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Abstract: This work introduces a new alternative to obtain strut-and-tie models using the hybrid topology 
optimization method, which is already proposed in the technical literature and is refined here to use 
polygonal finite elements and accelerate the solution of the material nonlinearity problem. In this method, 
concrete is approached as a continuum, using polygonal two-dimensional finite elements, and steel bars as 
truss elements, using one-dimensional finite elements with two nodes. For a closer representation of reality, 
an orthotropic constitutive model for concrete was implemented considering different compression and 
tensile stiffness values, which is one of the advantages of the model. Further, the hybrid method limits the 
final layout of steel bars, thereby generating better structures from a constructive point of view, while 
allowing greater freedom for the shape and concrete strut slope. However, this method is more complex, 
and it increases the computational cost, which was substantially minimized through the implementation of 
an algorithm. Results obtained for some domains were very close to the results of other methodologies; 
however, small differences were noted that may be relevant to the final result. Other domains showed 
results with greater differences, thereby significantly changing the final strut-and-tie model and presenting 
a new structural design alternative. 
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Resumo: Esse trabalho apresenta uma nova alternativa para a obtenção de Modelos de Bielas e Tirantes para 
estruturas de Concreto Armado através do Método de Otimização Topológica Híbrida, já proposto na literatura 
técnica, sendo aqui refinado para utilizar elementos finitos poligonais e acelerar a solução do problema da não 
linearidade material. Nesse método, o concreto é aproximado como meio contínuo, utilizando elementos 
finitos bidimensionais poligonais, e as barras de aço como elementos de treliça, utilizando elementos finitos 
unidimensionais com dois nós. Para uma representação mais próxima da realidade, implementou-se um 
modelo constitutivo ortotrópico para o concreto, considerando rigidezes distintas para a compressão e tração, 
sendo uma das vantagens do modelo. O método híbrido também limita a disposição final das barras de aço, 
gerando estruturas melhores do ponto de vista construtivo, enquanto permite uma maior liberdade para a forma 
e a inclinação das bielas de concreto. Como desvantagem, o método é mais complexo, aumentando o custo 
computacional, que porém foi substancialmente reduzido através da implementação de um procedimento. 
Os resultados obtidos para alguns domínios se aproximaram bastante dos resultados de outras metodologias, 
mas pequenas diferenças são notadas que podem ser relevantes para o resultado final. Outros domínios 
apresentaram resultados com maiores diferenças mudando de forma significativa o modelo de bielas e tirantes 
final, apresentando, assim, uma nova alternativa de dimensionamento. 
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1 INTRODUCTION 
Reinforced concrete is widely used in civil engineering because of its characteristics such as good resistance and 

versatility in obtaining structures with different shapes and because the construction techniques are well known. 
Concrete and steel work together, i.e., the adhesion between these two materials enables the transfer of forces between 
them. Despite being a widely used material, the behavior of reinforced concrete is complex. 

At the end of the 19th century, Wilhem Ritter and Emil Mörsch developed approaches to describe the behavior of 
reinforced concrete considering that a cracked beam of this material behaved similar to a truss of concrete struts and 
steel ties, thereby idealizing the path of forces in the structure. This model is known as the model of Mörsch's truss 
analogy or the strut-and-tie model (STM). Since then, several studies have been conducted to perfect the theory about 
this model. However, traditional STMs could easily describe only type B regions—regions in which Bernoulli's hypotheses 
apply—but they were unable to describe type D regions—regions located in discontinuity zones where the theory of 
Bernoulli does not provide good approximations with adequate accuracy [1], [2]. Figure 1 shows these types of regions. 

 
Figure 1. Type B and D regions according to Schlaich et al. [2]. 

Thus, in 1987, Schlaich et al. [2] developed a methodology for determining STMs with sufficient efficiency for type D 
regions that guarantee with reasonable security —through the lower plasticity theorem—the adequate performance of 
structures for the ultimate limit state of rupture. Several valid models with different reinforcement positions can be obtained 
with this methodology; therefore, the importance of a geometric steel-concrete configuration that provides the greatest 
possible strength with the least use of material is remarkable. Therefore, optimization of the arrangement of steel 
reinforcement in concrete is desired. 

Optimization implies obtaining the most effective solution by providing appropriate criteria and restrictions. 
In structural engineering, structural optimization is divided into three types: dimensional, shape, and topology. 
Topology optimization, which is the focus of this work, modify how elements of a given structure are connected, 
thereby allowing an adoption of null sections for the elements, i.e., these elements are removed from the final 
structure [3]. The topological optimization method is used to identify strut-and-tie arrangements that will provide 
greater stiffness to a reinforced concrete structure. Several studies have been conducted to obtain several STMs. 
Kumar [4] applied optimization concepts existing at the time to obtain these models; subsequently, several other 
studies were conducted in this field of research [1], [5]–[9], which demonstrates their importance in structural 
engineering with a significant highlight of topology optimization. In principle, it consists of two methods 
commonly used for the determination of these models: topological optimization method of discrete medium 
(TOM-D) and the topology optimization method of continuous medium (TOM-C). 

In the TOM-D model—known as the ground structure optimization method—the domain to be optimized is 
discretized as a dense mesh of bars interconnected by nodes as a truss structure, and this truss structure is optimized. 
The advantage of this method is the possibility of obtaining optimal structures with better conditions of applicability in 
practice. However, the disadvantage is that the loading will follow straight paths according to a pre-defined truss mesh, 
which will also cause a dependence on the adopted mesh as to the result. 
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The TOM-C model optimizes the continuous environment of the domain, and it uses two-dimensional or three-dimensional 
finite elements for its discretization and admits only the binary character with or without the presence of the material. 
The advantage of this method is the freer nature of the continuous structure that allows the path of forces to assume any 
shape and allows the members to connect at any angle. The disadvantage of this methodology is that this greater freedom 
can generate optimal structures that are impractical to build. 

Although these methods have a good efficiency, new topology optimization methods with a specific focus on reinforced 
concrete have been developed; one such approach is proposed by Amir [8]. In their study, concrete is represented as an 
improved gradient model of continuous damage with stress relaxation, and the reinforcement is modeled by elastic bars 
inserted into the concrete domain using a ground structure. Therefore, steel bars and concrete are modeled differently as they 
behave differently in reinforced concrete. Following this, Gaynor et al. [1] modeled concrete and reinforcement considering 
this distinct behavior. In their study, the continuous medium of the concrete is approximated by two-dimensional orthotropic 
finite elements using a four-node quadrilateral element; the steel is approximated by one-dimensional elements. The method 
adopted by Gaynor et al. [1] was used in the work developed here, and it was modified to use polygonal isoparametric 
elements, which is referred to as the hybrid topology optimization method (TOM-H). 

In this method, while the steel bars are approached by the truss bars, which are responsible for only tensile strength, 
the concrete is approximated by two-dimensional continuous finite elements, resisting compression stresses. Constitutive 
relationships used for concrete are obtained from the orthotropic model presented by Darwin and Pecknold [10]. 
This method has the following advantages: obtaining a more realistic topology for reinforced concrete structures than 
isolated methodologies (TOM-C and TOM-D) as the method considers the interaction of the two existing materials in 
reinforced concrete (i.e., concrete and steel) and it adopts an orthotropic constitutive model for concrete, which better 
represents its real behavior; providing greater freedom and better visualization of the flow of the compressive stress fields 
that represent the compressed concrete struts; and presenting a better practicality regarding the disposition of the steel. 
As a disadvantage, there is an increase in the computational cost in relation to the continuous and discrete isolated 
formulations; however, considering the current computational processors does not become a limiting factor to their use. 
Even so, in this work, a calculation procedure was elaborated that reduced this computational time considerably. 

As a starting point, we used three algorithms written in MATLAB already existing in the technical literature by 
implementing the suggested methodology. These are: 
• PolyMesher [11]: Algorithm for creating meshes of convex polygonal two-dimensional elements using centroidal 

Voronoi diagram concepts. 
• PolyTop [12]: Algorithm that calculates the optimal topological structure based on a given domain using two-dimensional 

polygonal elements, considering a fixed volume restriction and a formulation chosen by the user to penalize the density 
of the elements. This program was used as a basis for the development of this work. 

• GRAND [13]: Algorithm that generates a truss mesh (ground structure) from a given domain; the volume of the 
truss mesh is optimized by the plastic formulation. 
The algorithms were implemented in Python using the libraries Numpy [14], SciPy [15] Numba [16] and 

Matplotlib [17]. These algorithms inherited the name of the MATLAB version by adding the suffix py at the end to 
differentiate them. In addition, a new algorithm called HybridToppy [18] was developed based on the 
aforementioned algorithms and the hybrid method [1], which solves optimization problems of two-dimensional 
reinforced concrete structures using convex polygonal finite elements and the hybrid methodology method. 

2 PROPOSED FORMULATION  
Optimization implies obtaining the best possible solution for a given problem while respecting the constraints 

imposed; mathematically, it is simply finding the minimum or maximum of a given function submitted to a series of 
constraints. In this study, we aim to find an optimal topology that provides the greatest possible stiffness of the structure 
that can be related to the total strain energy (compliance) defined by Equation 1. 

𝐶𝐶(𝝆𝝆) = 𝑭𝑭𝑇𝑇𝒖𝒖(𝝆𝝆)  (1) 

Where 𝜌𝜌 denotes design variables: the area of the truss element and the density of the plate element for a unitary 
thickness; 𝑭𝑭 denotes the vector of the external forces applied to the structure; and 𝒖𝒖(𝝆𝝆) represents the vector with the 
nodal displacements of the structure. 

The less the total strain energy, the greater is the stiffness of the structure; therefore, the problem is to minimize 
Equation 1 [3]. 
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Displacements of the structure 𝑢𝑢 need to be determined to perform the optimization, and therefore, it is necessary to 
establish how the stress distribution in the structure is modeled. The finite element method (FEM) is generally used because 
it provides satisfactory results and has adequate compatibility with the existing optimization methods [1], [5]–[9]. 

2.1 FEM formulation for steel reinforcement 
The reinforcement in reinforced concrete was modeled as a one-dimensional axial element used in truss problems. 

Disregarding the load distributed in the reinforcement, it is possible to obtain the following formulation for the finite 
element corresponding to a bar with length 𝐿𝐿 in the local coordinates through FEM, expressed by Equation 2. 

𝑲𝑲𝒆𝒆
l 𝒖𝒖𝒆𝒆l = 𝑭𝑭𝒆𝒆l   (2) 

Where (Equation 3) 

𝑲𝑲𝒆𝒆
l = 𝐸𝐸𝐸𝐸

𝐿𝐿
� 1 −1
−1 1 �  (3) 

is the local stiffness matrix of the element; 𝒖𝒖𝒆𝒆𝒍𝒍 = [𝑢𝑢𝑒𝑒1𝑙𝑙 𝑢𝑢𝑒𝑒2𝑙𝑙 ]𝑇𝑇 denotes the local nodal displacement vector of the 
element; 𝑭𝑭𝒆𝒆𝒍𝒍 = [𝐹𝐹𝑒𝑒1𝑙𝑙 𝐹𝐹𝑒𝑒2𝑙𝑙 ]𝑡𝑡 denotes the vector of the local nodal forces of the element; E denotes the elasticity modulus 
of the element; S denotes the cross-sectional area of the element; and L denotes the length of the element 

Using a rotation matrix, it is possible to transform this system into the global coordinates of the structure. Then, a 
global stiffness matrix of the structure is created that encompasses all equations and degrees of freedom for each 
element. This matrix is produced by expanding the various local matrices, and by assigning zeros in degrees of freedom 
that are not part of the element. Thus, the equilibrium system is given by Equation 4. 

𝑲𝑲𝒖𝒖 = 𝑭𝑭  (4) 

where 𝑲𝑲 = the global stiffness matrix of the structure, 𝒖𝒖 = the nodal displacement vector of the structure, and 𝑭𝑭 = the nodal 
force vector of the structure. 

2.2 FEM Formulation for concrete 
The concrete present in the structure is approximated as a domain discretized into two-dimensional finite elements. 

The problem was assumed to be flat, wherein the load belongs to the plane of the structure and there is no rigidity in the 
orthogonal direction. Thus, there are only two degrees of freedom per node, horizontal displacement, and vertical displacement. 
The formulation for the two-dimensional finite elements follows the same logic adopted for the one-dimensional elements. 

The material constitutive law for this type of problem is given by Equation 5. 

𝝈𝝈 = 𝑫𝑫𝑫𝑫  (5) 

where 

𝝈𝝈 = [𝜎𝜎𝑥𝑥 𝜎𝜎𝑦𝑦 𝜏𝜏𝑥𝑥𝑦𝑦]𝑇𝑇 and 𝑫𝑫 = [𝜀𝜀𝑥𝑥 𝜀𝜀𝑦𝑦 𝛾𝛾𝑥𝑥𝑦𝑦]𝑇𝑇 = �𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥
𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

�𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
��

𝑇𝑇
; 

The constitutive matrix 𝑫𝑫 used in this work was obtained through Darwin and Pecknold’s [10] orthotropic model. 
In their work, the different behavior of concrete subjected to multiaxial stress is highlighted, and the proposed 
constitutive law defined in the main coordinates is given by Equation 6. 

𝝈𝝈𝒑𝒑 = 𝑫𝑫𝒑𝒑�𝝈𝝈𝒑𝒑�𝑫𝑫𝒑𝒑  (6) 

where 𝜎𝜎𝑝𝑝 = the stress vector in the main coordinates; 𝑫𝑫𝒑𝒑 = the constitutive matrix in the main coordinates dependent 
on the main stresses; and 𝑫𝑫𝒑𝒑 = the strain in the main coordinates. 



P. V. C. Rodrigues, and R. M. F. Canha 

Rev. IBRACON Estrut. Mater., vol. 17, no. 3, e17306, 2024 5/16 

The constitutive matrix 𝑫𝑫𝒑𝒑 is defined by Equation 7. 

𝑫𝑫𝒑𝒑 = 1
1−𝜐𝜐𝑒𝑒𝑒𝑒𝑒𝑒

2 �
𝐸𝐸1 𝜐𝜐𝑒𝑒𝑒𝑒𝑒𝑒𝐸𝐸12 0

𝜐𝜐𝑒𝑒𝑒𝑒𝑒𝑒𝐸𝐸12 𝐸𝐸2 0
0 0 0,25�𝐸𝐸1 + 𝐸𝐸2 − 2𝜐𝜐𝑒𝑒𝑒𝑒𝑒𝑒𝐸𝐸12�

�  (7) 

Where the variables of matrix Dp are given by Equation 8. 

𝐸𝐸𝑖𝑖 = 𝐸𝐸𝑐𝑐𝑐𝑐, 𝜐𝜐𝑖𝑖 = 𝜐𝜐𝑐𝑐𝑐𝑐 if 𝜎𝜎𝑐𝑐𝑖𝑖 > 0; 𝐸𝐸𝑖𝑖 = 𝐸𝐸𝑐𝑐𝑐𝑐, 𝜐𝜐𝑖𝑖 = 𝜐𝜐𝑐𝑐𝑐𝑐 if 𝜎𝜎𝑐𝑐𝑖𝑖 ≤ 0; 

𝐸𝐸12 = �𝐸𝐸1𝐸𝐸2; 𝜐𝜐𝑒𝑒𝑒𝑒𝑒𝑒 = √𝜐𝜐1𝜐𝜐2; 𝜐𝜐𝑐𝑐𝑡𝑡 = 𝜐𝜐𝑐𝑐𝑐𝑐
𝐸𝐸𝑐𝑐𝑐𝑐
𝐸𝐸𝑐𝑐𝑐𝑐

.  (8) 

Variables 𝐸𝐸𝑐𝑐𝑐𝑐 and 𝐸𝐸𝑐𝑐𝑡𝑡 are the elastic moduli of the concrete in compression and tensile, respectively. The variable 𝜐𝜐𝑐𝑐𝑐𝑐 
is the “Poisson's ratio of concrete in compression” adopted by Gaynor et al. [1] as 0.2, and the same value is adopted in 
this study. The variable 𝜐𝜐𝑐𝑐𝑡𝑡 is interpreted as the “Poisson's ratio of concrete in tensile.” The variable 𝜐𝜐𝑒𝑒𝑒𝑒𝑒𝑒 is the effective 
Poisson's ratio that considers the stress acting in both directions. 

Because the constitutive matrix is defined in the coordinates of the main stresses, it is necessary to calculate them 
and their respective directions. For this purpose, Equation 9 is used. 

𝜎𝜎𝑝𝑝1,2 = 𝜎𝜎𝑥𝑥+𝜎𝜎𝑦𝑦
2

± ��𝜎𝜎𝑥𝑥−𝜎𝜎𝑦𝑦
2

�
2

+ 𝜏𝜏𝑥𝑥𝑦𝑦2 𝜃𝜃𝑝𝑝 = 1
2
𝑐𝑐𝑡𝑡𝑡𝑡−1 � 2𝜏𝜏𝑥𝑥𝑦𝑦

𝜎𝜎𝑥𝑥−𝜎𝜎𝑦𝑦
�;  (9) 

Thus, it is possible to rotate Equation 6 from the main coordinates to the global coordinates, which is defined by 
Equation 5, using a rotation matrix in material coordinates. This rotation matrix can be deduced by rotating tensors and 
successive transformations to material coordinates. Therefore, the constitutive matrix for concrete is expressed by 
Equation 10. 

𝑫𝑫 = 𝑸𝑸𝑻𝑻𝑫𝑫𝒑𝒑𝑸𝑸  (10) 

Where Q is given by Equation 11. 

𝑸𝑸 = �
𝑐𝑐𝑐𝑐𝑐𝑐2�𝜃𝜃𝑝𝑝� 𝑐𝑐𝑠𝑠𝑡𝑡2�𝜃𝜃𝑝𝑝� 𝑐𝑐𝑠𝑠𝑡𝑡�𝜃𝜃𝑝𝑝�𝑐𝑐𝑐𝑐𝑐𝑐�𝜃𝜃𝑝𝑝�
𝑐𝑐𝑠𝑠𝑡𝑡2�𝜃𝜃𝑝𝑝� 𝑐𝑐𝑐𝑐𝑐𝑐2�𝜃𝜃𝑝𝑝� −𝑐𝑐𝑠𝑠𝑡𝑡�𝜃𝜃𝑝𝑝�𝑐𝑐𝑐𝑐𝑐𝑐�𝜃𝜃𝑝𝑝�

−2𝑐𝑐𝑠𝑠𝑡𝑡�𝜃𝜃𝑝𝑝�𝑐𝑐𝑐𝑐𝑐𝑐�𝜃𝜃𝑝𝑝� 2𝑐𝑐𝑠𝑠𝑡𝑡�𝜃𝜃𝑝𝑝�𝑐𝑐𝑐𝑐𝑐𝑐�𝜃𝜃𝑝𝑝� 𝑐𝑐𝑐𝑐𝑐𝑐2�𝜃𝜃𝑝𝑝� − 𝑐𝑐𝑠𝑠𝑡𝑡2�𝜃𝜃𝑝𝑝�
�  (11) 

With the established constitutive relationship, the formulation of the FEM can be developed from the virtual work 
principle (VWP), which states that internal virtual work must be equal to external virtual work. When a body in balance 
is subjected to a field of virtual displacements that causes virtual deformations, and by using the appropriate matrix 
operations, the VWP can be described by Equation 12. 

∫ 𝜹𝜹𝑫𝑫𝑻𝑻𝝈𝝈𝑑𝑑𝑑𝑑𝛺𝛺 = ∫ 𝜹𝜹𝒖𝒖𝑻𝑻𝒇𝒇𝑑𝑑𝑑𝑑𝛺𝛺 + ∫ 𝜹𝜹𝒖𝒖𝑻𝑻𝒒𝒒𝑑𝑑𝑑𝑑𝐸𝐸𝜎𝜎
  (12) 

where 𝛿𝛿 is the variational operator; 𝒖𝒖 = [𝑢𝑢1 𝑢𝑢2]𝑇𝑇, where 𝑢𝑢1 denotes the horizontal displacement and 𝑢𝑢2 denotes the 
vertical displacement; 𝑓𝑓 refers to body forces; and 𝑞𝑞 refers to surface forces. 
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Based on this equation, it is possible to obtain a formulation that results in a relationship equal to that represented 
by Equation 2. Therefore, the stiffness matrix 𝑲𝑲𝒆𝒆 of the element and the nodal force vector 𝑭𝑭𝒆𝒆 of the element are given 
by Equation 13. 

𝑲𝑲𝒆𝒆 = ℎ𝑒𝑒 ∫ (𝑩𝑩𝑩𝑩)𝑻𝑻𝑫𝑫(𝑩𝑩𝑩𝑩)𝑑𝑑𝑑𝑑𝑒𝑒𝛺𝛺𝑒𝑒
 and 𝑭𝑭𝒆𝒆 = ℎ𝑒𝑒 ∫ 𝑩𝑩𝑻𝑻𝒇𝒇𝑑𝑑𝑑𝑑𝑒𝑒𝛺𝛺𝑒𝑒

+ ∫ 𝑩𝑩𝑻𝑻𝒒𝒒𝑑𝑑𝑑𝑑𝑒𝑒𝐸𝐸𝜎𝜎𝑒𝑒
  (13) 

Where ℎ𝑒𝑒, 𝑑𝑑𝑒𝑒, 𝑩𝑩, and 𝑩𝑩 respectively denote the thickness of the element, domain represented by the area of the element, 
approximation function in the adopted finite element, and an operational matrix expressed by Equation 14. 

𝑩𝑩 = �

𝜕𝜕
𝜕𝜕𝑥𝑥

0 𝜕𝜕
𝜕𝜕𝑦𝑦

0 𝜕𝜕
𝜕𝜕𝑦𝑦

𝜕𝜕
𝜕𝜕𝑥𝑥

�

𝑇𝑇

  (14) 

The next step is to determine the type of two-dimensional finite element used for the approximation. In this work, 
the isoparametric polygonal finite element was used, which provides great flexibility for the generation of mesh, and it 
is better indicated for applications in the mechanics of solids that involve a significant change in topology in the domain 
material. Further, it presents better precision in numerical solutions and has less sensitivity to locking [19]. 

Talischi et al. [12] used the shape functions of Wachspress [20], which is one of the options for shape functions of 
polygonal elements presented by Sukumar and Tabarraei [19]. These shape functions have desirable characteristics for 
these types of functions: being non-negative, interpolating, and forming a unit partition; having linear precision; and 
being precisely linear in the contour [19], [21]. To determine these shape functions and thus develop the finite element, 
it is interesting to use a regular polygon shape as a base. Interpolants can then be used both for approximating the 
displacement field through nodal values, and for transforming the coordinates of the initial element to the reference 
element of the integration. Figure 2 represents an example of an irregular hexagonal convex polygon and the related 
regular polygon showing points that facilitate the understanding of the process described below. 

 
Figure 2. Polygonal element: (a) Irregular convex hexagonal polygon and displacement of its nodes. (b) Regular convex reference 

polygon. 

The development of the Wachspress function is based on barycentric coordinates. Talischi et al. [12] used Sukumar 
and Tabarraei’s [19] definitions to establish the Equation 15 used in their work. 



P. V. C. Rodrigues, and R. M. F. Canha 

Rev. IBRACON Estrut. Mater., vol. 17, no. 3, e17306, 2024 7/16 

𝜙𝜙𝑖𝑖(𝝃𝝃) = 𝛼𝛼𝑖𝑖(𝝃𝝃)
∑ 𝛼𝛼𝑗𝑗𝑛𝑛
𝑗𝑗=1 (𝝃𝝃)

  (15) 

where 𝛼𝛼𝑖𝑖 is an interpolating function expressed by Equation 16. 

𝛼𝛼𝑖𝑖(𝝃𝝃) = 𝐴𝐴(𝑝𝑝𝑖𝑖−1,𝑝𝑝𝑖𝑖,𝑝𝑝𝑖𝑖+1)
𝐴𝐴(𝑝𝑝𝑖𝑖−1,𝑝𝑝𝑖𝑖,𝝃𝝃)𝐴𝐴(𝑝𝑝𝑖𝑖,𝑝𝑝𝑖𝑖+1,𝝃𝝃)

  (16) 

where 𝐴𝐴 represents the function that provides the area with the respective sign of the triangle formed by the points of 
the argument;𝑝𝑝denotes the points referring to consecutive nodes of the polygon; and 𝜉𝜉 denotes the analyzed point and 
the approximation argument. 

In a regular polygon, the parcel 𝐴𝐴(𝑝𝑝𝑖𝑖−1,𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑖𝑖+1) is the same for all 𝑖𝑖, and it can be factored. Therefore, the notation 
of Equation 17 is adopted 

𝐴𝐴𝑖𝑖(𝝃𝝃): = 𝐴𝐴(𝑝𝑝𝑖𝑖−1,𝑝𝑝𝑖𝑖 , 𝝃𝝃)  (17) 

and Equation 18 is obtained. 

𝛼𝛼𝑖𝑖(𝝃𝝃) = 1
𝐴𝐴𝑖𝑖(𝝃𝝃)𝐴𝐴𝑖𝑖+1(𝝃𝝃)

  (18) 

The area can be given by the well-known formula of the matrix determinant for the area of a triangle, expressed by 
Equation 19. 

𝐴𝐴𝑖𝑖(𝝃𝝃) = 1
2
�
𝜉𝜉1 𝜉𝜉2 1

 𝑝𝑝1,𝑖𝑖−1 𝑝𝑝2,𝑖𝑖−1 1
𝑝𝑝1,𝑖𝑖 𝑝𝑝2,𝑖𝑖 1

�  (19) 

The partial derivatives of the area with respect to the reference coordinates are provided by Equations 20 and 21. 

𝜕𝜕𝐴𝐴𝑖𝑖
𝜕𝜕𝜉𝜉1

= 1
2
�𝑝𝑝2,𝑖𝑖−1 − 𝑝𝑝2,𝑖𝑖�,  (20) 

𝜕𝜕𝐴𝐴𝑖𝑖
𝜕𝜕𝜉𝜉2

= 1
2
�𝑝𝑝1,𝑖𝑖−1 − 𝑝𝑝1,𝑖𝑖�,  (21) 

The derivatives of the interpolating functions are obtained by Equation 22. 

𝜕𝜕𝛼𝛼𝑖𝑖
𝜕𝜕𝜉𝜉𝑘𝑘

= −𝛼𝛼𝑖𝑖 �
1
𝐴𝐴𝑖𝑖

𝜕𝜕𝐴𝐴𝑖𝑖
𝜕𝜕𝜉𝜉𝑘𝑘

+ 1
𝐴𝐴𝑖𝑖+1

𝜕𝜕𝐴𝐴𝑖𝑖+1
𝜕𝜕𝜉𝜉𝑘𝑘

�  (22) 

Therefore, the derivatives of the shape functions with respect to the reference coordinates are given by Equation 23. 

𝜕𝜕𝜙𝜙𝑖𝑖
𝜕𝜕𝜉𝜉𝑘𝑘

= 1
∑ 𝛼𝛼𝑗𝑗𝑛𝑛
𝑗𝑗=1

�𝜕𝜕𝛼𝛼𝑖𝑖
𝜕𝜕𝜉𝜉𝑘𝑘

− 𝜙𝜙𝑖𝑖 ∑
𝜕𝜕𝛼𝛼𝑗𝑗
𝜕𝜕𝜉𝜉𝑘𝑘

𝑛𝑛
𝑗𝑗=1 �  (23) 

By applying this function in Equation 13 and through numerical integration using a quadrature, the regular 
polygon is divided into triangles, each one solved individually and then summed to obtain the total integral. 
This process establishes a relationship equivalent to Equation 2. Adding all extended stiffness matrices, considering 
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all degrees of freedom of the element, results in a relationship equivalent to that presented in Equation 4, which 
refers to the entire domain. 

2.3 TOM-H Formulation 
TOM-H has some peculiarities regarding the formulation of the FEM. Because reinforced concrete, concrete, and steel 

work together considering the same deformations and displacements to resist the imposed load, the stiffness of the structure 
is the result of the sum of the stiffnesses of the two materials, i.e., the stiffness matrix of the reinforced concrete is the sum 
of the stiffness matrix of the ground structure that represents steel, and the stiffness matrix of the continuous elements, that 
represents the concrete. Therefore, the meshes of the two types of elements must be compatible and have the same degrees 
of freedom. However, it is of interest that the reinforcing elements have less freedom of form than the concrete, thereby 
improving the constructive aspect; thus, the base mesh for the formation of the ground structure must be more sparse than 
the mesh of the two-dimensional continuous elements. Figure 3 represents the interaction of these two meshes, where it is 
observed that the base mesh used for the ground structure is much sparser than the mesh of continuous elements. 

 
Figure 3. Mesh for solving the problem: (a) Base mesh for the generation Ground Structure; (b) Mesh of continuous elements; 

(c) Generated ground structure. 

For the optimization in question, a bilinear constitutive model was considered for both materials, steel and concrete. 
For the steel material, only tensile stiffness was considered, because it is intended that the reinforcement acts only as 
an element of tensile strength. For the concrete material, in addition to compressive stiffness, a negligible tensile 
stiffness was considered to avoid singularities in the finite element; numerically, there cannot be degrees of freedom 
without the associated stiffness. The stress–strain relationship of the two materials is shown in Figure 4. 

 
Figure 4. Graph of stress–strain relationship adopted in the hybrid optimization model. The stress measurement unit is irrelevant 

because what matters for the final STM is the ratio between elasticity modules. 
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The adoption of the bilinear constitutive model brings about a substantial improvement in representativeness, taking into 
account the distinct behavior of the two materials employed. Moreover, despite the nonlinearity of the final system generated 
by the finite element model, the model itself exhibits linear characteristics. This linear behavior not only simplifies the 
modeling process but also reduces the computational requirements, resulting in lower processing time and resource usage. 
As a result, there was no necessity to utilize a nonlinear finite element formulation. Furthermore, for design purposes, the 
bilinear constitutive model can be sufficient for the optimization process and the generation of a strut-and-tie model, 
eliminating the need for additional modeling complexities. Additionally, the methodology's outcome is more generic, 
preserving the principle of proportionality as long as the sign of the applied loads remains unaltered. 

The optimization problem (𝑃𝑃) can be expressed by Equation 24. 

(𝑃𝑃) = �
𝑚𝑚𝑖𝑖𝑡𝑡𝜌𝜌𝑭𝑭𝑇𝑇𝒖𝒖(𝝆𝝆𝒄𝒄,𝝆𝝆𝒕𝒕,𝝈𝝈𝒄𝒄,𝝈𝝈𝒕𝒕)

 subject to𝝆𝝆𝒕𝒕𝑳𝑳𝒕𝒕 + 𝝆𝝆𝒄𝒄𝑨𝑨𝒄𝒄 − 𝑉𝑉𝑚𝑚𝑚𝑚𝑥𝑥 ≤ 0
𝝆𝝆𝒕𝒕 > 0,0 ≤ 𝝆𝝆𝒄𝒄 ≤ 1

  (24) 

Where 𝝆𝝆𝒄𝒄,𝝆𝝆𝒕𝒕,𝑨𝑨𝒄𝒄,𝑳𝑳𝒕𝒕,𝑉𝑉𝑚𝑚𝑚𝑚𝑥𝑥 denote the density of the continuous elements, where zero indicates the absence of the 
material and one indicates a presence; the cross-sectional area of the truss bars, called the density of the bars; the area 
of the continuous elements; the length of the truss bars and the volume restriction adopted, respectively. 

The problem is solved for a domain with unitary thickness. The modulus of elasticity of the steel and constitutive 
matrix depend on stress 𝝈𝝈 in the structure; therefore, vector 𝑢𝑢 is implicitly provided by the nonlinear system 𝑲𝑲(𝝈𝝈)𝒖𝒖 = 𝑭𝑭 
where the stiffness matrix 𝑲𝑲(𝝈𝝈) is given by Equation 25. 

𝑲𝑲(𝝈𝝈) = 𝑲𝑲𝒕𝒕(𝝈𝝈𝒕𝒕) + 𝑲𝑲𝒄𝒄(𝝈𝝈𝒄𝒄)  (25) 

𝝈𝝈𝒕𝒕,𝝈𝝈𝒄𝒄 denote the stresses acting on the reinforcement and the concrete, respectively, and they are dependent on 𝒖𝒖; 𝑲𝑲𝒕𝒕 
is obtained by the formulation of finite elements of truss; 𝑲𝑲𝒄𝒄 is obtained by the formulation of two-dimensional finite 
elements with a small change in the element stiffness matrix. 

To adapt the formulation to topology optimization, which has a more binary view of the design variable, the presence 
or absence of material, 𝑲𝑲𝒆𝒆𝒄𝒄(continuous element stiffness matrix) must be defined by Equation 26. 

𝑲𝑲𝒆𝒆𝒄𝒄 = (𝜖𝜖 + (1 − 𝜖𝜖)𝜌𝜌𝑒𝑒𝑐𝑐
𝑞𝑞 )∫ (𝑩𝑩𝑩𝑩)𝑇𝑇𝑫𝑫(𝑩𝑩𝑩𝑩)𝑑𝑑𝑑𝑑𝛺𝛺   (26) 

where 𝜖𝜖 ≈ 0 denotes a term to avoid singularity and 𝑞𝑞 denotes an exponent greater than or equal to one. Because 𝜌𝜌𝑒𝑒𝑐𝑐 is 
only defined between zero and one, the intermediate values of the design variable will be penalized, thereby forcing the 
most binary view to be desired. However, this problem of pure topology optimization is ill-posed because if no restriction 
is established, it is always be possible to find an artificial topology even without physical applications such as a domain 
filled with bars as thin as we want, which will provide greater stiffness for the final structure [3]. The use of finite elements 
that imposes a restriction regarding the size of the mesh elements will present another ill-posed problem known as 
“Checkerboard” that consists of alternating values of the design variable without its convergence. This implies that a 
microscopic configuration on the mesh scale of the design variables provide similar responses on a macroscopic scale. 

Thus, there is a need to apply a regularization filter, which avoids the sudden alternation of densities in nearby 
elements in the FEM approach of the two-dimensional elements, and therefore, it solves the illness. HybridToppy uses 
the same topological optimization formulation as Talischi et al. [12] presented below. The density of the continuous 𝜌𝜌𝑐𝑐 
is now be provided by a convolution with a smooth filter function 𝜑𝜑, and can be expressed by Equation 27. 

𝜌𝜌𝑐𝑐(𝒑𝒑) = ∫ 𝜑𝜑�𝒑𝒑,𝒑𝒑
_
�𝑥𝑥𝑐𝑐�𝒑𝒑

_
�𝑑𝑑𝑝𝑝

_

𝛺𝛺   (27) 

where 𝑑𝑑 denotes the domain of the structure, 𝒑𝒑 denotes the vector referring to the position of the point analyzed in the structure, 
and 𝒙𝒙𝒄𝒄 is be the problem variable for the concrete elements; however, it no longer has the physical meaning of density. 

𝜑𝜑 is given by Equation 28. 
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𝜑𝜑�𝒑𝒑,𝒑𝒑
_
� = �∫ 1 − |𝒑𝒑−𝑤𝑤|

𝑟𝑟𝐵𝐵𝑟𝑟(𝒑𝒑)∩𝜔𝜔 𝑑𝑑𝑑𝑑�
−1
𝑚𝑚𝑡𝑡𝑥𝑥 �1 − �𝒑𝒑−𝒑𝒑

_
�

𝑟𝑟
, 0�  (28) 

where 𝑟𝑟 denotes the filter radius used and 𝐵𝐵𝑟𝑟(𝑝𝑝)denotes the circular domain of radius 𝑟𝑟 around 𝑝𝑝. 
With the filter in place, there remains a need for one more procedure to solve the problem 𝑃𝑃 as the penalty has made 

the problem no longer convex, and it is now necessary to solve it through an iterative process with convex 
approximations. By defining 𝒙𝒙 as the problem variable that encompasses 𝝆𝝆𝒕𝒕 and 𝒙𝒙𝒄𝒄, the convex approximation of the 
problem (P) in interaction j in 𝑥𝑥𝑗𝑗 given by Equation 29 is obtained. 

(𝑃𝑃𝑗𝑗) =

⎩
⎪
⎨

⎪
⎧𝑚𝑚𝑖𝑖𝑡𝑡𝑥𝑥𝐶𝐶(𝑥𝑥𝑗𝑗) + ∑ 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥𝑖𝑖
�
𝑥𝑥𝑖𝑖
𝑗𝑗
− �𝑥𝑥𝑖𝑖

𝑗𝑗� ��𝑥𝑥𝑖𝑖
𝑥𝑥𝑖𝑖
𝑗𝑗�
−1
− 1�𝑛𝑛

𝑖𝑖=1

 restrict to 𝑔𝑔(𝑥𝑥𝑗𝑗) + ∑ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖
�
𝑥𝑥𝑖𝑖
𝑗𝑗
�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖

𝑗𝑗�𝑛𝑛
𝑖𝑖=1 ≤ 0

𝑥𝑥𝑡𝑡 > 0,0 ≤ 𝑥𝑥𝑐𝑐 ≤ 1

  (29) 

where 

𝑔𝑔(𝑥𝑥) = 𝝆𝝆𝒕𝒕𝑳𝑳𝒕𝒕 + 𝝆𝝆𝒄𝒄(𝒙𝒙𝒄𝒄)𝑨𝑨𝒄𝒄 − 𝑉𝑉𝑚𝑚𝑚𝑚𝑥𝑥  (30) 

The convex approximation allows the use of the Lagrangian function and duality that, associated with the 
Karush–Kuhn–Tucker (KKT) conditions, allows solving the optimization problem (𝑃𝑃𝑗𝑗) through a numerical method 
of solving nonlinear equations. Thus, the iterative process provides the solution to the initial optimization problem (P). 
Talischi et al. [12] provided details of this procedure. 

2.4 Algorithm used 
Although HybridToppy exists as an independent algorithm, its use is correlated to several other algorithms. The 

first stage is performed in PolyMesherPy, in which two independent meshes are created, as shown in Figure 3, one for 
the continuous elements and one more for the formation of the ground structure. With the use of HybridMesherpy, these 
two meshes are made compatible, and therefore, the nodes of the base mesh of the ground structure coincide with the 
nodes of the mesh of the continuous elements. Subsequently, the ground structure is generated through the GenerateGS 
routine of GRANDpy. 

Once the optimization process has been initiated, the structural problem is analyzed by the FEM, for which the 
equilibrium system expressed as a non-linear system needs to be solved iteratively. An alternative approach to solve 
this system using the fixed point logic was summarized by Gaynor et al. [1]. However, it was noted that the stop 
criterion presented by them sometimes generated convergence problems using polygonal elements in HybridToppy 
because of minimal changes around the stress value of elements that could be considered zero. This caused a continuous 
change in the elasticity module of the materials, thereby taking too long to reach the stop criterion or never reaching it. 
These elements are negligible for the final result because all stresses are zero, from a numerical point of view. Thus, in 
this work, a stopping criterion for the non-linear analysis of the structural problem using the FEM, based on Equation 
31, was used. 

�
∑ �𝜕𝜕𝑗𝑗

𝑖𝑖−𝜕𝜕𝑗𝑗
𝑖𝑖−1�𝑛𝑛

𝑗𝑗=1

𝑛𝑛
� ÷ �

∑ �𝜕𝜕𝑗𝑗
𝑖𝑖 �𝑛𝑛

𝑗𝑗=1

𝑛𝑛
� < 𝑐𝑐𝑐𝑐𝑡𝑡  (31) 

where 𝑡𝑡 denotes the number of degrees of freedom of the structure, 𝑐𝑐𝑐𝑐𝑡𝑡 denotes a tolerance, and 𝑖𝑖 refers to the iteration 
analyzed. 

The steps of the HybridToppy algorithm can be summarized as follows: resolve the nonlinear finite element system, 
update the variables using the optimality criteria, and check the convergence criteria of the optimization. The steps for 
solving the nonlinear finite element system include the calculation of local matrices of continuous elements, assembly 
of the global stiffness matrix of the continuous elements, assembly of the global stiffness matrix of the discrete elements, 
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sum of the two matrices, system resolution, calculation of the stresses acting on all elements, saving variable values, 
and checking the finite element convergence criteria. If the convergence criteria are not met at any level, the algorithm 
returns to the first step of the corresponding level with the updated variables. 

Finally, a graphical routine is available to display the optimization results in a visual format. This routine includes 
the option to apply a filtering mechanism, allowing the exclusion of bars with a relative area below a user-defined 
cutoff value, which in this study was set at 0.0001. Adjusting the cutoff values does not require re-running the entire 
optimization process and solely affects the graphical representation. However, caution must be used at this stage so 
that the use of the filter does not deviate from the optimal structural behavior proposed by the numerical result. 
For this, the user must pay attention to the number of bars that were excluded and the residue caused by this exclusion 
displayed by the routine. 

The routine mentioned in the previous paragraph should be seen as the initial step in obtaining a strut-and-tie model. 
If the model generated, by analyzing the graphic result, is statically stable and using the inferior plasticity theorem, 
it is possible to guarantee the adequate performance of the structure. 

2.5 Nonlinear Finite Element Method process accelerator 
The basic procedure of the program was presented in a simple manner. It was observed that there was a considerable 

increase in the processing time of the program because of material nonlinearity, primarily due to the need to recalculate the 
stiffness matrices of the continuous elements. Further, for a tolerance factor of 0.5%, the number of material non-linearity 
iterations is reduced to 1 after a certain optimization iteration for each penalty value. This occurs because after a certain 
iteration, the optimization does not change the structure configuration significantly at each step. 

𝐾𝐾𝑖𝑖 is defined as the stiffness matrix of continuous elements in the optimization iteration i, and can be expressed by 
Equation 32. 

𝑲𝑲𝒊𝒊 = ∑ 𝑲𝑲𝒆𝒆
*𝒊𝒊(𝝈𝝈𝒆𝒆𝒊𝒊 )𝜌𝜌𝑒𝑒𝑖𝑖𝑛𝑛

𝑒𝑒=1   (32) 

where 𝑲𝑲𝒆𝒆
*𝒊𝒊 denotes the unit stiffness matrix considering the density with the unit value of an element 𝑠𝑠 in iteration i; 𝝆𝝆𝒆𝒆𝒊𝒊  

denotes the density per area of the element 𝑠𝑠 in iteration i; and the 𝜎𝜎 stresses in the element are dependent on the 
displacements 𝒖𝒖, which are dependent on the density distribution. However, after a certain number of optimization 
iterations, the structure configuration does not change considerably between one iteration and the other, the nature of 
the stresses—tensile or compression—remains almost the same for a small number of steps, and the angle 𝜃𝜃, which 
refers to the main directions of stresses, is slightly changed. Therefore, for a small number of 𝑝𝑝 steps, the variation of 
𝑲𝑲𝒆𝒆

*  is small, which implied in Equation 33. 

𝑲𝑲𝒆𝒆
*𝒊𝒊 ≈ 𝑲𝑲𝒆𝒆

*(𝒊𝒊+𝒑𝒑)  (33) 

Therefore, 𝐾𝐾𝑒𝑒* matrices can be considered as a constant by optimization iterations. The assembly of the unit stiffness 
matrix, which is a costly computational process, can be performed only for each determined number of iterations, and 
the 𝑲𝑲𝒆𝒆 matrices can be updated only by density, as calculated in the previous optimization iteration. Equation 34 
expresses the stiffness matrix of continuous elements in the optimization iteration i+p. 

𝑲𝑲(𝒊𝒊+𝒑𝒑): = ∑ 𝑲𝑲𝒆𝒆
*𝒊𝒊(𝝈𝝈𝒆𝒆𝒊𝒊 )𝜌𝜌𝑒𝑒

(𝑖𝑖+𝑝𝑝)𝑛𝑛
𝑒𝑒=1   (34) 

This method was implemented so that the user can manually select how many iterations are necessary for the 
structure to stabilize, and only after applying the procedure described above, and the number of iterations p for which 
the local stiffness matrices of the continuous elements will not be calculated. For the adopted values of 10 and 5, 
a significant decrease in computational time was observed without prejudice to convergence or deviation of results. 

3 RESULTS AND DISCUSSIONS 
Four examples from the literature as shown in Figure 5 were evaluated to validate the method and compare the 

results obtained with those presented in the literature (Figure 6) and those obtained using other methodologies. 
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Thus, the PolyToppy and GRANDpy algorithms were used to solve optimization problems with the TOM-C and TOM-D, 
respectively to compare the results obtained with HybridToppy. 

The algorithm takes as input the number of elements in each domain, which determines the number of nodes and 
bars in the structure. Additionally, the constraint volume is considered, which, despite being a user choice, is a value 
that generates a result displaying a topology that can be associated with an STM. These main parameters for each 
analyzed domain are listed in Table 1. 

Table 1 - Main parameters for each analyzed domain 

Domain Nodes Elements on the 
Thin Mesh 

Elements on the 
Coarse Mesh 

Initial 
Bars 

Volume 
 Fraction (%) 

Simple supported beam with poligonal base mesh 5987 3000 32 1822 50 
Simple supported beam with regular base mesh 5987 3000 32 1822 50 
L-shaped wall beam 3993 2000 42 1686 30 
Bridge beam 3978 2000 30 2483 30 
Sheared wall with holes 3992 2000 81 2095 30 

 
Figure 5. Evaluated examples from literature: (a) Simple supported beam domain; (b) L-shaped wall beam domain; 

(c) Bridge beam domain; and (d) Shear wall with holes domain. 

 
Figure 6. Results of other literature: black represent the concrete struts and red represent the steel ties; (a) Result of the domain simple 

supported beam by Gaynor et al. [1]; (b) Result of the domain L-shaped wall beam by Gaynor et al. [1]; (c) Result of the domain L-shaped 
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wall beam by Zhong et al. [9]; (d) Result of the domain bridge beam by Gaynor et al. [1]; (e) STM of the domain shear wall abstracted 
from the flow of elastic stresses by the FEM, according to FIB [22]. 

3.1 Domain simple supported beam 
This domain consists of a double-based beam that is 4 m long and 1 m high with a load concentrated in the middle, 

for which only half was discretized because of its symmetry, thereby saving computational time. The resulting 
topologies are shown in Figure 7. 

The GRANDpy and Polytoppy programs display the results in the same way of the original Matlab programs. 
The result displayed by GRANDpy (Figure 7a) shows bars topologies that optimize the problem without differentiating 
whether the stress is compressive or tensile. Meanwhile, Polytoppy provides a result (Figure 7b) that demonstrates the 
two-dimensional topology that optimizes the problem considering an isotropic material and given the volume constraint, 
where black symbolizes presence of material. 

The result obtained by HybridToppy (Figure 7c, d) is represented by an optimized topology composed of steel bars, 
with colors ranging from blue to red, and concrete represented by the color black both with the stress–strain relationship 
presented by the Figure 4. The color bar on the right side of the figure refers to the cross-sectional area of the bars 
normalized, where the value 1 represents the section with the greatest area. 

There was a similarity between the topologies of the three algorithms wherein the load is transmitted to the supports 
through elements dispersed in the form of a fan with transversal elements. The nature of the stresses in these elements 
is observed directly in the two topologies obtained with HybridToppy, the regular base mesh (Figure 7c), and the 
polygonal base mesh (Figure 7d). 

 
Figure 7. Domain simple supported beam: (a) Result of GRANDpy; (b) Result of PolyToppy; (c) Result of HybridToppy with 

regular basis mesh; and (d) Result of HybridToppy with polygonal base mesh. 

For this example, the use of two types of base meshes for the generation of the polygonal and regular ground 
structure with square elements but with the same average element size were evaluated. However, there was no 
significant influence on the result obtained according to the type of the base mesh adopted. 

Further, HybridTop provided a topology that resembles that presented by Gaynor et al. [1] (Figure 6a). 

3.2 Domain L-shaped wall beam 
This domain was extracted from Kuchma et al. [23] with some adjustments made to the dimensions to facilitate the 

discretization of the ground structure with a regular mesh. Figure 8 presents the topologies obtained with the three algorithms. 

 
Figure 8. Domain L-shaped wall beam: (a) Result by GRANDpy; (b) Result by PolyToppy; and (c) Result by HybridToppy. 



P. V. C. Rodrigues, and R. M. F. Canha 

Rev. IBRACON Estrut. Mater., vol. 17, no. 3, e17306, 2024 14/16 

The topologies of the three algorithms follow a similar trajectory with slight differences, wherein the load is 
dispersed in the region above the void to be transmitted to the two lower supports. The reinforcement zones are present 
above the orifice and in the lower region of the structure, and the compressed elements are abstracted from 
HybridToppy. The result obtained by HybridToppy is similar to that of Gaynor et al. [1] (Figure 6b). 

Zhong et al. [9] conducted a more detailed analysis of this domain. In their work, the importance of a primary 
analysis was emphasized, wherein the STMs must correspond with the result of the linear stress analysis. Further, a 
subsequent analysis, with simulations, in which the correspondence of the reinforcement with the crack region in 
concrete was evaluated. They concluded that there is a region on the left edge of the domain where these analyses 
indicate the need for reinforcement that is not presented by the hybrid methodology. Therefore, Zhong et al. [9] 
elaborated their own STMs as presented in Figure 6c. 

A justification for this possible difference was predicted by Bruggi [6]. He pointed precautions that must be 
employed to ensure the validity of the STMs obtained by the optimization methods. In his work, it was observed that 
the STMs resulting from his methodology needed additional reinforcement that would provide sufficient ductility to 
allow the use of the lower limit of plasticity theory. The optimization models adopted here do not present a restriction 
on deformation, thereby theoretically allowing the appearance of regions with great deformation, and consequently, 
excessive cracking, which is located where elements of the resulting topologies have zero densities (voids). 
Such regions, if any, must be reinforced with steel to ensure reasonable security, proper functioning of the structure 
respecting the ductility criteria, and requirements of the limit state of use. 

3.3 Domain bridge beam 

The bridge beam domain is a generic domain that resembles cross sections used in bridges. As in the simple 
supported beam, it is possible to take advantage of the symmetry of the structure, thereby saving computational time. 
The results obtained are shown in Figure 9. 

 

Figure 9. Domain bridge beam: (a) Result of GRANDpy; (b) Result of PolyToppy; and (c) Result by HybridToppy. 

There is a need for steel reinforcement in the upper part of the structure. In the lower zone, the structure is subjected 
to compression only, which is intuitively expected. There is a great similarity between the results obtained in all 
methodologies; however, it is noted that GRANDpy provides a result that requires a larger treatment. The results of 
HybridToppy and PolyToppy were quite similar, and based on the simplification adopted, the STMs abstracted from 
the two methodologies can be practically same. The result obtained from HybridToppy was also considerably similar 
to that presented by Gaynor et al. [1]. 

3.4 Sheared wall with holes domain 

The shear wall with holes domain was inspired by a domain exposed in the FIB report [22]. The results obtained 
are shown in Figure 10. 
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Figure 10. Domain shear wall with orifice: (a) Result by GRANDpy; (c) Result by PolyToppy; and (d) Result by PolyTrussToppy 

with regular mesh. 

The results of GRANDpy, PolyToppy, and HybridToppy show certain similarities; however, unlike others, 
HybridToppy presented a compression strut above the last hole. The constitutive model adopted by HybridToppy is 
closer to reality, as it considers the presence of two different materials (steel and concrete) and concrete as an orthotropic 
material, which is probably a more representative result. 

For the complexity of the results, it is possible to note that the one provided by PolyToppy is the simplest; therefore, 
the treatment for the generation of an STM will be easier. The result of GRANDpy has an intermediate complexity and 
that of HybridToppy apparently has greater complexity. Thus, although the HybridToppy has a formulation closer to 
reality, it generates a more complex result that will require further treatment result to generate a strut and tie model. 

The result provided by FIB [22] (Figure 6e) differs from the solutions presented here because it was prepared 
without the optimization processes following Schlaich Schäfer and Jennewein's original methodology for STMs. 
As a disadvantage, the result does not necessarily present a model with optimum performance; however, the 
advantage is that it was established such that it greatly facilitates the execution as it is a simpler solution from a 
practical point of view. 

4 FINAL REMARKS AND CONCLUSION 
TOM-H presents itself as an alternative to traditional TOM-C and TOM-D methods, allowing greater freedom for 

concrete struts while restricting the steel reinforcement's ties, thereby improving the constructive aspect of steel 
reinforcement. 

In this study, an algorithm based on the TOM-H and polygonal finite elements for the optimization of flat reinforced 
concrete structures was implemented. To represent the behavior of this composite material, the algorithm considered 
two types of materials: steel and concrete, with different tensile and compression stiffnesses. Further, concrete was 
approximated as an orthotropic material, thereby leading to a more complex formulation that was closer to reality. 
Thus, the insertion of material nonlinearity resulted in a higher computational cost; however, it was substantially reduced 
with the implementation of a procedure that reduced the disparity between the computational times of the methods. 

Although the TOM-H constitutive model better describes the behavior of reinforced concrete, most of the domains 
analyzed by this methodology present results similar to the traditional ones, this shows that the traditional ones are 
adequate approximations for most cases. But the result from the Sheared Wall With Holes demonstrates that there will 
be domains in which a hybrid methodology will present different results from the traditional ones, which therefore must 
be analyzed in order to obtain more adequate strut and tie models. 

The presented method is very promising for the study of reinforced concrete, and it allows efficient and direct 
determination of both the regions and optimal directions of reinforcement and the compression regions that most 
influence the stiffness of the structure. Therefore, it allows developing STMs that are likely to provide greater structural 
stiffness. For future research, it is suggested to refine this method by considering ductility criteria and controlling the 
cracking of the structure. 
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