
TGF-β pathways in aging and
immunity: lessons from
Caenorhabditis elegans

Katerina K. Yamamoto and Cathy Savage-Dunn*

Department of Biology, Queens College, and PhD Program in Biology, The Graduate Center, City
University of New York, New York City, NY, United States

The Transforming Growth Factor-β (TGF-β) superfamily of signaling molecules
plays critical roles in development, differentiation, homeostasis, and disease. Due
to the conservation of these ligands and their signaling pathways, genetic studies
in invertebrate systems including the nematode Caenorhabditis elegans have
been instrumental in identifying signalingmechanisms.C. elegans is also a premier
organism for research in longevity and healthy aging. Here we summarize current
knowledge on the roles of TGF-β signaling in aging and immunity.
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Introduction

As organisms age, they undergo gradual cellular andmolecular changes, accompanied by
a decline in many physiological functions. Consequently, their susceptibility to age-related
diseases and conditions increases (López-Otín et al., 2013; Son et al., 2019; Melzer et al.,
2020). Many fundamental findings in the field of aging have come from studies in the small
free-living nematode C. elegans (Murphy and Hu, 2013). C. elegans has been used as a model
organism for decades due to its short lifespan of approximately 3 weeks, small size,
transparent body, easy laboratory maintenance, genetic tractability, and conserved
biological pathways (Brenner, 1974; C. elegans Sequencing Consortium, 1998).
Approximately 83% of the C. elegans proteome has human homologs (Lai et al., 2000),
and over 50% of human protein-coding genes have homologs in C. elegans (Sonnhammer
and Durbin, 1997; Kuwabara and O’Neil, 2001; Harris et al., 2004). The insulin/IGF-1-like
signaling pathway (IIS) was the first pathway identified to regulate lifespan in C. elegans.
Mutations in daf-2, subsequently found to encode the sole Insulin/IGF-1-like receptor
(Kimura et al., 1997), result in a doubled lifespan compared to wildtype (WT) (Kenyon et al.,
1993). Further studies in C. elegans revealed the roles of other pathways that regulate aging
including AMP-activated protein kinase (AMPK), and mechanistic target of rapamycin
(mTOR) (Zhang et al., 2020). In addition, transforming growth factor beta (TGF-β)
pathways are emerging as regulators of longevity and healthy aging that warrant further
study.

One of the systems that faces the most consequential impacts of aging is the immune
system, where age-associated decline is called immunosenescence. This decline manifests in
increased infection susceptibility, decreased vaccination response, and increased risk for
cancer and autoimmune diseases. The underlying changes that result in these physiologies in
mammals are: a decrease in immune cell repertoire, cell intrinsic defects to lymphocytes, and
increased inflammation (Akha, 2018). Aging and immunity can be regulated by shared
molecular mechanisms, such as IIS, TGF-β, mTOR and nuclear factor kappa B (NF-κB)
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pathways (Powell et al., 2012; Papadopoli et al., 2019; Songkiatisak
et al., 2022). Promoting healthy aging will need to address
immunosenescence for an improved quality of life.

In addition to its pioneering contributions to the study of aging,
C. elegans is also a valuable model system to study innate immunity
(Nicholas and Hodgkin, 2002; Millet and Ewbank, 2004;
Schulenburg et al., 2004). The animals’ diet consists of available
bacteria in their environment, which in the laboratory is a non-
pathogenic strain of Escherichia coli, OP50. This system is easily
modified to study immunity, since the food source can be replaced
with pathogenic bacteria, which allows bacterial pathogens to be
easily introduced to the species. Additionally, C. elegans do not have
antibody-based acquired immunity that could confound studies on
innate immunity. As such, studies with C. elegans have identified
conserved signaling pathways that regulate innate immunity,
including IIS, p38 mitogen-activated protein kinase (MAPK) and
TGF-β signaling (Ewbank, 2006; Kim and Ewbank, 2018). Immunity
pathways overlap significantly with those that regulate aging (Kurz
and Tan, 2004; Fabian et al., 2021). For example, mutations in DAF-
2 and other IIS components not only extend lifespan, but also have
improved resistance against bacterial pathogens than WT animals,
although these effects can be uncoupled (Garsin et al., 2003; Kerry
et al., 2006; Evans et al., 2008; Lee et al., 2021). Future studies are
needed to expound these inter-connected physiologies, where
improved understanding will positively contribute to healthy aging.

TGF-β signaling

The TGF-β superfamily of extracellular signaling molecules is an
ancient and conserved mechanism of cell-cell communication in
animals (Robertis, 2008). Disruptions in TGF-β signaling result in
birth defects, as well as autoimmune disorders, cancer, and other
diseases (Padua and Massagué, 2009; Wu and Hill, 2009). There are
two major groups within the TGF-β superfamily, TGF-β/Activin
and bone morphogenetic proteins (BMPs) (Herpin et al., 2004).
TGF-β has known roles in cell proliferation, differentiation,
apoptosis and reproductive function. For example, anti-müllerian
hormone is required for follicular development in females, and when
dysregulated, can cause polycystic ovarian syndrome, development
of female reproductive structures in males, among others (Wu and
Hill, 2009). Activin also plays a role in cell proliferation,
differentiation, apoptosis, as well as reproductive function,
commonly known for regulating many parts of the menstrual
ovulatory cycle in humans (Adu-Gyamfi et al., 2020). Nodal is
another member of the TGF-β/Activin group that is involved in
embryonic development, such as axis formation and patterning (Wu
and Hill, 2009). BMPs were first identified for their role in regulating
bone and cartilage development (Urist and Strates, 1971; Wang
et al., 1988; Wozney et al., 1988; Herpin et al., 2004). They are best
known for roles in development and differentiation, such as
embryonic body plan patterning and cell identity specification,
but are emerging as modulators of homeostasis.

There is strong evidence that TGF-β signaling regulates aging,
particularly in several age-associated diseases. TGF-β2 and the TGF-
β receptors (I and II) have decreased expression in the cartilage of
knee joints of old mice, compared to young mice. Blocking TGF-β
activity demonstrated that TGF-β is necessary for a normal repair

response, thus causing cartilage tissue damage (Davidson et al.,
2005). This role has substantial implications in osteoarthritis, a
prevalent age-associated disease. Another instance of age-related
expression changes is BMP4, which was shown to increase with age
in the dentate gyrus of both mice and humans (Meyers et al., 2016).
The dentate gyrus is a part of the hippocampus that functions in
learning and memory, and typically declines during aging. To
establish a better relationship between cognitive function and
BMP4 levels, a BMP4-expressing lentivirus was injected, which
resulted in decreased cognition, compared to mice who had a
control virus injected (Meyers et al., 2016). This function likely
has implications in age-associated diseases that impair cognition,
such as Alzheimer’s disease, and warrants continued study.

An enticing 2013 study found that TGF-β family member
GDF11 could act as a circulating factor that reverses age-related
decline (Loffredo et al., 2013). A conflicting report found that
GDF11 levels increase rather than decrease during aging, and that
the previous conclusions could have been confounded by reagents that
cross react between GDF11 and GDF8 (myostatin) (Ahlberg et al.,
2015). Controversy continues to the present day regarding the action
of GDF11 in aging, a testament to the complexity of TGF-β signaling
in the mammalian context (Ma et al., 2021). A less controversial GDF
ligand is GDF-15, which has established roles in both immunity and
aging (Pence, 2022). GDF-15 is a stress-induced cytokine, which acts
as an immunoregulatory protein, dampening inflammatory responses
in many immune cell types under pro-inflammatory conditions.
Interestingly, GDF-15 has been shown to increase with age. One
study examined the plasma proteome over lifespan and found that
GDF-15 was the single protein most associated with age, increasing
linearly.

TGF-β members also regulate immunity. Of the three TGF-β
members in humans, TGF-β1 is most involved in immunity. TGF-
β1 is a major regulator of T-cell development, homeostasis, and
survival (Li and Flavell, 2008). In fact, mice lacking functional TGF-
β1 are severely immunodeficient (Gough et al., 2021), and eventually
develop fatal inflammatory diseases, even under germ-free
conditions (Li and Flavell, 2008). Another TGF-β family ligand is
Activin A, from the Activin subgroup, which plays a role in both
innate and adaptive immunity. Based on cell type and context,
Activin A can function as anti-inflammatory or pro-inflammatory,
and is very widespread in its immune regulation (Chen and Dijke,
2016). The aging and immunity functions of TGF-β signaling
intersect with TGF-β′s well-known role in cancer regulation.
During homeostasis, TGF-β signaling maintains a healthy cellular
environment. However, during tumor progression, this signaling
can become disrupted, instead suppressing immune systems,
promoting cancer (Batlle and Massagué, 2019). This relationship
between cancer and immunity is largely through adaptive immunity,
which C. elegans does not have, however there are some aspects of
innate immunity involved, such as the inhibition of natural killer
cells, and regulating macrophages.

The canonical signal transduction pathway begins with a TGF-β
ligand dimer binding to a heterotetrameric complex composed of
type I receptor and type II receptors (Dijke and Hill, 2004). The type
II receptors’ serine/threonine kinase domain phosphorylates the
type I receptors’ glycine-serine (GS) domain, which activates the
type I receptor serine/threonine kinase. This kinase activity then
phosphorylates receptor regulated Smads (R-Smads) at the
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C-terminus, which form a heterotrimeric complex with common
mediator Smads (Co-Smads). The Smad complex enters the nucleus
to regulate gene transcription (Massagué et al., 2005). TGF-β/
Activin and BMP ligands signal predominantly through different
receptors and Smads: Smad2/Smad3 act with Smad4 for TGF-β/
Activin and Smad1/Smad5/Smad8 act with Smad4 for BMPs (Dijke
and Hill, 2004).

TGF-β signaling in Caenorhabditis
elegans-Overview

In the C. elegans genome, there are five genes encoding TGF-β
family ligands: DBL-1, DAF-7, TIG-2, TIG-3 and UNC-129
(Gumienny and Savage-Dunn, 2013). In comparison, humans have
over 30 TGF-β family members. The reduced complexity of TGF-β

signaling inC. elegans is an experimental advantage for elucidating the
functions and signalingmechanisms of the pathways (Table 1). DBL-1
and TIG-2 are members of the BMP family; DAF-7 and TIG-3 are
related to TGF-β/Activin; and UNC-129 is more divergent (Savage-
Dunn and Padgett, 2017). Two of the ligands, DBL-1 andDAF-7, have
well-defined signaling pathways as described further below (Figure 1).
While DAF-7 signaling has been associated with longevity since 2007
(Shaw et al., 2007), recent advances have demonstrated roles for all of
these ligands in immunity (Ciccarelli et al., 2023b).

The DBL-1/BMP pathway

The DBL-1 pathway was first identified from two mutant
phenotypes: small body size (Sma) and male abnormal tail
morphology (Mab) (Baird and Ellazar, 1999; Morita et al., 1999;

TABLE 1 TGF-β ligands in Caenorhabditis elegans.

Pathway
component

C. elegans
component

Putative
human

homologs

Aging Refs. Microbiome Refs. Immune
response

Refs.

Ligand DBL-1 BMP2, BMP4,
BMP5, BMP6,
BMP8, BMP10,
GDF3, GDF5,

GDF7

Plays a minor role
regulating
somatic aging,
moderate role
regulating
lifespan in
sensitized
backgrounds,
however a major
role in
reproductive
aging.

Mallo
et al.

(2002),
Luo et al.

(2009),
Luo et al.
(2010), So

et al.
(2011)

Mediates lifespan
extension or
increased pathogen
resistance by some
gut microbes. Also
influences
microbiome
selection.

Kwon et al.
(2016),

Kwon et al.
(2018), Berg
et al. (2019),
Haçariz et al.

(2021),
Mørch et al.

(2021),
Zhang et al.

(2021a),
Zhou et al.
(2021), He

et al. (2023)

Major regulator of
innate immunity
by modulating
behavior, barrier
functions and
transcriptional
regulation of
AMPs in response
to pathogens.
Experiences
increased
susceptibility to
infection.

Mallo et al.
(2002), So et al.
(2011), Mochii
et al. (1999),
Alper et al.
(2007), Liang
et al. (2007),
Tenor and
Aballay (2008),
Zugasti and
Ewbank (2009),
Roberts et al.
(2010),
Portal-Celhay
et al. (2012),
Zhang and Zhang
(2012),
Julien-Gau et al.
(2014), Madhu
et al. (2020),
Madhu and
Gumienny
(2021), Ciccarelli
et al. (2023a)

DAF-7 Activin,
Inhibin, GDF8,
GDF11, GDF15

Plays a significant
role in somatic
aging, however
minimal evidence
that it is involved
in reproductive
aging.

Shaw
et al.

(2007)

- - Major regulator of
innate immunity
largely by
modulating
pathogen
avoidance behavior
with limited
involvement in
transcriptional
response.

Meisel et al.
(2014), Harris
et al. (2019),
Moore et al.
(2019), Singh and
Aballay (2019a),
Singh and
Aballay (2019b),
De-Souza et al.
(2022)

TIG-2 BMP2, BMP4,
BMP5, BMP6,
BMP8, BMP10,
GDF3, GDF5,

GDF7

- - - - Regulator of
immune response.

Ciccarelli et al.
(2023b)

TIG-3 Activin,
Inhibin, GDF8,
GDF11, GDF15

- - - - Regulator of
immune response.

Ciccarelli et al.
(2023b)

UNC-129 - - - - - Regulator of
immune response.

Ciccarelli et al.
(2023b)
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Suzuki et al., 1999; Savage-Dunn et al., 2003), hence also giving the
alternative pathway name Sma/Mab (Savage et al., 1996; Padgett
et al., 1998). The DBL-1 pathway is not essential for organism
viability, which has made many genetic manipulations and further
studies possible. The DBL-1 signaling pathway, since its original
identification, has been demonstrated to play a role in innate
immunity, reproductive aging, mesodermal patterning,
chemosensation, L1 development, and lipid metabolism (Mallo
et al., 2002; Foehr et al., 2006; Vashlishan et al., 2008; Almedom
et al., 2009; Luo et al., 2009; Kaplan et al., 2015; Yu et al., 2017; Clark
et al., 2018). This pathway in C. elegans follows the canonical signal
transduction pathway described earlier and begins with the ligand
DBL-1, named for being Dpp and BMP-like (Morita et al., 1999;
Suzuki et al., 1999). The signal from DBL-1 is received by a
heterotetramer formed by the type I receptor SMA-6 (Krishna
et al., 1999), and the type II receptor DAF-4 (Estevez et al.,
1993). These two receptors have different recycling mechanisms
(Gleason et al., 2014), regulated by tetraspanins (Liu Z. et al., 2020).
Signal is then transduced by the receptor-regulated Smads, SMA-2,
SMA-3, and the common mediator Smad, SMA-4 (Savage et al.,
1996). Null mutants of sma-3 display phenotypes equally as severe as
dbl-1 null alleles (Savage-Dunn et al., 2000), indicating a lack of

redundancy between the Smads in the pathway. Downstream
transcription factors include SMA-9, the homolog of Drosophila
Schnurri (Liang et al., 2003), LIN-31/forkhead (Baird and Ellazar,
1999) and MAB-31 (Wong et al., 2010). DBL-1 is expressed and
released by cholinergic neurons in the head and nerve cords (Morita
et al., 1999; Suzuki et al., 1999; Duerr et al., 2008). This includes the
AFD amphid neuron, ventral nerve cord, DA, DB, VA, and VB
motorneurons, several neurons in the pharynx, and in the male tail,
the spicule socket cells and the DVA neuron (Morita et al., 1999;
Suzuki et al., 1999). An upstream transcription factor regulating dbl-
1 expression is UNC-3 (Kratsios et al., 2012). DBL-1 receptors and
Smads are expressed in the epidermis (hypodermis), pharynx and
intestine (Patterson et al., 1997; Krishna et al., 1999; Yoshida et al.,
2001; Mallo et al., 2002; Wang et al., 2002; Reece-Hoyes et al., 2007).

DBL-1 and aging

The DBL-1 pathway plays a major role in reproductive aging
(Luo et al., 2009; Luo et al., 2010). In WT hermaphrodites, the mean
reproductive span is 3.5 days, while in dbl-1 mutants, it is greater
than 7 days (Luo et al., 2009). Other BMP pathway mutants, such as

FIGURE 1
The DBL-1/BMP and DAF-7/TGF-β Signaling Pathways. The two pathways share their overall structure in common: 1) the ligands, DBL-1 and DAF-7,
are secreted from their sending cells, 2) and are received by heterotetrameric complexes comprised of two type I receptors and two type II receptors. 3)
Signal is then transduced by Smads, 4) which enter the nucleus and interact with transcription factors to regulate gene expression.
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daf-4, sma-2, sma-3 and sma-9, also have increased reproductive
spans (Luo et al., 2009), suggesting that the DBL-1 pathway is
responsible for correctly timing cessation of reproduction. The
regulation of reproductive span is uncoupled from longevity, and
independent of DAF-2/Insulin signaling and dietary restriction
because the phenotypes in DBL-1 pathway mutants do not
require DAF-16 or PHA-4 (Luo et al., 2009). Inactivation of
DBL-1 signaling delays cessation of reproduction by maintaining
oocyte and germline quality non-cell autonomously. In sma-2
mutants, proliferating germ cells are maintained for longer. In
aged adults, these mutants have improved oocyte morphology
compared to WT, which results in improved embryo quality, and
less embryonic lethality than WT. sma-2 mutant adults also have
improved distal germline integrity, with fewer indicators of decline,
such as cavities, graininess and cellularization (Luo et al., 2010). A
genome-wide RNAi screen identified 32 genes that, when
inactivated, extend reproductive span (Wang et al., 2014). 25 of
these 32 genes were shown to interact with SMA-2 to enact this
phenotype (Wang et al., 2014). Later work elucidated that
inactivation of DBL-1 signaling reduces cAMP response element-
binding protein (CREB) activity downstream. This reduction
elevates the Hedgehog-related WRT-10, which interacts with
Patched-related receptors PTC-1 and PTR-2 to promote oocyte
quality maintenance during aging and prevent “normal” cessation of
reproduction (Templeman et al., 2020). All core components of
DBL-1/BMP signaling have been shown to regulate the vit-2
vitellogenin enhancer (Goszczynski et al., 2016). As a result, loss-
of-function BMP mutations could have decreased vitellogenin
transcription causing slower oocyte yolk accumulation and
oocyte maturation time, however further experimental studies are
needed. This could be a partial explanation for the extended
reproductive span of these mutations.

While DBL-1 signaling plays a major role in reproductive aging,
in somatic aging, the pathway plays a minor to moderate role,
depending on genetic background. In different experiments, dbl-1
mutant animals have slightly reduced or slightly increased lifespan
compared to WT (Mallo et al., 2002; Luo et al., 2009; So et al., 2011).
Reduced lifespan may be due to an immune defect, where dbl-1
mutants are more sensitive to the mild pathogenic effects of OP50
(McCulloch and Gems, 2003; Luo et al., 2009; Haque and Nazir,
2016). Consistent with that hypothesis, dbl-1 mutants have an
increase in survival on heat-killed OP50 versus live OP50,
however not enough to return lifespan to WT levels on heat-
killed OP50 (Mallo et al., 2002). Furthermore, with the addition
of Floxuridine (FUdR), a DNA synthesis inhibitor used to prevent
progeny development, the dbl-1 mutant lifespan was similar to or
greater than WT lifespan (Mallo et al., 2002; Luo et al., 2009). The
FUdR not only prevents progeny development, but also prevents
bacterial replication, likely decreasing the pathogenic effects of
OP50. Furthermore, on HB101, a less-pathogenic bacterial strain
of E. coli, dbl-1mutant animals have a comparable lifespan to N2 (So
et al., 2011).

In sensitized backgrounds, DBL-1/BMP signaling plays a
moderate role in the regulation of longevity. DBL-1 and other
BMP signaling components are required for other mutants’
lifespan phenotypes. For example, daf-2 sma-3 double mutants
have a reduced median lifespan when compared to daf-2 single
mutants, indicating that BMP signaling is required to execute this

long-lived phenotype (Clark et al., 2021). Another instance of DBL-1
signaling regulating longevity in sensitized backgrounds is with
neuronal overexpression of heat shock factor HSF-1, which
increases lifespan and reduces BMP pathway activity (Chauve
et al., 2021). The lifespan extension requires DBL-1 and SMA-6
because HSF-1 transcriptionally represses DBL-1 by directly binding
to the DBL-1 promoter (Arneaud et al., 2022). A third example is
that sma-2 or sma-3mutations are required for the longevity of ifg-1
(initiation factor 4G) mutants (Chomyshen et al., 2022). ifg-1
mutants have inhibited stress-induced alternative splicing, and
upregulated RNA splicing regulators, which extend lifespan. The
upregulation of RNA splicing regulators is mediated by SMA-2
(Chomyshen et al., 2022). These three examples demonstrate that
BMP signaling components are required to enact the lifespan
phenotypes of other mutants by regulating aging genes.
Interestingly, SMA-4 was shown to be differentially regulated
during aging, which may be an explanation for this regulation
(He et al., 2014).

DBL-1 and the microbiome

The microbiome of C. elegans is a topic that intersects aging and
immunity, as some microbe species can be beneficial to the host,
while other species are detrimental and pathogenic. The DBL-1/
BMP pathway has been shown to regulate both beneficial and
pathogenic interactions with the microbiome.

Several bacterial strains are known to extend lifespan of C.
elegans. The human gut microbes Propionibacterium freudenreichii,
Butyricicoccus pullicaecorum and Megasphaera elsdenii extend
lifespan in WT C. elegans (Kwon et al., 2016; 2018). However,
dbl-1mutant animals had no change in lifespan, indicating that this
extension is acting through the DBl-1/BMP pathway (Kwon et al.,
2016; 2018). A diet consisting of the bacterial species
Chryseobacterium sp. CHNTR56 MYb120, from the C. elegans
native microbiome, also results in lifespan extension, and causes
an upregulation in several key DBL-1 pathway components
compared to OP50 (Haçariz et al., 2021). Another instance of
microbial benefit is from Lactobacillus spp. Lb21, which not only
extends lifespan when fed to C. elegans, but also results in increased
resistance against bacterial pathogen methicillin-resistant
Staphylococcus aureus (MRSA) (Mørch et al., 2021). This
increased resistance was dependent on DBL-1 (Mørch et al.,
2021). Furthermore, ingestion of certain Lactobacillus isolates
upregulates the expression of DBL-1 and also p38 MAPK
signaling, resulting in increased resistance to Salmonella
typhimurium dT104 (Zhou et al., 2021).

DBL-1 signaling not only carries out the benefits of some
bacterial species, but also influences microbiome selection. In an
experiment, animals at the first larval stage were placed on plates
with synthetic microbiota, comprising 30 previously isolated C.
elegans gut commensals in equal parts. After 3 days, dbl-1
mutants had a threefold increase in gut bacterial load compared
to WT, and had an increased abundance of Enterobacter species
(Berg et al., 2019). When a second synthetic community was tested,
dbl-1mutants continued to show an expanded gut microbiome, and
increased Enterobacteriaceae, suggesting these are general qualities
of dbl-1 mutants. Enterobacter is typically a commensal bacterial
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species, however in the context of these compromised mutants,
Enterobacter becomes pathogenic (Berg et al., 2019). Fascinatingly,
WT worms exposed to synthetic microbiota that represent a wild
environment experience a bloom in gut Enterobacteriaceae during
aging (Choi et al., 2023). This bloom results in increased infection
susceptibility to E. faecalis in the aging population. A causative factor
for this Enterobacteriaceae bloom turned out to be an age-dependent
decline in DBL-1/BMP signaling (Choi et al., 2023). This study
highlights how DBL-1/BMP regulation of the microbiome has
consequences in aging and immunity. These findings are also
supported by mammalian studies. One found that the intestinal
microbiomes of patients with inflammatory bowel disease had
increased Enterobacteriaceae (Morgan et al., 2012). In mice,
increased colonic Enterobacteriaceae was associated with a loss of
TGF-β signaling, suggesting that this role may be conserved (Ihara
et al., 2016). In addition to this work, DBL-1 was found to positively
regulate the host N-glycosylation protein BCF-1, shaping
microbiome selection. BCF-1 directly binds E. coli cells using its
fimbrial protein, encouraging colonization of the gut by E. coli cells
(He et al., 2023).

DBL-1 and immunity

The DBL-1/BMP signaling pathway in C. elegans is a major
regulator of innate immunity. Early evidence of this role emerged
from observations showing an increased susceptibility of dbl-1
mutants to infection by Serratia marcescens (Mallo et al., 2002).
In addition, the dbl-1 pathway component SMA-3 was identified in a
genetic screen as having an increased susceptibility to Pseudomonas
aeruginosa strain PA14 (Tan, 2001). Loss of DBL-1 signaling has
consequences in the immune response to a range of pathogens,
including bacteria E. coli, Enterococcus faecalis, P. aeruginosa PA14,
Salmonella enterica, S. typhimurium strain SL1344, S. marcescens,
Photorhabdus luminescens, and the nematophagous fungus D.
coniospora (Mallo et al., 2002; Tenor and Aballay, 2008; Zugasti
and Ewbank, 2009; So et al., 2011; Portal-Celhay et al., 2012;
Ciccarelli et al., 2023a). It was recently shown that expression of
SMA-3 in the pharynx increased survival on pathogenic bacteria
compared to sma-3 mutant animals (Ciccarelli et al., 2023a). In the
response to pathogenic fungus Drechmeria coniospora, SMA-3 but
not SMA-2 or SMA-4 is required, indicating the existence of non-
canonical signaling of R-Smad without a Co-Smad (Zugasti and
Ewbank, 2009). In trying to identify patterns in howDBL-1 signaling
responds to Gram-negative versusGram-positive bacteria, one study
tested a panel of three Gram-negative bacteria, and three Gram-
positive bacteria, and found trends in DBL-1 pathway activity
(Madhu and Gumienny, 2021). Using an integrated fluorescent
DBL-1 reporter, they found an induction of DBL-1 signaling on
Gram-negative bacteria, while no fluorescence was seen on Gram-
positive bacteria. They also identified patterns in avoidance response
discussed below. While these trends are interesting, other studies
have reported data that contradict this pattern, thus a larger panel of
bacteria needs to be studied to understand what DBL-1 signaling
patterns exist in response to Gram-negative bacteria or Gram-
positive bacteria. SMA-10, an extracellular regulator of the DBL-
1/BMP pathway has been shown to regulate immunity, and sma-10
mutants have increased susceptibility to PA14 infection.

Interestingly, SMA-10 seems to be acting independently of DBL-
1, instead acting through DAF-2, further demonstrating the
extensive crosstalk that exists with IIS (Lucas et al., 2021). All
these data suggest that BMP signaling is a broad regulator of
immune response to a range of pathogens, however activates
different downstream immune effectors in a pathogen-specific
manner.

DBL-1/BMP signaling not only regulates immune response, but
also is responsible for enacting some consequences of infection.
DBL-1/BMP and IIS pathways are responsible for a hormetic effect
after developmental exposure to a pathogenic E. coli strain (Leroy
et al., 2012). Hormesis is a phenomenon where low dose exposure to
a typically harmful agent has a beneficial effect on an organism. In a
study assessing the impact of bacterial infection on male
morphology and spermatogenesis, a 24-h infection with S. aureus
or Vibrio alginolyticus caused abnormal tail morphology and
decreased sperm activation (Sharika et al., 2018). The compound
pentagalloyl glucose (PGG) is a polyphenol derived from plants. The
addition of PGG to C. elegans resulted in increased expression of
DBL-1 and DAF-4, as well as increased survival on two P. aeruginosa
strains (Zhang X. et al., 2021). The survival effect was dependent on
DAF-4 (Zhang X. et al., 2021).

We can define several mechanisms by which organisms can
defend against pathogen exposure. They include: behavior, immune
resistance (including innate immunity, which comprises
transcriptional regulation of antimicrobial peptides (AMPs) and
barrier functions), and tolerance. These mechanisms decrease
infection susceptibility and increase survival chance, and operate
together as part of a holistic immune response. All of these
mechanisms are regulated by the DBL-1/BMP pathway.

The first immune strategy is behavior, which often begins before
contact with potential pathogens is made. The primary behavior that
supports immunity is avoidance, where a host organism identifies a
risk of pathogen exposure, and modulates behavior to decrease this
risk. This behavior is well characterized in C. elegans, where
individuals detect a pathogen, and then distance themselves. A
short exposure to certain pathogenic bacteria, such as PA14 and
S. marcescens, will induce olfactory learning in C. elegans, where
animals will avoid that bacteria in subsequent exposures (Zhang
et al., 2005). This avoidance behavior was shown to require DBL-1
secreted from the AVA command interneurons, and SMA-6 in the
epidermis (Zhang and Zhang, 2012). It was later found that
production of DBL-1 in ASI and ASJ sensory neurons is
prevented by AMPylase FIC-1 overexpression, consistent with
their decreased pathogen avoidance (Hernandez-Lima et al.,
2022). Loss of dbl-1 has also been seen to have an increased
avoidance of E. coli, supporting how OP50 may have increased
pathogenicity in these animals compared to WT (Madhu and
Gumienny, 2021). In a panel of three Gram-positive bacteria and
three Gram-negative bacteria, dbl-1 mutants displayed strong
avoidance to all three Gram-negative bacteria, and a mild
response to one of three Gram-positive bacteria. Unexpectedly,
loss of SMA-4 had the opposite effect: a severe avoidance
response to all three Gram-positive bacteria, correlated with
increased SMA-4 expression. This led the authors to hypothesize
that while the canonical pathway was involved in responding to all
three Gram-negative bacteria, SMA-4 may act independently of
DBL-1 in response to some Gram-positive bacteria, perhaps
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functioning with another pathway (Madhu and Gumienny, 2021).
Further studies using a larger bacterial panel would be interesting,
and instrumental to make stronger conclusions. C. elegans also
detect pathogenic bacteria through bacterial secreted peptides,
such as serrawettin W2 from S. marcescens (Pradel et al., 2007).
Given the role of DBL-1 signaling in chemosensation, a fruitful area
of future studymay be identifying what pathogenic secreted peptides
are detected through DBL-1 signaling.

The second immune strategy is the transcriptional regulation of
genes involved in the immune response and the induction of AMPs.
DBL-1/BMP signaling regulates gene expression of lectins, digestive
enzymes like lysozymes and lipases, the PGP (P-glycoprotein)
subclass of ATP-binding cassette (ABC) transporter family,
caenacin (cnc) AMPs, saposin-like proteins or caenopore AMPs,
and the glycocalyx (Mochii et al., 1999; Mallo et al., 2002; Alper et al.,
2007; Liang et al., 2007; Zugasti and Ewbank, 2009; Roberts et al.,
2010; Julien-Gau et al., 2014; Madhu et al., 2020). One group of
AMPs, caenacins, are produced upon infection with a pathogen, and
are critical to immune response. DBL-1 was shown to promote cnc-2
expression in the epidermis, in a dose-dependent manner (Zugasti
and Ewbank, 2009). Recent work found that CNC-2, as well as
another AMP, ABF-2, are regulated by SMA-3 activity in the
pharynx (Ciccarelli et al., 2023a). Another AMP, the saposin-like
protein SPP-9, was shown to be negatively regulated by DBL-1
signaling, and is used as a reporter for DBL-1 activity (Roberts et al.,
2010; Madhu et al., 2020). The glycocalyx, a glycoprotein and
glycolipid exterior layer of many cell membranes, is hypothesized
to be involved in immune response. In C. elegans, BCF-1 is a believed
component of the glycocalyx and is activated upon infection by P.
aeruginosa and P. luminescens (Julien-Gau et al., 2014). BCF-1
requires DBL-1, SMA-6 and PMK-1, demonstrating its regulation
by the DBL-1/BMP and MAPK pathways (Julien-Gau et al., 2014).
AMPs are induced not only in response to infection, but also by
wounding. Wounding was found to activate NAS-38, which enacted
the AMP immune response in parallel through the DBL-1/BMP and
p38 MAPK pathways (Sinner et al., 2021). Activation of these AMPs
increases RIS neuron activity, which promotes sleep and ultimately
contributes to survival after pathogen exposure (Sinner et al., 2021).
Thus, DBL-1/BMP regulation of AMPs not only directly reduces
pathogen load, but also promotes host well-being resulting in
improved survival.

The third immune strategy is barrier functions that limit the
amount of bacteria that can enter the organism. In some BMP
mutants, particularly dbl-1, there is more live E. coliOP50 present in
the gut (So et al., 2011). While this is partially due to the blunted
induction of AMPs in dbl-1 mutants, which enables bacterial
colonies to form in the intestine, it may also result from a
pharyngeal defect, which allows more live bacteria to enter the
intestine. While dbl-1 mutants appear to have normal pharyngeal
pumping and peristalsis, they exhibit abnormal pharyngeal g1 gland
cell morphology (Ramakrishnan et al., 2014). Gland cell
abnormalities are likely a consequence of DBL-1’s activation of
M4, a neuron in the pharynx responsible for initiating peristaltic
contractions. The M4 neuron secretes DBL-1, regulated by the
upstream homeodomain transcription factor CEH-28.
Surprisingly, sma-2 and sma-3 mutants did not exhibit any gland
cell abnormalities, suggesting that the regulation of gland cell
morphology by DBL-1 may be independent of the R-Smads,

perhaps instead functioning through a non-canonical pathway
(Ramakrishnan et al., 2014). This study was conducted on OP50,
so it is not known whether these effects change on more pathogenic
bacteria. Later work demonstrated that loss of DBL-1 results in
decreased pharyngeal pumping on select pathogens: Klebsiella
oxytoca, S. marcescens, E. faecalis, or S. epidermidis (Madhu and
Gumienny, 2021), suggesting that DBL-1 may be required for the
pharynx to function correctly on some pathogens. sma-3 mutants
have been shown to have decreased pharyngeal pumping on P.
luminescens, which likely contributes to their increased infection
susceptibility (Ciccarelli et al., 2023a). This decreased pumping was
rescued when sma-3 was expressed in pharyngeal muscle,
demonstrating another instance of DBL-1/BMP regulation of
pharynx morphology.

Another physical barrier that is a part of innate immunity is the
cuticle, a specialized extracellular matrix that comprises the
outermost layer of the animal that separates it from its
environment. Specific cuticle collagens that form furrows in the
cuticle are responsible for its barrier function (Sandhu et al., 2021).
The presence of these collagens enhances the longevity of daf-2/InsR
mutants (Sandhu et al., 2021); however, their roles in immune
barrier function have not yet been tested. DBL-1 is necessary to
form the cuticle correctly, and alterations in DBL-1 signaling result
in dose-dependent disruptions to cuticle organization and surface
lipid content (Schultz et al., 2014). DBL-1 signaling regulates
expression of cuticle collagen and extracellular matrix-associated
genes (Liang et al., 2007; Luo et al., 2010; Roberts et al., 2010; Yin
et al., 2015; Lakdawala et al., 2019), and cuticle collagens regulate
DBL-1 signaling (Madaan et al., 2018; 2020), forming a feedback
loop that requires further investigation (Goodman and Savage-
Dunn, 2022). In dbl-1 mutants, the permeability of the cuticle is
increased (Schultz et al., 2014), although what consequences this
increased permeability has on immune response has yet to be
assessed.

A fourth defense mechanism is immune tolerance, which aims to
reduce the negative consequences that arise from infection. It mitigates
detrimental effects caused either directly by the pathogen, or indirectly
from host immunopathology resulting from the infection. This
mechanism has been better studied in other organisms and needs to
be addressed inC. elegans. The word “tolerance” itself was chosen for its
definition of “the capacity to endure”, demonstrating how this
understudied immune strategy may improve survival. This concept
was first introduced in plant biology, where organisms from different
wheat and oat species had varied tolerance to rust fungi (Caldwell et al.,
1958; Schafer, 1971). This concept later was expanded to animal
immunity (Ayres and Schneider, 2008; Read et al., 2008) after a
study using mice and rodent malaria demonstrated that genetic
variation exists for both disease resistance and disease tolerance
between individuals, and are independent of one another (Raberg
et al., 2009). More recent work from plants and Drosophila suggest
that lipid metabolism and other homeostatic processes may affect
immune tolerance (Lu et al., 2020; Laureano et al., 2021; Deshpande
et al., 2022). In C. elegans, the fatty acid oleate is required for immune
gene transcription, but is not sufficient for pathogen resistance on P.
aeruginosa PA14, E. faecalis and S. marcescens (Anderson et al., 2019).
The role of oleate, as well as other aspects of lipid metabolism, in
immune tolerance is an interesting area that should be further explored.
Together, the four mechanisms described have different aims and
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function at different times: behavior and barrier functions which aim to
prevent pathogen load, the induction of AMPs aim to decrease
pathogen load, and immune tolerance aims to decrease the burden
that infection has on the host once established (Raberg et al., 2007;
Medzhitov et al., 2012).

DBL-1 and response to xenobiotics

Studies on innate immunity have focused on the response to
biological pathogens, such as bacteria and fungi. However, the
response to non-biological toxins, xenobiotics, overlaps with the
immune response. One such xenobiotic is nanoplastics, small pieces
of plastic ranging from 1 to 100 nm, which are foreign and
potentially harmful substances. It was found that DBL-1/BMP
regulates response after exposure (Liu H. et al., 2020). Later work
demonstrated that DBL-1 acts downstream of the glutamate
receptor GLR-8 (Wang et al., 2021) and the Gα proteins GOA-1,
GSA-1 and GPA-10 (Yang et al., 2021).

The DAF-7/dauer pathway

The DAF-7 pathway was first identified from its regulation of the
dauer/continuous development switch, hence giving the alternative
pathway name, the Dauer pathway (Riddle et al., 1981; Golden and
Riddle, 1984; Thomas et al., 1993). Dauer is a developmental stage that
occurs during adverse environmental conditions, such as high
population density, or low food availability. Entering this stage results
in morphological changes to the organism, including an elongated body,
narrowed pharynx, as well as metabolic changes, which allow the
animals to survive for several months without food and water. The
duration they can survive in the dauer state far exceeds the typical
lifespan of C. elegans, which is approximately 3 weeks. DAF-7 interacts
with DAF-2/insulin signaling to regulate dauer entry and exit. In
addition to its role in dauer formation, the DAF-7 pathway also
functions in lipid metabolism, feeding behavior, aging, the germline
proliferative zone, and autophagy (Fujiwara et al., 2002; Hirose et al.,
2003;Greer et al., 2008; Park et al., 2010;Dalfó et al., 2012; Lee et al., 2017;
Zhang et al., 2019). This pathway in C. elegans begins with the ligand
DAF-7 (Ren et al., 1996). The ligand is received by a heterotetramer
formed by the type I receptor DAF-1 (Georgi et al., 1990) and the type II
receptor DAF-4 (Estevez et al., 1993). Signal is then transduced by the
receptor-regulated Smads DAF-8 (Park et al., 2010) and DAF-14 (Inoue
and Thomas, 2000), and common mediator Smad, DAF-3 (Patterson
et al., 1997). DAF-5, the Sno/Ski homolog, acts downstream of the DAF-
7 pathway and binds DAF-3 in a conserved manner (Graca et al., 2003;
Tewari et al., 2004; Inoue and Imamura, 2008). Components of the
DAF-7 pathway have diverged from TGF-β components in other
organisms, but retain sequence features in common and may be
more related to TGF-β/Activin components than to BMP components.

DAF-7 expression is detected primarily in ASI sensory neurons
(Ren et al., 1996; Schackwitz et al., 1996), however other pathway
components are more widely expressed. DAF-7 expression in ASI
sensory neurons is repressed in unfavorable conditions, such as high
population density and food scarcity. This repression contributes to the
formation of dauer in these conditions (Ren et al., 1996). Consequently,
null mutant alleles of DAF-7 display a dauer constitutive phenotype.

DAF-7 and aging

DAF-7 plays a significant role in somatic aging. Early reports
concluded that DAF-7 and IIS pathways diverge in adulthood to
regulate separate functions: DAF-2/InsR, but not DAF-7/TGF-β,
was thought to regulate longevity (Kenyon et al., 1993; Larsen et al.,
1995). However, later, it was shown that matricide of DAF-7
pathway mutants obscured their extended lifespan phenotype
(Shaw et al., 2007). The matricide resulted from an egg-laying
defect where embryos would hatch internally. When lifespans
were conducted with the addition of FUdR, a significant increase
in lifespan was seen for daf-7, daf-1, daf-4, daf-8 and daf-14mutants,
compared to WT (Shaw et al., 2007). The increase in lifespan
requires DAF-16/FOXO, a downstream transcription factor of
the DAF-2/insulin signaling pathway. This indicates that DAF-7/
TGF-β regulates longevity through DAF-2/insulin signaling (Shaw
et al., 2007). An additional instance of DAF-2/insulin and DAF-7/
TGF-β signaling crosstalk regulating lifespan is through HSF-1. The
lifespan extension of daf-7(e1372) mutant animals was strongly, but
partially, suppressed by the hsf-1(sy441) mutation, indicating that
HSF-1 is regulated by DAF-7 (Barna et al., 2012). It is already known
that HSF-1 is required for lifespan extension in IIS mutants (Hsu
et al., 2003), indicating that HSF-1may be connecting IIS and TGF-β
pathways with respect to aging. Another regulator of aging that is
downstream of DAF-7 is DAF-9 (Gerisch et al., 2001), which
decreases lifespan by inhibiting DAF-12, a nuclear hormone
receptor (Jia et al., 2002).

With respect to reproductive aging, there is little evidence that
DAF-7 plays a role. However, it has been shown that inactivation of
DAF-3 extends reproductive span (Wang et al., 2014).

DAF-7 and the microbiome

DAF-7 signaling influences microbiome selection, though to a
lesser degree than DBL-1. A large synthetic microbiome was created
with 63 bacterial strains that reflect most of the core families found
in wild C. elegansmicrobiomes. Over 38 wild C. elegans isolates were
placed on plates with this synthetic microbiome at the first larval
stage. After 120 h, the microbiome compositions could be quantified
and categorized; three types emerged. A commensal member of the
wild C. elegans microbiome is Ochrobactrum, which frequently
became the dominant microbiome species in 28 of the 38 wild C.
elegans strains assayed. Host insulin signaling is responsible for
drivingOchrobactrum to establish microbiotic dominance (Zhang F.
et al., 2021). The animals with an Ochrobactrum-dominant gut
microbiome showed increased expression of DAF-8 and DAF-14
Smads that might be associated with upregulated DAF-7 signaling.
Further study is needed to identify how DAF-7 contributes to this
microbiome selection.

DAF-7 and immunity

As described earlier, there are several mechanisms employed by
organisms in host-pathogen interactions. DAF-7 has strongly been
implicated in innate immunity with regards to pathogen avoidance.
Odorant molecules or other metabolites secreted by pathogenic
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bacteria are one of the causes of aversive behavior in C. elegans. For
example, P. aeruginosa produces the secondary metabolites
phenazine-1-carboxamide and pyochelin. Chemosensory
detection of these metabolites activates a G-protein-signaling
pathway in ASJ neurons, which results in secretion of DAF-7.
This activation of DAF-7/TGF-β signaling correlated with
pathogen avoidance of P. aeruginosa (Meisel et al., 2014). A later
paper showed that while chemosensation of these metabolites led to
induction of DAF-7 in ASJ neurons, detection of these metabolites
was not required for avoidance behavior (Singh and Aballay, 2019b).
Instead, intestinal colonization by PA14, and subsequent intestinal
bloating, was required for DAF-7-mediated pathogen avoidance
(Singh and Aballay, 2019b; 2019a). Furthermore, daf-7(e1372)
mutant animals show a partial loss of avoidance of PA14 (Singh
and Aballay, 2019a) and loss of preference of E. coli over P.
aeruginosa (Singh and Aballay, 2019b). Two other odorant
molecules secreted by pathogenic bacteria are 2-nonanone and 1-
undecene, which cause activation of the unfolded protein response
of the endoplasmic reticulum (UPRER) when detected (De-Souza
et al., 2022). DAF-7 has been shown to be required for avoidance of
2-nonanone (Harris et al., 2019), and required for UPRER activation
in response to 1-undecene (De-Souza et al., 2022). Interestingly, a
24 h exposure to 1-undecene in WT animals had a hormetic effect,
causing extended lifespan. This effect was mediated through the
DAF-7-dependent UPRER response (De-Souza et al., 2022) and
indicates that induction of an immune response can extend lifespan.

DAF-7 expression in ASI neurons has been shown to be necessary
for pathogen avoidance. AMPylase FIC-1 overexpression suppresses
DAF-7 production in ASI neurons, which results in decreased pathogen
avoidance (Hernandez-Lima et al., 2022). Another study found that
exposure to a pathogen’s isolated and purified small RNAs was
sufficient for C. elegans to exhibit avoidance behavior, as well as in
four subsequent progeny generations (Kaletsky et al., 2020). Animals
that experience a brief exposure and subsequent escape from
PA14 transmit learned PA14 avoidance epigenetically to progeny
and grandprogeny. This “training” encourages their survival.
Transgenerationally inherited pathogen avoidance is mediated by
Piwi/PRG-1 Argonaute and TGF-β signaling, specifically DAF-7
expression in the ASI neurons (Moore et al., 2019), demonstrating
again the critical requirement for DAF-7 expression in the ASI neurons.
These last two studies highlight the benefits of C. elegans as a model
system to study innate immunity, where the short lifespan allows for
transgenerational studies to be done with greater ease.

With regards to transcriptional response to pathogens, a 5 h
exposure to P. aeruginosa PA14 is sufficient to upregulate DAF-7
mRNA levels in young adults (Singh and Aballay, 2019a). DAF-7
induction using a GFP reporter is seen in ASI neurons after 24 h of
PA14 infection, or 24 h of PA14 small RNA exposure (Kaletsky et al.,
2020). DAF-7::GFP induction is also seen in ASJ neurons (Meisel et al.,
2014). However, one study found a decrease in DAF-7::GFP after a 4 h
PA14 infection at the second larval stage (Jensen et al., 2010). This stage-
specific difference presumably would increase dauer pheromone
production, which would encourage dauer formation. It is possible
this is an immune strategy, however further studies are necessary to
elucidate this. Another instance of transcriptional response is how
DAF-7 mediates a defense response triggered by detection of hydrogen
peroxide. Acrossmany species, hydrogen peroxide is secreted from cells,
to attack or to defend against other species. C. elegans encounter

hydrogen peroxide in the wild from plant matter, as well as from
bacterial pathogens, which secrete the compound and can cause damage
to the worms. Thus, C. elegans require robust resistance mechanisms
against hydrogen peroxide to promote their own survival. This peroxide
resistance is regulated by DAF-7 secretion from ASI neurons, received
by interneurons, and followed by transcription of insulin genes. DAF-2
is then activated by the insulins, which independently inhibit DAF-16
and SKN-1, resulting in improved peroxide resistance (Schiffer et al.,
2020). Interestingly, this DAF-7 and IIS cascade depends on the
presence of E. coli. When E. coli is abundant, a freeloading strategy
will be taken, where animals will not induce their own hydrogen
peroxide degrading catalases, and instead rely on catalases produced
by E. coli. In the absence of E. coli, a self-defense strategy will be taken,
and catalases will be induced without reliance on gut microbiota
(Schiffer et al., 2020). This affirms how important host-environment
dynamics are in regulating immune response, and ultimately, survival.

TIG-2, TIG-3, and UNC-129

Until very recently, there were no published functions for TIG-2 or
TIG-3. However, TIG-2, TIG-3 and UNC-129 were recently shown to
play a role in neuronal migration (Baltaci et al., 2022). In this function,
they act non-redundantly through an atypical signaling pathway. The
ligands act solely through SMA-6, the type I receptor, without a type II
receptor, to regulate neural development (Baltaci et al., 2022). The
pathways and functions of TIG-2, TIG-3 and UNC-129 are still being
elucidated, and this recent work indicates that they maymediate signals
differently from DAF-7 and DBL-1. Furthermore, a function for TIG-2
in regulating neuromuscular junctions (NMJs) was recently identified
(Cheng et al., 2022). They found that tig-2 mutants had slower
locomotion, increased cholinergic synapse density, decreased NMJ
neurotransmitter release, as well as decreased muscle mitochondria
and ATP production. In addition to these developmental functions for
TIG-2 and TIG-3, another recent study demonstrated that all five TGF-
β ligands are involved in regulating the C. elegans innate immune
response (Ciccarelli et al., 2023b) (Figure 2). Mutations in any of these
ligands result in decreased survival on P. luminescens. Genetic evidence
and structuralmodeling suggest that in this role, TIG-2 and TIG-3work
together while DBL-1 andDAF-7 work with each other (Ciccarelli et al.,
2023b). This result shows unanticipated cooperativity between TGF-β/

FIGURE 2
TGF-β Ligands in Caenorhabditis elegans. DBL-1 and TIG-2 are
members of the BMP family; DAF-7 and TIG-3 are related to TGF-β/
Activin; and UNC-129 is more divergent. All five ligands have been
shown to regulate immune response, while only DBL-1 regulates
reproductive aging, and DAF-7 regulates somatic aging.
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Activin and BMP family ligands and has implications for how an acute
signaling response can be distinguished from developmental signaling.

TGF-β signaling crosstalk with IIS

The canonical C. elegans IIS pathway begins with insulin-like
ligands, which bind and activate or inhibit DAF-2. Receptor
activation recruits phosphoinositide-3 kinase, AGE-1/PI3K, which
initiates a signaling cascade that includes PIP3, and the serine/
threonine kinases PDK-1, AKT-1, and AKT-2 (Dorman et al., 1995;
Morris et al., 1996; Paradis and Ruvkun, 1998; Paradis et al., 1999).
Then, transcription factors are inhibited, including DAF-16/FOXO and
SKN-1/Nrf2, preventing activation of downstream target genes that
promote longevity. Secondary transcriptional outputs of IIS include the
heat shock transcription factor HSF-1, which is activated by the IIS
cascade (Morley and Morimoto, 2004; Chiang et al., 2012) and
promotes longevity by cooperating with DAF-16 (Hsu et al., 2003).
DAF-2 also activates TOR signaling, which inhibits PHA-4/FoxA to
restrict normal growth and longevity (Sheaffer et al., 2008). Separately,
the transcription factor PHA-4was identified asmediating longevity via
dietary restriction (Panowski et al., 2007).

Mutations in daf-2 extend lifespan by decreasing IIS activity and the
PI3K cascade, thus activating the transcription factors and downstream
targets. Decreased IIS results in changes to proteostasis, RNA
homeostasis, oxidative stress, pathogen resistance, lipid and amino
acid metabolism and endocrine signaling, all of which contribute to
the longevity phenotype (Lee and Lee, 2022). The identification of this
longevity pathway inC. elegans demonstrated the utility ofC. elegans for
discovery in the field of aging, and IIS-dependent aging has been shown
to be conserved across many species, including rodent models and
humans (Kenyon, 2010).

DBL-1 has numerous modes of interaction with the longevity-
regulating IIS pathway. Both DBL-1 and DAF-2/InsR regulate
reproductive aging, modulating the length of time before female
reproductive capacity ceases (Luo et al., 2009; 2010). DBl-1 and DAF-
2/InsR also regulate body size (Qi et al., 2017; Clark et al., 2018). In both
roles, the pathways act independently. In the regulation of lipid
metabolism, DBL-1 signaling negatively regulates DAF-2/InsR
signaling, so that loss of daf-2 is genetically epistatic to loss of dbl-1,
or its signaling components (Clark et al., 2018; 2021). The DBL-1
pathway transcriptionally regulates several insulin-like ligand genes
(Liang et al., 2007; Luo et al., 2010). The DBL-1 pathway also
regulates a subset of DAF-16/FOXO transcriptional targets, like fat-6
and fat-7 (Liang et al., 2007). SMA-3 acts upstream of insulin-like ligand
INS-4 in the regulation of fat storage, which carries out homeostatic
functions through DAF-16/FOXO (Clark et al., 2021). An antagonistic
interaction between DBL-1 signaling and DAF-2/InsR was revealed by
the partial suppression of daf-2 phenotypes of longevity, dauer formation,
and autophagy by loss of dbl-1 or its signaling components (Clark et al.,
2018). These two pathways have also been shown to interact in first larval
stage (L1) arrest and Q cell divisions (Kaplan et al., 2015; Zheng et al.,
2018).

The DAF-7 pathway also has many instances of crosstalk with IIS.
DAF-7 signaling acts upstream of DAF-2/InsR signaling (Shaw et al.,
2007), and interacts in a cooperative fashion with DAF-2/InsR in dauer
formation, lipid metabolism, and longevity (Ogg et al., 1997;
Narasimhan et al., 2011). It is hypothesized that these two pathways

cooperate so thatmultiple signal inputs can be used to informdauer and
lifespan decisions (Shaw et al., 2007). Some of this signal integration
may occur through DAF-12/nuclear hormone receptor (Antebi et al.,
2000; Snow and Larsen, 2000). The DAF-7 pathway functions
epistatically with IIS in regulating nictation behavior (Lee et al.,
2017). Nictation is a waving behavior that enables dauer animals to
“hitchhike” on more mobile animals as a way to move to an area with
more favorable conditions, such as lower population density and an
increased abundance of food. Furthermore, expression of several
insulin-like ligands, such as INS-7 and INS-18, are regulated by the
DAF-7 pathway (Liu et al., 2004; Shaw et al., 2007; Narasimhan et al.,
2011). Lastly, the DAF-7 pathway promotes secretion of insulin-like
ligand DAF-28 (Park et al., 2012).

Discussion

Studies using C. elegans have greatly contributed to understanding
the functions and mechanisms of TGF-β signaling. This review focuses
on the multifaceted connections between TGF-β/Activin and BMP
signaling and their roles in regulating longevity and immunity in C.
elegans. Interestingly, delving into these physiological aspects has
unveiled many instances of non-canonical signaling, which may have
implications for mammalian signaling and thus deserve more extensive
study. Because TGF-β signaling is one of the key pathways co-regulating
aging and immunity (Fabian et al., 2021), mechanisms identified in C.
elegans are anticipated to shed light on these processes in all organisms.
Notably, one study examined protein signatures of centenarians and
identified TGF-β signaling, as well as IIS, as hallmark pathways of
healthy aging (Sebastiani et al., 2021). Leveraging the advantages of theC.
elegans system, research can now explore additional associations between
aging and immunity, the relationship of the microbiome with these
physiologies, crosstalk between TGF-β and IIS pathways, and
mechanisms that differentiate TGF-β/Activin and BMP family
activities. Additionally, the short-lived nature of C. elegans offers a
unique opportunity to investigate transgenerational effects, paving the
way for further groundbreaking studies in this field.
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