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Thrombus growth is a complex and multiscale process involving interactions
spanning length scales from individual micron-sized platelets to macroscopic
clots at the millimeter scale. Here, we describe a 3D multiscale framework to
simulate thrombus growth under flow comprising four individually parallelized
and coupled modules: a data-driven Neural Network (NN) that accounts for
platelet calcium signaling, a Lattice Kinetic Monte Carlo (LKMC) simulation for
tracking platelet positions, a Finite Volume Method (FVM) simulator for solving
convection-diffusion-reaction equations describing agonist release and transport,
and a Lattice Boltzmann (LB) flow solver for computing the blood flow field over
the growing thrombus. Parallelization was achieved by developing in-house
parallel routines for NN and LKMC, while the open-source libraries OpenFOAM
and Palabos were used for FVM and LB, respectively. Importantly, the parallel
LKMC solver utilizes particle-based parallel decomposition allowing efficient use
of cores over highly heterogeneous regions of the domain. The parallelizedmodel
was validated against a reference serial version for accuracy, demonstrating
comparable results for both microfluidic and stenotic arterial clotting
conditions. Moreover, the parallelized framework was shown to scale
essentially linearly on up to 64 cores. Overall, the parallelized multiscale
framework described here is demonstrated to be a promising approach for
studying single-platelet resolved thrombosis at length scales that are
sufficiently large to directly simulate coronary blood vessels.
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1 Introduction

Thrombosis is a pathological process that results in the formation of blood clots within
the vascular system. These clots can lead to serious health consequences, such as heart attacks
and strokes. Platelets are the primary cellular components involved in arterial thrombosis.
Platelet activation and aggregation are complex processes that depend on a variety of factors,
including local blood flow conditions and the surrounding biochemical environment. In
turn, the structure and size of platelet aggregates affect blood flow as well as the release and
transport of various biochemical species that couple back to platelet activation. The
formation of a thrombus therefore is a complex and multiscale process that involves
interactions across multiple length scales, ranging from the cellular level (sub-micron) to
the macroscopic clot scale (~1 mm) [1]. Consequently, computational modeling, specifically
multiscale modeling has emerged as a powerful tool for investigating the underlying
mechanisms of thrombus growth under flow [2–15]. Several of these models make use
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of a continuum approach where platelets, platelet agonists, and
coagulation factors are treated as chemical species that obey the
convection-diffusion-reaction equation for species transport
[11–15]. This approach overcomes the significant computational
burden associated with explicitly resolving individual blood cells and
accounting for molecular-level interactions between these cells.
However, certain key aspects are neglected, such as the ability to
capture the stochastic nature of clot formation.

To overcome this limitation, we developed a fully three-
dimensional multiscale model for platelet aggregation under flow
and validated model predictions against experimental observations
in prior work [9]. The model consists of four modules: a neural
network (NN) model for platelet calcium signaling and activation, a
lattice kinetic Monte Carlo (LKMC) module to track platelet motion
and deposition on a growing clot mass under flow, a finite volume
method (FVM) solver for computing agonist species concentration
fields (ADP, thromboxane A2) described by a convection-diffusion-
reaction equation, and a lattice Boltzmann (LB) method solver for
tracking and updating the fluid velocity field as the clot grows (see
Figure 1). This model falls under the class of hybrid multiscale
models where blood velocity and platelet agonists are treated as
continuum fields while platelets are resolved explicitly [2–10]. As a
result, the model has the ability to predict the structure of the clot at
the resolution of an individual platelet. However, a key challenge in
utilizing this model to simulate thrombosis in physiologically
important settings such as the coronary vessels is the rather high
computational cost involved, motivating the need to parallelize the
overall model.

In this paper, we present the strategies used to parallelize each
module of the computational framework. We use parallel open-
source software where applicable: Palabos (LB) [16], OpenFOAM
(FVM) [17], and Multiscale universal Interface [18] for module
coupling. Parallel versions of LKMC and NN were achieved by
employing a novel parallel particle decomposition approach,

which is a key topic of this paper. Using examples, we
demonstrate that the parallelized framework enables simulations
of systems approaching clinically relevant length scales and may be
used to provide insights into the underlying mechanisms of
thrombus growth and to predict the risk of thrombotic events
in different clinical scenarios. The remainder of the paper is
organized as follows. In Section 2, we describe the numerical
methods and parallelization strategies used in each of the model
components. In Section 3, we present results that validate our
parallel model against a serial version, provide a benchmark
example simulation, and evaluate the parallel performance of
our model. Finally, in Section 4 we provide a discussion of the
implications and limitations of our work.

2 Materials and methods

In this section, we outline each individual module of the
multiscale framework, and discuss the parallelization and module
coupling strategies. A more detailed description of the biological
underpinnings of each component of the multiscale model, along
with a list of model parameters is available in Ref. [9].

2.1 Neural network for platelet signaling

Upon exposure to biochemical stimuli that are either soluble
species or cell surface-linked, platelet signal transduction results in
calcium mobilization, which is a marker of platelet activation. Our
model accounts for platelet activation via a neural network (NN)
model trained in previous work using multicomponent agonist
exposure data to determine a unique patient-specific, intra-
platelet calcium mobilization response [19, 20]. The NN predicts
the intracellular calcium concentration for any platelet, [Ca2+]i(t),

FIGURE 1
The multiscale simulation of thrombus growth under flow required simultaneous solution of the instantaneous velocity field over a complex and
evolving platelet boundary by LB, concentration fields of ADP and TXA2 by FVM, individual intracellular platelet state ([Ca2+]i) and release reactions (R) for
ADP and TXA2 by NN, and all platelet positions and adhesion/detachment by LKMC.
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based on the feedback vector (containing information from 1, 2, 4, 8,
16, 32, 64, and 128 s prior to the current instant) and the current
concentration input of six agonists, namely ADP, TXA2, collagen,
thrombin, nitric oxide donor GSNO, and prostacyclin analog
iloprost. The intracellular calcium concentration is then
employed to determine the extent of integrin activation and
adhesiveness of each platelet, ξi(t), given by

ξ i t( ) � ∫
t

0

Ca2+[ ]i t( ) − Ca2+[ ] 0( )( )dt, (1)

where [Ca2+](0) is the basal level intracellular calcium ion
concentration (100 nM) within a platelet. Detailed information
on the NN architecture, training, and validation is available in
Supplementary Section S1.

The Hill function is used to normalize the cumulative and
recent-history calcium integrals between the basal and maximal
levels of activation, αmin and αmax, to determine a time-dependent
extent of inside-out signaling and integrin activation, F, given by

F ξ i( ) � α min + α max − α min( ) ξni
ξni + ξn50

, (2)

where n is the Hill coefficient and ξ50 is the critical value of ξi for 50%
activation.

Since NN computations of intracellular calcium concentration
need to be carried out for each individual platelet within the
simulation, we employ parallel particle decomposition to
efficiently parallelize the NN module (see Section 2.2 for more
details on the particle decomposition algorithm).

2.2 Lattice kinetic Monte Carlo solver for
platelet motion and bonding

To track individual platelets as they move across the domain,
aggregate to, or detach from the blood clot, we use the lattice kinetic
Monte Carlo (LKMC) method [7–9]. The input for a LKMC
simulation is a rate database for all possible events in the system
at any given time. In the present case, the possible events include
platelet motion (in the ± x, ± y, or ± z directions), bonding, and
detachment. The rate of platelet motion in direction i is given by
Ref. [21]

Γmotion,i � Dplatelet

h2LKMC

+max 0,
v · ei
hLKMC

( ), (3)

where Dplatelet, hLKMC, and v are the platelet diffusion coefficient in
blood, the LKMC lattice spacing (1.5 μm), and local blood flow
velocity vector, respectively.

The rates of platelet bonding/detachment are directly/inversely
proportional to the extent of inside-out signaling, F (defined in Eq.
2), respectively. Furthermore, the role of the local shear rate in the
shear-dependent breakage of ligand-receptor bonds and the effect of
von Willebrand factor (VWF) are accounted for in the bonding and
detachment rates. Detailed expressions for the bonding and
detachment rates are available in Ref. [9].

With the specified rate database at system time t, the time step of
the next event is chosen as

ΔtLKMC � − ln u
Γtotal

, (4)

where Γtotal is the total rate of all events currently accessible in the
system and u is a random number drawn from the uniform
distribution in the interval (0, 1). The probability Pi that event i
with rate Γi will be the next event is given by

Pi � Γi
Γtotal

. (5)

While there exist parallel open-source LKMC implementations
in the literature, their applicability to model particle motion and
aggregation in complex geometries is limited either by restrictions
placed on domain geometries, or by limitations on the types of
events that can be simulated [22, 23]. More importantly, they
employ spatial domain decomposition, which would not be an
efficient parallelization strategy for the present simulations. The
reason for this is that the distribution of events, i.e., platelet motion,
bonding, and detachment, with high propensities is extremely
spatially heterogeneous; motion events are directly proportional
to the local velocity field which is highly variable across the
domain (see Eq. 3), and bonding/detachment events are
restricted to a small portion of the domain. Since spatial
decomposition parallel algorithms for LKMC involve cores
performing events in their respective subdomains, and the LKMC
time step is inversely proportional to the aggregate rate, a single core
can end up being a bottleneck because time is advanced much slowly
on that core [24]. Therefore, to efficiently parallelize the LKMC
method with spatially heterogeneous (and time varying) event
distributions, we have developed a custom in-house C++ code
based on the message passing interface (MPI) library for inter-
core communication that employs parallel particle decomposition
instead of spatial domain decomposition. Here, each core is assigned
a subset of particles, irrespective of their spatial locations, such that
the sum of event rates is approximately uniform across cores.
Moreover, to maintain this balance over time, new particles
entering the simulation domain are assigned randomly among
the cores. A schematic that illustrates the advantages of particle-
based decomposition over domain decomposition is shown in
Figure 2.

We have adapted the synchronous parallel kinetic Monte Carlo
method developed by Martinez et al. for our parallel LKMC module
[25, 26]. In the parallel algorithm, we first divide the system by
distributing the particles equally among K cores. Then, the aggregate
rate of all possible events on each core k, Γtotal,k is calculated, and the
highest aggregate rate Γmax is communicated to all cores, where

Γ max ≥ max
k�1,...,K

Γtotal,k. (6)

A null event is assigned to each core with a rate Γ0,k given by the
difference between the highest aggregate rate and the total rate on
that core, i.e.,

Γ0,k � Γ max − Γtotal,k. (7)
A null event is a “do-nothing” event where the system

configuration remains unchanged. The introduction of these null
events helps achieve time synchronicity, since each core now has the
same total rate (Γmax) that determines the time step associated with
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an LKMC event. Each core now executes an LKMC event in parallel
and independently of other cores, with time step and event
probabilities according to Eqs 4, 5, respectively.

It can be readily seen that the parallel efficiency in the case of
domain decomposition would be suboptimal due to the high
fraction of null events in most cores (see also Figure 2), while
parallel particle decomposition is designed to provide excellent load
balancing. While load balancing is readily enforceable in particle-
based decomposition, the chief drawback of this approach is that
communication across cores becomes more challenging to execute
because of the lack of well-defined inter-core boundaries. Ideally,
any two particles assigned to different cores must not occupy the
same lattice site, or perform lattice hops to or bonding events at the
same lattice site. Strictly ensuring this condition after every event
would require global communication across all cores after each
LKMC event is executed, which is undesirable due to the high
communication overhead costs entailed by this operation. However,
here we take advantage of the fact that bulk platelets (i.e., free
platelets that are not a part of a clot) exist in low concentrations in
flowing blood (<1% of occupied LKMC sites). We therefore treat
bulk platelets as tracer particles that interact only with aggregated
platelets comprising a clot but are otherwise noninteracting with
other bulk platelets. In other words, a platelet assumes an excluded
volume only after it becomes a part of a clot via a bonding event.
This assumption is reasonable (and later will be quantitatively
validated by comparison to a serial reference simulation) because
the probability is low that any two bulk platelets on different cores
execute simultaneous hops resulting in an overlapping
configuration. To minimize the impact of overlapping bulk
platelets, a periodic scan is performed for platelets occupying the
same lattice site, and if found, one of the overlapping platelets is
deleted from the system. At any instant of time, the previously
known clot configuration is available to all cores. We define an
update frequency, F, which is the number of LKMC moves after

which a global call is initiated to update the clot configuration in
each core. Additionally, we only make global calls to update Γ max

after every F LKMC moves by specifying Γ max to a value slightly
higher than the highest total rate to account for any fluctuations in
the highest total rate (e.g., a platelet entering the system will increase
the total rate). The choice of F therefore determines the trade-off
between accuracy and computational cost of the algorithm. For all
the simulations presented in this paper, we set F to be three times the
average number of bulk platelets on a core. In other words, bulk
platelets perform on average three lattice hops between successive
updates of the aggregated platelet configuration. We maintain good
parallel efficiency by making use of these assumptions and
approximations to avoid global calls without compromising the
accuracy of the parallel model when compared to the results of the
serial model (see Section 3).

2.3 Finite volume method solver for agonist
concentration fields: OpenFOAM

Soluble platelet agonist concentration fields Cj(x,y,z,t) (where
j = ADP, TXA2) were determined using the FVM solution to the
convection-diffusion-reaction equations:

∂Cj

∂t
+ v · ∇Cj � Dj∇

2Cj + Rj (8)

where Dj and Rj are the diffusion coefficients and the volumetric
release rates of ADP and TXA2, respectively, and v is the local blood
flow velocity. The open-source software package OpenFOAM was
used to carry out our FVM computations of spatiotemporal agonist
concentration profiles [17]. OpenFOAM is an open-source C++
library that with parallel FVM implementations based on MPI, and
has been widely used in both academic and industrial settings.
OpenFOAM deploys a spatial domain decomposition approach

FIGURE 2
Comparison between parallel spatial domain decomposition and parallel particle decomposition for LKMC. An example decomposition is presented
using 8 cores for the two cases. The ownership of particles to different cores is color coded for illustration. Assuming equal rates associated with each
particle, spatial domain decomposition would advance time 2.25 × slower than parallel particle decomposition because it is bottlenecked by the core
owning yellow-colored particles.
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for parallelization, where the simulation domain is divided among
the cores. The mesh and fields were decomposed using the
decomposePar utility provided in OpenFOAM. Starting from an
initial coarse mesh, the dynamicRefineFvMesh utility provided by
OpenFOAM was used to perform topological refinements to the
mesh. At mesh locations where platelets become sufficiently
activated for dense granule release, the mesh spacing was refined
to 1.5 μm. In such a scenario, a single platelet overlapped several
FVM cells, so the cell at the center of the activated platelet was
treated as the source element for the PDE calculation. The time
derivative was approximated using the Crank Nicolson scheme with
a time step of 0.01 s.

2.4 Lattice Boltzmann method solver for
blood flow field: Palabos

To model the blood flow velocity profile across the simulation
domain, we use the lattice Boltzmann (LB) method, which has been
used extensively in blood flow modelling [27–32]. Importantly, LB
lends itself well to parallel computing [33]. Specifically, we carry out
our LB simulations using Palabos, which is an open-source
computational fluid dynamics solver based on the LB method
[16]. Palabos has been demonstrated to exhibit excellent parallel
efficiencies for benchmark computational fluid dynamics
calculations [16]. It is designed in C++ with parallel features
using spatial domain decomposition and MPI for communication
between neighboring cores.

We assume that blood is an incompressible Newtonian fluid
that satisfies the Navier-Stokes equations. However, instead of
solving these equations directly, LB models the fluid with fictive
particles. The fundamental quantity underpinning LB is the
density distribution function, fi(x, t), in phase space, (x, ci),
where t denotes time and ci denotes the lattice velocity along
direction i. The evolution of the density distribution function is
governed by a discretization of the Boltzmann equation,
given by

fi x + ci, t + 1( ) − fi x, t( ) � 1
τ

feq
i − fi x, t( )( ), (9)

where feq
i is the equilibrium distribution function based on the

current distribution along direction i and τ is the relaxation
parameter. The simplest incompressible Bhatnagar-Gross-Krook
(BGK) scheme is used for relaxation to equilibrium via collisions
between the molecules of a fluid [34], given by

feq
i � wiρ 1 + 3ci · v + 9

2
ci · v( )2 − 3

2
v · v( ). (10)

The fluid density ρ and velocity v in scaled LB units are computed as

ρ � ∑
i

fi, (11)

ρv � ∑
i

fici . (12)

The fluid kinematic viscosity in scaled LB units, ]LB, is related to
the relaxation parameter τ as

]LB � c2s τ − 1
2

( ) � 1
3

τ − 1
2

( ). (13)

In all LB simulations reported in this paper, the fluid domain is
discretized using a uniform D3Q19 lattice [i � 1, . . . , 19]; see Ref.
[33]. The 3D lattice for carrying out our simulations is obtained
from a stereolithography (STL) file surface mesh describing the
computational domain. Palabos is then used to discretize the
domain, i.e., convert the surface description of the domain into a
volumetric description by identifying which fluid nodes (or voxels)
lie inside the domain. This discretization is done internally in
Palabos and is fully parallelized. Moreover, parallel domain
decomposition is carried out automatically in Palabos using a
homogeneous volume mesh. For all LB simulations presented in
this work, the lattice spacing was set to 3 μm. During each LB time
step, the density distribution function, fi(x, t), is updated according
to Eq 9. At locations in the domain where there are bound/
aggregated platelets, no-slip (bounce-back) boundary conditions
are applied [35]. For more details on implementation of the LB
model, the exact form of the equilibrium distribution, and LB unit
conversion, see Refs. [16, 33, 34].

2.5 Module coupling: multiscale universal
interface

The multiscale framework described in this work is composed
of several modules that require periodic exchange of information,
with individual modules each having their respective open-
source libraries or routines. To facilitate the coupling between
different modules at each coupling time, we use the Multiscale
universal Interface (MUI) [18]. MUI is a C++ library that makes
use of non-blocking MPI messages to achieve data exchange
between each module with minimal modifications to individual
module source codes. The flow of information between modules
and a schematic of the time stepping alignment across modules is
shown in Figures 3, 4 respectively. LKMC provides the positions
of all platelets in the domain and the bonding state of each
platelet. LKMC requires the velocity field of the fluid from LB to
calculate convective rates of motion and the activation state of
each platelet from NN to determine the bonding and detachment
rates. The NN provides the activation state of each platelet and
the input to the NN requires the concentration fields of soluble
agonists from FVM. The LB method provides the velocity field
and requires the location of all aggregated platelets from LKMC
for the location of the no-slip surfaces. FVM provides the
concentration field and requires the release rate of platelets,
which depends on the location of platelets obtained from
LKMC, activation states from NN, and the velocity field from
LB. To interpolate the values of velocity fields at locations
required by another module, a trilinear interpolation scheme
using field values at the 8 nearest available points is used, while a
nearest-neighbor sampler is used for interpolating agonist
concentration fields and the mapping of platelet locations to
mesh cells in LB/FVM.

Coupling of the individual models occurs after time intervals of
Δtcoupling � 0.1 s. At the start of the simulation LKMC, LB, FVM,
and the NN are all specified by the initial condition for each method.
Each method is stepped forward in time until the first coupling time
is reached. During this update, all modules share information:
LKMC updates the positions of all platelets and the bound states
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of all platelets in FVM and LB; LB updates the velocity field in
LKMC and FVM; FVM updates the concentration field in NN; and
NN updates the activation state in FVM and LKMC. This process is

repeated until the end of the simulation. The timescale for velocity
field relaxation is generally ≪Δtcoupling, i.e., the velocity field reaches
steady state in LB significantly before the next update time.

FIGURE 3
Multiscale model coupling scheme illustrating the exchange of information between individual modules.

FIGURE 4
Model time stepping. (A) Each individual module is advanced in time independently until the next coupling time is reached. (B)During this update, all
modules share information, and this process is repeated until the end of the simulation.
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Consequently, the LB calculation is performed in a quasi-static
mode in which it is evolved only until steady state is achieved for
a given particle configuration.

3 Results

3.1 Parallel multiscale model validation

To validate our coupled parallel multiscale model of thrombus
growth against serial computations, we considered the dynamics of
platelet deposition and aggregation in two case studies. In the first
case study we considered a cylindrical domain as shown in Figure 5
(inset). The simulation domain was 0.5 mm long with a diameter of
0.12 mm. A semicylindrical reactive collagen surface patch of
diameter 0.12 mm and length 0.25 mm that represents an injury
was located at the center of the domain. A constant wall shear rate of
200 s−1 that is typical for venous flow was maintained at the inlet. In
the second case study, we considered a 1 mm-long stenotic vessel
with an inlet diameter of 0.12 mm. In the central 0.5 mm of the
vessel, we introduced a narrowing of the vessel that corresponded to
a 75% reduction in flow area as shown in Figure 6 (inset). The
stenotic area was assumed to express collagen that extends up to half
the circumference and represents the region of injury that triggers
platelet aggregation, as shown in Figure 6 (inset). The inlet and
outlet of the vessel were maintained at a constant pressure drop that
corresponds to an initial inlet wall shear rate of ~1000s-1, typical of
arterial flow conditions [36]. In both case studies, the bulk platelet
concentration was set at 1.5 × 105 μL-1.

Both case studies were first simulated in serial (i.e., on a single
core) and the dynamics of platelet deposition used to validate results
from corresponding parallel simulations using 8, 16, and 32 cores.
As shown in Figures 5, 6, the platelet counts (defined as the number
of aggregated platelets that are part of a clot) as a function of time
predicted by the parallel runs agree well with those predicted by the
serial run. Also shown in Figures 5, 6 (insets) are snapshots of the
platelet aggregates generated in both the serial and parallel cases.
Histograms of deposited platelet counts placed in bins along the
axial location in the domain showed identical results for simulations
using 1, 8, 16, and 32 cores (see Supplementary Figure S2).
Consequently, the serial and parallel models can be considered
functionally equivalent.

3.2 Benchmark simulation of human
stenotic thrombus growth from initial
platelet deposition to full occlusion

Following validation of our parallel multiscale algorithm, we
next considered a benchmark simulation in an idealized cylindrical
blood vessel 2 mm long with a diameter of 0.24 mm. We imposed a
stenosis with a 75% reduction in lumen area in the central 1 mm of
the vessel, as shown in Figure 7A. The inlet and outlet of the stenosis
were maintained under a constant pressure drop that correspond to
an initial inlet wall shear rate of ~1,000 s−1. The entire stenotic area
was assumed to express collagen and trigger platelet activation and
deposition. Again, the platelet inlet concentration was set at 1.5 ×
105 μL−1. Under these conditions, we simulated the first 180 s of the
formation and subsequent growth of the thrombus using our
parallelized code running on 64 CPU cores.

The simulation predicted a rapid rate of thrombus growth after
an initial lag time of about 80s from ~0.1 million platelets to
~0.5 million platelets at 180 s; see Figures 7A, B. This lag time

FIGURE 5
Validation simulations of the parallel multiscale model for
thrombus growth in a cylindrical vessel. Observed dynamics of
aggregated platelet count as a function of time for simulations using 1,
8, 16, and 32 cores. Inset: (A) Schematic of the geometry. Inlet
flow: 200s−1; reactive collagen surface: red bar. Platelet activation
(blue indicates inactivated and red, highly activated) and deposition
after 400 s simulated using (B) serial model and (C) parallel model
using 16 cores.

FIGURE 6
Validation simulations of the parallel multiscale model for
thrombus growth in a stenotic vessel. Observed dynamics of
aggregated platelet count as a function of time for simulations using 1,
8, 16, and 32 cores. Inset: (A) Schematic of the geometry. Inlet
and outlet of the vessel maintained at a constant pressure drop across
the length of the geometry that corresponded to an initial inlet wall
shear rate of 1000s−1. Surface collagen: red bar. Platelet activation
(blue indicates inactivated and red, highly activated) and deposition
after 120 s simulated using (B) serial model and (C) parallel model
using 16 cores.
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corresponds to the time at which the first monolayer of platelets
adhered to the collagen surface become sufficiently activated to
release platelet agonists. The inlet volumetric flow rate dropped to
~10% of its initial value in 180s due to the flow resistance caused by
the growing platelet aggregates. A plot of the aggregated platelet
count and the change in inlet flow rate as a function of time is
provided in Figure 7B. We also present a snapshot of the deposited
platelet mass, the concentration profiles of soluble platelet agonists
ADP and thromboxane, and the velocity profile along a central
slice of the stenosis after 180−s in Figures 7C–F. We note that
platelet aggregation is significantly higher near the apex of the
stenosis where the observed shear rates experienced by the platelets
are highest, a feature that is consistent with prior published
computational models and experimental observations [6, 9, 15,
37–39]. This observation is due to the role of VWF in mediating
platelet adhesion at high shear rates. At pathological shear rates
greater than 3000s-1, VWF undergoes structural changes from a
globular conformation to a stretched conformation, increasing the
number of exposed ligands [40–42]. To account for this effect in
our platelet adhesion model we included an enhancement factor
for the platelet adhesion rates as a function of the local shear
rate [9].

3.3 Parallel performance

The parallel performance of the code was examined using the
benchmark case considered in Section 3.2. All simulations were
carried out on the Bridges-2 system at the Pittsburgh

Supercomputing Center [43]. Parallel performance was analyzed
using the observed speedup and the parallel scaling efficiency. For a
strong scaling study, the speedup is defined as S(K) � t0

tK
, where t0

refers to the simulation time for a reference simulation onN0 cores,
and tK refers to the simulation time for a parallel simulation using K
cores. Here, N0 was defined as 4 cores. The parallel efficiency is
obtained from the measured speedup as η(K) � S(K)N0

K .
The strong scaling performance was analyzed at an intermediate

simulation time of t = 120s following the initiation of thrombus
growth. This time was chosen because it provided a representative
snapshot of the system where there is sufficient platelet aggregation
leading to a spatially heterogeneous distribution of platelets. We
note here that the parallel efficiencies of individual modules and the
overall code vary as the simulation progresses in time because they
are dependent on the number of platelets considered at any instant
for LKMC and NN, the number of LB time steps needed to reach
steady flow, and the number of FVM cells. For the system under
consideration at t = 120s, the LKMC and NN models accounted for
~0.2 million platelets, the LB model considered an 82 × 82 ×
669 lattice (corresponding to a lattice spacing of 3 µm), and the
FVM model considered ~1.5 million mesh cells. The coupled
multiscale code was run to simulate 0.1−s of clotting and the
time taken by each individual module of the code was recorded.
During this period, the coupled solver performed ~10 million
LKMC updates, ~3,000 LB time steps (ΔtLB � 1.25 × 10−8 s) until
LB achieved steady state, and 10 FVM time steps (ΔtFVM � 0.01 s).
The observed speedup and parallel efficiency as a function of the
number of cores used is shown in Figure 8 for each individual
module and the overall coupled code.

FIGURE 7
Benchmark parallel simulation of thrombus growth in a stenotic vessel. Inlet and outlet of the stenosis maintained at a constant pressure drop across
the length of the geometry that corresponded to an initial inlet wall shear rate of 1000s−1. Collagen is expressed along the stenotic surface. (A) Schematic
of the geometry alongwith a snapshot of the aggregated platelets (blue indicates inactivated and red, highly activated) after 180 s. (B)Observed dynamics
of aggregated platelet count and change in inlet volumetric flow rate versus time. (C) Platelet activation and deposition in the presence of released
(D) ADP, (E) TXA2 and (F) velocity field contours plotted along a central slice of the geometry after 180 s.
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The NN module is essentially embarrassingly parallel as it
requires negligible communication overhead. Moreover, the
parallel particle decomposition LKMC method used to distribute
platelets across cores ensures a homogeneous load distribution
across different cores. The parallel efficiency of the LKMC
module remained at 0.76 despite the spatial heterogeneity in the
distribution of platelets. While most platelets are a part of the
thrombus and do not appreciably influence the total rate, it is
worth noting that they would contribute quite significantly to the
spatial heterogeneity in the distribution of rates in the domain. This
is because the rates of platelet motion are dependent on the local
velocity field which is higher in regions where there is flow
narrowing caused by deposited platelets. Consequently, spatial
domain decomposition would be a poor choice for parallelizing
LKMC. The observed parallel efficiency of the FVM module was
0.53 on 64 cores, while the efficiency of the LB module remained at
0.71 on 64 cores. The parallel efficiency of the overall code was
observed to mirror that of the LB module was 0.72 on 64 cores.

A breakdown of the overall computational cost is provided in
Figure 9 for the simulation on 64 cores. We observed that the NN
and FVM modules contribute negligible computational expense
compared to the LB and LKMC modules. The computational
expense involved in interpolating and exchanging solutions
between different modules using MUI was also found to be
negligible. The LB module most significantly dictated the overall
computational cost of the model, especially at the later stages of the
simulation (at times close to full vessel occlusion) for the present
system. This explains why the overall parallel efficiency of the
framework was observed to mirror that of the LB module. We
note that while these computational times have been obtained for a
specific set of physiological and technical parameters, we expect the
high parallel efficiency of the overall code to remain robust to
changes in platelet density or the mesh resolutions of individual
solvers. This is because Palabos (LB) and OpenFOAM (FVM) have
demonstrated excellent parallel performance for different
benchmark computations [16, 17]. The LKMC code also
demonstrated excellent performance over a range of platelet
densities in a weak scaling analysis (see Supplementary Figure S4).

4 Discussion

In this study, we demonstrated the effectiveness of a
parallelized multiscale model of thrombus growth under flow.
To validate the parallelized model, we used two case studies to
compare predictions with those obtained using a serial version
of the model. We found that the parallelized model produced
similar results to the serial model, indicating that the
parallelization strategies and the accompanying approximations
did not compromise the accuracy of the simulations. We also
evaluated the parallel performance of the model by measuring the
speedup achieved with increasing numbers of cores. Our results
showed that the model achieved a parallel efficiency of ~70% on
64 cores for vessels of size ~1 mm.

A key aspect of our multiscale framework is its modularity,
which enables the easy incorporation of additional components

FIGURE 8
Observed (A) speedup and (B) parallel efficiency of the parallelized multiscale code. The strong scaling of the benchmark simulation is considered
from 4 to 64 cores.

FIGURE 9
Breakdown of the computational expense of each individual
module within the parallel multiscale model.
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into the model. For example, our model can be coupled to patient-
specific models of coronary, carotid, or cerebral circulation that
would supply time-varying inlet velocity and outlet pressure
boundary conditions to simulate thrombus growth in patient-
specific vasculatures [44, 45]. Another feature that can be added
to the model is a full PDE-based description of the coagulation
cascade that can be integrated seamlessly into the FVM solver to
study, for example, the inhibitory effect of a novel anticoagulant on
the rate of thrombus growth [46]. Moreover, the individual modules
of the framework are designed to be independent, meaning that they
can be updated or modified without disrupting the overall
functionality of the model. For example, the LB model may be
replaced with an equivalent direct computational fluid dynamics
solver if desired by the user. This modular design allows for the
flexible integration of new components as they are developed,
improving the accuracy and robustness of the model over time.

The model has some limitations that could be incorporated in future
work. At present, we are yet to incorporate the effects of collective
detachment of platelets from the thrombus (emboli) and their subsequent
transport and interactionwith the blood. Another limitation of themodel
is that we do not model blood vessel wall deformation. The deformation
of the blood vessel wall can influence thrombus formation and growth by
altering the flowdynamics in the vessel. Still, diseased vessels are generally
more rigid compared to compliant healthy vessels. Therefore, our model
assumes a rigid blood vessel wall, which greatly reduces the
computational cost of the simulation but may not capture the full
range of physiological conditions.

In conclusion, the simulations presented in this work represent a
significant advancement in the state-of-the-art in multiscale modeling
of thrombus growth under flow. Specifically, we demonstrated the
ability to simulate length scales up to ~1 mm using modest parallel
computing resources. The ability to simulate large systems with single-
platelet resolution has important implications for understanding the
mechanisms of thrombus growth and predicting the risk of thrombotic
events in different clinical scenarios. For example, the model could be
used to investigate the impact of vascular geometry, blood rheology, and
different drug treatments on thrombus formation and growth. This
information could be used to develop patient-specific evaluations of
cardiovascular risk or response to therapy. Looking ahead, even larger
length and timescale simulations will require additional computational
strategies, such as further optimization of parallelization algorithms, the
use of novel massively parallel hardware architectures (e.g., GPUs), or
the use of non-uniform adaptive grids for the LKMC and LB modules
[16, 47].
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