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Defining durum wheat ideotypes
adapted to Mediterranean
environments through remote
sensing traits

Adrian Gracia-Romero1, Thomas Vatter1, Shawn C. Kefauver1,
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Marı́a Teresa Nieto-Taladriz2, Nieves Aparicio3

and José Luis Araus1*

1Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of
Barcelona, Barcelona, Spain and AGROTECNIO (Center for Research in Agrotechnology),
Lleida, Spain, 2Instituto Nacional de Investigación y Tecnologı́a Agraria y Alimentaria (INIA),
Madrid, Spain, 3Agro-technological Institute of Castilla y León (ITACyL), Valladolid, Spain
An acceleration of the genetic advances of durum wheat, as a major crop for the

Mediterranean region, is required, but phenotyping still represents a bottleneck

for breeding. This study aims to define durum wheat ideotypes under

Mediterranean conditions by selecting the most suitable phenotypic remote

sensing traits among different ones informing on characteristics related with leaf

pigments/photosynthetic status, crop water status, and crop growth/green

biomass. A set of 24 post–green revolution durum wheat cultivars were

assessed in a wide set of 19 environments, accounted as the specific

combinations of a range of latitudes in Spain, under different management

conditions (water regimes and planting dates), through 3 consecutive years.

Thus, red–green–blue and multispectral derived vegetation indices and canopy

temperature were evaluated at anthesis and grain filling. The potential of the

assessed remote sensing parameters alone and all combined as grain yield (GY)

predictors was evaluated through random forest regression models performed

for each environment and phenological stage. Biomass and plot greenness

indicators consistently proved to be reliable GY predictors in all of the

environments tested for both phenological stages. For the lowest-yielding

environment, the contribution of water status measurements was higher

during anthesis, whereas, for the highest-yielding environments, better

predictions were reported during grain filling. Remote sensing traits measured

during the grain filling and informing on pigment content and photosynthetic

capacity were highlighted under the environments with warmer conditions, as

the late-planting treatments. Overall, canopy greenness indicators were

reported as the highest correlated traits for most of the environments and

regardless of the phenological moment assessed. The addition of carbon
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isotope composition of mature kernels was attempted to increase the

accuracies, but only a few were slightly benefited, as differences in water

status among cultivars were already accounted by the measurement of

canopy temperature.
KEYWORDS

vegetation indices, canopy temperature, carbon isotope composition, highthroughput
phenotyping, UAV
1 Introduction

The resilience of staple food crops like wheat to unfavorable

climatic conditions plays a vital role in ensuring food security. This

is particularly evident for durum wheat, one of the main herbaceous

crops in the Mediterranean, which is frequently subjected to abiotic

stresses such as water stress and high temperatures that limit its

productivity. Moreover, in comparison with bread wheat, the

genetic advance of durum wheat, at least in the Mediterranean

basin, has been rather modest (Acreche et al., 2008; Chairi et al.,

2018; Chairi et al., 2020a; Chairi et al., 2020b). Even at the European

level, there is the perception that current breeding programs and

cultivar selection practices do not sufficiently prepare for climatic

uncertainty and variability (Kahiluoto et al., 2019). Understanding

the complex interactions between the genotype, the environmental

conditions, and the specific agronomic and management (G × E ×

M) conditions is crucial for the success of crop improvement

programs. Because crop performance, understood as grain yield

(GY) response to the environment, is a complex trait, breeding

selection has to include a wide range of environmental growing

conditions. Thus, for durum wheat in the Mediterranean basin, a

strong association between the local climate and the yield formation

strategies of the cultivars has been reported (Kyratzis et al., 2022;

Royo et al., 2022). In fact, multi-environment evaluation has been

traditionally considered as a key strategy in breeding programs to

boost yield and in maintaining stability (Reynolds et al., 2009; Watt

et al., 2020). This includes not only characterizing the target trait,

which is usually the GY, and defining the targeted growing

conditions but also accounting for diverse crop factors such as

phenology and other morphophysiological traits putatively

associated with yield (Araus et al., 2008).

The term “ideotype” defines the combination of morphological

and physiological traits that theoretically optimize crop

performance under a particular environmental condition. The

first wheat ideotype was proposed by Donald (1968) for non-

limiting agronomic conditions and was defined as short stature

plants with, strong stems, low tillering capacity, and large erect ears.

Accordingly, the breeding of new cultivars was focused on an

improvement in lodging prevention, which was amenable to high

nitrogen fertilizer inputs (Hamblin, 1993). An earlier progression to

the stages of heading, anthesis, maturity, and, to a lesser extent,

early vigor has been recurrent traits when designing

“Mediterranean ecotypes” (Loss and Siddique, 1994; Sadras and
02
Richards, 2014). However, the benefits from exploring shorter crop

cycles seem to have been virtually exhausted (Chairi et al., 2018), so

other traits conferring adaptation to Mediterranean conditions

must be explored. Because wheat is basically grown under rainfed

conditions and, because of the climate change, drought episodes are

expected to be more common and more severe (Al-Khayri et al.,

2019; Zampieri et al., 2020), the selection criteria that will determine

GY should be focused on adaptation traits for increased

temperatures and water stress (Zampieri et al., 2017).

The concept of crop ideotype allows breeders to focus their

selection process on a specific trait-based model, rather than just the

selection for yield. However, the concept of ideotype needs to

progress even further from the traditional characterization (i.e.,

visual scoring or destructive sampling) of traits putatively associated

with crop performance, by exploiting the current developments in

high-throughput phenotyping to assess those same traits (Reynolds

et al., 2009), including statistical models (Paleari et al., 2020).

Modern breeding strategies are moving away from the

development of high-plasticity genotypes for enhanced

performance under a wide range of environments, toward

modeling a specific set of genotype characteristics for a particular

environmental growing condition (Jaradat, 2018). Therefore, the

more modern concept of ideotype can be defined as seeking the best

crop phenotype to grow in a given environment within a defined

cropping system (Martre et al., 2015). Thus, Padovan et al. (2020)

used simulation crop models to define cultivar selection strategies in

durum wheat based on higher leaf area index and radiation use

efficiency parameters for cooler and wetter locations, whereas short-

cycle cultivars with high grain dry matter potential were preferred

for hotter and dryer locations.

Establishing an ideotype design for a target environment may be

also developed empirically through phenotyping, which implies the

existence of concrete guidelines throughout the crop cycle for traits

that determine yield. To that end, one of the main objectives of crop

phenotyping is to identify and quantify a key set of traits that will

determine crop growth and agronomic performance in terms of

yield and define how and when to measure them (Watt et al., 2020).

Plant phenotyping pursues the characterization of genotypes as they

interact with the environment, and studies are underway to develop

high-throughput plant phenotyping (HTPP) methodologies at

affordable costs, which is an issue that has often been regarded as

a major bottleneck in the breeding process (Araus and Cairns,

2014). Thus, once ideotypes are established, HTPP will help to
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recognize genotypes exhibiting these ideotypic traits among large

germplasm sets. Broadly, HTPP is currently mostly based on non-

destructive evaluations mainly of a remote sensing nature at

different levels, from measurements in single leaves such as

pigment content or chlorophyll fluorescence to the ever more

frequent evaluation at the canopy level using different types of

sensors either from the ground or placed on aerial platforms

(Furbank and Tester, 2011; Fiorani and Schurr, 2013; Walter

et al., 2015; Gracia-Romero et al., 2019). Depending on the type

of sensor and how the information gathered is used, measurements

can be related to different morphological and physiological traits

relevant to the phenotypic performance of the crop. Currently, the

implementation of low-cost conventional cameras to formulate

vegetation indices (VIs) derived from red–green–blue (RGB)

images (i.e., information from the visible range) is increasingly

successful for studying aspects related to canopy green biomass

(Fernandez-Gallego et al., 2019b). Sensors measuring spectral

information at the red and near-infrared (NIR) region are also

commonly used to evaluate plant biomass and greenness, as the

normalized difference vegetation index (NDVI) (Rouse et al., 1976),

whereas pigment content and photosynthetic capacity can be

assessed by the measurement of more specific bands at the visible

region, as the photosynthetic reflectance index (PRI) (Tambussi

et al., 2002). Plant water status is also assessed by using specific

bands, in this case within the NIR region, informing on leaf

turgidity, as the water band index (Penuelas et al., 1993). Canopy

temperature (CT) is another phenotypic trait to consider when

assessing crop water availability, because CT informs on crop

transpiration and water use (Jackson et al., 1988; González-Dugo

et al., 2006). Nevertheless, phenotyping is not necessarily restricted

to the use of an array of different remote sensing techniques, as

several analytical (i.e., laboratory) traits may also be very useful. For

example, the analysis of stable carbon (d13C) isotope composition,

when performed on plant dry matter informs about the water

regimen of the wheat crop (Farquhar and Richards, 1984; Araus

et al., 2003b).

At present, one of the major challenges for successful

implementation of HTPP to define ideotypes lies in unlocking the

potential of the huge amounts of data generated by high-throughput

phenotyping platforms (Coppens et al., 2017). Machine learning

(ML) aims to interpret data by the development of algorithms built

from training sets (van Klompenburg et al., 2020), and these are being

used increasingly in agricultural applications. Indeed, ML

applications may also be helpful for the simultaneous integration of

miscellaneous phenotypic data (Hall et al., 2022). Recent literature

highlights the opportunities found in combining data from different

technologies to assist HTPP (Fiorani and Schurr, 2013; Granier and

Vile, 2014; Costa et al., 2019; Araus et al., 2022).

The novelty of this study, with respect to the recently published

works (e.g. Senapati and Semenov, 2019; Ullah et al., 2020; Olivoto

and Nardino, 2021), is that it defines, for durum wheat, which

ideotypic characteristics, assessed through different remote sensing

approaches, contribute to crop adaptation over a wide range of

Mediterranean conditions. Thus, the ideotypes were defined in

terms of the best combination of remote sensing traits predicting

yield and assessed at anthesis and grain filling, two critical
Frontiers in Plant Science 03
phenological moments in terms of water and heat stress

occurrence, for wheat under Mediterranean conditions. The

remote sensing traits informed on crop water status,

photosynthetic efficiency, and growth/stay green. A set of current

(i.e., post–green revolution) durum wheat cultivars widely grown in

Spain during the last four decades was evaluated for three

consecutive crop seasons across a wide range of latitudes with

very diverse climatic conditions and in trials under different

growing conditions (normal planting under support irrigation

and rainfed conditions and late planting under support

irrigation). The contribution of each parameter into random

forest regression models built separately for each environment

and phenological stage was used to select the best set of remote

sensing traits determining GY. On the basis of those results,

environment-specific GY-predicting models were defined;

furthermore, we evaluated whether the addition of the carbon

isotope composition of mature grains improved the prediction

accuracies of these models.
2 Materials and methods

2.1 Experimental design and varieties

Experiments were carried out under field conditions in three

experimental stations located across a wide range of latitudes in

Spain (Figure 1A): two belonging to the Spanish “Instituto Nacional

de Investigación y Tecnologıá Agraria y Alimentaria” (INIA) and

located in Coria del Rio, Seville (37°14′N, 06°03′W, 5 masl), and

Colmenar de Oreja–Aranjuez, Madrid [40°04′N, 3°31′W, 590 meters

above the sea level (masl)], and one at the headquarters of the “Instituto

Tecnológico Agrario de Castilla y León” (ITACyL) in Zamadueñas,

Valladolid (41°41′N, 04°42′W, 700masl) during three consecutive crop

seasons between 2016 and 2019. The plant material consisted in a panel

of 24 semi-dwarf varieties of durumwheat [Triticum turgidum L. subsp

durum (Desf) Husn.] marketed in Spain during the last four decades

(Supplemental Table 1). Trials were established in a complete block

design with three replicates (Figure 1B) and plot consisted of seven

rows planted 20 cm apart and a seed rate of 250 seedsm−2, representing

an area of 7 m × 1.4 m (Figure 1C).

Climatic data from the different crop seasons at each

experimental station were recorded through the Spanish platform

SIAR (Servicio de Informacion Agroclimática para el Regadıó;

www.siar.es) from meteorological stations next to the fields.

Monthly temperature and rainfall averages are plotted in

Supplemental Figure 1. The experiment sites covered a wide

range of Spanish latitudes, and, thus, the climatic conditions were

very diverse during the different crop seasons. The combination of

different locations, agronomic conditions, and years were

considered as 19 different environments (Table 1) to assess the

performance of the chosen genotypes. Such differences were

represented by daily mean temperatures and water inputs

(precipitation and irrigation). In the case of Coria, the crop cycles

were characterized by high temperatures during the crop cycle

(average temperatures 14.5°C, 13.1°C, and 14.4°C, during the three

consecutive seasons) and a wide range of accumulated precipitation
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during the crop season from 349.6 mm (2016/2017), 595.4 mm

(2017/2018), to 146.6 mm (2017/2018), and an accumulated

evapotranspiration of around 486.7, 478.5, and 554.2 mm,

respectively, for each crop season. The environmental conditions

of the trials in Aranjuez were rather constant in terms of

temperature, with lower values than in Coria (11.4°C, 9.5°C, and

10.4°C, for the three consecutive seasons, respectively), and, despite

the site being located in a semiarid environment, the annual

variability in precipitation was high (107.9 mm, 321.1 mm, and

108.2 mm for the three consecutive years), whereas the potential

evapotranspiration values were around 611.7 mm, 553.4 mm, and

788.0 mm. Finally, Valladolid experienced temperatures
Frontiers in Plant Science 04
comparable to Aranjuez (11.7°C, 9.6°C, and 10.1°C) alongside a

strong annual variation in precipitation during the crop cycle

(107.3 mm, 402.5 mm, and 103.3 mm, for the three consecutive

seasons, respectively) and a potential evapotranspiration of around

593.0 mm, 479.5 mm, and 555.5 mm, respectively. Data soil analysis

is included in Supplemental Table 2.
2.2 Data collection

For each environment, remote sensing measurements were

performed at two sampling dates corresponding to the
FIGURE 1

(A) Map of Spain with the locations of the experimental stations. (B) Example of an aerial view of one of the trials, corresponding to the late planting
conditions of Aranjuez in 2018. (C) Panoramic view from the ground of the field trials in Valladolid, image taken in May of 2018.
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phenological stages of anthesis and grain filling (Table 2). Days after

sowing (DAS) together with growing degree days (GDD) were

counted until each sampling. GDD was calculated as follows:

GDD =o Tmax − Tmin

2

� �
− Tbase

� �

where Tmax and Tmin corresponds to the highest and the lowest

daily temperature, respectively, and the Tbase used was 0°C.
Frontiers in Plant Science 05
The set of sensors and cameras used, the VIs measured (Table 3),

and the laboratory analyses are described in the following sections.

VIs have been categorized into three distinct groups on the basis of

the specific trait they measure: (1) indices related to plot greenness

and biomass, (2) indices related to leaf/canopy pigment content and

photosynthesis, and (3) indices related to water status.

GY (Mg ha−1) was determined for the entire plot using

a harvester.
TABLE 1 Agronomic information for each study site during each growing season.

L T Y Sowing
date

Harvest
date

Irr. Prec. Total
water

Basic dressing Top dressing

(mm) (mm) (mm) (8-15-15 NPK kg
ha−1)

(46% urea kg ha−1)

C
or
ia
 d
el
 R
io

Rainfed

16/
17

14/12/2016 12/06/2017 0 349.6 349.6 450(12/12/2016) 227(15/03/2017)

17/
18

20/12/2017 19/06/2018 0 595.4 595.4 450(18/12/2017) 227(13/03/2018)

18/
19

18/12/2019 18/06/2019 0 146.6 146.6 450(14/12/2018) 227(14/03/2019)

A
ra
n
ju
ez

Irrigation

16/
17

14/12/2016 19/07/2017 395 107.97 502.97 450(16/12/2016) 227(15/03/2017)

17/
18

28/11/2017 04/07/2018 140 321.13 461.13 450(23/11/2017) 185(28/02/2019)

18/
19

29/11/2018 28/06/2019 540 108.2 648.2 450(23/11/2017) 230(27/02/2018)

Rainfed

16/
17

14/12/2016 19/07/2017 0 107.97 107.97 450(16/12/2016) 227(15/03/2017)

17/
18

28/11/2017 04/07/2018 0 321.13 321.13 450(26/02/2018) 185(28/02/2019)

18/
19

29/11/2018 28/06/2019 0 108.2 108.2 450(26/11/2018) 230(27/02/2018)

Late

16/
17

01/03/2017 19/07/2017 425 51.49 476.19 450(16/12/2016) 227(15/03/2017)

17/
18

26/02/2018 10/07/2018 220 228.31 448.31 450(26/11/2018) 185(16/04/2019)

18/
19

27/02/2019 05/07/2019 680 79.4 759.4 450(23/02/2019) 230(23/04/2018)

V
al
la
do

li
d

Irrigation

16/
17

29/11/2016 06/07/2017 155 107.3 262.3 300(07/11/2016) 150(17/02/2017) + 150(21/03/
2017)

17/
18

13/11/2017 25/07/2018 110 420.5 420.5 300(12/11/2017) 150(20/02/2018) + 150(17/04/
2018)

18/
19

03/12/2018 15/07/2019 153 103.3 103.3 300(16/11/2018) 150(28/02/2019) + 150(12/04/
2019)

Rainfed

16/
17

29/11/2016 06/07/2017 55 107.3 162.3 300(07/11/2016) 150(17/02/2017) + 150(21/03/
2017)

17/
18

23/11/2017 20/07/2018 0 420.5 420.5 300(12/11/2017) 150(20/02/2018) + 150(17/04/
2018)

18/
19

03/12/2018 03/07/2019 0 103.3 103.3 300(16/11/2018) 150(28/02/2019) + 150(12/04/
2019)

Late 16/
17

09/02/2017 20/07/2017 155 67.3 222.38 300(07/11/2016) 150(21/03/2017)
L, location; T, trial; Y, year. The letters "NPK" stand for nitrogen, phosphorus, and potassium.
NPK, nitrogen, phosphorus, and potassium.
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TABLE 2 Agronomic information for each study site during each growing season. L, location; T, trial; Y, year; DAS, days after sowing; GDD, growing
degree days.

L T Y Sampling date Phenological Stage DAS GDD

C
or
ia
 d
el
 R
io

Rainfed

2016/2017 05/04/2017 Anthesis 112 1360.12

25/04/2017 Grain filling 132 1680.20

2017/2018 18/04/2018 Anthesis 119 1440.45

15/05/2018 Grain filling 146 1884.88

2018/2019 04/04/2019 Anthesis 107 1425.84

02/05/2019 Grain filling 135 1863.46

A
ra
n
ju
ez

Irrigation

2016/2017 04/05/2017 Anthesis 133 2399.68

18/05/2017 Grain filling 147 2767.24

2017/2018 16/05/2018 Anthesis 169 1387.76

28/05/2018 Grain filling 181 1622.30

2018/2019 13/05/2019 Anthesis 165 1511.91

27/05/2019 Grain filling 179 1769.29

Rainfed

2016/2017 04/05/2017 Anthesis 133 2399.68

18/05/2017 Grain filling 147 2767.24

2017/2018 16/05/2018 Anthesis 169 1387.76

28/05/2018 Grain filling 181 1622.30

2018/2019 13/05/2019 Anthesis 165 1511.91

27/05/2019 Grain filling 179 1769.29

Late

2016/2017 18/05/2017 Anthesis 78 1813.76

06/06/2017 Grain filling 97 2423.69

2017/2018 28/05/2018 Anthesis 91 1622.30

11/06/2018 Grain filling 105 1864.20

2018/2019 27/05/2019 Anthesis 89 1769.29

11/06/2019 Grain filling 104 2070.86

V
al
la
do

li
d

Irrigation

2016/2017 16/05/2017 Anthesis 168 1382.38

07/06/2017 Grain filling 190 1794.34

2017/2018 17/05/2018 Anthesis 185 1176.57

13/06/2018 Grain filling 212 1599.35

2018/2019 15/05/2019 Anthesis 163 1274.48

29/05/2019 Grain filling 177 1473.95

Rainfed

2016/2017 16/05/2017 Anthesis 168 1382.38

07/06/2017 Grain filling 190 1794.34

2017/2018 17/05/2018 Anthesis 534 1176.57

13/06/2018 Grain filling 212 1599.35

2018/2019 15/05/2019 Anthesis 163 1274.48

29/05/2019 Grain filling 177 1473.95

Late 2016/2017 16/05/2017 Anthesis 96 1382.38

07/06/2017 Grain filling 118 1794.34
F
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2.3 Leaf pigments

The content of different leaf pigments was assessed at ground

level using a Dualex sensor (Force-A, Orsay, France), which

operates with a red reference beam at 650 nm and a UV light at

375 nm (Cerovic et al., 2012). This sensor produces measurements

of chlorophylls a + b (Chl), flavonoids (Flav), and anthocyanin
Frontiers in Plant Science 07
(Anth) content and also calculates the nitrogen balance index

(NBI), which is the ratio of Chl/Flav related to the nitrogen and

carbon allocation. For each data of measurement and plot, five

different measurements on the flag leaf from the main stem on five

different flag leaves from the main stem of five different plants were

performed. The measurements were taken from the middle portion

of the leaf lamina.
TABLE 3 Sensors and cameras used during this experiment and their major specifications, with the traits assessed and the indices used with
their formulations.

Trait Sensor Major specifications Indices Formula References

Canopy
greenness and

biomass

RGB camera - Sony
ILCE-QX1 (Sony

Corporation, Minato,
Japan)

16 Megapixels; sensor size: 17.3 mm
× 13.0 mm; focal length: 35 mm.

Trigged and exposure time
programed in automatic mode.

a* – (Pointer, 2009)

Green area
(GA)

60°< Hue< 180° (Casadesús
et al., 2007)

Handheld
multispectral sensor
GreenSeeker crop
sensor (Trimble,
Sunnyvale, CA,

USA)

Wavelength range: 670 nm and 840
nm; field of view: 25 cm (1 m from

the canopy).

Normalized
difference
vegetation

index (NDVI)

R780 − R670

R780 + R670

(Rouse et al.,
1976)

Leaf pigment
content

Leaf-clip sensor:
Dualex (Force-A,
Orsay, France)

Measured area: 5 mm in diameter;
sample thickness: 1 mm

maximum; light sources: 5 LED; 1
UV-A, 1 red, and 2 NIR

Chlorophylls a
+ b (Chl)

NIR   trans :  −  Red   trans :
Red   trans :

(Cerovic et al.,
2012)

Flavonoids
(Flav)

log
NIR   fluor :   excited   red

NIR   fluor :   excited  UV − A

Anthocyanin
(Anth)

log
NIR   fluor :   excited   red
NIR   fluor :   excited   green

Nitrogen
balance index

(NBI)

Chl
Flav

Photosynthetic
capacity

Multispectral camera
- Tetracam micro-
MCA12 (Tetracam
Inc., Chats-worth,

CA, USA)

Incident light sensor (ILS): 15.6
megapixels; wavelengh range: 450 nm
to 950 nm; sensor size: 6.66 mm ×

5.32 mm.
Wavelength

Transformed
chlorophyll
absorption

index (TCARI)

0:3 · (R700 − R670) − 0:2 · (R700 − R550) · (
R780

R670
)

(Haboudane
et al., 2002)

TCARI/OSAVI
ratio

TCARI
OSAVI*

Anthocyanin
reflectance

index (ARI2)

R840 · (
1

R550
−

1
R700

)
(Gitelson et al.,

2001)

Carotenoid
reflectance

index (CRI2)

(
1

R550
−

1
R700

)
(Gitelson et al.,

2002)

Photochemical
reflectance

index (PRI)**

R550 − R570

R550 + R570

(Gamon et al.,
1992)

Chlorophyll
carotenoid
index (CCI)

R550 − R670

R550 + R670

(Gamon et al.,
2016)

Water band
index (WBI)

R970

R900

(Penuelas et al.,
1993)

Water status FLIR Tau2 640
thermal imaging

camera

With a VOx uncooled
microbolometer equipped with a

TeAx Thermal Capture 2.0;
temperature range: −55°C to 95°C;

wavelength range: 7.5 μm to 13.5 μm.

Canopy
temperature

(CT)

– (Costa et al.,
2013)
UV-A, ultraviolet A; NIR, near-infrared; R, reflectance; trans., transmittance; fluor., fluorescence; OSAVI, optimized soil adjusted vegetation index.

*The formula of the OSAVI index used in the TCARI/OSAVI ratio is the following: R780−R670
R780+R670+0:16

. **PRI, R550 is used instead of the original R531.

LED. light-emitting diode.
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2.4 RGB images and derived
vegetation indices

VIs derived from RGB images were evaluated for each plot

using a 20.1-megapixel Sony ILCE-QX1 camera (Sony Corporation,

Minato, Japan) attached to a Sony Monopod VCTMP1 (Sony

Corporation, Minato, Japan). The distance to the crop canopy

was adjusted to 1 m (Figure 2). Color calibration of both cameras

with ColorChecker Passport Photo (X-Rite, Inc., USA) reported

determination coefficients (R2) between 0.88 and 0.94 for all the

RGB parameters (data not shown). Processing of RGB images for

calculation of the VIs in relation to different color properties of

potential interest was performed with MosaicTool (https://

www.gitlab.com/sckefauver/MosaicTool; University of Barcelona,

Barcelona, Spain) integrated as a plugin for FIJI (Fiji is Just ImageJ;

https://www.fiji.sc/Fiji/) (Gracia-Romero et al., 2019). From the HSI

(hue–saturation–intensity) color space, the portion of pixels

classified as green by their Hue values (referring to the color tint)

was determined by the green area (GA) index (Casadesús et al.,

2007). The GA corresponds to the percentage of pixels that have a

hue value between 60° and 180°. From the CIELab color space

models [recommended by the International Commission on

Illumination (CIE) for improved color chromaticity compared to

HSI color space], the parameter a* was calculated, which represents

the red–green spectrum of chromaticity (Pointer, 2009).
2.5 Multispectral vegetation indices

Ground-based multispectral sensing was conducted through

measurements with a GreenSeeker crop sensor (Trimble, Sunnyvale,

CA, USA), by passing it over the middle of each plot at a constant

height of 0.5 m above and perpendicular to the canopy to calculate the

NDVI. In addition, aerial assessments were performed using a

Tetracam micro-MCA (multiple camera array) 12 (Tetracam Inc.,

Chatsworth, CA, USA), which consists of 12 independent image

sensors and optics, each with user configurable filters (450 nm ± 40

nm, 550 nm ± 10 nm, 570 nm ± 10 nm, 670 nm ± 10 nm, 700 nm ± 10

nm, 720 nm ± 10 nm, 780 nm ± 10 nm, 840 nm ± 10 nm, 860 nm ± 10

nm, 900 nm ± 20 nm, and 950 nm ± 40 nm). The 12th sensor is a

dedicated ILS (incident light sensor) that faces upward and uses
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microfilters to provide an accurate band-by-band reflectance

calibration in real-time. PixelWrench II version 1.2.2.2 (Tetracam,

Chatsworth, CA, USA) was used to pre-process the multi-spectral

images by aligning and calibrating each band. A suite of multispectral

indices was calculated from the different bands using custom code

developed in FIJI and integrated within the MosaicTool

software (Table 3).

The flights were performed using a 6S12 XL oktokopter

(HiSystems GmbH, Moomerland, Germany) under clear sky

conditions, with image data captured at an altitude of 50 m. The

unmanned aerial vehicle (UAV) have an active two-servo gimbal that

was used to correct for the effect of pitch and roll movements during

the flight. Pre-processed aerial images from each sensor were combined

to obtain an accurate orthomosaic by producing a three-dimensional

reconstruction with Agisoft PhotoScan Professional software (Agisoft

LLC, St. Petersburg, Russia; http://www.agisoft.com/) (Bendig et al.,

2014). To that end, images with at least 80% overlap were used. Then,

regions of interest corresponding to each plot were segmented and

exported using the MosaicTool (Figure 3).
2.6 Stable carbon and nitrogen isotope
composition and total C and N contents

Mature grains collected at harvest were dried at 60°C for a

minimum of 48 h and pulverized to a fine powder, from which 1 mg

was enclosed in tin capsules and analyzed using an elemental

analyzer (Flash 1112 EA; ThermoFinnigan, Schwerte, Germany)

coupled with an isotope ratio mass spectrometer (Delta C IRMS,

ThermoFinnigan), operating in continuous flow mode at the

Scientific and Technical facilities of the University of Barcelona

(Centres Cientıfícs i Tecnológics de la Universitat de Barcelo-na,

CCiTUB). The 13C/12C ratios of plant material were expressed in d
notation as stable carbon isotope composition (d13C) as follows:

d 13C =
Rsample

Rstandard

� �
− 1

� �
*1, 000

where Rsample refers to plant material and Rstandard refers to Pee

Dee Belemnite calcium carbonate. International isotope secondary

standards of a known 13C/12C ratio (IAEA CH7, polyethylene foil,

IAEA CH6 sucrose, and USGS 40 l-glutamic acid) were calibrated

against Vienna Pee Dee Belemnite calcium carbonate with an

analytical precision of 0.1‰.
2.7 Statistical analysis

Statistical analysis was performed using the open-source

software R and RStudio 1.0.44 (R Foundation for Statistical

Computing, Vienna, Austria). Means and standard errors of the

agronomic data were calculated from the three replicates of each

experimental condition (year × location × treatment × genotype).

The effects of treatment conditions, location, growing seasons,

genotypes, and their interaction with GY and the remote sensing
FIGURE 2

Examples of RGB images of wheat plots acquired from the ground
corresponding to the irrigated conditions of Valladolid in 2019 at the
grain filling and late grain filling stages. Image (A) was taken during
the anthesis stage and image (B) during the grain filling stage.
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measurements were determined through a four-factor analysis of

variance (ANOVA). Differences were considered significant at p-

values ≤0.05. Pearson correlation coefficients were used to analyze

the relationship between the remote sensing parameters and GY.

GY-predicting models were developed for each environment,

first, by combining all the parameters measured separately at

anthesis and at grain filling using random forest regression.

Random forest regression is a ML that works by creating multiple

decision trees on randomly sampled subsets of the data and then

combining the results of these trees to make a final prediction. In

our study, we performed random forest regression using the

random forest package, with 500 decision trees and five variables

used for splitting at each node. The model was trained on a

randomly selected 70% of the data and validated on the

remaining 30%. We evaluated the performance of the model

using R-squared. In addition, we performed feature importance

analysis to determine the relative importance of each variable in

predicting the outcome. The described workflow was repeated 100

times, and the final R-squared and importance values were defined

as the mean of these measurements across all 100 runs. Then, on the

basis of the coefficient of correlation and the importance features

from the random forest analysis, the top three parameters at each

phenological stage were selected and were combined to identify the

best parameters combination using only anthesis, grain filling, or

both stages. Finally, isotope composition was added to the best

models to check whether this improved the prediction accuracy.
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3 Results

3.1 Genotype × environment interactive
effect on GY

The combined analysis of variance across years, locations,

management treatments, and genotypes revealed that mean

squares were significant for GY (Table 4). Considering all the

experiments between the 2016/2017 to 2018/2019 crop seasons,

most of the variance was caused by the management conditions of

the trials, followed by the factors of year and location. The genotype

factor accounted for a low but significant effect on GY.

The ANOVA comparison between all genotypes for each

experimental trial is presented at Table 5 and the rankings of the

highest- and lowest-yielding genotypes at Supplemental Table 3.

Significant genotypic differences in GY were reported in all trials,

except for the irrigation and rainfed conditions of Valladolid in 2016/

2017, the rainfed conditions of Aranjuez in 2017/2018, and the rainfed

conditions of Valladolid in 2017/2018. The irrigation trials were the

best-yielding environments in each location, achieving the highest

yields in Valladolid during the 2018/2019 (Olivadur, 9.06 ± 0.66 Mg

ha−1 as the top genotype) and 2019/2020 (Avispa, 9.02 ± 0.30 Mg ha−1

as the top genotype) crop seasons. The next highest-yielding conditions

were in Coria during 2016/2017 (Don Ricardo, 8.52 ± 0.51 Mg ha−1 as

the top genotype) and, after that, the irrigation trial in Aranjuez during

2017/2018 (Mexa, 8.28 ± 0.38 Mg ha−1 as the top genotype). In
FIGURE 3

For the extraction and processing of information at the single plot level, we used the Mosaic Tool (University of Barcelona Plugin for FIJI), which is a
software package for semi-automatic image segmentation of aerial images for UAV plant phenotyping studies (http://www.sckefauver.com/software-
development/ and http://www.sckefauver.com/software-development/ and http://www.integrativecropecophysiolo-gy.com/software-development/).
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contrast, the lowest-yielding trials were those grown under rainfed

conditions. In particular, the lowest yields were achieved in the rainfed

trials in Aranjuez during 2018/2019 (Simeto, 0.80 ± 0.06Mg ha−1 as the

top genotype). To a lesser extent than the rainfed environments, the

late-planting trials also contributed to yield reductions relative to the

well-irrigated trials at the same locations.
3.2 Individual and combined remote
sensing indices for GY prediction

The performance of the different remote sensing indices

predicting GY varied significantly across environments and

depending on the phenological moment assessed (Figure 4). The

remote sensing indices included in this study were grouped in three

categories attending the physiological process (crop water status, flag

leaf and canopy photosynthetic efficiency/capacity, and crop growth/

greenness) putatively related with final yield. Canopy greenness

indicators were reported as the best traits in the model predicting

GY for most of the environments and regardless of the phenological

moment assessed. Thus, NDVI, a*, and GA reported very similar

correlations against GY (with averaged values of R2 = 0.20 at anthesis

and R2 = 0.21 during grain filling, in average). The contribution of the

canopy greenness indices was consistent also across the growing

treatments assessed, and high correlations against GY were reported

for irrigated treatments (as for the 2017 grain filling evaluations of

Aranjuez with GA: R2 = 0.46 and Valladolid with NDVI: R2 = 0.64),

rainfed treatments (as for the 2017 anthesis evaluations of Aranjuez

with GA: R2 = 0.45 and for the 2018 grain filling evaluations of
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Valladolid with GA: R2 = 0.58), and late planting (as for the 2017

grain filling evaluations of Aranjuez with GA: R2 = 0.56 and

Valladolid with NDVI:R2 = 0.56). Regarding flag leaf pigments and

photosynthetic efficiency/capacity traits, correlations in low-yielding

environments were reported for both anthesis and grain filling,

whereas, for higher-yielding environments, the correlations were

higher at grain filling. Within this trait category, the best

correlations were found for multispectral indices informing on

canopy photosynthetic capacity, with the most repeated parameter

being the TCARI/OSAVI (transformed chlorophyll absorption

index/optimized soil adjusted vegetation index) (R2 = 0.45 and

R2 = 0.48 for the irrigation conditions from Valladolid in 2017 at

anthesis and grain filling, respectively; and R2 = 0.49 for the rainfed

conditions fromAranjuez in both 2017 and 2018 during grain filling).

Moreover, indices informing on the photosynthetic efficiency at the

canopy level also performed well as GY predictors in some

environments. This was the case for the multispectral indices PRI

and, to a greater extent, CCI. Those indices reported moderate-to-

good correlations against GY especially under environments with

higher temperatures and water stress and relatively high temperatures

as the rainfed conditions of Aranjuez in 2017 (R2 = 0.30 at anthesis

and R2 = 0.44 at grain filling) or the heat conditions of the late-

planting cultivars from Valladolid in 2017 R2 = 0.16 at anthesis and

R2 = 0.56 at grain filling). In the case of the flag leaf pigment readings

from the Dualex (informing on photosynthetic leaf performance), the

correlations against GY were only present at the grain filling

evaluations of the normal planting irrigation conditions from

Valladolid in 2017 (Chl: R2 = 0.35; Anth: R2 = 0.42; and NBI:

R2 = 0.34). Finally, for the water status evaluations, CT was highly
TABLE 4 Analysis of variance for grain yield (GY) based on the set of cultivars across the locations, management trials, and crop seasons assessed.

Source of variation Mean Square P-value %CTV

Year (Y) 506.34 *** 28.62

Location (L) 262.85 *** 14.86

Trial (T) 635.17 *** 35.90

Genotype (G) 4.29 *** 0.24

L × T 9.24 *** 0.52

L × G 2.09 *** 0.12

T × G 1.17 *** 0.07

L × T × G 1.16 *** 0.07

L × Y × G 183.95 *** 10.40

L × Y × T 1.35 *** 0.08

L × Y 87.72 *** 4.96

Y × T 70.3 *** 3.97

Y × G 1.47 *** 0.08

Y × T × G 0.68 ns 0.04

L × Y × T × G 0.73 ns 0.04

Residuals 0.61 0.03
front
Values presented are the mean square values, the p-values, and the calculation of the percentage contribution to total variation (CTV). Significance levels: ns, not significant; ***P< 0.001. Y, year;
L, location; T, trial; G, genotype.
iersin.org
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correlated against GY specially at anthesis under the lowest-yielding

environments (as in 2017 for the rainfed conditions of Aranjuez,

R2 = 0.58), whereas the multispectral index WBI (water band index)

(also informing on crop water status) correlated better at grain filling

for the environments with medium (as in 2017 for the late-planting

conditions of Aranjuez, R2 = 0.48) to higher (as in 2017 for the

irrigation conditions of Valladolid, R2 = 0.66) yielding potential.

For a better understanding of the relevance of each of the

parameters measured in each environment at each of the

phenological moments, rainforest regression models were developed

combining all the parameters measured. Formost of the environments,

the strength of the models was very similar for both anthesis and grain

filling (Figure 5). Late-planting conditions fromValladolid in 2017 and

from Aranjuez in 2018 together with the trial from Coria in 2017

followed a different trend, as prediction at grain filling was reported to

be more accurate than at anthesis. The predictions of Coria in 2018

were also displaced from the general trend, as the prediction failed for

the grain filling evaluations. The model with the highest accuracy was

achieved under the irrigated conditions of Valladolid in 2017 at grain

filling (R2 = 0.87). Moreover, the low accuracies reported in 2019

matched the models with less predictors, as the multispectral indices

[NDVI, TCARI, TCARI/OSAVI, ARI2 (Anthocyanin reflectance

index), CRI2 (carotenoid reflectance index), PRI (photochemical

reflectance index), CCI (chlorophyll carotenoid index), and WBI]

were missing for those campaigns.

Using a normalized relative importance metric obtained by the

random forest regression model, the relative contribution of each

variable used in the prediction with the presence of all other

variables in the model was evaluated. Roughly, the importance of

each parameter within the prediction model followed a very similar

trend as to how well the parameter alone was correlated with the

yield. When variables were ranked according to their importance,
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the most repeated variables identified were GA-measured at grain

filling (9/19 environments), a* (6/19 environments), and GA (5/19

environments) measured at anthesis and CT-evaluated at anthesis

(6/19 environments). Figure 6 represents the tendencies of how the
A B C D E F G H I J K L M N O P Q R S

FIGURE 4

Bar graph showing the average importance weights of the remote sensing parameters used in the rainforest prediction models. Values are means
from the 100 runs developed for each model. The y-axis displays the parameters used in the model, whereas the x-axis at the bottom represents
their importance. The top x-axis shows the coefficient of determination of the parameters against yield, and it is indicated with the black lines and
dots. Environments are ordered from the lowest (upper left) to the highest (lower right) average yield as follows: (A) 2019-Aranjuez-Rainfed,
(B) 2019-Valladolid-Rainfed, (C) 2017-Aranjuez-Rainfed, (D) 2017-Valladolid-Rainfed, (E) 2018-Aranjuez-Rainfed, (F) 2018-Aranjuez-Late, (G) 2017-
Aranjuez-Late, (H) 2017-Valladolid-Late, (I) 2019-Coria-Rainfed, (J) 2019-Aranjuez-Late, (K) 2019-Aranjuez-Irrigation, (L) 2017-Aranjuez-Irrigation,
(M) 2018-Coria-Rainfed, (N) 2019-Valladolid-Irrigation, (O) 2018-Valladolid-Irrigation, (P) 2018-Valladolid-Rainfed, (Q) 2017-Valladolid-Irrigation,
(R) 2018-Aranjuez-Irrigation, and (S) 2017-Coria-Rainfed. Orange bars correspond to measures related to biomass and canopy greenness, green
bars correspond to measures of leaf-pigments and photosynthetic capacity/efficiency, and blue bars correspond to measures of water status.
Acronyms of the parameters are defined in Table 3.
FIGURE 5

Relationships across environments between the determination
coefficients (R2) from GY-predicting models developed at anthesis
and the R2 from the models developed at grain filling.
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weight in the models from the most important parameters for each

environment evolve as the average GY for the environment

increases. Biomass and plot greenness parameters clearly

increased their relevance in the models for both anthesis and

grain filling stages as the environments are more productive,

whereas the trends of the leaf pigment content and

photosynthetic parameters showed a reduction. The water status

parameters were less important during anthesis as the average GY

from the environments increased, while, during grain filling, they

were more important.
3.3 Proposed GY-predicting models as the
guidelines for ideotype definition

To study the synergies of the traits describing the highest-

yielding cultivars for each of the environments assessed, all possible
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combinations of the top three parameters based on their

importance in the rainforest models at each phenological stage

were used to describe GY regression models. The generated models

were ordered according to the Bayesian information criterion for

selecting the best predictive model considering both the goodness of

the fit of the model and the complexity of the models (Supplemental

Table 4; one category of models only used anthesis data, other

category only used grain filling data, and another combined both.

For most cases, models incorporating measures at both anthesis and

grain filling improved the prediction accuracies when compared

with using just a single phenological moment. The highest

accuracies for high-yielding environments were reported for

Valladolid for the irrigation conditions in 2017 (GAanthesis, a*grain
filling, CCIgrain filling; R

2 = 0.76), for the irrigation conditions in 2018

(Flavanthesis, NDVIanthesis, NDVIgrain filling; R
2 = 0.55), and for the

rainfed conditions in 2019 (NDVIanthesis, a*grain filling; R
2 = 0.46). On

the other hand, for the lowest-yielding environments, the highest

accuracies were reported for Valladolid for the rainfed conditions in

2018 (PRIanthesis, GAgrain filling, PRIgrain filling; R
2 = 0.66), for Aranjuez

for the rainfed conditions in 2017 (CTanthesis, NDVIanthesis;

R2 = 0.64), and for the late-planting conditions in 2017 (GAgrain

filling, PRIgrain filling; R
2 = 0.62).

We further tested for the 2017/2018 and 2018/2019 crop

seasons if the accuracies of the best models predicting GY

improved by including the stable carbon isotope composition of

mature kernels (Figure 7). The determination coefficients of the

Pearson correlations between the carbon isotope composition and

GY are presented in Supplemental Table 5. Overall, a very slight

improvement was reported especially for the environments with

lower prediction accuracies when only remote sensing parameters

were used. Best improvements were achieved under the late-

planting conditions of Aranjuez 2018 and the trial of Coria 2019.

However, for environments with already accurate prediction

models but with lower yields, as the rainfed conditions of

Aranjuez and Valladolid in 2018, the addition of d13C did not

improve the predictions.
4 Discussion

The aim of the present study was to determine the ideotypic

guidelines for plant phenotyping of well-adapted genotypes to

different Mediterranean environments, based on the analysis of a

set of remote sensing traits measured during the reproductive stage.

For that, a total of 19 of environments exhibiting a wide range of

growing conditions and several fold differences in GY were tested.

The strategy pursued was to identify which combination of specific

traits is the most critical for developing GY-predicting models for

each environmental growing condition. Results proved how the

complexity of G × E effects on the genotypes performance

hampered the correct selection of the most accurate phenotypic

traits to define specific environment ideotypes, reporting significant

differences in the genotypic performance in terms of the relation

between GY and the remote sensing traits assessed. In addition to

that, the study also supports the rather low genotypic variability

existing among the post–green revolution durum wheat cultivars
FIGURE 6

Scatterplot showing the relationship between the top three
parameters with the highest importance weight from each
environment and the average grain yield (GY) of each environment.
The color of the points and fitting lines corresponds to the kind of
trait assessed: orange corresponds to measures related to biomass
and canopy greenness, green corresponds to measures of leaf-
pigments and canopy photosynthetic efficiency/capacity, and blue
corresponds to measures of water status.
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grown in the Euro Mediterranean region, which makes the objective

of defining ideotypes and phenotyping protocols more challenging.
4.1 Environment effect on genotypic
performance of GY and traits

Under Mediterranean conditions, water regime and

temperature have been described as factors explaining the major

portion of GY variation in cereals (Voltas et al., 2002; Senapati and

Semenov, 2020; de Lima et al., 2021). The drought stress

experienced by the rainfed trials greatly reduced GY in

comparison with the irrigated trials at the same locations. In fact,

year-to-year variation in weather had a large impact on the GY of

rainfed trials (except for the trial at Coria, which it is benefitted

from its proximity to the Guadalquivir River), as the quantity and

distribution of rainfall during the three cropping seasons were

markedly different. Climatic variability in precipitation and

temperature is known to affect crop yields. A delay in the

planting date implies higher temperatures during the entire crop

cycle and particularly during the reproductive and grain filling

phases of wheat (Farooq et al., 2011). This reduces the duration of

the crop cycle and increases respiration rates and eventually the

occurrence of heat stress, which overall decreases the GY relative to

normal planting dates supported by irrigation conditions. Because

the average GY under water or temperature stress conditions was

reduced in comparison with the normal planting support irrigation

conditions, the importance of breeding for resilience to these

stresses is emphasized (Juliana et al., 2019). In this sense,

genotypic variability in GY was highly significant but relatively

minor compared to the effect of growing conditions. This is in spite

of the fact that the set of 24 cultivars tested comprehensively

covered the genetic advance in durum wheat achieved in Spain

during the last four decades (Chairi et al., 2018; Chairi et al., 2020a;

Chairi et al., 2020b). The rather small range of genotypic variability

in GY of durum wheat contrasts with the far larger variability for

bread wheat (Acreche et al., 2008), and this is probably related to
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the difference in ploidy between the two species (Mastrangelo and

Cattivelli, 2021). Nevertheless and in spite of the rather narrow

range of genotypic variability, the models performed overall well in

predicting GY, which highlights the strength of the approach.
4.2 Under which circumstances are the
measures of green biomass and
delayed senescence relevant to predict
cultivars performance?

In the case of an abiotic stress such as water stress, the first

evidence of its negative effect on GY was reported by the VIs

because this stress limits leaf expansion and then crop growth and

canopy photosynthesis. As a measure of crop growth, aboveground

green biomass assessed through RGB VIs such as GA and a* and the

multispectral NDVI has been proposed as a useful selection trait for

GY improvement of wheat under Mediterranean conditions

(Fernandez-Gallego et al., 2019b). In the current work, both

NDVI and RGB VIs assessed at anthesis generated quantitative

assessments of canopy cover that indicated a high contribution to

the GY-predicting models. NDVI combines low reflectance in the

visible region of the spectrum (400–700 nm) and high reflectance in

the NIR (700–1,100 nm) region (Hassan et al., 2019), effectively

assessing vegetative cover and vigor. Furthermore, the calculation of

RGB indices based on the color properties of the canopy as the GA

and the a* was also reported as strong predictors of GY across most

of the environments assessed regardless of their yield potential,

which agrees with previous studies evaluating GY under

Mediterranean conditions through color indicator VIs

(Fernandez-Gallego et al., 2019b; Gracia-Romero et al., 2019).

Moreover, when measured during grain filling, such VIs monitor

the duration of leaf/canopy photosynthesis and become a critical

way of detecting cultivars with delayed senescence (Lopes and

Reynolds, 2012; Christopher et al., 2014; Gracia-Romero et al.,

2019; Anderegg et al., 2020), especially when measured as a

response to water stress. Canopy greenness evaluations were one
FIGURE 7

Bar graph comparison of the accuracies of the best prediction-models with and without the addition of the carbon stable isotope composition of
mature kernels. The graph displays the Pearson correlation coefficient for the models using data from anthesis, grain filling, and data from both
stages. Orange bars correspond to the models using the remote sensing measures alone, and the blue bars correspond to the same models but with
the addition of the isotope data. The combinations of location and growing conditions are ordered from the lowest to highest yields.
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of the most important traits across the environments, particularly

when measured during grain filling, which, therefore, informs on

stay-green. Delaying senescence and maintaining canopy greenness

have been reported as being positively correlated to the final GY

(Gregersen et al., 2013). However, only functional stay-green is of

interest for crop improvement, meaning that photosynthesis and

accumulation of assimilates in harvestable tissues (i.e., grains)

should be prolonged (Christopher et al., 2016). However, under

environments without major growth limitations, which

corresponded to the years with higher precipitation at Coria or

the irrigated trials at Aranjuez and Valladolid, the importance of

those indicators of the aboveground biomass during the grain filling

phases was reduced. Probably, the saturation pattern of NDVI and

even that of the RGB VIs (Fernandez-Gallego et al., 2019b; Gracia-

Romero et al., 2023) may reduce the accuracy of the prediction

under conditions where green biomass is high.
4.3 What is the role of water status traits in
defining cultivar performance?

Two remote sensing parameters were used to assess water status

at canopy level. One is the turgor hydration of the leaves thought

the multispectral index WBI (Blank et al., 2021) and the other one

the plant transpiration activity, via the CT measurement (Araus

et al., 2002). For most of the environments and regardless of their
Frontiers in Plant Science 14
yield potential, both parameters were repetitively selected among

the most critical parameters for GY predictions. However, there are

some substantial differences between those measures that may

respond to the results reported and may help to better apply

them. First, CT provides an instantaneous proxy of crop water

conditions, and any stress that induces stomatal closure will be

translated into a decrease in transpiration and a consequent

increase in CT (Araus et al., 2003a). Significant negative

correlations of CT measurements with GY were reported for all

the environments studied, suggesting that even trials characterized

by high yields (e.g., the support irrigation trials at normal planting

dates or the trials at Coria) exhibited some degree of water stress.

CT measurements have been widely reported as an effective tool to

assess genotypic responses to stress and, thus, are a good predictor

of yield (Fischer et al., 1998). Meanwhile, multispectral indices like

the WBI provide a more integrated measure of stress over a longer

period of time and eventually more severe levels of water stress (Das

et al., 2021) that already led to a reduction of water and of cell turgor

in the leaves causing reflectance changes in specific regions of the

NIR. Thus, CT may be more sensitive, to fast responses to water

stress, involving stomatal closure, whereas WBI revealed loss of

turgor and changes in hydration level of the leaf and, therefore,

longer-term and/or more severe water stress. Therefore, both

remote sensing indicators together may cover different levels of

water stress. Another proxy used as an integrative indicator of

cultivar water status during the crop cycle is the carbon isotope
TABLE 5 ANOVA analysis of the effect of the genotypes tested on grain yield (GY) and its heritability (H2) across the growing seasons.

Location Treatment Crop season GY p-value GY H2

Coria Rainfed 2016/2017 *** 0.876

2017/2018 ***

2018/2019 *

Aranjuez Irrigation 2016/2017 ** 0.729

2017/2018 **

2018/2019 ***

Rainfed 2016/2017 ** 0.813

2017/2018 ns

2018/2019 **

Late planting 2016/2017 *** 0.57

2017/2018 ***

2018/2019 ***

Valladolid Irrigation 2016/2017 ns 0.257

2017/2018 *

2018/2019 ***

Rainfed 2016/2017 ns 0.834

2017/2018 ns

2018/2019 ns

Late planting 2016/2017 *** –
fron
ns, no significant, p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001.
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composition (d13C) analyzed in mature kernels (Araus et al., 2003a;

Araus et al., 2013). In fact, d13C was negatively correlated with GY

for most of the environments, whether a low, mild, or high stress

was imposed, supporting d13C as a powerful selection tool for

Mediterranean conditions (Araus et al., 2003a, Araus et al., 2013).

However, the addition of d13C to the prediction models based on

remote sensing did not further improve the performance for most

of the prediction models. Therefore, these remote sensing–based

prediction models are already covering most of the variability in GY

accounted by water conditions.
4.4 Are indices informing on leaf pigment
and canopy photosynthetic capacity/
efficiency valid by themselves to
predict phenotypic performance?

The relevance of traits informing on leaf pigment content and

crop photosynthetic efficiency at the canopy level in predicting GY

under most of the environments assessed was proven in the results.

In contrast to the indices classified as estimators of greenness and

biomass (GA and NDVI), this category includes indices that

measure leaf pigments based on absorbance measurements and

multispectral indices at the canopy level, which use more bands in

the visible part of the spectrum. This difference makes these indices

more sensitive to variations in pigment content and photosynthetic

capacity beyond just plot greenness and biomass, which is the

primary focus of the NDVI. However, those indices were unusually

reported as the most important or the highest correlated traits in the

models, whereas the most relevant traits predicting yield were

connected to crop biomass, greenness, or water status. Among the

individual leaf traits, chlorophyll content of the flag leaf was one of

the traits more times present in the GY-predicting models. This can

be interpreted as Chl readings offer to the prediction models a

complementary information for the identification of high-yielding

cultivars beyond differences in canopy coverage/greenness, as leaf

chlorophyll content has been frequently reported as a good

indicator of the senescence-induced response (Neufeld et al.,

2006; Xiong et al., 2015). A comparable situation was observed

with the multispectral indices related to the photosynthetic

capacity/efficiency, such as PRI, CCI, CRI2, or ARI2. When

evaluated at canopy level, these indices were selected repeatedly in

the GY-predicting models, but usually after traits informing on crop

biomass/greenness and water status. In fact and in addition to

informing on photosynthetic efficiency, these indices when assessed

at the canopy level are highly influenced by the amount of green

biomass. This was evidenced by the appearance of those indices on

some of the models together with biomass indicators like in 2017-

Valladolid-Irrigation (GAanthesis, a*grain filling, CCIgrain filling;

R2 = 0.75) or together with water status measures like 2017-

Aranjuez-Rainfed (CTanthesis, CCIgrain filling; R
2 = 0.62). Those

indices work using narrow bands related to pigment absorption

(Garbulsky et al., 2011), providing a valuable addition to the

potential canopy photosynthesis derived from the vegetation

density and greenness. PRI and CCI are related to photosynthesis

efficiency, being the PRI more sensitive to changes in the amount of
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light absorbed by pigments such as chlorophyll and carotenoids

(Garbulsky et al., 2011), whereas CCI is more used for estimations

of chlorophyll (Gamon et al., 2016). Whereas ARI2 and CRI2

indices inform about the amount of anthocyanins and

carotenoids, respectively, both pigments with photoprotection

roles (Gitelson et al., 2001; Gitelson et al., 2002; Santini et al., 2019).

Despite this general tendency, exceptions were found in some of

the most stressed (and lowest yielding) environments, where

parameters related to leaf pigments and canopy photosynthetic

capacity/efficiency were chosen by the models before the other

remote sensing parameters. Under severe rainfed conditions that

markedly reduced yield (2017-Aranjuez-Rainfed, 2017-Valladolid-

Rainfed, and 2018-Aranjuez-Rainfed), estimations during grain

filling of multispectral indices measuring photosynthetic capacity

(PRI and CCI) and pigment content (TCARI/OSAVI and TCARI)

at the canopy level outperformed any other parameters. In addition,

the contribution of Flav assessed at leaf level was relevant in some of

the low-yielding environments (2018-Aranjuez-Late), as an increase

in flavonoids content can be associated to a protective response

indicating that cultivars with a greater capacity to withstand stress

exhibited higher contents of these protective pigments prior to

senescence (Ma et al., 2014a).
4.5 Formulation of ideotype
recommendations for each
agro-environment based on
measurement performance

In environments with mild to moderate water limitations and

with moderate temperatures at anthesis (provided by normal

planting and support irrigation conditions), most productive

genotypes reported higher canopy green biomass as indicated by

the VIs at both anthesis and grain filling. During the reproductive

stages, genotypes may also reach a point where the differences in

vegetation greenness are negligible because the indices are saturated

by dense canopies (Duan et al., 2017). For that matter, and in

agreement with previous studies (Wu et al., 2010; Magney et al.,

2016), proposed ideotypes must be also screened using a higher

photosynthetic efficiency parameters, as it was done in this study

through multispectral indices as PRI and CCI. However, canopy

greenness may become important again later during grain filling

because indices indicating constitutive stay green attitude and thus

longer grain filling periods (Christopher et al., 2016; Fernandez-

Gallego et al., 2019b) are associated with higher-yielding genotypes.

Under growing conditions characterized by elevated

temperatures during the crop cycle, even if under irrigation (as in

the case of late planting), wheat cultivars reporting larger and/or

greener canopies, as assessed by higher NDVI or GA, and higher

photosynthetic efficiency around anthesis (higher PRI and CCI)

were the most productive. Moreover, the content of either leaf

flavonoids or anthocyanins was also present in the prediction

models for late planting. Although the literature has variable

observations on the accumulation of photoprotection pigments in

response to stress (Chakraborty and Pradhan, 2012; Hammad and

Ali, 2014), increases in flavonoids or anthocyanins are expected to
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induce tolerance to moderate heat stress and then help maintain

yield (Ma et al., 2014b). In the case of Coria trials, even if planted at

a normal date, represented a warmer scenario in than the other two

locations. For conditions of elevated temperatures during the grain

filling, represented by both late planting and Coria, the delay of

senescence, assessed by the greener VIs was the main trait defining

yield, indicating the stay-green ability as mitigation strategy for the

harmful aspects of terminal heat (Latif et al., 2020). However, in

general, the prediction models performed poorer for the

environments with short cycles (i.e., late planting, or Coria)

compared with the normal planting, suggesting the speed of the

phenological development represented a limitation for an efficient

assessment of the remote sensing traits.

Finally, when growing conditions cause severe yield losses due

to water stress, the measurement of actual canopy greenness and

stay green behavior will be not enough to define the best performing

genotypes. In addition to a higher crop green biomass across the

crop cycle (higher NDVI or GA), a higher transpiration and water

use at anthesis (i.e., lower CT) is also incorporated to the prediction

models. Under conditions with low and erratic rainfall without any

irrigation, the definition of drought-tolerant wheat ideotypes relies

on the capability of genotypes to maintain stomatal aperture

(Sinclair et al., 2017; Chenu et al., 2018). This agrees with the

concept that effective use of water is a key factor associated with

higher productivity under Mediterranean environments (Blum,

2009). Moreover, models were also benefited by VIs estimating

pigments related to stress tolerance (Ahmed et al., 2019).
5 Conclusions

Combining different remote sensing traits based on the targeted

environmental (climate and management) conditions may improve

HTPP. In this study, the assessment of different physiological traits

via remote sensing approaches plus subsequent precise selection of

more critical traits via ML served not only to develop predictive

models but also to delineate what physiological traits define

ideotypes of durum wheat across a wide range of Mediterranean

conditions varying in water availability and temperatures. Against

this background, common traits critical to GY under environments

with mild to moderate limiting constraints included higher index

values for crop cover and canopy greenness throughout the

reproductive stage as well as indicators of a better water status.

Under severe stress conditions found under rainfed conditions, in

addition to the key attributes already mentioned, the contribution

in the prediction models of indices informing on photosynthetic

capacity/efficiency and photoprotection pigments increased, clearly

complementing the information of traits informing on biomass and

water status. However, if the stress is only generated by high

temperatures, then the delay of senescence was the major trait

defining GY.

Overall, regardless of the growing conditions, high-yielding

wheat cultivars reported similar behavior in (i) reaching higher

biomass during anthesis, (ii) further maintaining green biomass

during grain filling (higher VIs values indicating stay green
Frontiers in Plant Science 16
behavior) and (iii) better water status and higher water use in

terms of higher stomatal conductance and transpiration (lower CT

and d13C), and (iv) the translation of these factors to higher

crop yield.

Further advances in HTTP will come from a more plastic

strategy for phenotyping, combining for each target environment,

specific remote sensing indices (informing on vegetation cover,

water status, or pigment content) measured at a given phenological

stage. Such approach may deliver a comprehensive understanding

of the cultivar’s adaptation to specific environments.
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