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Skeletal muscle fibers produce
B-cell stimulatory factors
in chronic myositis
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Introduction: We aimed to identify B-cell-mediated immunomechanisms in

inclusion body myositis (IBM) and polymyositis (PM) as part of the complex

pathophysiology.

Materials and methods: Human primary myotube cultures were derived from

orthopedic surgery. Diagnostic biopsy specimens from patients with IBM (n=9)

and PM (n=9) were analyzed for markers of B cell activation (BAFF and APRIL) and

for chemokines that control the recruitment of B cells (CXCL-12 and CXCL-13).

Results were compared to biopsy specimens without myopathic changes (n=9)

and hereditary muscular dystrophy (n=9).

Results: The mRNA expression of BAFF, APRIL, and CXCL-13 was significantly

higher in IBM and PM compared to controls. Patients with IBM displayed the

highest number of double positive muscle fibers for BAFF and CXCL-12 (48%)

compared to PM (25%), muscular dystrophy (3%), and non-myopathic controls

(0%). In vitro, exposure of humanmyotubes to pro-inflammatory cytokines led to

a significant upregulation of BAFF and CXCL-12, but APRIL and CXCL-13

remained unchanged.

Conclusion: The results substantiate the hypothesis of an involvement of B cell-

associated mechanisms in the pathophysiology of IBM and PM. Muscle fibers

themselves seem to contribute to the recruitment of B cells and sustain

inflammation.

KEYWORDS

autoimmune diseases, neuromuscular disease, inflammatory muscle disease, myositis,
B cells
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Introduction

The group of idiopathic inflammatory myopathies consists of

dermatomyositis (DM), polymyositis (PM), inclusion body myositis

(IBM), necrotizing myopathy (NM), and anti-synthetase syndrome

(ASS). Over the last few years, there was growing evidence for the

involvement of B cells in idiopathic inflammatory myopathies.

Especially in DM and ASS, the role of B-cells in the

pathophysiology is well known and several autoantibodies are

well characterized (1–3). The histological picture in NM is

scattered necrotic myofibers and T- or B cells may be found in

focal spots, but there are no primary inflammatory lesions (3).

The pathophysiology of IBM is very complex and, in general,

characterized by mechanisms of inflammation and b-amyloid

associated degeneration. Recent evidence suggests that

inflammation may be the primary event. IBM and PM are

considered to be T cell-mediated diseases, but high frequencies of

plasma cells were detected in muscle biopsy specimens (4), and

infiltrating B-cells and plasma cells were found to be clonally

expanded and had undergone affinity maturation locally within the

muscle (5–7). Plasma cells derived from IBM muscles produce

autoantibodies that are directed against antigens in muscle tissue

(e.g., Desmin) (8), and the autoantibody directed against cytosolic 5’-

nucleotidase 1A (cN1A) was identified in IBM (9, 10). In pure PM,

usually, no myositis-associated antibodies are found. Apart from

immune cells, muscle fibers are considered capable of immune cell

recruitment and T-cell activation (11). The reason for analyzing IBM

and PM in this study as the only two subtypes of myositis is their

similar pathophysiology especially regarding CD8 cytotoxicity (3)

and the limited knowledge of B-cell mechanisms in both disorders.

IBM and PM were compared to muscular dystrophy as disease

control. We did not compare the expression levels with DM, NM,

and ASS because B-cell mechanisms in these disorders have been

characterized before and we did not aim to repeat these observations.

Another aim of this study was to examine the pathophysiological

contribution of muscle cells in the context of myositis and not to

analyze the impact of other immune cells.

The B-cell-activating factor of the tumor necrosis family

(BAFF) and a proliferation-inducing ligand (APRIL) are crucial

for B cell survival, maturation, activation, and differentiation (12,

13). Trafficking of human naive and memory B-cells is mainly

orchestrated by CXC-chemokine ligands (CXCL) 12 and 13 (14).

We studied the distribution of these factors associated with B

cells and the in vitro effect of an inflammatory environment to drive

and sustain a humoral immune response in the skeletal muscle.
Materials and methods

Patients

The project was approved by the institutional review board

(ethics committee) and patients signed informed consent.

Diagnostic biopsies were used from the skeletal muscle of patients

with inclusion body myositis (n=9), polymyositis (n=9), muscular
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dystrophy (n=9), and non-myopathic controls (n=9). Most biopsies

were obtained from the Department of Neuropathology of the

University Medical Center Göttingen. In order to achieve

comparable group sizes in IBM and PM, a few additional biopsies

were obtained from the Departments of Neuropathology or

Neurology of the University Medical Centers of München (PM;

n=3), Halle (IBM; n=2), and Hannover (IBM; n=1) (all

in Germany).

The anti-cN1A antibody status was documented in one out of

nine IBM patients and that was negative.
Muscle biopsies

Frozen sections (5µm) of muscle biopsy specimens or cultured

muscle cells were fixed with 4% paraformaldehyde at room

temperature (for hematoxylin and eosin staining) or acetone at -20°

C (all other stainings) for 10 min. Unspecific binding was reduced by

45 min incubation with 10% bovine serum albumin (BSA) and 100%

goat serum (all from Jackson ImmunoResearch, West Grove, USA).

The following anti-human antibodies were used: rat anti-BAFF

(1:1000, Abcam, Cambridge, USA) and mouse anti-CXCL-12

(1:1000, R&D Systems, Minneapolis, USA). The primary antibodies

were diluted in BSA and incubated for 1h at room temperature.

Immunoreactivity was detected using Alexa-488 or Alexa-594-

conjugated goat antibodies against mice or rats (1:600, all from

Molecular Probes, Leiden, Netherlands). Nuclear counterstaining was

performed with DAPI (Molecular Probes/Invitrogen, Carlsbad, USA)

at 1:50,000 for 1 minute, followed by mounting in Fluoromount-G

(Southern Biotech, Alabama, USA). Immunofluorescence microscopy

and digital photography were performed on an Axiovert 200m

microscope (Zeiss, Oberkochen, Germany) using a 20x and 40x

objective, appropriate filters for green (488 nm), red (594 nm), and

blue (350 nm) fluorescence, and a cooled CCD digital camera (Retiga

1300; QImaging) using the QCapture software (QImaging). For every

biopsy, photomicrographs that covered a cross-section of each biopsy

specimen were taken by an investigator who was blinded to the source

of the specimen (LM). Scion Image software was used for grey-

scale analysis.
Extraction of mRNA and reverse
transcription–polymerase chain reaction

Total RNA was extracted from cell culture using a commercial

kit (RNeasy from Qiagen, Venlo, Netherlands), following the

supplier’s instructions. Total RNA from the muscle biopsy

specimen was homogenized in 500 µl TRIzol (life technologies,

Carlsbad, USA) with a plastic tissue grinder and pestle (Kimble

Chase, Vineland, USA). Precipitation of mRNA was improved by

Ambion 9.520 (life technologies, Carlsbad, USA). RNA was eluted

in 30 µl RNA-ase free water and stored at -80°C. Complementary

DNA (cDNA) synthesis was performed with SuperScript II reverse

transcriptase (Invitrogen), following the supplier’s instructions. The

resulting cDNA was stored at –20°C. Quantitative (real-time)
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polymerase chain reaction was performed as previously described

(15) on an SDS 7500 Sequence Detection System (Applied

Biosystems, Foster City, USA) by 6-carboxyfluorescein (FAM-)

labeled specific primer/probes: Glycerinaldehyd-3-Phosphat

Dehydrogenase (GAPDH) Hs99999905_m1, B-Cell-Activating

Factor (BAFF) Hs00198106_m1, A Proliferation-Inducing Ligand

(APRIL) Hs00182565_m1, CXCL-12 Hs00171022_m1, and CXCL-

13 Hs00757930_m1 (from Applied Biosystems, Foster City, USA).

The resulting mRNA expression was quantified using the Dc(t)
method in relation to the expression of GAPDH mRNA.
Cell culture stimulation studies

As described previously (15, 16), satellite cells -muscle cell

progenitors- from diagnostic biopsy specimens from patients

without myopathic changes were grown according to the

following protocol: The muscle piece was minced and washed in

phosphate-buffered saline and trypsinized. The fragments were

seeded to a 25 cm2
flask in Dulbecco’s modified Eagle’s medium

with pyruvate, high glucose, and L-glutamine (Gibco Invitrogen,

Carlsbad, USA), supplemented with 10% fetal calf serum (Cambrex

Bioscience), penicillin, streptomycin (Gibco Invitrogen, Carlsbad,

USA), and 0.5% chick embryo extract (Accurate). After 21 days,

myotubes were labeled with neural cell adhesion molecules (anti-

CD56, mouse clone Eric-1; Neomarkers/Labvision), followed by

magnetic bead–labeled secondary antibodies and subsequently

separated by magnets (Dynal/Invitrogen, Carlsbad, USA). For

further experiments, myotubes were seeded either in 8-chamber

slides (LabTek II; Nunc) or 24-well plates (Nunc), and at 80%

confluence, fusion was induced by serum deprivation. Well-

differentiated myotubes, as revealed by immunocytochemical

staining for the muscle marker desmin, were either kept as

unstimulated controls in X-Vivo 15 medium (Cambrex
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Bioscience) and exposed to the cytokines IFN-g (300 units/ml),

TNFa (10 ng/ml), and IL-1b (20 ng/ml) (all from Chemicon

International Inc., Temecula, USA) in serum-free X-Vivo 15

medium. The duration of incubation was 12 to 48h. Scion Image

software was used for grey-scale analysis.
Statistical analysis

For statistical analysis (ANOVA, t-test, Kruskal-Wallis, and

Pearson correlation), *P< 0.05, **P< 0.01, and ***P< 0.001 were

used as significant values, and all significant outliers (Grubb’s test)

were excluded prior to analysis. Statistical analyses were performed

using the software GraphPad Prism 7 (San Diego, CA, USA).
Results

Upregulation of factors associated
with B-cell activation and chemotaxis in
IBM and PM

We first studied the mRNA expression of factors associated with

B-cell activation and chemotaxis in muscle specimens from patients

with IBM, PM, muscular dystrophies, and non-myopathic controls.

In IBM compared to non-myopathic controls, there was significant

overexpression of BAFF (mean 0.028 ± 0.037, P=0.0004), APRIL

(mean 0.0021 ± 0.0019, P=0.001), CXCL-12 (mean 0.039 ± 0.06,

P=0.003), and CXCL-13 (mean 0.00046 ± 0.00024, P=0.04)

(Figure 1). In PM compared to non-myopathic controls, we noted

a significant overexpression of BAFF (mean 0.013 ± 0.014,

P=0.002), APRIL (mean 0.0017 ± 0.001, P=0.0002), and CXCL-13

(mean 0.0011 ± 0.0012, P=0.04) but not for CXCL-12 (mean 0.0014

± 0.0019, P=0.067). The expression of all four targets was
FIGURE 1

mRNA expression of BAFF, APRIL, CXCL-12, and CXCL-13 in muscle tissue specimens by quantitative real-time-PCR: Significant upregulation of
BAFF, APRIL, and CXCL-13 in IBM and PM and of CXCL-12 in IBM compared to non-myopathic controls. Comparable results for all molecules in IBM
and PM. Upregulation of CXCL-12 in muscular dystrophies compared to non-myopathic controls. Data shown as mean +SD. Statistics using multiple
comparisons by Kruskal-Wallis testing, indicating significance by *P< 0.05; **P< 0.01; ***P< 0.001. IBM, inclusion body myositis; PM, polymyositis;
Dystrophy, muscular dystrophies; BAFF, B-cell-activating factor of the tumor necrosis family; APRIL, A proliferation-inducing ligand, CXCL-12, CXC-
chemokine ligand 12; CXCL-13, CXC-chemokine ligand 13.
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comparable in PM and IBM and no differences were noted. In

comparison to muscular dystrophies, the expression of APRIL and

CXCL-13 in IBM and PM showed a tendency for an upregulation,

which did not reach statistical significance. CXCL-12 was

significantly upregulated in muscular dystrophies compared to

non-myopathic controls (mean 0.021 ± 0.026, P=0.03).

Collectively, the B cell-associated factors BAFF and APRIL as

well as the B-cell chemoattractants CXCL-12 and 13 were

upregulated in muscle specimens from patients with IBM and PM

compared to non-myopathic controls. Only CXCL-12 was

upregulated in dystrophic muscle compared to non-

myopathic controls.
Upregulation of BAFF and CXCL-12 on
protein levels in IBM and PM

At the protein level, overexpression of BAFF and CXCL-12 in

muscle specimens was confirmed by immunohistochemistry

(exemplary findings are shown in Figure 2A). Manual counting of

the number of fibers in each specimen (range from 78 to 233) in a

blinded fashion revealed a significantly higher number of muscle
Frontiers in Immunology 04
fibers positive for BAFF and CXCL-12 in IBM (BAFF 70%, CXCL-

12 56%, and double positive 48%) compared to PM (BAFF 50%,

CXCL-12 33%, and double positive 25%). Both forms of myositis

displayed a significantly increased number of positive fibers in

comparison to muscular dystrophies (BAFF 7%, CXCL-12 10%,

and double positive 3%) and non-myopathic controls (BAFF 2.9%,

CXCL-12 1.2%, and double positive 0%) (Figure 2B). Similar results

were observed by automated grey scale analysis (data not shown).

Our data demonstrate that major sources of BAFF and CXCL-

12 are muscle fibers themselves. Taken together, these data suggest

that the local inflammatory milieu generated by muscle fibers could

directly contribute to the recruitment and activation of B cells in

IBM and PM.
Strong induction of BAFF by IFN-g and of
CXCL-12 by IL-1b on mRNA levels in
human myotubes

Based on our biopsy findings, we assessed the effect of an

inflammatory environment on human skeletal muscle in vitro.

Human primary myotube cultures were incubated for 24 hours in
A

B

FIGURE 2

Analysis of BAFF and CXCL-12 expression on protein levels in IBM and PM by immunohistochemistry: (A) Exemplary findings of muscle tissue
specimen of IBM, PM, dystrophies, and muscle control tissue in BAFF and CXCL-12 immunostainings (microphotographs acquired using a 20x
objective). (B) Significantly increased numbers of BAFF and CXCL-12 positive muscle fibers in IBM and PM compared with non-myopathic controls
and muscular dystrophies. For the analysis, 78 to 233 myofibers were counted in each specimen. Similar results are found in the automated grey
scale analysis (data not shown). Data shown as mean +SD. Statistics using ANOVA with Tukey’s multiple comparison test, indicating significance by
**P< 0.01; ***P< 0.001. IBM, inclusion body myositis; PM, polymyositis; Dystrophy, muscular dystrophies; BAFF, B-cell-activating factor of the tumor
necrosis family; CXCL-12, CXC-chemokine ligand 12.
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the presence of the cytokines IFN-g, IL-1b, and TNF-a alone or in

combination, and the induction of BAFF, APRIL, CXCL-12, and

CXCL-13 mRNA in muscle cells was measured by qPCR. We noted

a strong and significant induction of BAFF by IFN-g alone or in

combination with any other proinflammatory cytokine (Figure 3A;

IFN-g: mean 0.02 ± 0.00067, P<0.001; IFN-g + IL-1b: mean 0.015 ±

0.00096, P<0.001; IFN-g + TNFa: mean 0.015 ± 0.00015, P<0.001).

For CXCL-12, similar results were observed upon IL-1b alone or in

combination with TNF-a (Figure 3B; IL-1b: mean 0.024 ± 0.00088,
Frontiers in Immunology 05
P=0.005; IL-1b + TNF-a: mean 0.014 ± 0.0062, P=0.026). The

combination of IL-1b and IFN-g did upregulate the expression of

CXCL-12, but this did not reach statistical significance compared to

controls (Figure 3B; IL-1b + IFN-g: mean 0.01 ± 0.0015, P=0.17).

After 12, 36, and 48 hours of stimulation, similar results were found

(data not shown). The assessment for APRIL and CXCL-13 revealed

no changes of mRNA levels under proinflammatory conditions

(data not shown). The results are averages of two independent

experiments and the myotubes were obtained from healthy donors.
A

B

FIGURE 3

mRNA expression of BAFF and CXCL-12 in human myotubes under pro-inflammatory conditions by quantitative (real-time)-PCR after 24 hours of
stimulation: (A) Significant induction of BAFF mRNA expression upon IFN-g (alone or in combination) and of (B) CXCL-12 upon IL-1b (alone or in
combination) in human primary myotube cultures. The results are averages of two independent experiments and the myotubes were obtained from
non-myopathic donors. BAFF, B-cell-activating factor of the tumor necrosis family; CXCL-12, CXC-chemokine ligand 12. IFN-g, Interferon g; IL-1b,
Interleukin 1b; TNFa, Tumor necrosis factor a. Data shown as mean +SD. Statistics by ANOVA with Tukey's multiple comparison test, indicating
significance by *P< 0.05; **P< 0.01; ***P< 0.001.
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Increased protein production
of BAFF and CXCL-12 protein under
proinflammatory conditions in
human myotubes

For the analysis of the protein expression, myotubes were

incubated for 12, 24, or 48 hours with IFN-g and IL-1b and
Frontiers in Immunology 06
afterwards stained with anti-BAFF and anti-CXCL-12 antibodies.

Exemplary findings of the immunocytochemical staining for BAFF

and CXCL-12 are shown in Figure 4. The staining revealed an

upregulation of both factors upon exposure to IFN-g for BAFF or to
IL-1b for CXCL-12, respectively. By grey scale analysis, the

upregulation of BAFF upon exposure to IFN-g (Figure 4A; mean

52 ± 6 vs. 90 ± 13, P=0.12) and the induction of CXCL-12 upon IL-
A

B

FIGURE 4

Analysis of BAFF and CXCL-12 expression on protein levels in human myotubes under pro-inflammatory conditions by immunocytochemistry:
(A) Exemplary finding of BAFF expression in human myotubes after 48 hours exposure to IFN-g compared to controls (microphotographs acquired
using a 20x objective). Greyscale analysis revealed a tendency of an increased protein production, which did not reach statistical significance (t-test).
(B) Exemplary finding of CXCL-12 expression in human myotubes after 48 hours exposure to IL-1b compared to controls (microphotographs acquired
using a 20x objective). Greyscale analysis revealed a tendency of an increased protein production, which did not reach statistical significance (t-test).
The myotubes were obtained from non-myopathic donors. The results are shown as mean +SD from two independent experiments. BAFF, B-cell-
activating factor of the tumor necrosis family; CXCL-12, CXC-chemokine ligand 12. IFN-g, Interferon g; IL-1b, Interleukin 1b.
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1b (Figure 4B; mean 53 ± 8 vs. 124 ± 15, P=0.057) did not reach

statistical significance compared to controls. The results are

averages of two independent experiments.

Collectively, these data suggest that non-diseased human

myotubes can express factors involved in B cell activation and cell

recruitment upon exposure to proinflammatory cytokines.
Discussion

The underlying pathomechanisms of myositis are complex and

only partially understood. IBM and PM are thought to be T cell-

mediated disorders as infiltrates of T cells can be noted in muscle

biopsies. Over the last years, B-cell mechanisms in myositis have

drawn more attention and recent results support their contribution

to various forms of myositis including PM and IBM (4–7). The role

of B-cells is well known in DM and ASS and several autoantibodies

were well characterized in these subtypes of myositis (1–3).

In this study, we demonstrate that the B-cell activating factors

BAFF and APRIL as well as the chemokines CXCL-12 and CXCL-

13 are upregulated on the mRNA level in muscle specimens from

IBM and PM compared to controls. An elevated protein expression

of BAFF and CXCL-12 in skeletal muscle biopsies was consistent

with the upregulated mRNA findings in IBM and PM. Human

primary myotubes derived from individuals without a

neuromuscular disease produced BAFF and CXCL-12 mRNA and

protein upon exposure to proinflammatory cytokines.

The immunohistochemical analysis identified muscle fibers

themselves as sources of BAFF and CXCL-12 in PM and IBM.

We were unable to detect these markers on or around inflammatory

cells, which is likely explained by an insufficient sensitivity of the

antibodies used.

Elevated serum levels for BAFF were reported for autoimmune

muscular disorders like DM, PM (17–20), and Myasthenia gravis

(21) but not for IBM (22). APRIL was identified in unspecified

inflammatory muscle disorders only in one study (17). A significant

upregulation of BAFF mRNA was reported in muscle specimens of

IBM, PM, and DM (6, 23), and CXCL-13 mRNA was significantly

upregulated in juvenile DM (24). A recent study observed elevated

serum levels of CXCL-13 and other pro-inflammatory cytokines

and chemokines in DM and ASS compared to healthy controls (25),

yet CXCL-12 was not analyzed.

The expression of APRIL and CXCL-12 mRNA in muscle

tissues as well as the expression of BAFF and CXCL-12 mRNA in

human myotubes had not been analyzed before. We were able to

confirm the finding of increased levels of BAFF mRNA in IBM and

PM and could extend the findings to the expression of its ligand

APRIL and the chemokines CXCL-12 and 13 in muscle tissue

specimens of patients with IBM and PM.

On the protein level, few studies analyzed the expression of factors

involved in B-cell activation in myositis. BAFF expression was detected

by immunohistochemistry in perifascicular muscle cells in DM while

no expression was found in blood vessels and normal controls (23).

The expression of BAFF or APRIL in muscle cells in IBM and PM had

not been reported so far, but the expression of their receptors had been

analyzed by immunohistochemistry: BAFF-R, BCMA, and TACI were
Frontiers in Immunology 07
detected on mononuclear cells in the muscle tissue of patients with

myositis (26). The highest rate of these receptors was found in IBM in

five out of six analyzed patients, followed by PM (five out of 11) and

DM (two out of 6). CXCL-12 was observed in macrophages (CD68+)

and T cells (CD4+) invading muscle fibers (27) as well as in muscle

fibers in IBM and PM (28). The protein amount of CXCL-12 evidenced

by western blot was significantly increased in IBM and PM compared

to healthy controls with a tendency for a higher expression in IBM (27);

CXCL-13 localized to lymphoid follicle-like structures in juvenile DM

and was absent in healthy muscles (24). In DM, CXCL-12 was shown

to be strongly upregulated in affected blood vessels.

In DM, muscle fibers were positive for BAFF (23), and in IBM and

PM, they stained positive for CXCL-12 (28). Our present data clearly

demonstrate a substantial protein expression of BAFF in IBM and PM,

which had not been reported before. In the present study, we

demonstrated that muscle cells derived from non-myopathic subjects

in vitro start to produce BAFF and CXCL-12 under proinflammatory

conditions. This would be a substantial prerequisite for the induction of

skeletalmuscle inflammation in vivo.Muscle cells areknown tobeactive

participants rather thanpassive targets of an immune response (11) and,

thus, exert a plethora of immune mediators (29). In vivo muscle cells

have been shown to be capable of secreting proinflammatory cytokines

such as IL-1a, IL-1b, TNFa, IL-6, IL-2, and IFN-g and chemokines such

as CXCL-12, and C-C motif ligand 2 (CCL2).

BAFF is known to be induced by the stimulation of IFN-a and

IFN-g (30) in salivary gland epithelial cells and in intestinal epithelial
cells (31). The transcriptional up-regulation of the gene CXCL-12 can

be induced in human and rat cell lines by inflammatory stimuli such

as interleukin-1 and interleukin-6 (32). Our cell culture data are well

in line with these findings as we were able to show a significant

upregulation of BAFF and CXCL-12 mRNA in myotubes from non-

myopathic individuals upon exposure to IFN-g and IL-1b. Satellite-
cell-derived myoblasts in rats express CXCL-12 protein levels with

the highest amount when mature myotubes are formed (33). The

staining characteristics are similar to our study with human

myotubes. The finding of CXCL-12 expressed by normal muscle

cells has not been reported for humans so far.

Taken together, our data demonstrate unique patterns of B cell

regulatory factors in IBM and PM. Besides the known roles of T cells

and macrophages in both diseases, a crucial role in the composition

and regulation of muscle inflammation appears to be controlled by an

interplay of muscle fibers and B cells through B cell signaling factors.

The regulation of BAFF and APRIL in autoimmune disorders of

tissues other than skeletalmuscle has been shown by different groups:

In Lupus with the affection of kidneys and the central nervous

system, serum BAFF has been shown to be elevated and serum

APRIL was decreased (34, 35). The analysis of cerebrospinal fluid

(CSF) from patients with inflammatory brain disorders like multiple

sclerosis and Lyme neuroborreliosis revealed significantly increased

levels of BAFF, CXCL-12, and CXCL-13 compared to patients with

non-inflammatory neurological diseases (36), and BAFF protein

levels were upregulated in patients with neuro-Behçet’s disease

(37). In other B-cell-mediated disorders like rheumatoid arthritis,

the levels of APRIL and BAFFwere found to be elevated in serum and

synovial fluid and both levels correlated with disease activity (38–40).

Tabalumab, an anti-BAFFmonoclonal antibody, showed efficacy and
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safety in rheumatoid arthritis in phase two studies but did not meet

the primary or secondary outcomes in a phase three study (41), and

Belimumab, a biologic BAFF inhibitor, has been the first biologic

agent licensed for Lupus therapy (35).

Our findings on muscle specimens from patients with myositis

are comparable with inflammatory central nervous system

disorders in that increased levels of BAFF, CXCL-12, and CXCL-

13 are observed. By contrast, APRIL mRNA was elevated in the

skeletal muscle of IBM and PM but did not seem to be operative in

inflammatory central nervous system disorders.

An explanation for increased levels of CXCL-12 in myositis as

well as in muscular dystrophies could be its known role during

muscle regeneration: Research has shown that injecting CXCL-12

into a damaged muscle led to an increase of muscle weight and

improved muscle histology with a decreased level of fibrosis (33).

The upregulation of CXCL-12 may be an attempt of the muscle

fibers to improve muscular regeneration. Moreover, upregulation of

CXCL-12 and its receptor CXCR4 was noted in the gastrocnemius

muscle of rats after repeated periods of daily running performance

compared to non-running controls (42). This can be interpreted as

the involvement of CXCL-12 in adaption to muscle exercise. These

findings reflect the pleiotropic role of chemokines like CXCL-12 in

different pathomechanisms of the muscle and it underscores its

relevance to distinct functions in the muscle. Within the

inflammatory milieu of myositis, chemokines can activate unique

immunomodulatory pathways including B-cell activation and

support muscle regeneration with CXCL-12.

Collectively, in inflammatory myopathies, we demonstrate the

muscular presence of molecular factors that are crucial for B cell

survival, maturation, activation, and differentiation (BAFF) (12, 13)

as well as for B-cell chemotaxis (14) (CXCL-12 and 13). These

factors together provide a prerequisite for sustained B-cell

involvement in the pathogenesis of IBM and PM.

B-cell mechanisms and autoantibody production seem to play an

important role in specific forms of myositis like IBM and PM and are

thought to be less important in unspecific inflammatory settings like in

muscular dystrophies. Our data emphasize the relevance of specific

muscle inflammation in IBM andPM. This is of particular relevance in

view of autoantibodies like cN1A and supports the rationale for

therapeutic efforts to modulate the humoral (auto-) immunity by

drugs such as immunoglobulins or B cell depletion by rituximab.
Limitations

The main limitation of our study is the relatively small number

of patients, which is due to the rare nature of the disease subsets

studied. Although the number of muscle biopsies was clearly

sufficient for a meaningful statistical analysis, the data cannot be

generalized without confirmatory studies.

Our data provide novel insight into the complex pathophysiology

of myositis and the role of B cells. Beyond the techniques used in the

present study, it will be of interest in the future to design
Frontiers in Immunology 08
complementary approaches including: i) further analysis of mRNA

regulation by an epigenetic approach, ii) secreted protein levels of

cytokines and chemokines in muscle cell culture by ELISA and

Western blot, and iii) intracellular metabolism including

(immune)-proteasome by a metabolomic approach.
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