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Tumor suppressor genes (TSGs) are commonly downregulated in colon cancer
and play a negative role in tumorigenesis and cancer progression by affecting
genomic integrity, the cell cycle, and cell proliferation. Curcumin (CUR), a Chinese
herb-derived phytochemical, exerts antitumor effects on colon cancer. However,
it remains unclear whether CUR exerts its antitumor effects by reactivating TSGs in
colon cancer. Here, we demonstrated that CUR inhibited HT29 and
HCT116 proliferation and migration by cell-counting kit-8, colony-formation,
and wound-healing assays. Furthermore, the comprehensive bioinformatics
analysis of mRNA sequencing revealed that 3,505 genes were significantly
upregulated in response to CUR in HCT116 cells. Kyoto Encyclopedia of Genes
and Genomes and Gene Ontology analyses showed that the most upregulated
genes were enriched in cancer pathways containing 37 TSGs. Five (ARHGEF12,
APAF1, VHL, CEBPA, and CASP8) of the 37 upregulated TSGs were randomly
selected for real-time fluorescence polymerase chain reaction and the verification
results showed that these five genes were significantly reactivated after CUR
treatment, suggesting that TSGs are related to CUR-mediated colon cancer
inhibition. ARHGEF12 is a newly identified TSG and a potential therapeutic
target for colon cancer. Furthermore, molecular docking was performed to
predict the binding sites of CUR and ARHGEF12, suggesting that CUR can
prevent colon cancer cell invasion and metastasis by inhibiting ARHGEF12 and
RhoA binding. In conclusion, the present study reveals that CUR inhibits colon
cancer cell proliferation and migration by reactivating TSGs, revealing a new
mechanism and potential target for colon cancer treatment.
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1 Introduction

Colon cancer is a malignant tumor that is considered the third
most common cancer worldwide with a high morbidity and
mortality rate, thereby the fourth one to cause death (Selvam
et al., 2019; Tie et al., 2022). Although great progress has been
made in surgical techniques and treatments for colon cancer, the 5-
year relative survival rate of patients with colon cancer has not
changedmarkedly in the past decades (Shang et al., 2023). Currently,
surgical treatment, chemotherapy, and radiotherapy are the major
therapeutic modalities; however, these treatments usually have side
effects that damage the immune system as well as liver and kidney
functions and can even contribute to drug resistance (Zhang N. et al.,
2021). Chinese herbal extracts have received increasing attention for
their antitumor properties via diverse mechanisms in various types
of cancer (Islam et al., 2022). For instance, baicalein, a novel toll-like
receptor 4 (TLR4)-targeted therapeutic drug, inhibits the
development of colorectal cancer (CRC) by inhibiting the TLR4/
hypoxia-inducible factor-1/vascular endothelial growth factor
signaling pathway (Chen et al., 2021). Astragaloside IV inhibits
the development of hepatocellular carcinoma by persistently
inhibiting fibrosis by regulating the pSmad3C/3L and nuclear
factor erythroid 2-related factor 2/heme oxygenase-1 pathways
(Zhang C. et al., 2021). Ginsenoside Rg3 effectively suppresses
human CRC cell proliferation by inhibiting the transactivation of
CCAAT/enhancer binding protein (C/EBP) and nuclear factor
kappa-B (NF-κB), and the interaction of C/EBPβ with p65 (Yao
and Guan, 2022). Ginsenoside Rh3 induces CRC cell apoptosis by
upregulating the caspase-3 gene (Cong et al., 2020). Berberine
inhibits the proliferation, migration and invasion of colon cancer
cells by blocking the cell cycle in the G0/G1 phase through the
Hedgehog signaling cascade (Sun et al., 2023). Ursolic acid
suppresses colorectal cancer by downregulation of Wnt/β-catenin
signaling pathway activity (Zhao et al., 2023). Although these herbal
extracts exert important therapeutic effects on tumors, their
antitumor mechanisms remain to be further explored. Therefore,
there is an urgent need to identify additional Chinese herbal extracts
and to better understand their molecular mechanisms that inhibit
tumor development.

Curcumin (CUR) is one of the most common polyphenolic
compounds extracted from the rhizomes of Curcuma longa. It is
easily soluble in acetic acid, ketones, alkali, and chloroform, whereas
it is insoluble in water at acidic and neutral pH. Owing to its
hydrophobic properties, it can diffuse through cell membranes into
the endoplasmic reticulum, mitochondria, and nucleus, where it can
exert its action (Pricci et al., 2020). The therapeutic benefits of CUR
have been demonstrated in multiple chronic diseases such as
inflammation, arthritis, metabolic syndrome, liver disease,
obesity, neurodegenerative diseases, and certain cancers
(Aggarwal and Sung, 2009; Brockmueller et al., 2023). Recently,
multiple studies have confirmed that CUR exerts strong anticancer
effects against various types of cancer, such as breast, lung,
hematological, gastric, colon, pancreatic, and hepatic cancers. The
mechanisms involved include the inhibition of cell proliferation,

induction of apoptosis, and suppression of cell migration and
invasion via various molecular pathways (He et al., 2023; Zhang
et al., 2023). CUR is a promising candidate as an effective anticancer
drug that can be used alone or in combination with other drugs. It
affects different signaling pathways and molecular targets involved
in the development of several cancers. It has been reported that CUR
plays an important role in anti-colon cancer. For instance, CUR
inhibited 1,2-dimethylhydrazine-induced rat colon carcinogenesis
and the growth of the in vitro cultured HT29 cell line by suppressing
the peroxisome proliferator-activated receptor-γ signal transduction
pathway; moreover, in human colon cancer HCT116 and
HT29 cells, CUR induced the dissociation of hexokinase II
(HKII) from mitochondria by downregulating the expression and
activity of the HKII gene, leading to mitochondria-mediated
apoptosis (Giordano and Tommonaro, 2019). In HCT116 cells, it
has been reported that CUR increases miR-491 expression,
suppresses PEG10 expression, and consequently, silences the
Wnt/β-catenin signaling pathway as a mechanism of inducing
apoptosis and inhibiting cell proliferation (Wu et al., 2020).
Curcumin exerts its anticancer and antiproliferative activities by
inducing senescence in colon cancer cells, and curcumin-induced
senescence is accompanied by autophagy (Mosieniak et al., 2012).
Curcumin regulates miR-21 expression and inhibits invasion and
metastasis in colorectal cancer (Mudduluru et al., 2011). Curcumin
inhibits colon cancer cell proliferation by targeting CDK2 (Lim et al.,
2014). Based on the important clinical role of CUR in the treatment
of colon cancer, there is an urgent need to investigate its anticancer
mechanisms.

Tumor suppressor genes (TSGs) play opposing roles as
oncogenes in the pathological process of cancer formation. It has
been shown that TSGs play an antitumor role by affecting genomic
integrity, the cell cycle, and cell proliferation. TSGs can be roughly
classified into five groups based on their properties: (i) TSGs that
promote cancer cells to enter into a certain stage of the cell cycle; (ii)
TSGs that encode for effectors or ligands of signaling pathways that
have inhibitory effects on cell proliferation; (iii) TSGs that encode
for checkpoint-control proteins that initiate cell cycle arrest under
conditions of DNA damage or chromosomal abnormalities; (iv)
TSGs that encode for pro-apoptotic proteins; and (v) TSGs that
encode for proteins that are involved in the repair of DNA damage
(Gao et al., 2021; Gregory and Copple, 2023). According to existing
studies, TSGs play an important role in inhibiting the occurrence
and development of colon cancer. Sun et al. reported that 15-
lipoxygenase-1, a TSG, promoted various antitumorigenic events,
including cell differentiation and apoptosis, and inhibited chronic
inflammation, angiogenesis, and metastasis, especially in colon
cancer, and was downregulated in human colon polyps and
cancers (Il Lee et al., 2011). Yang et al. reported that miR-1253
was a novel TSG in colon cancer that inhibited cell proliferation,
migration, and invasion by targeting enhancer of zeste homolog 2
(Yang and Zhang, 2021). Cheng et al. reported that mindin acted as a
TSG in a CRC mouse model via the mitogen-activated protein
kinase/extracellular signal-regulated kinase signaling pathway,
which directly suppressed colon cancer development (Cheng
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et al., 2020). Morin et al. reported that the inactivation of the
adenomatous polyposis coli TSG initiated colonic neoplasia
(Morin et al., 1997).

Based on the clinical importance of CUR in the treatment of
colon cancer and its key role in colon cancer development, we
explored whether CUR inhibited colon cancer by reactivating TSGs.
Therefore, we verified the inhibitory effects of CUR on colon cancer
by cell-counting kit-8 (CCK8), colony-formation, and wound-
healing assays. The RNA sequencing (RNA-Seq) profiling of the
control group and CUR-treated HCT116 cells revealed
3,505 upregulated genes. Furthermore, Kyoto Encyclopedia of
Genes (KEGG) and Genomes and Gene Ontology (GO) analyses
showed that among the upregulated genes, a total of 135 genes,
including the largest number of differentially expressed genes
(DEGs), were involved in cancer pathways. Besides, after the
intersection of these 135 genes with the total TSGs downloaded
from the TSGene database (https://bioinfo.uth.edu/TSGene/), we
obtained 37 TSGs involved in cancer pathways that were
upregulated in HCT116 cells by the action of CUR. We
randomly selected five genes, ARHGEF12, APAF1, VHL, CEBPA,
and CASP8, which were validated by quantitative polymerase chain
reaction (qPCR) in HT29 and HCT116 cells. As expected, these five
TSGs were significantly upregulated in both HT29 andHCT116 cells
following CUR treatment. Furthermore, we predicted the binding
site of ARHGEF12 and found that CUR might inhibit the invasion
and migration of colon cancer cells by inhibiting the binding of
ARHGEF12 to RhoA. Our results provide new insights into the use
of CUR as a TSGs activator in colon cancer and suggest that TSGs
play an important role in colon cancer.

2 Materials and methods

2.1 Compounds and reagents

Cur was obtained from MedChemExpress (#HY-N0005/CS-
1490, purity ≥98%, CAS 458-37-7). Cell culture medium DMEM/
HIGH GLUCOSE (4mML-Glutamine, 4500 mg/L Glucose) was
purchased from CYTIVA (SH30022.01). CCK-8 was obtained
from EnoGene Cell (E1CK-000208).

2.2 Cell lines and cell culture

Human colon cancer cell lines HT-29 and HCT-116 were
obtained from the Cell Bank of the Chinese Academy of Science
(Shanghai, China). All these cell lines were cultured in DMEM
supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-
streptomycin under standard culture conditions (5% CO2, 37°C).

2.3 Cell proliferation assay

Cell proliferation was evaluated by the CCK8 assay. HT29 and
HCT116 cells were seeded in 96-well plates at 1 × 104 cells/well in a
volume, and incubated overnight. Each cell line was then treated with 0,
5, 10, 20, 40 and 80 μMconcentrations of CUR (dissolved in DMSO) for
24 h, the control groupwas treatedwithDMSO solvent corresponding to

the experimental group. After treatment, 10 μLCCK8 reagent was added
to a 96-well plate and incubated at 37 °C for 20 min, and then the
absorbance was measured at a wavelength of 450 nm using an enzyme
marker (M200Pro). IC50 values were obtained by nonlinear regression
curve fitting analysis using GraphPad Prism 5.0.

2.4 Colony formation assay

Five thousand HT29 andHCT116 cells were inoculated in 6-well
plates, respectively, and divided into control and CUR (30 μM)
groups and cultured for 14 days until visible colonies appeared. The
control group was treated with DMSO solvent of the same
concentration as the experimental group. Then the colonies were
stained with crystal violet for 20 min. The colony count was
calculated using ImageJ software.

2.5 Cell migration assays

HT29 and HCT116 cells (80 × 104 cells/well) were inoculated in
6-well plates and cultured for 24 h. CUR (30 μM) was added to the
experimental group before scratching and a linear scratch was
formed by quickly scratching over the monolayer cell surface
using a 1 mL pipette. The control group was also replaced with a
medium containing the same concentration of DMSO as the
experimental group before scratches. Cell migration was observed
under the microscope (EVOS XL Core) at 24 h and 48h, and wound
healing was observed by comparing micrographs of the
experimental and control groups at different times. The gap area
was analyzed using ImageJ software.

2.6 RNA extraction and RT-qPCR analysis

HCT116 cells were treated with CUR (30 μM) for 24 h. Total RNA
was then extracted from cells in the administered and unadministered
groups, respectively, using Trizol reagent (Sangon Biotech, B511311-
0100) and reverse transcribed with a reverse transcription kit (TaKaRa,
Cat# RR047A). Quantitative RT-PCR, using the FastStart Essential
DNAGreenMaster (Roche Diagnostics GmbH,Mannheim, Germany)
was performed on Qtower2.2 equipment. Gene expression was
calculated using the 2−ΔΔCT method, with GAPDH as an internal
references. Primers were synthesized as follows,

GAPDH forward: 5′-TGACTTCAACAGCGACACCCA-3′, and.
GAPDH reverse: 5′-CACCCTGTTGCTGTAGCCAAA-3′;

ARHGEF12 forward: 5′-CTATCACCGACAGATAGCTCCTCC-
3′, and.

ARHGEF12 reverse: 5′-CGCTGAACAAGACCATATATC
TCG; APAF1 forward: 5′-CAAAGGCTTGGCTCATGGTTG
ACA-3′, and.

APAF1 reverse: 5′-ATGATGTAGGATGTCTTGATGTCC-3′;
VHL forward: 5′-CAGCTACCGAGTCCTCATGACT-3′, and.

VHL reverse: 5′-AGCAGGCAGGTAAGTCAATTTC-3′;
CEBPA forward: 5′-CCGGATCTCGAGGCTTGCCCGA-3′, and.

CEBPA reverse: 5′-TCCTCGCAGGGAGAAGCCACCG-3′;
CASP8 forward: 5′-GGAGCATCTGCTGTCTGAGCAG-3′, and.

CASP8 reverse: 5′-CATAAAGATTTCTGCTGAAGTC-3′.
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2.7 RNA preparation and RNA-seq

To investigate the effect of CUR on gene expression in colon cancer
cells, HCT116 cells (30 × 104 cells/well) were inoculated in 6-well plates
and cultured for 24 h. The experiment was then divided into CUR
(30 μM) treated and untreated groups for another 24 h. Total RNAwas
extracted using Trizol reagent for high-throughput sequencing. The
RNA concentration and quality were determined using Nanodrop 2000
(Thermo Scientific) for library preparation. RNA-seq analysis was
performed using Tophat2 (http://ccb.jhu.edu/software/tophat) to
compare the sequencing reads to the human reference genome
hg38. Reads were calculated using featureCounts (http://subread.
sourceforge.net). Differentially expressed genes (DEGs) and statistical
analyses were performed with DESeq2 (version 3.12) in R (version 4.0)

(fold change >1.5, p < 0.05). Heat maps were created with Complex
Heatmap (Bioconductor Project).

2.8 Molecular docking analysis

ARHGEF12–RhoA crystal complexes (PDB code:1X86) was
obtained from the Protein Data Bank (http://www. rcsb. org/).
Discovery Studio 2021 was used to perform molecular docking
analysis. Before docking, CUR was prepared using “Prepare Ligands”
module and CHARM force field was used for minimization, generating
ten conformations. The proteinwas prepared using “Protein Preparation”
module, allowing for the addition of hydrogen atoms and the deletion of
unnecessary water. Subsequently, the proteins were optimized and

FIGURE 1
CUR inhibits the cell viability of HCT116 and HT29 cells in a dose-dependent manner. (A). Chemical structure of CUR from ChemDraw. (B). IC50 of
CUR inhibition in colon cancer cells. (C, D). The survival of HCT116 and HT29 cells was examined by CCK8 assay at 5μM, 10μM, 20μM, 40μM and 80 μM
concentrations of CUR for 24 h. (E, F). HCT116 and HT29 cell numbers and morphological changes were positively correlated with CUR concentrations.
**** represents p < 0.0001, *** represents p < 0.001, ** represents p < 0.01.
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FIGURE 2
CUR inhibited the proliferation andmigration abilities of HCT116 and HT29 cells in a time-dependent manner. (A–D). The cell viability of 30 μMCUR
wasmeasured by CCK8 at 24h, 48h, 72h, 96 h and 120h, respectively. The viability and number of HCT116 and HT29 cells decreased in a time-dependent
manner with CUR, and the cell morphology was also significantly wrinkled with the increase of drug action time. (E–H). In colony formation assay, 30 μM
CUR action for 24 h significantly reduced the number of clones formed by HCT116 and HT29 cells. (I–L). 30 μM CUR significantly inhibited the
migratory viability of HCT116 and HT29 cells at 24 h and 48 h, respectively. The cell migration pictures were gained by 200 times magnification under the
microscope. **** represents p < 0.0001, *** represents p < 0.001, * represents p < 0.05.
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minimized. Ligand binding sites are defined using the “Receptor-Ligand
PharmacophoreGeneration”module. The docking results were evaluated
using hydrogen bond interactions and bindingmode. The interaction 2D
diagram of the CUR with residues of receptor was views in the “View
Interaction” module. All structural figures were generated using
PyMol 3.7.

2.9 Statistical analysis

All experiments were conducted in triplicate (n = 3) and the data
are presented as the mean ± SEM. All statistical analyses were
processed with GraphPad Prism 5.0. Differences of unpaired
comparisons between two groups were analyzed using the
ANOVA. p-value <0.05 was considered statistically significant.

3 Results

3.1 CUR inhibits the proliferation and
migration of colon cancer cells

Figure 1A shows the chemical structure of CUR. Firstly, we
calculated the IC50 values of HCT116 and HT29 cells after CUR
treatment by CCK8 assay. As a result, the corresponding IC50 at
24 h was 27.21 μM and 37.76 μM in HCT116 and HT29 cells,
respectively (Figure 1B). Further, we investigated the effects of
CUR on the viability of colon cancer cells. Cell viability was
measured by CCK8 assay after treatment with CUR at
concentrations of 5, 10, 20, 40 and 80 μM for 24 h. Figure 1C, D
showed that CUR reduced cell proliferation in a dose-dependent
manner. As the dose of CUR increased, the number of cells gradually
decreased and the morphology shrank (Figure 1E, F).

Next, we used the CCK8method to detect the effect of CUR on the
proliferation of HCT116 and HT29 cells by CCK8 assay. The results in
Figure 2A–D show that cell proliferation decreased in a time-dependent
manner with increasing time of CUR treatment, and cell morphology
was crinkled.Elucidation of the effects of CUR on colon cancer cell
proliferation and migration by colony formation and wound healing
assays. In the colony formation assay, the observations showed that the
colony formation capacity of HCT116 andHT29 cells was reduced after
treatment with CUR at 30 μM, indicated by significantly decreased
colony numbers (Figure 2E-H). Wound healing assays showed that
CUR treatment inhibited cell migration from 0 to 48 h (Figure 2I-L).
The migration rates of the CUR treatment group in HCT116 and
HT29 cells were 39.9% and 21.79% compared with those of the
corresponding control group after CUR treatment for 24 h and
25.89% and 27.64% of the control group after CUR treatment for
48 h (p < 0.0001), respectively.

3.2 High-throughput sequencing identifies
the upregulated tumor suppressor genes
through the cancer pathway after CUR
treatment

To investigate the molecular mechanism of CUR inhibition of
colon cancer cell proliferation and migration, we treated

HCT116 cells with CUR (30 μM) for 24 h, and collected
HCT116 cells from the control and CUR groups separately for
mRNA high-throughput sequencing analysis to determine the
curcumin-related genes. The results are shown in Figure 3A,
3,505 genes were upregulated and 3,564 genes were
downregulated. Cluster analysis by the top 100 differentially
expressed genes in Figure 3B showed that these differentially
expressed genes clustered significantly between the control and
CUR group cell samples. KEGG pathway enrichment analysis
showed that these differentially expressed genes after being acted
upon by CUR were enriched in the cancer pathway in Figure 3C.

TSG is a key gene involved in DNA damage repair, suppression
of cell mitosis, induction of apoptosis and prevention of metastasis.
Hence, downregulation of TSG will lead to cancer development
and progression. Therefore, re-upregulation of TSGs that are
downregulated in cancers may prevent cancer progression
(Wang et al., 2018). To explore whether CUR could reactivate
the TSGs that were downregulated in colon cancer, we intersected
the 1,217 tumor suppressor genes that were downregulated in
colon cancer from TCGA database (https://bioinfo.uth.edu/
TSGene/) with 135 genes that were upregulated in cancer
pathways in HCT116 under the treatment of CUR, 37 TSGs
that were reactivated under the action of CUR were obtained,
including ARHGEF12, APAF1, VHL, CEBPA, CASP8 et al
(Figure 4A). The results of KEGG and GO analysis are shown
in Figure 4B, C. These 37 reactivated TSGs are mainly involved in
the cancer pathways, which is consistent with the results of KEGG
analysis of the first 100 upregulated genes in Figure 3C. In addition,
GO profiling suggested that these 37 upregulated TSGs negatively
regulated the transcription of RNA polymerase II promoter and
positively regulated the apoptotic process. (Figure 4C), suggesting
activation of these genes can suppress cell growth and
proliferation.

3.3 CUR treatment reactivates the TSGs
ARHGEF12 and APAF1 in colon cancer cells
and correlated with a good prognosis for
patients with colon cancer

To further verify that TSGs were indeed reactivated by CUR, we
randomly selected five of the 37 upregulated TSGs: ARHGEF12,
APAF1, VHL, CEBPA, and CASP8 for qPCR assay. The results
showed that the expression of these five TSGs was upregulated in
both HCT116 and HT29 cells after CUR (60 μM) treatment, with
significant differences in ARHGEF12, APAF1, VHL three genes in
HCT116 and ARHGEF12, APAF1, VHL, CASP8 four genes in HT29
(Figure 5A, B). Among them, ARHGEF12 and APAF1 genes, which
were most significantly upregulated by CUR, were preferentially
selected as candidate targets for CUR in colon cancer cells.

Considering that CUR can significantly reactivate TSGs
ARHGEF12 and APAF1, to further investigate whether upregulated
ARHGEF12 and APAF1 expression in colon cancer correlates with
patient prognosis, we analyzed colon cancer subtypes using Kaplan-
Meier survival curves.We found in Figure 5C, D that high expression of
ARHGEF12 and APAF1 was significantly correlated with a good
prognosis for patients of colon cancer. Further, we queried the pan-
oncogene expression profiles of ARHGEF12 and APAF1 in the TCGA
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(https://bioinfo.uth.edu/TSGene/) database using the UALCAN
database (http://ualcan.path.uab.edu/), and as shown in Figure 5E, F,
ARHGEF12 and APAF1 were significantly downregulated in colon
cancer and many other types of cancers. In summary, both TSGs
ARHGEF12 and APAF1 expression were downregulated in colon
cancer and could be reactivated by CUR, and upregulated
ARHGEF12 and APAF1 may be associated with favorable prognosis
of patients.

3.4 Interaction of CUR with
ARHGEF12–RhoA complex

Since ARHGEF12 has not been reported as a therapeutic target
for colon cancer, we aimed to investigate the molecular mechanism
by which CUR inhibits colon cancer by acting on ARHGEF12. Based
on the reported researches, ARHGEF12 binds to RhoA to shape a
functional complex, thereby enhancing cancer cell migration and

FIGURE 3
The highest number of genes involved in cancer pathways were upregulated by CUR. (A) A total of 3,505 upregulated genes and
3,564 downregulated genes were obtained by mRNA sequencing analysis under the effect of CUR. (B). Heat map of the top 100 differential genes. (C).
KEGG enrichment analysis showed that the most upregulated of the differential genes were involved in the cancer pathway.

Frontiers in Pharmacology frontiersin.org07

Wu et al. 10.3389/fphar.2023.1218046

https://bioinfo.uth.edu/TSGene/
http://ualcan.path.uab.edu/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1218046


invasion. (Lacoste et al., 2012; Ghanem et al., 2022). We speculate
that CUR may block the binding of ARHGEF12-RhoA complex to
suppress colon cancer cells, providing a new therapeutic strategy for
colon cancer treatment.

To verify whether CUR interacts with ARHGEF12–RhoA, we
performed molecular docking to analyze its affinity and binding
mode. In the structure of ARHGEF12–RhoA complexes, ARG 923 of
ARHGEF12 formed multiple salt bridge interactions with ASP 45 and
GLU 54 of RhoA, which was important for RhoA to be selected as a
substrate (Aggarwal and Sung, 2009). In our study, we found that CUR
occupied the cavity at the interface between ARHGEF12 and RhoA,
indicating that CUR effectively inhibited interactions between

ARHGEF12 and RhoA (Figure 6A, B). In the binding pocket, ARG
923 formed a direct hydrogen bond with the phenolic hydroxyl group of
CUR at 2.8 Å. Additionally, ARG 804 of ARHGEF12 and GLU 40 of
RhoA both formed stronger hydrogen bonds with CUR at 2.7 Å and
2.9 Å, respectively. ARG 936 of ARHGEF12 and TYR 42 of RhoA
formedweaker hydrogen bondswithCUR at 4.0 Å and 3.7 Å.Moreover,
ARG 922 of ARHGEF12 was packed in the hydrophobic core of CUR,
which contributed to stabilizing the molecule at the binding site
(Figure 6C, D). This suggests that CUR has a high affinity for
ARHGEF12 and can effectively intervene in the interaction between
ARHGEF12 and RhoA. Therefore, we hypothesized that CUR
reactivated the ARHGEF12 TSG to block colon cancer cell

FIGURE 4
CURmay reactivate TSGs in COAD via the cancer pathway. (A). CUR activated a total of 37 TSGs in the cancer pathway out of 135 upregulated genes.
(B). KEGG analysis of 37 upregulated TSGs treated with CUR. (C). GO analysis of 37 upregulated TSGs after CUR treatment.
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FIGURE 5
CUR increased TSGs ARHGEF12 and APAF1 in the cancer pathway, and these two TSGs are correlated with good patient prognosis in clinic practice.
(A, B). ARHGEF12, APAF1, VHL, CEBPA and CASP8 were reactivated in HCT116 and HT29 cells after CUR treatment as verified by qPCR. (C, D). Kaplan -
Meier survival curve plots showed that activation of ARHGEF12 and APAF1was positively correlated with the likelihood of patient survival time. (E, F). pan-
oncogene expression profiles of ARHGEF12 and APAF1. **** represents p < 0.0001, *** represents p < 0.001.
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proliferation and migration via cancer pathways, whereas CUR might
exert an inhibitory effect on invasion and migration by blocking the
binding of ARHGEF12 to RhoA.

4 Discussion

Colon cancer ranks as the third most prevalent cancer
worldwide, with an annual incidence of 1.1 million new cases.
Furthermore, it is the second foremost contributor to cancer-
related deaths, seriously threatening human health (Cervantes
et al., 2023). The 5-year survival time has not been significantly
improved by the current treatment methods; therefore, there is an
urgent need to identify more treatment methods. Traditional
Chinese medicine has been employed and widely acknowledged
as an alternative approach in cancer treatment for centuries (Xiang
et al., 2019). In particular, Chinese herbal medicine-derived
phytochemicals, such as CUR, have demonstrated significant
anti-tumor effects across various types of cancer (Miyazaki et al.,
2023). CUR inhibits tumor development by reactivating TSGs. For
instance, in lung cancer A549 and H460 cells, CUR significantly
upregulates RARβ TSG expression at both the mRNA and protein
levels (Jiang et al., 2015); CUR acts through the inhibition of DNA

methyltransferases and the subsequent reactivation of RASSF1A in
cancer, leading to its therapeutic effects (Dammann et al., 2017).
However, it remains unknown whether CUR exerts its antitumor
effects by reactivating TSGs in colon cancer.

In the present study, we performed mRNA-seq with CUR-treated
or untreated colon cancer cell lines HCT116 and found
3,505 upregulated genes, among which 37 TSGs were significantly
upregulated in cancer pathways, indicating that TSGs might play a
critical role in colon cancer via cancer pathways. To confirm that these
TSGswere indeed upregulated after CUR treatment, we selected 5 of the
37 upregulated TSGs for RT-qPCR. As expected, all five TSGs were
upregulated, the most significantly upregulated TSGs were ARHGEF12
and APAF1 (Figure 5A, B). Furthermore, the upregulation of
ARHGEF12 and APAF1 was found to be associated with a good
prognosis in patients by Kaplan-Meier analysis (Figure 5C, D).
Other researchers have also demonstrated the tumor suppressor role
of these two TSGs in tumors. For example, the overexpression of LARG
in breast and CRC cells demonstrated diminished cell proliferation and
colony formation, as along with a significantly decreased cell migration
rate inCRC cells, whereasAPAF1 played a key role in apoptosis andwas
significantly downregulated in colon cancer cells (Ong et al., 2009;
Han et al., 2018). The present study provides groundbreaking evidence
that CUR inhibited colon cancer development via the upregulation of

FIGURE 6
Interaction of CUR with ARHGEF12-RhoA complex. (A, B). curcumin (yellow) occupied the cavity of the ARHGEF12-RhoA complex, ARHGEF12
(blue), RhoA (grey) (PDB code:1X86). (C). Interactions of CUR with TYR 42 of RhoA, ARG923, ARG922, and ARG804 of ARHGEF12, respectively. (D).
Diagram of SantacruzaMate A interaction in the cavity formed by ARHGEF12-RhoA. The hydrogen bond is depicted as a green line, and the interaction of
pi-alkyl is depicted as a purple line.
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the TSGs ARHGEF12 and APAF1. Furthermore, we performed
molecular docking and demonstrated that the curcumin can form a
stable H-bond with ARHGEF12 and RhoA, respectively, indicating
curcumin can bind tightly to these two proteins (Xiang et al., 2022; He
et al., 2023), as shown in the schematic diagram (Figure 6, 7, by
Figdraw). This, for the first time, suggested that CUR might play a role
in inhibiting tumor invasion and migration by blocking the binding of
ARHGEF12 and RhoA, which provided a theoretical basis for the CUR
treatment of colon cancer.

5 Conclusion

We identified upregulated TSGs related to the inhibition of
colon cancer progression after CUR treatment via comprehensive
bioinformatics analysis and demonstrated that CUR inhibited the
proliferation and migration of colon cancer cell lines by reactivating
TSGs such as ARHGEF12 and APAF1 via cancer pathways. These
TSGs are novel targets identified in the CUR-mediated inhibition of
colon cancer and correlated with patient prognosis. Further, we
predicted the binding sites of CUR and ARHGEF12 by molecular
docking, suggesting that CURmay inhibit colon cancer invasion and
migration by blocking the ARHGEF12-RhoA complex, which
provides a theoretical basis for the molecular mechanism of
CUR-mediated inhibition of colon cancer cells.
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