%𝛼 (×106)    6.4 to 9.6𝛽 (×108)   1.6 to 4.3 × 104

Table 4. CEP1 mode design parameters 

Parameter Value 

Rs 800 Ω 

Rp_p 20 Ω 

Rp_n 0.2 Ω 

Cp_p_min 5.3 nF 

Cp_p_max 7.9 nF 

Cp_n_min 1.2 pF 

Cp_n_max 0.31 nF 

Vg_p 4.1 MV 

Vg_n -4.1 MV 
 

 
Fig. 5. CEP1 mode current waveform according to Cp values (nominal 

value: Rp_p = 20 Ω, Rp_n = 0.2 Ω, Cp_p = 5.5 nF, Cp_n = 0.29 nF). 

 

Table 5. Parameter comparison of the circuit simulation results 

Parameter 
CEP1 mode

Cp_min Cp_nom Cp_max

Rise time, tr (ns) 0.78 9.66 9.76

FWHM, tFWHM (ns) 76.54 97.5 129.94

Source impedance, 

Zsource ( Ω )
400.9–405.0 400.2–404.9 400.0–404.8

Peak current, 𝐼 (kA) 4.08 4 4.12
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generated by the proposed design methodology and circuit sim-

ulator. As a result of the circuit simulation, the attenuation of 

the double exponential pulse, defined as a conducted disturb-

ance, is shown in Fig. 8. 

Using the simulation results, the validity of the equivalent cir-

cuit model of a double exponential pulse generator designed 

using the proposed method is confirmed. 

V. CONCLUSION 

In this paper, an equivalent circuit model and design methodolo-

gy for a double exponential pulse generator are proposed. The rela-

tionship between the source pulse requirements and the equivalent 

circuit model is derived. A design methodology that determines the 

feasible value of the circuit components is presented. By applying 

the proposed design methodology to the equivalent circuit model, a 

double exponential pulse generator was designed with various test 

modes required by the disturbance immunity test standards. A 

simulation-based disturbance immunity-testing platform was con-

figured to validate the effectiveness of the proposed equivalent cir-

cuit model and design methodology. It is expected that the im-

munity of DUTs can be confirmed by the injected noise source in 

the early design stage with a simulation-based testing platform. 
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