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Introduction: Paddy leaf diseases have a catastrophic influence on the quality

and quantity of paddy grain production. The detection and identification of the

intensity of various paddy infections are critical for high-quality crop production.

Methods: In this paper, infections in paddy leaves are considered for the

identification of illness severity. The dataset contains both primary and

secondary data. The four online repositories used for secondary data resources

areMendeley, GitHub, Kaggle and UCI. The size of the dataset is 4,068 images. The

dataset is first pre-processed using ImageDataGenerator. Then, a generative

adversarial network (GAN) is used to increase the dataset size exponentially. The

disease severity calculation for the infected leaf is performed using a number of

segmentation methods. To determine paddy infection, a deep learning-based

hybrid approach is proposed that combines the capabilities of a convolutional

neural network (CNN) and support vector machine (SVM). The severity levels are

determined with the assistance of a domain expert. Four degrees of disease

severity (mild, moderate, severe, and profound) are considered.

Results: Three infections are considered in the categorization of paddy leaf

diseases: bacterial blight, blast, and leaf smut. The model predicted the paddy

disease type and intensity with a 98.43% correctness rate. The loss rate is 41.25%.

Discussion: The findings show that the proposed method is reliable and effective

for identifying the four levels of severity of bacterial blight, blast, and leaf smut

infections in paddy crops. The proposed model performed better than the

existing CNN and SVM classification models.
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severity detection, multi-class classification, paddy diseases, severity classification,
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1234067/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1234067/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1234067/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1234067/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1234067&domain=pdf&date_stamp=2023-09-05
mailto:junaid.rashid@sejong.ac.kr
mailto:jekim@kongju.ac.kr
https://doi.org/10.3389/fpls.2023.1234067
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1234067
https://www.frontiersin.org/journals/plant-science


Lamba et al. 10.3389/fpls.2023.1234067
1 Introduction

Agriculture is vital to boosting the economy of any nation. In

India, agriculture alone makes up 18.8% of the gross domestic

product (Economy Survey, 2021). Rice is a leading food crop and

the most consumed agrarian product. Paddy is a primary source of

sustenance for half the world’s population. Approximately 20% of

the world population’s daily calorie demand is fulfilled by rice. Rice

is cultivated almost everywhere; 10% of the world’s total agricultural

land is used solely for the cultivation of the rice crop. This equates to

164.19 million hectares of land, of which 44 million hectares are

found in India. Furthermore, 78% of the total rice production is

directly used for human consumption, of which 90% is consumed in

Asia only. Rice is traditionally the most substantial part of an Indian

meal, and so a major portion of India’s cultivated land is used for

rice cultivation. India is the second-largest producer of rice after

China and the Indian economy is heavily reliant on rice production.

A significant portion of total rice production is exported to other

countries. A rapid growth in population increases the demand for

agricultural products exponentially. Ultimately, this puts pressure

on the agricultural industry to increase productivity. As agricultural

land is limited, to increase production, work should be carried out

to decrease losses in rice yield. Currently, approximately 20%–100%

of rice crop yields are devastated by rice diseases (Dhiman

et al., 2023).

Rice is a Kharif crop that performs best in warm, humid weather

and flooded areas. This creates a favorable environment for a variety

of diseases to thrive. Based on cause, diseases in rice crops can be

divided into two groups. Diseases caused by biotic factors or an

organism are parasitic. Parasites include pathogens, pests, and

weeds. Pathogens, including viruses, bacteria, and fungi, can cause

a wide range of diseases. Out of all these diseases, some of the rice

diseases are more likely to take hold and severely affect the yield of

the crop. Other factors that cause a reduction in the yield of a field

are non-parasitic diseases. Non-parasitic diseases are caused by

unfavorable temperatures, irradiation, deficiencies of specific

nutrients, and water. Alkalinity, bronzing, cold injury, panicle

blight, straighthead, and white tip are examples of abiotic diseases.

Diseases can also be classified based on the part of the crop

affected. Symptoms of the disease can appear on the stem, panicle,

sheath, or leaf (Dutta et al., 2023). All these diseases cause a loss in

the yield of the crop. The magnitude of the reduction in yield is

directly influenced by the level of severity of the disease. A disease

has different levels of severity: mild, moderate, or severe. To

increase the production of rice it is essential to prevent these

diseases from occurring or to detect the disease and ascertain its

severity level before it affects the yield of the crop. The identification

or detection of disease requires careful and in-depth observation of

different parts of the plant. Previously, it has been difficult to detect

diseases as it requires manpower and expertise to identify the

disease from the symptoms. However, the recent expansion of the

application of computational approaches, facilitated by the rapid

development of computer vision techniques, has meant that

computer vision-based automation has become a popular method

for diagnosing and monitoring plant diseases (Kashif et al., 2023) so

that they can be cured before spreading across the whole plant and
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destroying the panicle. In practical terms, detecting a disease and

classifying its severity helps farmers to prevent or cure the disease

and determine the potential loss in yield of the crop.
1.1 Contribution

The contributions of this research are as follows:
i. The creation of a deep-learning hybrid classifier that first

locates the area afflicted by the disease, then categorizes

the condition according to its severity level.

ii. The ability to identify and categorize the paddy plant’s

infected region using the hybrid model that has been

developed.

iii. A potent method for automatically determining the

severity of the disease that may be improved to offer a

uniform paddy plant disease diagnosis system for use in

real-world scenarios.

iv. Support for early disease mitigation and prevention, and

the potential to reduce disease costs while protecting the

environment internationally.
1.2 Outline

A literature review of the research field of image cataloging is

carried out in section 2. In section 3, the suggested novel approach is

described, with a discussion of the algorithm used in the paper and a

detailed description of the proposed crossbreed classifier. The

results and research findings are presented in section 4. The

anticipated model is equated with the existing classifier by

performance measures. The hybrid model is also compared with

the basic classification algorithms using the same dataset. The

conclusion and future scope are discussed in section 5.
1.3 Objectives of the paper

The proposed fusion model’s primary goals are:
• To increase the dataset of images for the three paddy

infections, blight, leaf smut, and paddy blast, using

generative adversarial network (GAN) augmentation.

• To detect the three paddy infections and determine the

disease severity level using segmentation techniques.

• To classify the paddy diseases based on the type of infection

and disease severity level in the paddy.
2 Literature review

It is very difficult to categorize the intensity of paddy leaf disease.

A wide range of studies has produced varied results. This section
frontiersin.org
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discusses several of these findings. Lamba, Baliyan, and Kukreja

(Lamba et al., 2022a) proposed a novel hybrid classification model

combining two popular classification approaches, a convolutional

neural network (CNN) and a long short-term memory (LSTM)

network. Classification is based on the type of rice leaf disease. The

three rice leaf diseases considered in this article are bacterial blight,

blast, and leaf smut. An overall accuracy of 97% was achieved by the

hybrid model. The images were collected from both fields and online

resources. After data collection, the dataset was augmented using a

generative adversarial network (GAN). The authors (Lamba et al.,

2022b) also investigated the effect of generative adversarial network

augmentation on the CNN classification algorithm. For model testing

and training, three paddy leaf infections were being considered. In

predicting the disease, the classifier had a high accuracy of 98.23%.

Patil and Kumar (2022) combined multi-layer perceptrons with the

classification algorithm to classify three diseases. Using an image set

of 3,200 images, the classifier achieved a correctness rate of 95.31%.

Deng et al. (2021) used CNN to classify six different paddy diseases

with 91% accuracy. The dataset contained 33,026 self-generated

images of six diseases. The training precision was approximately

92% with a CNN architecture model. Priyangka and Kumara (2021)

used VGG19, a CNN model, to categorize images according to seven

different paddy diseases. The dataset comprised 105 images (15

images for each disease) from three diverse sources. Overall, the

success rate was 95.4%. The authors used data extension to increase

the size of the image set. Mekha and Teeyasuksaet (2021) used the

random forest method and attained a prediction rate of 69%. The

dataset contained 120 images of infected leaves. Luo et al. (2019)

categorized four diverse paddy illnesses using a model combining

CNN and support vector machine (SVM). Using a self-collected

dataset of 6,637 images, the authors achieved 96.8% accuracy. Ghosal

and Kamal (2020) used CNN to classify three rice ailments and

achieved 92.46% accuracy. Goluguri et al. (2021) used CNN

combined with SVM for feature extraction and prediction. There

were 1,600 images in the dataset. The model had a 97.5% accuracy

rate. Bhattacharyya and Mitra (2019) used CNN classification to

predict three paddy diseases. The classifier achieved a correctness rate

of 94%. There were 1,500 images in the dataset, i.e., 500 of each

disease (Baroudi et al., 2021).

Dastider et al. (2021) used lung ultrasounds to classify the

severity of COVID-19 illnesses using a CNN–LSTM hybrid model.

The auto-encoder network with CNN and LSTM used in this study

was proposed as a reliable and noise-free model. Maragheh et al.

(2022) developed a hybrid approach for multi-label text

classification by combining the most precise features of LSTM

with a spotted hyena optimizer. The model was tested on four

different datasets. This article also compared six other fusion

approaches using LSTM to produce the best performance. She

and Zhang (2018) employed the CNN–LSTM hybrid technique

for text classification. The LSTM algorithm was used to store

historical data. For text classification, Zhang et al. (2018) used an

LSTM–CNN hybrid approach. Overall, the success rate was 91%.

The classifier was tested against plain CNN models, LSTM simple

models, and LSTM–CNN using various filter sizes. The best results

were obtained using an LSTM–CNN hybrid model with a filter size

of 5X 600 pixel. Tee et al. (2022) provide an overview of various
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action recognition strategies. The paper describes the mixed system

created by combining CNN and LSTM and provides a brief

summary of studies that used both strategies. Waldamichael et al.

(2022) reviewed 45 publications on the diagnosis of plant disease,

which included information on classification techniques, datasets,

accuracy, and strategies. Dhiman and Vinod (2022) rused the CNN

approach to identify and categorize paddy illnesses. The classifier

divided the dataset into three categories: healthy, unhealthy but

curable, and unhealthy and incurably intense. The dataset

contained 650 sample photos. Hassan and Maji (2022) used the

CNN algorithm to classify four paddy leaf diseases. The diseases

under consideration were paddy blast, blight, tungro, and brown

spots. Babu et al. (2022) used the CNN technique to classify four

rice diseases (Adedoyin et al., 2022).

Saidi et al. (2020) employed a CNN–SVM combined approach

to detect depression. The CNN–SVM cross-classifier produced a

precision rate of 68% using the Distress Analysis Interview Corpus/

Wizard-of-Oz (DAIC-WOZ) dataset. The database comprised a

training set and evaluation set 2,480 and 560 bytes in size,

respectively. In another study, the CNN–SVM integration was

used by the researchers to recognize and catalog brain tumors

using magnetic resonance imaging (MRI) images (Zhou et al.,

2019). According to the experimental results, brain tumors can be

categorized with 98.49% accuracy. The combined approach was also

compared with other classification approaches. A new adaptive

machine (Sun et al., 2017) has been suggested for the categorization

of MRIs. The new proposal has an estimated accuracy of 99.5%. The

authors used data from Haxby’s functional MRI dataset from 2001.

The study by Ahlawat and Choudhary (2020) sought to distinguish

between manually written digits. A composite model of CNN–SVM

was applied to the Modified National Institute of Standards and

Technology (MNIST) image set. This method had an accuracy of

99.28%. For analyzing hyperspectral images, Leng et al. (2016) used

a CNN–SVM combined technique. In a study by Niu and Suen

(2012), handwritten characters are recognized and classified. The

MNIST dataset was utilized to train the classifier, and the digit

classification accuracy was 99.81%. The studies reviewed are

presented in Table 1, along with a summary of the cataloging

methodology utilized. Jiang et al. (2020) applied a CNN–SVM

mixed algorithm to 8,912 images of four paddy diseases with the

aim of classifying the diseases. All conditions were labeled as leaf

diseases. The CNN–SVM model achieved 96.84% accuracy. Hasan

et al. (2019) used CNN and SVM to identify nine paddy crop

diseases. A dataset of 1,080 infected leaf images was created. The

model categorized the diseases with 97.5% accuracy. Liang et al.

(2019) achieved a 99.2% accuracy rate for the detection of paddy

blast disorder. The dataset included 3,010 images of healthy and

diseased plant leaves (Upadhyay et al., 2022).
3 Materials and methods

A proposed hybrid model for detecting the diseased area and

disease severity level of paddy leaves for three infectious diseases,

bacterial blight, blast, and leaf smut, was constructed and consists of

six modules. The first module is dataset preparation, which
frontiersin.org
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comprises dataset collection from both primary and secondary data

sources and the distribution of the image set according to the type of

disease. It targets the collection of images of paddy leaf infected by

three paddy infections. The data is then pre-processed in module

two. Pre-processing standardizes the pictures from numerous

possessions in an identical format. The third module increases the

size of the dataset exponentially using GAN amplification

techniques. In the fourth module, disease severity is determined

for every leaf in the image set using the segmentation technique.

The disease severity level is also annotated on the image in module
Frontiers in Plant Science 04
four. In the fifth module, a multi-class hybrid classification model is

generated by combining the characteristics of CNN and SVM. In

the last module, the hybrid classifier is trained and verified against

the training set and test set individually.
3.1 Dataset preparation

Dataset preparation is the creation of an inventory of potential

data sources with the categorized data required to feed the
TABLE 1 Summary of the literature review.

Citation with year Diseases considered Model framework Category Accuracy of model (%)

Lamba et al., 2022a 3 rice leaf disease CNN–LSTM with GAN Disease classification 97

Lamba et al., 2022b 3 rice leaf diseases GAN and CNN Disease classification 98.23

Patil and Kumar, 2022 3 rice leaf diseases CNN with IoT Disease classification 95.31

Deng et al., 2021 6 rice leaf diseases CNN Disease classification 91

Priyangka and Kumara, 2021 7 rice leaf diseases CNN model VGG19 Disease classification 95.4

Mekha and Teeyasuksaet, 2021 Rice leaf diseases Random forest Disease classification 69

Luo et al., 2019 4 rice leaf diseases CNN with SVM Disease classification 96.8

Ghosal and Kamal, 2020 3 rice leaf diseases CNN transfer learning Disease classification 92.46

Goluguri et al., 2021 Rice leaf diseases DCNN with SVM Disease classification 97.5

Bhattacharyya and Mitra, 2019 3 rice leaf diseases CNN Disease classification 94

Dastider et al., 2021 COVID-19 DCNN with SVM Severity classification 97.5

She and Zhang, 2018 Text classification CNN–LSTM Image classification 90.68

Zhang et al., 2018 Text classification LSTM–CNN Image classification 91.17

Waldamichael et al., 2022 Cereal crop disease CNN Severity classification 89

Dhiman and Vinod, 2022 Rice disease CNN Disease classification 97.692

Hassan and Maji, 2022 Rice leaf diseases CNN Disease classification 99

Babu et al., 2022 Rice leaf diseases CNN Disease classification 99.45

Saidi et al., 2020 Depression CNN–SVM hybrid DAIC-WOZ 68

Khairandish et al., 2022 Brain tumor CNN–SVM hybrid BRATS 98.50

Sun et al., 2017 MRI CNN–SVM hybrid Haxby’s 2001 fMRI dataset 99.65

Ahlawat and Choudhary, 2020 Biotic stress in paddy CNN–SVM hybrid MNIST dataset 99.30

Niu and Suen, 2012 Skin lesion CNN–SVM hybrid MNIST dataset 99.18

Jiang et al., 2020 Paddy infections CNN–SVM hybrid Self-created 96.79

Hasan et al., 2019 Paddy infections CNN–SVM hybrid Self-created 97.49

Liang et al., 2019 Paddy blast infections CNN–SVM hybrid Self-created 99.19

Gulzar, 2023 Fruit classification TL-MobileNetV2 model Kaggle dataset 99

(Lamba et al., 2023) Blast severity classification CNN–SVM Kaggle, GitHub, UCI 97

Lamba et al., 2022c Rice disease classification SVM Kaggle, GitHub, UCI 96.23

Gulzar et al., 2020 Seed classification CNN Self-created 99

Mamat et al., 2023 Fruit classification Transfer learning Self-created 99.5
fMRI, functional MRI; IoT, internet of things; MNIST, Modified National Institute of Standards and Technology; UCI, University of California, Irvine, Machine Learning Repository; BRATS,
Multimodal Brain Tumor Image Segmentation Benchmark; DCNN, Deep CNN; DAIC-WOZ, Distress Analysis Interview Corpus/Wizard-of-Oz set.
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classification model. It entails gathering and disseminating data.

Data collection is the process of exploring primary and secondary

data sources to obtain the required data. Data from primary sources

can be defined as data collected from surveys, observations, and

experiments. These kinds of data are directly collected by the

researcher. The data are original, raw data that need to be pre-

processed before feeding into the model (Kour et al., 2022). This

produces reliable, qualitative data but is a more costly data

collection method.

Secondary data is collected by another person. This is a less

costly data collection method, but the collected data are less reliable

and authentic. The data can be taken from previously published

sources or unpublished sources. The collected data are then divided

based on the type of infection and a separate folder is created for

each category of infection.

3.1.1 Data collection
Diseases in rice have a significant impact on grain quality,

market segments, and revenue. Classification processes using object

recognition and deep learning require a good dataset. All images in

the dataset were collected from both primary (self-collected) and

online sources. Primary data were collected from a farm in Patiala,

Punjab, India, from July 2021 to August 2022. The images were

taken under sunlight. A mobile camera of 12 mega-pixels with a f/

2.20 aperture and 1.250 micro-pixel size was used for

data collection.

The size of the images captured from the primary source was

3,008 × 4,016 pixels. A total of 533 images were collected from the

primary source: 202 showed bacterial blight infection, 218 showed

leaf blast, and 113 images showed leaf smut-infected paddy leaves.

Secondary data were gathered via the online repositories

Mendeley, Kaggle, GitHub, and the University of California,

Irvine (UCI), Machine Learning Repository. A total of 3024

images were taken from the Mendeley repository, comprising

1,584 and 1,440 pictures of blight and leaf blasts, respectively. In

addition, 80 images each were taken from UCI and Kaggle: 40

images of bacterial blight and 40 pictures of leaf smut infection.

Overall, 3,535 images were collected from secondary resources. The

collected data were then separated into sets based on the type of

paddy infection. Figure 1 presents sample pictures from the primary

and secondary data resources. There were certain limitations to the

dataset thus collected. The calculation of disease severity based on

the area of the affected leaf highly depends on the proportion of leaf

visible in the image. This meant that if the image did not show the

whole leaf then the calculation of disease severity level based on area

was affected. The dataset was compiled from various sources;

therefore, ensuring that the complete leaf appeared in every image

would have been a time-consuming task. The attributes of the

images were selected and extracted by the convolutional

neural network.

3.1.2 Data distribution
At this stage, the data collected from various sources were

divided into groups based on the type of paddy infection. Separate

folders are created for each paddy disease, and all the images of
Frontiers in Plant Science 05
paddy leaves infected by that particular infection were placed in that

folder. The dataset as a whole comprised 4,068 images: 2,058 images

of bacterial blight-infected leaves, 1,817 images of leaf blast

infection, and 193 images of leaf smut infection. Table 2 presents

detailed information on the number of images provided by each

source and for each infection type.

3.1.3 Data pre-processing
After taking the images from publicly available sources, the

images were pre-processed to prepare them for obtaining the

severity of the paddy diseases. All the images were taken from a

variety of sources.

Each source used different equipment for data collection and

hence the images from the different sources were of different

dimensions. To feed the images from the dataset to the model it

was essential to make the images identical in all forms. Table 3

describes the images from the various sources in terms of the

dimensions of the images (Deepa et al., 2020). To maintain the

homogeneity of the image set in terms of the dimensions of

the pictures, three pre-processing techniques were applied:

standardization, normalization, and rescaling. Standardization is

one of the most effective feature-scaling techniques. It is also known

as Z-score normalization. Used when the feature distribution is

normal or Gaussian, it compresses or expands data by transforming

it into a mean vector of the source records.

Normalization is also known as min–max scaling. It is used to

transform topographies to the same scale. This scale ranges between

0 and 1. In rescaling, the dimensions of the images are changed to

form a uniform dataset. In this paper, ImageDataGenerator from

the Keras library was used for the three pre-processing activities

applied to the images of the dataset. After pre-processing, the

dataset comprised identical images in terms of dimensions.

ImageDataGenerator can also be used for image augmentation.

Figure 2 shows a sample of the images after pre-processing of

the dataset.
3.2 Data augmentation using GAN

To eliminate the over-fitting of the anticipated system, the

records generated were augmented with images from the dataset.

A GAN was used to augment the image set. The deep-learning

model known as a generative adversarial network (GAN) pits two

neural networks against one another in the context of a zero-sum

game. GANs are designed to produce new, synthetic data that

closely mimic a pre-existing data distribution. GAN is employed to

generate new photos that are identical to the original images. It can

be utilized immediately in model training. Its architecture makes

use of two neural networks: a generator and a discriminator. The

generator’s objective is to produce a fictional output. It incorporates

random noise and generates output that is as near as possible to the

actual signal. To discriminate between fake and real images, the

discriminator is fed fake images from the generator. In addition, it

gives the generator feedback on its effectiveness. Based on this

feedback, the generator adjusts its methodology in the following
frontiersin.org
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TABLE 2 Number of images collected by source and infection type.

Rice leaf disease
Secondary resources Primary resources

Total
Mendeley Kaggle UCI GitHub

Bacterial blight 1,583 41 41 191 202 2,058

Leaf blast 1,440 0 0 159 218 1,817

Leaf smut 0 40 40 0 113 193

Total 3,024 80 80 351 533 4,068
F
rontiers in Plant Science
 06
 fronti
Source
Bacterial blight Blast Leaf smut

Primary source

Mendeley –

GitHub –

Kaggle –

UCI –

FIGURE 1

Sample pictures from the primary and secondary data resource.
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iteration to generate outcomes that are more realistic. As time goes

on, its productivity improves. The discriminator finally reaches a

point where it is unable to distinguish between genuine and fake

images. Figure 3 demonstrates the structure of the working

GAN network.

A generator and a discriminator are both present in a GAN. The

generator attempts to trick the discriminator by creating fake

samples of data (such as an image, audio, etc.). On the other

hand, the discriminator tries to tell the difference between the

genuine and fraudulent samples. Both the generator and the

discriminator are neural networks, and throughout the training

phase they compete with one another. The procedures are repeated

multiple times, and, each time, the generator and discriminator

improve. The challenge encountered in GAN augmentation is that

the images generated are slightly different from the genuine images.

There is very small difference in the features of the images generated

so severity of the diseases in the images taken from a sample images

is more or less equal.

The discriminator’s goal is to correctly label the picture

produced by the generator as false while correctly labeling the

original images as true. The discriminator’s loss function is:

LossD = fDif ference(D(IReal), 1)  +  fDif ference(D(G(IFake)), 0) (1)
Frontiers in Plant Science 07
The loss of the discriminator is calculated by adding the two

functions and subtracting the functional parameters. The

discriminator’s focus is to reduce the loss. The discriminator’s

assessment of a true image is compared with 1 in the initial

operant of the formula and to 0 in the second. The formula can

alternatively be expressed as follows:

LossD = fMax log(D(IReal)  +  log(1 − D(G(IFake)))f g (2)

The generator’s goal is to confuse the discriminator as much as

possible, such that the resulting picture is labeled as true. The

following equation describes the generator’s loss function:

LossG = fDif ference(D(G(IFake)), 1) (3)

By multiplying the variation in the function of the set of

parameters by the discriminator’s judgment value of the fake

image, 1, the loss of the generator is calculated. The following is

another way to present the loss function:

LossG = fMin(log(D(G(IFake)))) (4)

Equation 5 represents the whole loss function for the GAN

model. The generator’s objective is to reduce the function, while the

discriminator’s objective is to maximize the function:
FIGURE 2

Sample images after pre-processing.
TABLE 3 Dimensional information of images from each source.

Characteristic Primary source
Secondary source

Mendeley GitHub Kaggle UCI

Plant type Rice Rice Rice Rice Rice

Number of different diseases 3 2 2 2 2

Image width 1,908 pixels 300 pixels 300 pixels 756 pixels 756 pixels

Image height 4,032 pixels 300 pixels 300 pixels 250 pixels 250 pixels
fron
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LossGAN = minGmaxD log(D(IReal)  +  log(1 − D(G(IFake)))f g (5)

The GAN augmentation increases the size of the dataset

enormously. After GAN, the dataset of 4,068 images increased to

a dataset of 9,175 images. Augmentation increased the images of

blight, blast, and leaf smut by 424%, 180%, and 922%, respectively.

The images generated through GAN were of high quality and the

best match to the category of the samples are taken by the GAN to

generate new image.

The collected information was then divided according to a ratio

of 80:20 into a training dataset and a test dataset. The training set

was further divided according to an 80:20 ratio into a training

dataset and a validation dataset. The hybrid model was trained on

the training dataset in order to classify the paddy disease according

to both type and severity. The testing dataset evaluated the

effectiveness of the proposed classification model, whereas the

validation dataset was used to validate the model.
3.3 Severity evaluation using image
segmentation techniques

In this article, images were divided into four disease severity

levels: mild, moderate, severe, and profound. The intensity rates

were finalized after discussion with domain expert. The

categorization was performed according to the area of the foliage

contaminated by paddy infection. If the infected area percentage

was less than 25% then it was considered to be a mild infection. If

the infected area ranged from 26% to 50% then it was considered to

be of moderate severity. A leaf was considered to have a severe

infection if the contaminated part of the plant was greater than 50%

but less than 75% of the total leaf area. A profound level of infection

severity was classified as an infected area greater than 75%.
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3.3.1 Severity evaluation
The evaluation of disease severity was based on the infected area

of leaf owing to paddy diseases. The area of infection was calculated

by employing the segmentation technique. Severity evaluation

comprised leaf detection and then identification of the infected

area of the leaf.

The whole process comprised five segmentation techniques:

grayscale segmentation, threshold segmentation, edge detection,

image masking, and histogram segmentation. In grayscale

segmentation, according to their placements and gray values, each

pixel in the medical grayscale image is translated into 3D

coordinates as a pixel-features point cloud using the grayscale

image segmentation method. Image thresholding is a

straightforward but efficient technique for separating an image’s

foreground from its background. By transforming grayscale photos

into binary images, this image analysis technique is a type of image

segmentation that isolates objects. Edge detection is a method of

image processing used to locate areas in a digital image with sharp

changes in brightness, i.e., discontinuities. The edges (or

boundaries) of the image are those regions where the brightness

of the image fluctuates dramatically. A smaller “image piece” is

defined and used to alter a bigger image using the image processing

technique known as masking. Many methods of image processing,

such as edge detection, motion detection, and noise reduction, all

start with the masking process. A grayscale value distribution

known as an image histogram displays the frequency of

occurrence of each gray-level value. The abscissa runs from 0 to

255 for an image size of 1,024 × 1,024 × 8 bits, and the total number

of pixels is 1024 × 1024.

First, noise (the background) is removed from the pre-

processed image in the leaf detection phase. Then the detected

leaf section of the image was used to calculate how much of the leaf

was infected with paddy disease in the affected area detection phase.
Sample Images

Dataset

Generator

Discriminator
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Fake
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FIGURE 3

Structure of the generative adversarial network.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1234067
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lamba et al. 10.3389/fpls.2023.1234067
Leaf detection was performed using the grayscale, threshold, edge

detection, and mask segmentation techniques. Histogram

segmentation was used for the contaminated area detection in the

leaf image. Figure 4 shows the stepwise images of the severity

evaluation. Figure 4A is the original leaf picture and Figure 4B is the

image after applying the grayscale function.

The original image was first converted to a grayscale image to

reduce the size of the image. Then various threshold values were

applied to the grayscale image. Figure 5A shows an image at various

threshold values. Leaf detection was performed using edge detection
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segmentation, which removes the background of the image. Various

threshold values were applied and checked. After that, the

histogram image provided the percentage of each color in the

image. The yellow area of the leaf (as opposed to the green area)

gave the infected area of the leaf using the formula:

Infected area  %   =  (Pyellow=Ptotal) �  100 (6)

where P is the number of pixels in the image, Ptotal is the

number of pixels in the detected leaf, and Pyellow is the number of

yellow pixels. Figure 5B shows the edge detection images. Figure 5C
A B

FIGURE 4

(A) Sample original leaf picture, (B) sample grayscale leaf picture.
A

B

C

FIGURE 5

(A) Threshold images of the grayscale image at various threshold values, (B) leaf edge detection, and (C) image masking.
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shows the mask images. Figure 6 presents a histogram image with

the percentage of each color.

3.3.2 Severity annotation
Before the training process, the images were annotated. This

was an essential step that helped the model to acquire the disease

severity features. The precision of the annotation process strongly

influences the training of the model. Given that multiple similar

diseases can appear on leaves, knowledge of different diseases may

support machine learning capabilities to classify diseases.

A horticultural scientist helped with the annotation of the

images in the dataset. Experts determined the extent of damage to

the plant, taking into account the various surface and shape

parameters of the disease-affected part. The labels accounted for

only external damage; this test did not account for internal damage.

The annotated image’s output was presented as a bounding box and

coordinates. Labeling the diseased regions on a picture was

necessary for image annotation. After identifying and categorizing

the degree of disease in a picture, Labeling, a freeware graphical

visual annotation tool, recorded the information in an XML file

with the proper xmin, xmax, ymin, and ymax values for each

bounding box. The bounding box for each object was stored in an

XML file. Working with annotation data that was stored in a

different file for each image was challenging; therefore, each of

these XML files was aggregated into a single CSV file using the

Panda module. After that, the CSV file was divided into the four

severity groups. The classification was based on the proportion of

the leaflet where the bacterial infection is present. Then an object for

each severity class was constructed. Then each line of image names

and URLs in the object file was read iteratively. Object recognition

accuracy was then measured for each object in each category.
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3.4 Model generation

The proposed model is a fusion of two deep-learning

classification techniques, CNN and SVM. The best characteristics

of both algorithms were combined to improve classification

accuracy. CNN was used for the feature extraction from the

infected leaf images and SVM for the classification of the type of

infection. A CNN-based model specifically created to categorize

photos into various predetermined classes is known as an image

classification CNN classifier. Accurate image classification is made

possible by learning to extract pertinent features from input photos

and map them to the appropriate classes. High-dimensional data,

which are typical in many applications, such as text and picture

categorization, can be handled well by SVMs. SVMs can effectively

handle small datasets because the boundary needs to be defined by

only a minimal number of support vectors. Python was used as the

programming language to implement the model. The Jupyter

Notebook platform was used for Python coding. Various

computer vision libraries were used.

3.4.1 Feature extraction
Two convolutional layers were used to extract features,

accompanied by max-pool layers. Figure 7 shows an exhaustive

breakdown of the multi-class classification model’s structure.

The model has seven levels in total. The input layer, which has a

dimension of 64 × 64, is the top layer. Ninety-six filters of size 5 ×

5 were then used to convolute input layer, creating a dimension

of 32 × 32. The filter extracted features as it moved across the

image. The output that includes details about the corners and

edges of the image is called a feature map. These features were

then processed by the maxpool layer, which has a filter of 2 × 2
FIGURE 6

Image histogram to calculate disease severity.
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Input Image

Conv.              Max-pooling   Flatten     Dense
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FIGURE 7

Structure of the proposed CNN–SVM hybrid classifier. Conv., convolution.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1234067
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lamba et al. 10.3389/fpls.2023.1234067
magnitude and a stride worth of 2. The final image dimension is

(16 × 16).

Two pairs of convolutional layers and a max-pooling layer were

used in the suggested model. Sixty-four filters were used in the second

convolutional layer of a 3 × 3 kernel size. The stride and filter size of

the second pooling layer were both 2. Therefore, the image had the

dimension of 8 × 8. The same padding and stride value of 2 was used

for the rectified linear unit (ReLU) activation function throughout

both convolutional layers. The output from each layer was passed on

to the following layer, which uses it as its input. The flatten layer was

then used to flatten the convoluted matrix (Adedoyin et al., 2022).

The densely linked completely connected layer was then fed the

output that had been flattened. Table 4 lists each layer in the proposed

model along with its parameters, kernel size, neurons, and output

shape. It also lists the different levels of the GCS classifier’s activation

functions. In addition, it displays the number of both trainable and

total parameters.
3.4.2 Classification
The SVM was used to classify paddy infections after the features

have been pre-processed and extracted. The model was then

flattened and fully connected layers were included. In the dense

layer, the activation function was ReLU and used 288 units. In

CNN, the SVM implementation takes place in the output layer. The

L2 kernel was an activation regulator, and softmax was used on the

output layer. The production layer was made up of three

components, representing the total number of classes considered

in the categorization problem. The classifier was then combined

with the Adam optimizer, the squared hinge loss function, and

accurateness as metrics.

SVM classifies images into just two groups because it is a binary

classifier. However, this stage was where the precise degree of

infection severity was assessed, and it involved a number of

categories. For this, a regularizer was employed.
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3.5 Train–test model

The hybrid model was then compiled, trained and verified using

the training set and the test set, respectively.

3.5.1 Training model
The classifier was compiled and trained with the training set. In

this experiment, the model was trained with different numbers of

epochs: 30, 50, and 100. The best results were found in 50 epochs.

The model was validated against the validation dataset.

3.5.2 Test model
The trained model was then tested using the test set. A sample

image was passed through the model and its ability to predict the

correct paddy infection type and intensity was tested. Figure 8 shows

the structure of the complete severity and disease classification hybrid

model with GAN augmentation. The actions in the classificationmodel

were categorized as manual or mechanical tasks. Then the sub-tasks

were specified according to the phase and flow of the tasks. The dataset

preparation task comprised data collection and data distribution, which

was a completely manual task. Data pre-processing was carried out

using the Python Keras library, which is integrated into themodel itself,

so this stage was performed by machine. GAN execution,

segmentation, and classification model generation, were all

automated tasks completed by the Python code.
3.6 Proposed algorithm

(1) Collect infected leaf images from primary sources (Pprimary)

and secondary sources (Psecondary). Dataset D = Psecondary + Pprimary.

Secondary sources comprise Mendeley (Dmendeley), GitHub

(Dgithub), kaggle (Dkaggle), and UCI (Duci) datasets. Psecondary =

Duci + Dmendeley + Dgithub + Dkaggle.
TABLE 4 Detailed summary of Gan CNN and SV (GCS) model layers.

Layer Layer type
Kernel
size

Stride
Neuron
size

Activation function
Output
shape

Parameters
(n)

conv2d_12 (Conv2D)
Convolutional
layer C1

5 × 5 2 96 × 96
(Rectified Linear Unit)
ReLU

Null, 32, 32, 96 7,296

max_pool2d_12
(MaxPool2D)

Max-pooling layer
P1

2 × 2 2 96 × 96 – Null, 16, 16, 96 0

conv2d_13(Conv2D)
Convolutional
layer C2

3 × 3 2 64 × 64
(Rectified Linear Unit)
ReLU

Null, 16, 16, 64 55,360

max_pool2d_13
(MaxPooling2D)

Max-pooling layer
P2

2 × 2 2 64 × 64 – Null, 8, 8, 64 0

flatten_6 (Flatten) Flatten – – – – Null, 4,096 0

dense_17 Sequential CNN – – –
(Rectified Linear Unit)
ReLU

Null, 288 1,179,936

dense_18 SVM – – – Softmax Null, 3 867

Overall parameters: 1,243,458

Trainable parameters: 1,243,458
ReLU, Rectified Linear Unit.
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(2) Create a dataset folder for each category of paddy infection

(Dbacterial blight, Dblast, and Dleaf smut).

(3) Mount necessary libraries and datasets.

(4) Create the object for each category of disease.

(5) Perform pre-processing, which includes normalization

and standardization.

(6) Perform GAN augmentation, which involves the generation

of two models: the generator (GANgenerator) and discriminator

(GANdiscriminator) models. The image is generated using the

formula ImgGAN = GANgenerator × GANdiscriminator.

(7) Save the augmented images in a separate folder.

(8) Merge the augmented images with the dataset according to

the type of infection (Dbacterial blight, Dblast, and Dleaf smut).

(9) Perform disease severity detection by applying image

segmentation, threshold segmentation (Sthreshold), edge detection

(Sedge), masking (Smask), and histogram segmentation (Shistogram)

techniques to the infected image. Severitylabel = f(Shistogram, f(Smask, f

(Sedge, f(Sthreshold, image)))).

(10) Annotate the images with the severity labels (mild,

moderate, severe, or profound).

(11) Repeat step 9 for each object, specifying the category

of severity.

(12) Split the objects into a test–train set at a ratio of 20:80,

Dtest:Dtrain.

(13) Proposed model Mclassifier = LCNN ∪ LSVM.

(14) Extract features from the images using a convolutional

neural network. The CNN comprises a pair of convolutional layers

(Lconv), a max-pooling layer (Lpool), a flattened layer (Lflatten), and a

dense layer (Ldense). MCNN = 2× (Lconv ⊗ Lpool) ∪ Lflatten ∪ Ldense.

(15) Use the SVM layer in the CNN for the classification of

image (LSVM).

(16) Compile and train the model with the training set (Dtrain)

using the formula Mtrain = d(Mclassifier, Dtrain).
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(17) Test the trained model with the test set (Dtest) using the

formula Mtest = d(Mtrain, Dtest).
4 Results and discussion

The proportion of clearly specified data points in the set that is

being trained is known as the training accuracy. Similar to

resolution accuracy, validation accuracy describes the share of

data samples that are correctly resolved from another sample.

There were two sets in the dataset. The training images were in

one set and the validation images were in the other set. Model

training and validation were carried out using an 80–20 cross-

validation procedure. Multiple mixed-image studies were

performed for validation. The productivity of the classifier was

tested using a new randomly selected image. The sparse categorical

cross-entropy is used as loss function. The accuracy is 98.43%

accomplished by the prototypical was 98.43%.

The cross-entropy function of the classifier was optimized using

the Adam optimizer. Cross-entropy loss is the most widely used

function in deep-learning or machine-learning classification. It aids

in evaluating a model’s accuracy in terms of 0s and 1s, from which

we may later deduce the probability percentage. Out of the three

diseases of the paddy, the model can identify leaf smut with an

accuracy of 98.88%, precision value of 91%, recall of 97.7%, and F1-

score of 94.23%. For bacterial blight disease, the model recorded an

accuracy of 97.766%, precision value of 85%, recall of 84%, and F1-

score of 84.5%. For the paddy blast disease, the model recorded an

accuracy of 96.77%, precision value of 79%, recall of 84.75%, and

F1-score of 81.77%. Figure 9 shows the confusion matrix of the

proposed model. The sample size used for the evaluation of the

performance parameters was 20% of the images from each category

of rice leaf disease.
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Detailed flowchart of the proposed multi-class hybrid classification model.
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The diagonally highlighted cells in the confusion matrix specify

the number of images of bacterial blight, blast, and leaf smut that

were predicted correctly. Other cells provide the number of images

of the three rice diseases that were predicted incorrectly, meaning

that the prediction was either a true negative or false positive. The

proposed model correctly identified 1,991 images of bacterial blight

from the dataset. In addition, 1,724 and 189 images of blast and leaf

smut, respectively, were correctly identified. Cell (1,2) indicates that

48 images of blast were identified as bacterial blight. Similarly, three

images of blast-infected leaves were identified as leaf smut by the

proposed model, as shown in cell (3,2). In the case of cells (1,3) and

(2,3), the model identified 21 and 50 images of bacterial blight and

blast, respectively, as leaf smut-infected images. In cells (2,1)

and (3,1), 43 images and 1 image of bacterial blight were wrongly

identified as non blast and leaf smut, respectively.

Figure 10 gives the epoch-wise training and validation accuracy

and loss value. Figure 10A shows an accuracy graph according to

each epoch. The accuracy graph encompasses both the training and
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validation phase. Figure 10A shows that as the epoch increases, the

accuracy of the fusion classifier’s prediction increases. This is

because the model is being trained with each epoch. In

Figure 10B, the loss curve is shown for the training and

validation phase, according to each epoch. As the number of

epochs increases and the classifier is trained, the loss function

decreases. The precision of the proposed classifier for the

classification of paddy disease type and severity increases as the

epoch increases.

The performance of the machine was further compared with

existing cataloguing approaches using the same image set. Figure 11

shows the accuracy curve and loss curve of various deep-learning

classification models for the multi-classification of paddy diseases

according to the type and severity of the disease when applied to the

dataset created in this study. Two further algorithms were tested in

this study: standard CNN and standard SVM for multi-

classification. Figure 11 indicates that the proposed hybrid model

performed better than either individual approach.

Figure 12 shows the accuracy of various classification models

with and without GAN augmentation. Four approaches were

compared for accuracy with the proposed classifier model using

the same dataset. The correctness achieved by the basic CNN

classifier is 96% without GAN augmentation. GAN increased the

accuracy of the basic CNN categorizer to 97.17%. A similar effect

was seen on the standard SVM classification approach, with a GAN-

augmented accuracy of 95.87% and an accuracy of 93%

without GAN.

The performance of the proposed hybrid classifier was

compared with the most prominent classifiers from the reviewed

literature. Table 5 shows the comparison of various approaches

used for classification problems with the proposed hybrid model.

The greatest accuracy attained with a CNN classifier was 99.45%,

which was the best result out of all approaches. After CNN, a hybrid

of CNN and SVM performed best with an accuracy of 99.20%. After

that, the proposed model achieved an accuracy of 98.43%. A

standard CNN with GAN augmentation achieved 98% accuracy

in the classification problem. A Deep Convolutional Neural
FIGURE 9

Confusion matrix.
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Performance curves. (A) Accuracy curve, (B) loss curve.
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Network (DCNN) and SVM fusion model achieved 97.50%

accuracy. A CNN combined with either the Internet of Things or

VGG19 classifier attained an accuracy 95% and 95.40%,

respectively, in classification problems. A 91% accuracy was

achieved with a hybrid model of CNN and LSTM. CNN with

transfer learning achieved 92.49% accuracy and random forest

model attained 69% accuracy in classification problems.

The proposed classifier was trained over a different number of

epochs to study the influence of epochs on classification accuracy.

Figure 13 shows the accuracy curves of the proposed hybrid multi-

class classifier at different numbers of epochs. Figure 13A shows the

accuracy curve at 30 epochs, Figure 13B shows the accuracy curve at

50 epochs, and Figure 13C shows the accuracy curve at 100 epochs

of training. There was no major difference in the precision and

accuracy of the multi-class classifier at different epochs. The

accuracy remained the same and had no major effect of epochs
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count. The optimal number of epochs for the training dataset is 50.

GAN-augmented images from primary sources

GAN has a major influence on the size of the dataset and hence

on the accuracy of the model. Figure 14 demonstrates the effect of

GAN on the image set for the three paddy infections considered. As

shown in Figure 14, 4% of the total dataset came from primary

sources and 27% of the total dataset came from secondary sources.

The GAN’s augmentation of the primary images constituted 9% of

the total dataset and the GAN’s augmentation of the secondary

images constituted 60% of the total dataset.

Table 6 shows the results of the ablation study performed on the

proposed model. Its shows that the accuracy of the proposed model

is highest using the hybrid model and GAN augmentation. In

machine learning, models have many different components, each

of which affects the performance as a whole. Therefore, it is crucial

to have a means of gauging how much these components contribute
FIGURE 12

Effect of GAN on the model performance.
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Comparison of performance of CNN, SVM, and the proposed model. (A) Accuracy curve, (B) loss curve.
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to the overall model. This is where the idea of an ablation study

comes from, where specific components of the implementing model

are removed to better understand the behavior. The proposed

model consists of three components. In the ablation study, the
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effect of each component on the accuracy of the model was

evaluated. The three components are GAN augmentation, feature

extraction using CNN, and classification using SVM. The model’s

accuracy was rated after training and testing using several GAN,

CNN, and SVM combinations. The accuracy of the model without

GAN augmentation and using SVM as a feature extractor and

classifier while importing the same dataset was the lowest, at 93%.

The accuracy of the model trained on the same dataset using CNN

as the feature extractor and classifier and without GAN

augmentation was 96%. Without GAN augmentation, the model

using CNN as a feature extractor and SVM as a classifier achieved

97.2% accuracy. The CNN and SVM classifiers achieved 97% and

95% accuracy, respectively, with GAN augmentation.
5 Conclusion and future applications

The biggest threat to agricultural progress is pathogenic diseases,

which have a strong influence on overall production quality and

quantity. As a result, a computer vision-based automatic diagnosis of

rice leaf infections and the extent of infection is increasingly desirable in

analytics. Deep-learning techniques, particularly CNNs and hybrid

models with a CNN, have shown a promising ability to solve the
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Influence of the number of epochs on the correctness of the anticipated model. (A) 30 epochs, (B) 50 epochs, (C) 100 epochs.
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Effect of GAN augmentation on the size of the image set.
TABLE 5 Performance comparison of the proposed approach with
existing approaches used in classification problems.

Classification approach Accuracy (%)

Proposed model 98.43

GAN–CNN 98

CNN with IoT 95

CNN 99.45

Random forest 69.00

CNN–SVM 99.20

CNN with transfer learning 92.49

Deep Convolutional Neural Network (DCNN) with SVM 97.50

CNN with LSTM 91.71

CNN with VGG19 model 95.40
IoT, internet of things; DCNN, Deep Convolutional Neural Network.
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difficulties in identifying infections. The combination of CNN and

SVM was investigated to improve the ability to diagnose blight, blast,

and leaf smut diseases in paddy leaves according to four disease severity

levels. The image set comprised pictures of all three rice diseases and

was compiled from both primary and secondary sources of data. A total

of 533 images—202 images of bacterial blight, 218 images of rice blasts,

and 113 images of leaf smut—were collected from primary sources.

Four standard online repositories were used for secondary data

collection. A total of 3,535 images—1,856, 1,599, and 80 images of

bacterial blight, blast, and leaf smut infection, respectively—were

collected from secondary sources. The dataset was then augmented

using a GAN. The GAN increased the dataset from 4,068 images to

9,175 images. The augmented dataset was then pre-processed. Pre-

processing comprised the standardization, normalization, and rescaling

of the images. All these operations were implemented using the

ImageDataAugmentor function of the Keras library. The severity

level was then calculated using segmentation techniques. In this

study, five segmentation techniques were used: grayscale, threshold

segmentation, edge detection, masking, and histogram segmentation.

The leaf detection process was accomplished using grayscale, threshold,

edge detection, and mask segmentation techniques. The severity level

was then annotated on the image. The severity evaluation was carried

out using the pixel information from the histogram segmentation.

These images were then fed into the CNN–SVM fusion model

for the categorization of the infection type. SVM was used as a

classifier, and CNN was employed as a feature extractor. The test

accuracy for blight, blast, and leaf smut disease on a sample of

randomly chosen photos was 97%, 96%, and 98%, respectively. The

results from the proposed hybrid multi-class classifier were

compared with other approaches using the same dataset. When

compared with supplementary algorithms tested on the same image

set, the proposed model yielded the best results. The approaches

used for the comparison were standard CNN, standard SVM,

standard SVM with GAN, standard CNN with GAN, and CNN–

SVM without GAN, and their respective accuracies were 96%, 93%,

95.87%, 97.17%, and 97.23%. To increase its size, 69% of the dataset

was generated using GAN augmentation techniques. Secondary

sources constituted 27% of the dataset, and primary sources

constituted 9% of the dataset. The proposed model helps in the

identification of rice leaf disease and the level of disease severity,

which can help farmers to apply the appropriate remedies to stop

the spread of the disease to other healthy plants. The identification
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of disease and determination of an exact severity level also enables

farmers to predict the degree of loss of crop productivity.

In the future, this methodology can be utilized for the multi-

categorization of other plant infections for the same or different

crops. The proposed model works with various other datasets for a

variety of crops. The proposed approach is useful for predicting the

crop yield of a field based on losses due to various crop infections.

A limitation of this study is that the dataset used contained

images showing only sections of infected plant leaves. A better

method would be to choose only images showing complete leaves

from the infected plant for the calculation of disease severity.
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