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Clinical severity classes in
COVID-19 pneumonia have
distinct immunological profiles,
facilitating risk stratification by
machine learning

Laura Wiffen1†, Leon Gerard D’Cruz1,2†*, Thomas Brown1,
Tim W. Higenbottam3, Jonathan A. Bernstein4,
Courtney Campbell5, Joseph Moellman6, Debajyoti Ghosh4,
Clive Richardson3, Wynne Weston-Davies3

and Anoop J. Chauhan1,2

1Research and Innovation Department, Portsmouth Hospitals University National Health Service (NHS)
Trust, Portsmouth, United Kingdom, 2School of Pharmacy & Biomedical Science, University of
Portsmouth, Portsmouth, United Kingdom, 3AKARI Therapeutics PLC, London, United Kingdom,
4Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology, University of
Cincinnati College of Medicine, Cincinnati, OH, United States, 5Ohio State University Medical Centre,
Department of Cardiovascular Medicine, Columbus, OH, United States, 6Department of Emergency
Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
Objective: Clinical triage in coronavirus disease 2019 (COVID-19) places a heavy

burden on senior clinicians during a pandemic situation. However, risk

stratification based on serum biomarker bioprofiling could be implemented by

a larger, nonspecialist workforce.

Method: Measures of Complement Activation and inflammation in patientS with

CoronAvirus DisEase 2019 (CASCADE) patients (n = 72), (clinicaltrials.gov:

NCT04453527), classified as mild, moderate, or severe (by support needed to

maintain SpO2 > 93%), and healthy controls (HC, n = 20), were bioprofiled using

76 immunological biomarkers and compared using ANOVA. Spearman

correlation analysis on biomarker pairs was visualised via heatmaps. Linear

Discriminant Analysis (LDA) models were generated to identify patients likely to

deteriorate. An X-Gradient-boost (XGB) model trained on CASCADE data to

triage patients as mild, moderate, and severe was retrospectively employed to

classify COROnavirus Nomacopan Emergency Treatment for covid 19 infected

patients with early signs of respiratory distress (CORONET) patients (n = 7)

treated with nomacopan.

Results: The LDA models distinctly discriminated between deteriorators,

nondeteriorators, and HC, with IL-27, IP-10, MDC, ferritin, C5, and sC5b-9

among the key predictor variables during deterioration. C3a and C5 were

elevated in all severity classes vs. HC (p < 0.05). sC5b-9 was elevated in the

“moderate” and “severe” categories vs. HC (p < 0.001). Heatmap analysis shows a

pairwise increase of negatively correlated pairs with IL-27. The XGB model

indicated sC5b-9, IL-8, MCP1, and prothrombin F1 and F2 were key

discriminators in nomacopan-treated patients (CORONET study).
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Conclusion: Distinct immunological fingerprints from serum biomarkers exist

within different severity classes of COVID-19, and harnessing them using

machine learning enabled the development of clinically useful triage and

prognostic tools. Complement-mediated lung injury plays a key role in

COVID-19 pneumonia, and preliminary results hint at the usefulness of a C5

inhibitor in COVID-19 recovery.
KEYWORDS

COVID-19, b iomarker , nomacopan, cytok ine , machine learn ing , r isk
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Introduction

The novel severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) identified first in Wuhan, China, from human

airway epithelial cells, was responsible for the coronavirus disease

2019 (COVID-19) (1). The clinical presentation of COVID-19 is

highly variable (2); severe COVID-19 pneumonia presents with

acute respiratory failure, septic shock, and multiorgan failure and

may result in death (3).

Initial assessment and triage of patients by senior clinicians can

often accelerate treatment via judicious planning and appropriate

use of investigations; however, this places a huge burden on senior

clinicians in a pandemic situation (4). However, triage strategies

incorporating serum biomarker profiling, are implementable by

nonspecialist and allied healthcare staff, thus reducing the

bottleneck of waiting for senior clinician reviews.

During the first (March 2020–May 2020) and second (September

2020–April 21) waves of the pandemic, we risk-stratified COVID-19

patients by their clinical status and oxygenation requirements. A

variety of cytokines, serum biomarkers, blood components, and

complement proteins were evaluated in the CASCADE study (n =

72), initially to determine if there were “immunological fingerprints”,

distinct to the clinical severities and thereafter to employ these in

developing two predictive algorithms: the first, to identify patients

likely to deteriorate clinically, and the second, a model to risk-stratify

patients as “mild”, “moderate”, and “severe”. Since these models were

trained on the levels of serum immunological proteins and not on

viral proteins, the future applicability of the model may not be limited

to COVID-19 infections caused by viral genotypic strains of the first

and second waves.

The destructive role of complement in lung injury and COVID-

19 pneumonia is well documented (5–7) and was also evident from

this study (8). Complement is activated by SARS-CoV-2 via the

lectin and classical pathways (9), while the SARS-CoV-2 spike

protein (subunits 1 and 2) directly activates the alternative

pathway (10).

Intuitively, therefore, complement inhibitors may have a role in

influencing outcomes in the pandemic, and nomacopan, a

complement C5 and leukotriene B4 (LTB4) inhibitor previously
02
used in the treatment of paroxysmal nocturnal haemoglobinuria

(PNH) (11) and bullous pemphigoid (12), was trialled in a small

group of COVID-19 patients (CORONET study, n = 7), classified as

“severe” using the model developed in the CASCADE study. The

results from the CASCADE and CORONET studies are presented

here, together with the analysis of biomarkers and the machine-

learning algorithms developed as a consequence.
Methods

Study design, participant description,
and approvals

CASCADE was an observational cohort study that enrolled 52

COVID-19 quantitative polymerase chain reaction (qPCR)-positive

patients admitted to the Portsmouth Hospitals University NHS

Trust, and 20 qPCR-negative volunteers (CASCADE H), without

comorbidities and those with stable, chronic medical conditions

including diabetes and hypertension, composed of nonclinical

hospital staff (Figure 1A).

The CORONET USA study enrolled five qPCR-positive

COVID-19 patients from the University of Cincinnati Medical

Centre (UCMC) and two qPCR-positive patients from the Ohio

State University Medical Centre (OSUMC). The same inclusion and

exclusion criteria were used for the CASCADE and CORONET

studies (Figure 1A) and Supplementary Table S1.

The CASCADE trial details are summarised at “clinical

trials.gov” [NCT04453527 (13)] and approved by the South-

Central Berkshire Research Ethics Committee (REC reference: 20/

SC/0228 22nd May 2020). The CORONET-study patients were

treated with nomacopan in an open-label trial under a

nonemergency “investigational new drug” (IND) application

approved as an “expanded access application” by the FDA (13).

Data and Safety Management Committees (DMSC) at each site

provided safety oversight for this study.

All patients in both studies and control subjects in the

CASCADE study provided written informed consent to obtain

additional blood samples if their respiratory failure worsened, and
frontiersin.org
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FIGURE 1

Outline of CASCADE and CORONET studies and description of predictive models generated. (A) Healthy controls (CASCADE H) were recruited from
volunteers with stable, chronic medical conditions, including diabetes and hypertension, from nonclinical staff at Portsmouth Hospitals University
NHS Trust (PHU). Participants in CASCADE A remained stable clinically throughout their hospital stay, whereas CASCADE B patients deteriorated
clinically. In the event of deterioration with worsening respiratory failure, where patients transitioned to the next severity category (i.e., mild to
moderate, moderate to severe) repeat blood samples were collected for biomarker analysis. Participants from the CORONET study were treated
with nomacopan®. (B) The linear discriminant analysis (LDA) model was trained using an 80:20 split of the data, comprising CASCADE H participants,
CASCADE A (patients who remained clinically stable throughout their hospital stay), and CASCADE B (patients who deteriorated at timepoint = 2).
Admission biomarker data (timepoint 1) for CASCADE B patients were analysed initially together with the nondeteriorating group (CASCADE A) and
healthy controls (CASCADE H) using LDA. Similarly, a second LDA classifier model was constructed using biomarker data from CASCADE B at point
of clinical deterioration (time) compared to CASCADE A and CASCADE H participants. (C) Biomarker levels by clinical severity classes in the
CASCADE study were used to train nine machine-learning and one deep-learning algorithm, the X-Gradient Boosting (XGBOOST) algorithm (trained
and validated using an 80:20, train-test split) performed best (key performance metrics shown). The final XGBoost model was used to classify the
CORONET patient bio-profile data retrospectively.
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CORONET patients also provided written informed consent to

receive nomacopan.
Nomacopan treatment

CORONET patients received a 45-mg subcutaneous dose of

nomacopan on admission and two additional doses at 12-h

intervals. After the initial three doses, nomacopan was

administered at 45 mg every 24 h for a maximum of 12 days,

unless they were discharged or passed away sooner. Patients were

monitored for achieving normal 50% haemolytic complement

(CH50) activity serum levels on day 3 or at discharge, similar to

what has previously been reported for the C5 antibody, eculizumab

(14, 15).

Patients received either a prophylactic beta-lactam or

cephalosporin antibiotic (or an alternative agent if there was a

penicillin or cephalosporin allergy) as terminal complement

complex therapy has been linked to risk of meningococcal

infection (16).
Clinical severity of patients ranking
in CASCADE

COVID-19 patients admitted in respiratory failure and

recruited to the CASCADE study were ranked as mild, moderate,

or severe respiratory failure according to the level of support

required to maintain arterial oxygen saturation (SpO2) above

93%. Respiratory distress for patients was defined as mild if

requiring low-flow oxygen (fraction of inspired oxygen; FiO2 ≤

0.4), moderate if requiring FiO2 > 0.4, with or without noninvasive

ventilation support (e.g., high-flow nasal oxygen or continuous

positive airway pressure), and severe if requiring invasive

mechanical ventilation.

For the CASCADE study, admitted patients who remained

clinically stable entered the CASCADE A group (n = 37), and

those who, on admission, deteriorated (moved between categories,

from mild ➔ moderate or moderate ➔ severe or mild ➔ severe)

entered the CASCADE B group (n = 15), summarised in Figure 1A.

If CASCADE A patients demonstrated further clinical deterioration

over 4 to 10 days after admission, they were reclassified to the

CASCADE B group.
Biological samples

COVID-19 qPCR nasal and throat swabs were obtained from all

participants and processed according to standard published

protocols (17) and as described in the Online Data Supplement.

Blood samples obtained by venesection were handled using

appropriate containment procedures (level 2). Serum and plasma

samples were shipped on dry ice to external laboratories for

biomarker analysis. Laboratory personnel were blinded to clinical
Frontiers in Immunology 04
information. Blood samples were obtained from 20 healthy controls

(CASCADE H) and the 52 patients in the CASCADE A and

CASCADE B groups for biomarkers.
Statistics and machine-learning analysis

Heatmap analysis
A total of 76 biomarkers were analyzed in the CASCADE study.

Spearman correlation coefficients between pairs of mean biomarker

levels within each severity class of all patients and healthy controls

in CASCADE were assembled into a 76 × 76 matrix. Further

agglomerative hierarchical clustering and calculation of Euclidean

distances between clusters were employed to build heatmaps

(Seaborn API, ver 0.11.2). The colour map approaching hues of

blue represents an inverse relationship between pairs of biomarkers,

as one increases, the other variable decreases, moving in opposite

directions while hues approaching red indicate positive (additive)

correlation, where biomarker pairs change in their values together

with the same sign.

Selection of machine-learning algorithms
for analysis

To select the best machine-learning algorithm to address the

analyses, nine machine-learning algorithms; K-nearest neighbour,

ADA-Boost, Decision Trees, Random Forest, Extra Trees, Support

Vector Classifier, X-Gradient Boost, Logistic Regression, and Linear

Discriminant Analysis, and one multilayer perceptron (deep neural

net) algorithm were screened using an iterative grid-search method

in Python, using the training-dataset at the cross-validation step.

The accuracy of prediction was employed as the metric.

Hyperparameters for the chosen algorithm were then further

optimised, further details are provided in the Online

Data Supplement.

Linear discriminant analyses model for clinical
deterioration in COVID-19

Two Linear Discriminant Analysis (LDA) models (model 1 for

biomarkers collected only at timepoint 1 and model 2, biomarkers

collected at timepoint 2) were generated in the CASCADE study,

coded in Python 3.8, using Scikit-learn (ver.0.16.1). Timepoint 1

was at the time of recruitment and admission to hospital, and

timepoint 2 was at the point of clinical deterioration. The model was

trained and validated using an 80:20 train-test split .

Hyperparameters were optimised and determined following

extensive experimentation and testing of models while employing

a grid-search method (18). Class imbalances were addressed using

the Synthetic Minority Over-sampling Technique (SMOTE)

method (19).

LDA machine-learning models explored if serum biomarker

levels could identify and discriminate between patients who

remained stable clinically and those who were likely to

deteriorate, as described schematically in Figure 1B. Details are

provided in the Online Data Supplement.
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X-Gradient Boosting model for classification of
mild, moderate, and severe in COVID-19

An X-Gradient Boosting (XGBoost) model was generated and

trained on biomarker levels measured on CASCADE data from

patients at different clinical severity levels (Figure 1C). The data

were split into 80:20, train:test ratios. Nine machine-learning

algorithms and one neural-net algorithm (multi-layer perceptron)

were screened using the k-means stratified cross-validation

(number of splits = 5) Hyperparameters were tuned using a grid-

search method, and details of these are shown in the Online Data

Supplement. Mean accuracy was used to evaluate the performance

of the algorithms. The final validated model was used to

retrospectively classify CORONET patients (Figure 1C).

Statistical analysis
All statistical analysis was carried out with SPSS version 25

(SPSS Version 25.0. Armonk, NY: IBM Corp), SciPy module

(version 1.3) for Python (version 3.7.2) and R (version 3.60).

Visualisation plots were created using Excel (Microsoft), Prism

(GraphPad), or scripted using Python with Matplotlib (version

3.43) or Seaborn (version 0.11.2) software. Significance values in

figures and tables are displayed using American Psychological

Association (APA) styles (e.g., ns if p > 0.05; *p ≤ 0.05; **p ≤

0.01; ***p ≤ 0.001).
Frontiers in Immunology 05
Results

Demographics and baseline features of
CASCADE and CORONET participants

Figure 1A summarises patient recruitment details. Table 1

admission demographics compare patients in CASCADE A and

CASCADE B COVID-19-positive groups with CASCADE H healthy

controls. Patients in the CASCADE study were clinically triaged as

mild, moderate, and severe. Patients under the mild category had an

FiO2 ≤ 0.4, and those under the moderate category: FiO2 ≥ 0.4 and/or

the use of noninvasive ventilation (NIV) or CPAP. Patients classified

as severe were those who needed invasive/mechanical ventilation.

CASCADE A were patients who remained stable within their

clinical triage status before either recovery and discharge from the

hospital or succumbing to death. CASCADE B had patients

transitioning between categories of clinical severities (the

deteriorating group), as summarised schematically in Figure 1A.

Table 2 shows that age, gender, BMI, and length-of-stay were

not statistically significant between the CASCADE A, CASCADE B,

and CORONET groups by the Kruskal–Wallis test and, as such,

were not considered confounding variables when comparing

groups. Categorical variables such as sex, smoking status,

comorbidities, and medication history were compared using
TABLE 1 Demographics and salient features of patients enrolled within the CASCADE (A and B) study.

CASCADE H
(n = 20)

CASCADE (A+B) COVID19 +ve
(n = 52)

p-value Mild Moderate Severe p-value

Age 47.7 ± 13.5 64.4± 16.5 *** 63.8 ± 16.2 65.5± 16.9 62.7 ± 16.4 ns

Gender (% male) 4 (20%) 34 (65%) *** 17 (57%) 21 (75%) 7 (78%) ns

BMI 27.9 ± 5.1 32.4 ± 6.5 ** 32.3 ± 6.6 31.9 ± 6.8 33.3 ± 6.6 ns

Smoking status

Never (%) 6 (30%) 31 (57%) * 20 (64.5%) 9 (45%) 2 (100%) ns

Ex (%) 10 (50%) 22 (43%) * 11 (35.5%) 11 (55%) 0 –

Current (%) 4 (20%) 0 – 0 0 0 –

Ethnicity

Caucasian (%) 18 (90%) 50 (94) ns 28 (90%) 20 (100%) 2 (100%) ns

Asian (%) 1 (5%) 2 (4%) ns 2 (7%) 0 0 ns

Afro-Caribbean (%) 1 (5%) 0 ns 0 0 0 ns

Other (%) 4 (20.0%) 0 ns 1 (3%) 0 0 ns

Comorbidities

None 13 (65%) 20 (38.0%) 12 (39%) 7 (35%) 1 (50%) –

1 6 (30%) 11 (20%) 7 (22%) 5 (25%) 0 –

≥2 1 (5%) 22 (42%) 12 (39%) 8 (40%) 1 (50%) –

14-day outcome

Discharged – – 24 (80%) 14 (50%) 1 (11%) –

Inpatient – – 3 (10%) 8 (29%) 6 (67%) **

RIP – – 3 (10%) 6 (21%) 2 (22%) **
fro
ns if p > 0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001.
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crosstab and Chi-square analysis, p < 0.05 (95% confidence interval

(CI)) was regarded as statistically significant. The average BMI of all

participants across the three groups was in the range clinically

classified as “obese” (BMI > 30). Participants in the nomacopan®

treatment group (CORONET) had a significantly higher proportion

of diabetics (type 2 DM), compared to CASCADE A or CASCADE

B. Participants in CASCADE A and CASCADE B had a

significantly larger proportion of participants on long-term

anticoagulation compared to the nomacopan® treatment group.

There was a higher proportion of participants on statins in the

nomacopan® group (p < 0.001) compared to the CASCADE A and

CASCADE B groups.
CASCADE (mild, moderate, and severe) and
CORONET patients are distinct, using ROX,
NEWS2, and SOFA scores

The ROX index is a clinical assessment of the degree of a

patient’s hypoxaemic respiratory failure and need for intubation.
Frontiers in Immunology 06
Normal ROX indices were calculated with FiO2 of 21%, respiratory

rates between 12 and 18 breaths per minute, and SpO2 of 95%–98%.

Patients in the severe category were intubated and received oxygen-

enriched air, thus having a higher than atmospheric FiO2, this

accounts for the higher mean value and the slightly elevated range

of maxima and minima within the severe category compared to the

moderate category.

When grouped by ROX indices, NEWS2, and mSOFA scores,

participants in the clinical severity groups were significantly distinct

from each other using Dunn’s multiple comparison tests (Figure 2).

A l l s e v e n p a t i e n t s i n t h e s e v e r e c a t e g o r y w e r e

mechanically ventilated.
Analysis of markers of inflammation,
coagulation, and complement

Markers of hyperinflammation, degree of lymphopaenia,

neutrophil levels, TNF-a, INR levels, and proinflammatory

cytokines (interleukin (IL)-6 and IL-8) were significantly
TABLE 2 Baseline demographics, co-morbidities, and relevant medication history of participants in the study.

(CASCADE A) nondeteriorating
COVID-19 patients (n = 37)

(CASCADE B) deteriorating
COVID-19 patients (n = 15)

(CORONET) patients on
nomacopan (n = 6)

p-
value

Sex (M:F) 25 (67.6%):12 (32.4%) 10 (66.7%):5 (33.3%) 6 (100%):0 (0%) 0.249

Age 65.25 ± 16.69 63.27 ± 17.32 50.0 ± 11.3 0.120

BMI 32.6 ± 7.7 31.9 ± 5.2 32.0 ± 3.8 0.856

Average length of
stay (days)

11.0 ± 7.4 13.3± 5.9 6.0 ± 7.0 0.137

Smoking status

Never smoked 20 (54.1%) 10 (66.7%) 4 (66.7%) 0.645

Ex-smoker 17 (45.9%) 5 (33.3%) 2 (33.3%)

Current smoker 0 (0%) 0 (0%) 0 (0%)

Comorbidities

Diabetes 8 (21.6%) 3 (20.0%) 5 (83.3%) 0.005

Hypertension 12 (32.4%) 3 (20.0%) 4 (66.7%) 0.120

Heart disease 9 (24.3) 5 (33.3%) 0 (0%) 0.272

Chronic kidney
disease

5 (13.5%) 3 (20.0%) 1 (16.7%) 0.840

Previous VTE 2 (5.4%) 2 (13.3%) 1 (16.7%) 0.496

Malignancy 3 (8.1%) 1 (6.7%) 1 (16.7%) 0.749

Immunosuppression 0 (0%) 1 (6.7%) 0 (0%) 0.233

Medication history

Long-term
anticoagulation

35 (94.6%) 13 (86.7%) 1 (16.7%) <0.001

ACE inh/ARB 8 (21.6%) 4 (26.7%) 3 (50.0%) 0.337

Statins 12 (32.4%) 5 (33.3%) 3 (50%) <0.001

Inhaled
corticosteroids

3 (8.1%) 5 (33.3%) 1 (50%) 0.740
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increased in COVID-19 patients compared to healthy controls (p <

0.05, 95% CI) (Figure 3). In addition, D-dimer levels were

significantly elevated in COVID-19 patients in the severe category

(p < 0.05, 95% CI) above levels for normal-healthy individuals

(normal reference ranges: <250 ng/ml).

IL-5 levels were significantly raised in the mild and moderate

groups when compared to the healthy controls (Figure 3); IL-13

levels, however, did not show any difference between any of the

groups (Figure 3).

Figure 3 shows that patients infected with COVID-19 have

deranged levels of IL-6, IL-8, IL-10, IL-12p40 (a component of IL-

12 and IL-23 and a chemoattractant for macrophages to sites of

inflammation), MIP-1b (responsible for macrophage chemotactic

action), monocyte chemoattractant protein-1 (MCP-1, a cytokine

related to thrombosis), chemokine (C-X-C motif) ligand 9 (CXCL9,

a chemoattractant for activated T cells) and TNF-a (a

proinflammatory cytokine, a target for immune biologics such as

infliximab, adalimumab, or etanercept). INR levels in COVID-19

patients were significantly raised (normal healthy levels = 1.1). D-

dimer levels were significantly raised (Figure 3), implying high

circulating levels of fibrin degradation products, and concomitantly

raised fibrinogen and prothrombin levels suggest a pro-coagulative

state in COVID-19.

IL-27 levels appear low in healthy controls but are raised in all

severity classes (Figure 3). Interestingly, the average IL-27 level

appears to be lower in the severe class, compared to that in the mild

and moderate classes, although the decrease does not appear to be

significant (p > 0.05) (Figure 3). Interferon gamma-induced protein

10 (IP-10) appears to be raised significantly above the levels of

healthy controls in all severity classes.

The complement components, C3a, C5a, and C5, were

significantly elevated in all severities of COVID-19-infected
Frontiers in Immunology 07
patients (mild, moderate, and severe) with pneumonia compared

to healthy controls (Figure 4). Of note, the C5a (p < 0.01) and sC5b-

9 (p < 0.001) levels were significantly different between the

moderate and severe categories compared to healthy controls.

Levels of the terminal complement complex, sC5b-9 (the

membrane-attack complex (MAC)) were significantly raised in

COVID-19 patients (Figure 4). Levels of C5a and C5 were raised

in COVID-19 patients, thereby offering a rationale for C5 inhibitor

therapy in COVID-19; this is reported in the results of the

CORONET study. Levels of C3a (an anaphylatoxin and cleavage

product in the formation of the C3 convertase) were significantly

raised, strongly confirming complement cascade activation in

COVID-19 (Figure 4). This is also reflected in the significant rise

of factor Bb levels (Figure 4), the fragment together with C3b which

forms the C3 convertase, a key step in the activation of the

complement cascade.

Levels of leukotriene B4 (LTB4), a member of the eicosanoid

family of lipid mediators, are also shown here (Figure 4). Although

not part of the complement cascade, nomacopan®, the C5-inhibitor

drug used in the CORONET study, binds tightly to LTB4. Limited

samples were obtained for LTB4, and although these levels were

higher in severe COVID-19 patients compared to stable COVID-19

patients and healthy controls, they were not statistically significant.
Heatmap and correlation of biomarkers by
disease severity

The heatmaps in Figures 5–8 demonstrate a correlation between

pairs of biomarkers, with red pixels indicating a positive correlation

and blue pixels indicating a negative correlation. Together, the

biomarker pairs show an additive effect when they highlight a
B CA

FIGURE 2

ROX indices of patients across various clinical severities in the CASCADE and CORONET studies. (A) The ROX index for normal, healthy individuals is
shown as the grey area. The upper and lower limits shown in red bars represent the maximum and minimum data within that group. Black horizontal
lines represent the average ROX index. CASCADE B comprised patients who deteriorated while in hospital, progressing either from mild to moderate
or moderate to severe categories, while CASCADE A patients remained stable within that category. CORONET patients treated with nomacopan®

also had ROX indices below that of normal, healthy individuals. One patient in the CORONET study (data point marked with the number sign) had
late commencement of treatment due to delays in reaching the treatment centre in Ohio, required invasive mechanical ventilation, and
unfortunately died 13 days following admission due to COVID-19-related complications. (B) Mild, moderate, and severe patients in CASCADE
grouped by NEWS2 scores (C) and grouped by mSOFA scores. Data for NEWS2 and mSOFA were not available (n/a) for CORONET patients. ns if p >
0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001.
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positive correlation. An additional clustering step, applied to the

heatmap analysis, redistributes the biomarker pairs into clusters,

where those positively correlated are clustered together while the

negatively correlated are grouped together. Cluster heatmaps have

an advantage over unordered heatmaps, as they reorder the matrix

based on the hierarchical clustering step, thus they display and

condense large amounts of rank-ordered data into a compact space.

The hierarchical structure is displayed as a dendrogram on the top
Frontiers in Immunology 08
edge of Figures 5–8. This analysis demonstrated that the patient

bio-profiles and their biomarkers changed with the severity of

respiratory failure. For example, the number of blue pixels

increased from Figures 5 to 8, and Figure 8 contained the greatest

number of negatively correlated biomarkers (blue).

Neutrophil to lymphocyte ratio (NLR), a known severity

predictor in COVID-19 (20), is positively correlated with

Complement C5a and sC5b-9 and Complement C5 appears also to
FIGURE 3

Markers of hyperinflammation and coagulation in healthy vs. COVID-19-infected patients. Mean values are shown as a horizontal line within the
boxes; the whiskers indicate min and max ranges. (HC, healthy controls; MOD, moderate; MILD, mild; SEV, severe). ns if p > 0.05; *p ≤ 0.05; **p ≤

0.01; ***p ≤ 0.001.
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be positively correlated with levels of D-dimer (Figure 8). NLR was

positively correlated with CRP levels in the moderate group (Figure 7)

while the relationship between NLR and CRP is inversely correlated

in the “severe” class (Figure 8). Interestingly, complement C5 levels

are correlated with levels of troponin in the severe class (Figure 8).

IL-27 levels appear to have fewer blue pixels in the mild

(Figure 6) (7 blue pixels out of 30 horizontal pixel pairs) and
Frontiers in Immunology 09
moderate (Figure 7) (6 blue pixels out of 30 horizontal pixel pairs),

compared to 12 blue pixels out of 30 in the severe category

(Figure 8). The negative correlation is observed since IL-27 levels

appear to decrease with increasing severity; thus, in the pairwise

relationship visualised by heatmap analysis, this is displayed as an

increase in blue pixels between mild (Figure 6) and moderate

(Figure 7) compared to the severe class (Figure 8).
FIGURE 4

Levels of complement components and LTB4 in healthy controls compared to COVID-19-infected patients. Mean values are shown as a horizontal
line within the boxes; whiskers indicate min and max ranges. Data were available for only two patients in the “severe” category for LTB4. (HC, healthy
controls; MOD, moderate; MILD, mild; SEV, severe). ns if p > 0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001.
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Linear discriminant analysis and
discrimination between non-deteriorators
(CASCADE A), deteriorators (CASCADE B),
and healthy volunteers (CASCADE H)

Two separate LDA models are summarised in Figure 9. One

reflects the immunological landscape of COVID-19 patient

predeterioration, and the other is captured from biomarker levels

during deterioration. The biomarkers of importance vary between

timepoint 1 and timepoint 2; however, some biomarkers appear in

both timepoints, although their ranking in order of importance

varies between the two (IL-27, macrophage-derived chemokine

(MDC), PDGFAA, ferritin, and IP-10). The differences in the

order and type of biomarkers provide a discriminative potential

between the status of patients at these two time points. IL-27

emerged as the top predictor of clinical deterioration (Figure 9D).

Complement C5 was among the top five biomarkers of predictive

importance (for clinical deterioration) to the model (Figure 9D).
Frontiers in Immunology 10
The metrics for both the LDA models showed 73% accuracy, 77%

specificity, and 90.9% negative-predictive value (NPV).
Biomarker thresholds derived from
the LDA models

Table 3 shows critical threshold values achieving the maximum

sensitivity and specificity (associated with the Youden’s index) in

both the LDA models, differentiating between the clinically

deteriorating subcohort from the nondeteriorating subcohort. The

Youden Index is the greatest potential effectivity of a biomarker, a

common measure of the ROC curve (21, 22). The threshold values

identify a point when the true-positive rate (TPR) is high and the

false-positive rate (FPR) is low.

The level of circulating terminal complement complex sC5b-9

was between 8 and 11 times higher than that reported in normal,

healthy donors (23). Threshold values help discriminate between
FIGURE 5

Correlation and cluster analysis of biomarkers in the CASCADE study grouped by “healthy” classification. Markers of complement activation are
highlighted in yellow. Alanine transaminase (ALT), lactate dehydrogenase (LDH), and D-dimer (remnant protein following fibrinolysis of a blood clot)
form one cluster, representing markers of tissue damage. C3a, C5a, sC5b-9, and factor B form another cluster of strongly positively correlated
markers. White blood cell count (WBC), interferon-gamma inducible protein 10 (IP-10; a cytokine related to thrombosis), and MiG/CXCL9 (a member
of the CXC subfamily of chemokines important in the recruitment of activated T cells to sites of infection) form another cluster where correlation
levels are related to each other. CH50 (an indicator of total complement cascade), C3, fibrinogen (coagulation cascade), C-reactive protein (CRP,
marker of inflammation), and C5 form another correlation cluster. These clusters (in red hues) indicate biomarkers that increase in their serum
concentration together, having an overall additive effect.
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the deteriorating class of patients (CASCADE B) from those who

were clinically stable (CASCADE A).
Comparison of clinical screening tools

The performance of LDA-model 2 against currently available

surrogates of clinical deterioration (ROX index, mSOFA score, and

NEWS2 score) was compared using ROC-AUC analysis (Table 4)

using the “training data” of CASCADE A, CASCADE B, and

CASCADE H. The performance of the LDA model is represented

on the hold-out set as shown in Table 4 (ROC-AUC analysis using

the holdout or test data (20%)).

The mSOFA scores performed slightly better than NEWS2 scores,

while LDA model 2 gave an overall superior performance (Table 4).
Machine-learning model for classification
of clinical severity by biomarker levels

As explained in Figure 1C, the XGBoost model was trained on

the CASCADE immune-biological data, to help triage patients by
Frontiers in Immunology 11
their clinical severity. The model was validated on the hold-out set

of data (20%) and gave a prediction accuracy of 83.33%, a positive

predictive value of 1.0, a negative predictive value of 0.8, and a

Matthew’s correlation coefficient of 0.632.

The XGBoost model was retrospectively used to determine the

admission severity of patients in the CORONET study (Figure 1C). All

patients receiving nomacopan in the CORONET study were classified

as “severe” by the model trained on the CASCADE classification.

The terminal complement component, sC5b9, was the leading

biomarker of importance in the classification of clinical severity by

biomarker levels in the CASCADE study, as shown by the plot of

mean SHAP values (Figure 10).

IL-8, a well-studied marker with associations with ARDS and

lung inflammation, ranked second highest in its predictive properties

and impact on the performance of the XGBoost model (Figure 10).
Nomacopan treatment in the
*CORONET study

All nomacopan patients had ROX indices (SpO2 <93%) below

normal healthy individuals from CASCADE H (Figure 2). All were
FIGURE 6

Correlation and cluster analysis of biomarkers in the CASCADE study grouped by “mild” phenotype. ALT is negatively correlated when compared to
LDH and D-dimers in the “mild phenotype”. C3a and C5a are also negatively correlated in the mild phenotype; this is in contrast to the trend
observed in the “healthy” phenotype. Factor Bb and MiG/CXCL9 appear to share a similar upward correlation in the mild phenotype.
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admitted to the ICU, and two patients required early invasive

mechanical ventilation. Six out of seven patients survived and

were discharged 3 to 22 days after admission with normal CH50

measurements (Table 5). One female patient who died had delayed

treatment with nomacopan by 3 days.
Discussion

The CASCADE study carried out in the UK was designed to

determine if the separate classes (“healthy”, mild, moderate, and

severe) of COVID-19 patients determined by clinical judgement

and risk assessment would reveal distinct “immunological

fingerprints”, by biomarker levels. Our findings have shown such

fingerprints exist, and when the classification is automated via

machine-learning algorithms, it would serve as a rapid risk

assessment and triage tool. Secondly, distinct immunological

fingerprints in COVID-19 patients were determined, allowing

early identification of patients who might have the propensity to

deteriorate clinically.
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The CORONET study carried out in the USA applied a similar

but smaller panel of biomarker assessment, but crucially, this study

recruited seven patients with severe symptoms who were treated

with an off-label complement C5 inhibitor, nomacopan,

administered under specially procured permissions under the

“compassionate-use” regulations from the FDA.

The two studies intended to determine the “immunological

fingerprint” of patients categorised by their symptoms, unique to

the clinical severity demonstrated during their hospital admission

for COVID-19. Clinical-triage efforts during a pandemic can be a

huge responsibility and burden on senior clinical physicians;

however, if the risk assessment were based on bioprofiling using

serum biomarker levels and aided by an artificial-intelligence-based

model , th is could be implemented by a wider , less

specialist workforce.

The correlation coefficients displayed in the heatmaps describe

the direction of the relationship between pairs of variables, where a

positive correlation means that the pairs of variables are either both

high or both low at the time of biomarker measurement. This is

represented as red hues in the heatmap analysis. A negative
FIGURE 7

Correlation and cluster analysis of biomarkers in the CASCADE study grouped by “moderate” phenotype. The relationship between C-reactive
protein (CRP), a protein produced by the liver in response to inflammation, and the terminal complement complex, sC5b-9, changes from pale red
in “mild”, pale blue in “moderate”, and dark blue in the “severe” category. The interpretation from this is that while increases in CRP may follow
similar concomitant increases in sC5b-9 in the mild category, increases in CRP may not be reflected by a similar linear increase in sC5b-9 in the
severe category. This may account for the consumption of components of the complement cascade in those with the severe category.
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correlation occurs when one variable is high and the other is low at

the time of biomarker measurement; these are represented as blue

hues in the heatmap analysis.

The heatmap analysis displays a “bird’s eye view” of an

immunological fingerprint by comparing pairs of variables within

each severity classification. Clusters with red pixels indicate variable

pairs that are increasing or decreasing in their values together. The

blue pixels indicate values in opposite directions to each other. The

paired relationships shown here are primarily a statistical

representation of the direction of the relationship in the

biomarker levels; they may not necessarily reflect a biological

relationship where the level of one biomarker affects the direction

of the other.

An example of where the levels of one biomarker might impinge

on the levels of another is illustrated in the relationship of the

neutrophil-lymphocyte ratio (NLR) to CRP levels. Our analysis

shows that NLR is positively correlated to CRP levels in the

moderate group (Figure 7). The importance of both these

biomarkers has been shown in a separate study, where the utility

of these markers are excellent diagnostic predictors of COVID-19 in
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a binary logistic regression model (24). However, our heatmap

analysis adds a very important angle to the immunological

biomarker study since Figure 8 shows the NLR ratio is inversely

correlated to CRP in the “severe” class. This conflicting observation

(between that in the moderate vs. severe) could be explained as

follows: neutrophil concentrations when high, (as in the “severe”

class), restrict viral replication via degranulation, phagocytosis, and

the release of neutrophil traps and subsequently reduce viral titres

with a concomitant lowering of CRP values as have been reported

previously (25). Thus, the “compartmentalisation” of the

immunological fingerprints in COVID-19 through the mild,

moderate, and severe severity classes are captured uniquely in our

use of heatmaps as a visual representation. The association of

specific levels or ranges of cytokines with disease severity is not a

new concept and has been described before in the literature (26, 27).

The release of neutrophil elastase from highly activated

neutrophils mediates lung injury in sepsis, including COVID-19

(28), and inhibitors to neutrophil elastase (sivelestat) are protective

in inflammatory lung injury (29), and have been proposed to be

beneficial in COVID-19-related lung injury (30). Increased levels of
FIGURE 8

Correlation and cluster analysis of biomarkers in the CASCADE study grouped by “severe” phenotype. sC5b-9 was strongly positively correlated with
levels of C5a (a proteolytic fragment from cleavage of C5 by the protease C5 convertase), in the severe category, while similar relationships were
seen in the mild category. The level of correlation was weaker (pale red) in the “mild” category. The correlation of C5 to the various biomarkers is
grouped by biological function and displayed by the clinical categories of severity. CH50 (a test measuring the activity of all major complement
proteins), for example, shows a strong positive correlation in the healthy, mild, and moderate categories but shows a drop in correlation levels in the
severe category. One possible reason may be the consumption of complement components by participants within the severe category.
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circulating neutrophil elastase have been shown to correlate with

complement activation (31). Both neutrophils and C5a (a surrogate

marker of complement activation) are raised in the severe

phenotype in the CASCADE study (Figures 3, 4), and they show

a positive correlation in the heatmaps (Figure 8); therefore, the

severity of inflammation in COVID-19 patients due to complement

activation might be attenuated by the release of neutrophil elastase

in COVID-19.

Significant elevations of cardiac troponin-T, correlating with an

increased risk of cardiac damage, have been reported in COVID-19
Frontiers in Immunology 14
(32, 33). In mouse models of myocardial ischaemia/reperfusion

injury, in the absence of viral infection, C5 levels were elevated

along with increases in serum troponin levels (34). Our heatmap

analysis shows elevated serum complement C5 is positively

correlated with raised troponin levels. This finding could be

explained by observations from other studies where the high

inflammatory burden from the spectrum of cytokines and

complement proteins released in the disease is thought to induce

myocardial injury (35). Thus, the heatmap analysis provides a

unique “aerial perspective” of the “immunological landscape”,
B
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FIGURE 9

Linear discriminant analysis (LDA) demonstrates levels of biomarkers and cell counts, providing separation of deteriorating patients (CASCADE B)
from nondeteriorating (CASCADE A) and healthy participants (CASCADE H). Two LDA models were constructed: (A) the territorial map with canonical
discriminant functions incorporating timepoint 1 (at admission) of markers for patients in CASCADE A, CASCADE B, and CASCADE H and (B) the
territorial map with canonical discriminant functions at timepoint 2 of markers for patients in CASCADE A, CASCADE B, and CASCADE H (bloods
assayed for markers on day 1 of clinical deterioration of CASCADE B patients). The territorial maps (A, B) show separation between the groups based
on the ranking of biomarkers (C) at timepoint 1 and (D) at timepoint 2. There was an increased separation of deteriorating patients (CASCADE B)
from clinically stable patients (CASCADE A) and healthy controls (CASCADE H) in LDA model 2 (B) without overlap of points between groups in the
territorial map areas.
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within the boundaries of clinical severity types, to help guide the

clinician and investigative scientists, of the potential trend various

markers are adopting during hospitalisation and treatment of a

patient with COVID-19.

IL-33, a member of the IL-1 cytokine family, has been suggested

to play an important role in severe COVID-19 (36), upregulating

Th-2 cytokines such as IL-5 and IL-13 (37–39). The cytokine panel

used in our study did not contain assays for IL-33; however, as IL-5

and IL-13 were surrogates of IL-33 activation, there was a

significant increase in IL-5 levels above normal levels, although

no concomitant increase of IL-13 was observed.

LDA model 2 (Figure 9D) identified IL-27 and IP-10 as the top

two predictors of clinical deterioration in COVID-19. A decrease in

the levels of IL-27 has been shown in other studies as a reliable

predictor of adverse clinical outcomes in COVID-19 (40). Our

heatmap analysis captures the trend of IL-27, with fewer negatively

correlated pairs with IL-27 in the mild and moderate categories

compared to the severe category (12blue pixels/30total horizontal pixels).

IP-10 has been demonstrated in a previous study as a marker

associated with clinical severity in COVID-19 and correlated with

disease progression (41), and it is interesting that our model

identified this as a key marker in the recognition of a patient with

the propensity to deteriorate clinically.

MDC was identified as third in order of importance in our LDA

model (Figure 9D). MDC has been shown to inhibit the replication

of CCR5-dependent HIV in macrophages (42) and play a protective

role over CD4+ T cells from infection by HIV (43). Our findings

show that the levels of MDC are significantly lower than that found

in normal, healthy individuals (Figure 3), and this is in agreement

with a previous study that reported reduced levels of the chemokine

in COVID-19 patients (44).

Raised ferritin levels have been observed in a range of

inflammatory diseases (45), and intracellular ferritin is thought to

leak into serum from damaged intracellular stores (46). Ferritin was

identified as fourth, in order of importance, in our LDA model in
TABLE 3 Threshold levels of biomarkers pertinent in the LDA models.

Biomarker Threshold value

Deteriorator timepoint 1

LDH 460 (Units/L)

IL-27 551.15 (pg/ml)

RANTES 338.13 (pg/ml)

MDC 235.44 (pg/ml)

Platelets 200 (×109/L)

PDGFAA 62.92 (pg/ml)

MIGCXCL9 4,453.95 (pg/ml)

Ferritin 80 (mg/L)

IP-10 781.86 (pg/ml)

PDFGABBB 6,154.8 (pg/ml)

Deteriorator timepoint 2

IL-27 547.27 (pg/ml)

IP-10 599.45 (pg/ml)

MDC 201.52 (pg/ml)

Ferritin 80 (mg/L)

Complement C5 247 (mg/L)

MCSF 7.55 (pg/ml)

CRP 9 (mg/L)

MCP1 24.21 (pg/ml)

sC5b9 1,434.18 (ng/ml)

PDGFAA 72.06 (pg/ml)

PDGFABBB 3,867.24 (pg/ml)

Complement C3a 238.85 (ng/ml)
TABLE 4 Comparison of clinical screening tools with the LDA model.

Model or screening tool AUC ± SE 95% confidence interval

ROC-AUC analysis on the training data (80%)

LDA model 1.000 ± 0.000 1.000–1.000

ROX index 0.433 ± 0.106 0.225–0.641

mSOFA score 0.667 ± 0.101 0.469–0.865

NEWS2 score 0.633 ± 0.103 0.431–0.836

ROC-AUC analysis using the holdout or test data (20%)

LDA model 0.940 ± 0.051 0.862–1.000

ROX index 0.192 ± 0.109 0.000–0.406

mSOFA score 0.827 ± 0.107 0.617–1.000

NEWS2 score 0.654 ± 0.176 0.309–0.999
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timepoint 2 (Figure 9D). The presence of excess iron in the internal

milieu is known to favour the growth of numerous viruses (47); this

might explain why the order of importance of ferritin in timepoint 2

(point of clinical deterioration) is moved up by rank compared to

that in timepoint 1. The role of ferritin as an important biomarker in

the progression of the disease in COVID-19 has been reviewed

previously (48).

COVID-19 patient levels for CH50, sC5b-9, C5a, C5, C3a, C3,

and factor B were all higher than levels in healthy individuals

(Figure 4). Complement C5 and CH50 levels correlate with CRP

levels in all severity classes, as shown in our heatmap analysis

(Figures 6–8). Complement activation has been documented to

positively correlate with CRP levels since CRP activates

complement via the classical pathway, activating C1q, which then

activates the rest of the complement cascade (49).

The XGBoost model highlighted that IL-8 ranked second

highest as a predictive variable (Figure 10). IL-8 is a well-studied

neutrophil chemotactic factor that plays a key role in numerous

pathological conditions. IL-8 is expressed in neutrophils, epithelial

cells, hepatocytes, fibroblasts, endothelial cells, and alveolar

macrophages (50, 51). It has been proposed that the presence of

IL-8 in the bronchoalveolar lavage fluid (BALF) is a useful

prognostic variable in ARDS patients (50). Furthermore, IL-8 has

been implicated in the recruitment of neutrophils to the lungs in

acute inflammation of the lung (52). IL-8 has been associated with

the development of respiratory failure following the reduction of

PaO2/FiO2 (53), and the reduction in lung oxygenation levels across

the severity classes has been demonstrated in this study by our

analysis of ROX scores (Figure 2).
FIGURE 10

CASCADE machine-learning model on clinical severity by biomarker
levels. The ranking of biomarkers in terms of their importance in
class prediction is shown as a summary plot of SHapley Additive
exPlanation (SHAP) values. SHAP, displays the impact of each feature
on the final model. Positive SHAP values mean that a variable has a
positive impact on the prediction (in risk prediction, this means that
the risk is predicted or present), and negative values imply the
converse, meaning a negative impact on the model. The colours
represent the concentration value of the biomarkers from low (blue)
to high (red). The biomarkers are ordered on the y-axis according to
their importance in the predictive property of the model.
TABLE 5 Admission and treatment details of patients in the CORONET study treated with the anti-C5 inhibitor, nomacopan.

Patient
ID.

Age
bin

Sex qPCR
(+ve/
−ve)

Admission
(month/
year)

O2 flow rate/min for
SpO2 >93% [mode of
delivery]

Outcome
(alive/dead)

Number of
days to
recovery

CH50 at
day 3 (U/
ml)

Highest
C5 (U/
ml)

Highest
CRP
(mg/ml)

Status at
discharge

UL = 40 U/
ml

UL = 10
mg/ml

UL =10
mg/ml

1 5 Male +ve September/
2020

8L [NC] Alive 11 <17.0 39.0 40.5 Normoxia on
air

2 4 Male +ve November/
2020

2L [NC] Alive 3 22.0 40.0 199.0 Normoxia on
air

3 3 Male +ve January/
2021

6L [NC] Alive 5 21.0 26.0 116.0 Normoxia on
air

4 3 Male +ve February/
2021

6L [IMV 4 days, then
NC]

Alive 22 20.0 54.0 193.0 4L O2 at rest,
8–10 L on
exertion

5 3 Male +ve April/2021 4L [NC] Alive 5 15.0 36.0 109.0 Normoxia on
air

6 5 Male +ve July/2020 4L [NC] Alive 6 <10.0 22.2 154.18 Normoxia on
air

7 1 Female (delayed
Tx nomacopan
for 3 days)

+ve July/2020 [IMV 7 days
postadmission]

Dead 14 days
postadmission

N/A >60.0 prior
to
nomacopan
Tx

24.3 274.65 Dead 14 days
postadmission
fr
IMV, intubated and mechanically ventilated; UL, upper limit; NC, nasal cannulae; N/A, not applicable; qPCR, quantitative polymerase chain reaction; Tx, treatment. Age bins: 20–29 = 1, 30–
39 = 2, 40–49 = 3, 50–59 = 4, 60–69 = 5, 70–79 = 6. The primary endpoint was full respiratory recovery, defined as nondependence onmechanical ventilation and SpO2 of >93% by pulse oximetry,
breathing air without the need for supplementary oxygen. Secondary endpoints included treatment-related adverse events, time to SpO2 >93% with no oxygen supplementation, ventilator-free
days between Day 0 and discharge, and duration from hospital admission to discharge and recovery. Treatment lasted for a maximum of 14 days.
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MCP-1 was ranked third in the XGBoost model (Figure 10); this

is also in agreement with the findings of other groups where MCP-1

expression levels were found to be higher in patients with COVID-

19, especially those admitted to intensive care units (54). Increased

levels of MCP-1 have been isolated in lung tissue of COVID-19

patients (55). It has been suggested from other studies that

monitoring MCP-1 levels during hospitalisation could help

prevent COVID-19 from progressing from a mild to a severe

presentation (56); this finding is coherent with our XGB model of

stratification of risk classes and the prominent ranking of this

marker in the predictive order of importance.

The CORONET study was a “compassionate use” study,

allowing off-label nomacopan treatment; nomacopan is currently

in phase III studies for a coagulopathic disease, thrombotic

microangiopathy, in children treated with human stem cell

transplants (57). COVID-19 coagulopathy has been well studied

(58), and a marker associated with coagulation (prothrombin F12)

has been identified as key in our XGBoost risk stratification

model (Figure 10).

Six patients received nomacopan on admission, and one

patient’s treatment was delayed (for nonmedical reasons) for 3

days and died from COVID-19-related complications. The

remaining six CORONET patients at admission presented with

ROX scores consistent with severe hypoxaemic respiratory failure

(Figure 2). All surviving patients were discharged home between 3

and 22 days after admission with high circulating levels of sC5b-9

but normal CH50 values.

The terminal complement complex exists in two forms: soluble

sC5b-9 and the MAC. C3 convertase cleave C5 to C5a and C5b. C5b

initiates the activation of the MAC that includes C6, C7, C8, and C9

complement components important for allowing the MAC complex

to penetrate the cell membrane (59). The bound membrane attack

complex forms a cytolytic pore. The complement regulators, CD46,

CD55, and CD59, are important for controlling complement

activation and prevention of the MAC pore assembly in the cell

membrane (60).

Although pre-nomacopan treatment levels of CH50 of patients

in the CORONET study were not available for comparison to the

day-3 levels of CH50, the pre-nomacopan treatment C5 levels (all

above upper limits) hint that complement components were high in

the systemic circulation at admission (Table 3). CH50, in the

CORONET study, is a useful index for identifying people at risk

of deteriorating respiratory failure in COVID-19 pneumonia.

Hospital-discharged nomacopan-treated CORONET patients

appear to be healthy and stable without any long-term or residual

sequelae. While these are preliminary results on a small-sized

“compassionate-use” cohort, it warrants a randomised controlled

trial of nomacopan for minimising the progression of severe lung

injury in COVID-19.

One drawback of clinical risk stratification in a “resource-poor”

and extremely busy pandemic setting is the dependence on senior

clinical reviews, whereas automated algorithms trained on serum

biomarker evaluation, could be implemented by a larger portion of

the nursing workforce (61), particularly in precision nursing, with

less pressures on senior clinical staff (61, 62).
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Thus, the LDAmodel, based on biomarker profiling of COVID-

19 patients, could identify patients with the propensity of

deteriorating clinically. The dimensionality-reduction feature of

LDA allowed a minimal set of biomarkers to be used as a

prognostic guide; this is both advantageous clinically (less

laboratory resources) and economically, as fewer markers mean

lower costs. The XGBoost model is also useful to triage patients

according to the mild, moderate, and severe categories based on

biomarker profiles; such models could be easily implemented by

nonspecialist staff during a pandemic.

These models were generated based on biomarker profiles from

patients of the first and second COVID-19 waves, and while these

bioprofiles look at the downstream translational or proteomic

signature, we do not know if the proteomic signature might be

affected by future variants of the SARS-CoV-2 virus.

Nevertheless, there is a need to improve the management of

resources during a pandemic, and several studies have proposed

exploring the use of digital health solutions and artificial intelligence

in management and triage situations (63). Lung diseases carry

significant mortality and morbidity worldwide, and COVID-19 is

a sentinel example of the need to expand the utility of biomarker

diagnosis in diagnosis and triage situations (64).

Limitations of the study

The biological lability of complement components and leukotriene

B4 in blood were confounding issues for assessing patient outcomes.

The average age of participants in CASCADEA and CASCADE B was

in their sixth decade, and it was very difficult to obtain age-matched

healthy controls in their sixth decade without significant

comorbidities, particularly during a pandemic period where a large

proportion of the elderly were self-isolating. We recognise the effect of

age and gender on the components of the immune system and

acknowledge this limitation. Our studies are underrepresented by

minority ethnic groups due to the population demographics of our

local hospitals. Future studies in the validation of the models and trials

of nomacopan should address these issues. Future studies should be

undertaken with significantly larger sample sizes.
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