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Background: A growing body of literature has reportedmolecular and histological
changes in the human placenta in association with preeclampsia (PE). Placental
DNA methylation (DNAme) and transcriptomic patterns have revealed molecular
subgroups of PE that are associated with placental histopathology and clinical
phenotypes of the disease. However, the clinical and molecular heterogeneity of
PE both across and within subtypes complicates the study of this disease. PE is
most strongly associated with placental pathology and adverse fetal and maternal
outcomes when it develops early in pregnancy. We focused on placentae from
pregnancies affected by preeclampsia that were delivered before 34 weeks of
gestation to develop eoPred, a predictor of the DNAme signature associated with
the placental phenotype of early-onset preeclampsia (EOPE).

Results: Public data from 83 placental samples (HM450K), consisting of 42 EOPE
and 41 normotensive preterm birth (nPTB) cases, was used to develop eoPred—a
supervised model that relies on a highly discriminative 45 CpG DNAme signature
of EOPE in the placenta. The performance of eoPred was assessed using cross-
validation (AUC = 0.95) and tested in an independent validation cohort (n = 49,
AUC = 0.725). A subset of fetal growth restriction (FGR) and late-PE cases showed
a similar DNAme profile at the 45 predictive CpGs, consistent with the overlap in
placental pathology between these conditions. The relationship between the
EOPE probability generated by eoPred and various phenotypic variables was
also assessed, revealing that it is associated with gestational age, and it is not
driven by cell composition differences.

Conclusion: eoPred relies on a 45-CpG DNAme signature to predict a
homogeneous placental phenotype of EOPE in a discrete or continuous
manner. Using this classifier should 1) aid in the study of placental insufficiency
and improve the consistency of future placental DNAme studies of PE, 2) facilitate
identifying the placental phenotype of EOPE in public data sets and 3) importantly,
standardize the placental diagnosis of EOPE to allow better cross-cohort
comparisons. Lastly, classification of cases with eoPred will be useful for
investigating the relationship between placental pathology and genetic or
environmental variables.
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Background

Preeclampsia (PE) is a hypertensive disorder of pregnancy,
and is one of the leading causes of maternal and perinatal
morbidity and mortality worldwide. The Society of
Obstetricians and Gynecologists of Canada defines PE as
gestational hypertension with new-onset proteinuria or one
or more adverse conditions, which include maternal end-
organ complications and evidence of uteroplacental
dysfunction (Magee et al., 2014). While the global incidence
of PE is estimated as 4.6% (Abalos et al., 2013), this is an
approximation limited by the lack of data from many regions,
and varies by population, race, and socioeconomic status (Silva
et al., 2008; Lisonkova and Joseph, 2013; Wang et al., 2021).
Encompassing a diverse range of clinical presentations and
outcomes, PE is a complex and multifactorial disease, which
exists on a spectrum of severity. Among others, chronic
hypertension and prior PE are well-known risk factors for PE
(Bartsch et al., 2016). Placental, maternal, and paternal genetics
also significantly contribute to the pathogenesis of PE (Williams
and Broughton Pipkin, 2011; Wang et al., 2022). The
combination of such genetic and environmental factors plays
an important role in the development of PE, which is a two-
stage process whereby placental dysfunction leads to maternal
onset of disease (Redman et al., 2014); several studies have
observed PE-associated molecular and histopathological
changes in the human placenta, likely reflecting the observed
placental dysfunction (Leavey et al., 2016; Benton et al., 2018;
Wilson et al., 2018). Characterization of placental PE-
associated changes can complement clinical findings to gain
a better understanding of the disease and assist with its
classification into more homogeneous subtypes.

The umbrella syndrome of PE is likely the junction where at least
two distinct, and likely interacting pathways to disease converge,
initially coined as “placental” and “maternal” (Roberts and
Escudero, 2012; Redman et al., 2014; Redman, 2017; Staff and
Redman, 2018; Staff, 2019, 201). Clinically, diagnosis before or
at/after 34 weeks gestational age (GA) may be used to define two
subtypes of PE: early-onset PE (EOPE) and late-onset PE (LOPE)
(Brown et al., 2018). EOPE, which often has a greater placental
involvement (Redman, 2017), is more severe, frequently overlaps
with other pathologies such as fetal growth restriction (FGR), and
presents with placental pathology such as villous infarctions and
hypermaturation. In contrast, LOPEmay bemore heavily influenced
by predisposing maternal factors despite normal placentation, and is
oftenmilder (Staff, 2019). EOPE is thought to originate with reduced
placental perfusion because of incomplete vascular remodelling
during placentation (Staff, 2019). Oxidative stress secondary to
malperfusion then leads to trophoblast damage, which eventually
results in the systemic inflammatory response and ensuing
hypertensive syndrome (Roberts and Hubel, 2009; Staff, 2019),
although the mechanisms linking the two stages are still being
elucidated (Roberts and Hubel, 2009). In contrast, the
development of LOPE does not necessitate inadequate
placentation but instead may result from compression of the
terminal villi at term, which impedes appropriate perfusion,
leading to syncytiotrophoblast hypoxia as in EOPE (Staff, 2019).
All PE is thus associated with placental syncytiotrophoblast stress

(Staff, 2019), albeit with distinct underlying causes and timing.
Maternal factors such as obesity also contribute to all stages of
the disease and play an important role in disease severity.

In the human placenta, DNA methylation (DNAme) has a
unique profile that shifts throughout gestation in association with
changes in cell composition, gene expression, and in response to
pregnancy complications, among other factors (Robinson and Price,
2015; Yuan et al., 2021). Many studies have reported wide-spread
PE-associated alterations in placental DNAme (Blair et al., 2013;
Chu et al., 2014; Martin et al., 2015; Yeung et al., 2016; Kim, 2017;
Wilson et al., 2018; Wang et al., 2019; Lim et al., 2020; Tsegaselassie
et al., 2020), but findings are not consistently reproduced across
studies (Cirkovic et al., 2020). Discrepancies between studies in
definitions of PE used, study design (e.g., analysing all PE compared
to analysing specific subtypes such as EOPE, LOPE), the use of
different metrics to assess reproducibility (e.g., a CpG found to be
significantly differentially methylated in one cohort may not
replicate in an independent cohort, but a proximal and correlated
CpG might), population differences in contributing genetic and/or
environmental factors, and platforms used to measure DNAme,
among others, can contribute to poor reproducibility across studies.
Identification of homogeneous subtypes of PE is essential to
successfully identify and manage each subtype (Myatt et al., 2014).

PE-associated molecular variation in the placenta may be used to
refine current classification of PE. Wilson et al. found that the
placental DNAme profile of intermediate onset PE (<36 weeks) co-
occurring with FGR is similar to that of EOPE, suggesting that the
clinical threshold of 34 weeks is imperfect and will misclassify cases
(Wilson et al., 2018). Further, integration of DNAme with
transcriptional information revealed up to four molecular PE
subtypes and several histopathological findings were found to
associate with each molecular PE subcluster (Leavey et al., 2016).
Severity also existed on a gradient within each subcluster, supporting
the hypothesized connection between molecular changes and
pathology in the placenta, as well as illustrating the value of
studying DNAme and transcriptomic profiles to characterize PE.

To address these challenges, we developed eoPred, a DNAme-
based model that uses previously collected 450K Illumina DNAme
microarray data from placental chorionic villus samples taken at
delivery to find a placental signature of EOPE that is robust to cohort
differences. This model was validated by predicting the disease status
of samples in an independent cohort set of samples. Furthermore,
the model outputs a continuous probability that can be valuable in
correlating placental changes phenotype with environmental and
genetic variables, as well as with postnatal outcomes.

Methods

Study data

Placental DNAme data (n = 401) were collected from eight
Illumina Infinium HumanMethylation450 Beadchip array
(HM450K) datasets (GSE100197 (Leavey et al., 2018; Wilson
et al., 2018), GSE103253 (Herzog et al., 2017), GSE120981
(Monteagudo-Sánchez et al., 2019), GSE73375 (Martin et al.,
2015), GSE75196 (Yeung et al., 2016), GSE98224 [Leavey et al.,
2018; Wilson et al., 2018), GSE49343 (Blair et al., 2014)] and one
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Illumina Infinium HumanMethylation850 (EPIC) dataset
(GSE203396 (Inkster et al., 2022) available on Gene Expression
Omnibus (GEO). Using samples from these datasets, we created
three separate groups for i) model training, ii) model validation and
iii) model exploration (Table 1). A flowchart of the steps followed to
create and process these cohorts is described in Supplementary
Figure S1.

To develop a predictive model for canonical EOPE, the training
group was restricted to EOPE and normotensive preterm birth
(nPTB) samples to avoid confounding by inclusion of LOPE or
normotensive fetal growth restriction (FGR), which are
heterogeneous groups that may partly overlap with the placental
phenotype of EOPE, and normotensive term samples, which may
differ from EOPE due to GA-associated changes rather than due to
pathology. We chose to generate a binary classifier that
differentiated between EOPE and nPTB rather than a multi-class
predictor (i.e., also including FGR and LOPE) because of the
placental dysfunction observed in EOPE compared to other
pathologies. The validation group was also comprised of EOPE
and nPTB samples. The exploratory group consisted of a broader
mix of samples with different pathologies, exclusive of those used in
the training and validation groups, to better understand the
application of our model to a variety of placental phenotypes.
Cord blood DNAme data was downloaded from GSE110829 to
test the tissue-specificity of eoPred.

The training group (n = 89) was assembled with the criteria that
each of the datasets included (GSE100197, GSE103253, GSE57767,
GSE73375) must contain a mixture of EOPE (n = 47) and nPTB (n =
42) cases, balanced by dataset (i.e., if a dataset included only 1 EOPE
sample and several nPTB samples, it was excluded). The validation
group (n = 49) was selected from three datasets (GSE125605,
GSE98224, GSE203396) with a total of 38 EOPE and 11 nPTB
samples. An exploratory group (n = 329) was then constructed from
all remaining samples (GSE100197, GSE103253, GSE57767,
GSE73375, GSE125605, GSE98224, GSE120981, GSE75196,
GSE49343, GSE203396) that had a diagnosis other than EOPE or
nPTB (i.e., late-PE, nFGR, CPM16 and nTB). This third group was
assembled separately from the validation group to avoid any bias

that might result from processing the data in the validation group
with a dataset that was also included in the training cohort, even if
the specific samples were not actually used for training the model.
Demographic characteristics of each group are summarized in
Table 2.

As sub-classification of PE into EOPE and LOPE was not
always reported by dataset authors for all samples, PE was
classified as follows: samples reported as “PE” were labelled
as EOPE if delivered prior to 34 weeks and were otherwise
classified as “late-PE.” No EOPE-reported cases were labelled as
late-PE using this approach, since cases delivered prior to
34 weeks would by necessity have been diagnosed before
34 weeks. While PE cases with clinical onset <34 weeks
(EOPE) but delivery after 34 weeks would have been labelled
as late-PE using this approach, none of these were included in
model development and testing but were reserved only for
exploratory analysis.

There were also inconsistencies in the reporting of GA across
datasets. GA was provided in weeks and days by five datasets
(GSE100197, GSE98224, GSE125605, GSE110829, GSE203396),
two datasets reported weeks without days (GSE73375,
GSE75196), one dataset (GSE57767) only distinguished between
term and preterm samples, and two datasets (GSE103253,
GSE120981) did not provide any metric of GA. To harmonize
the GA metric across studies, placental epigenetic GA was
calculated using the robust placental clock (RPC) (Lee et al.,
2019) for all samples, using the R package planet (Lee et al.,
2019; Yuan, 2023). The difference between reported and
predicted GA in the datasets in which reported GA was available
is summarized in Supplementary Figure S2 and Supplementary
Table S1; reported and predicted GA were highly correlated in
the training group (R = 0.94) and there was a median absolute error
of 4 days across all samples in the three groups. We note that the
robust placental clock was trained on GSE100197, amongst other
datasets. Using RPC-predicted rather than reported GA did not
change the classification of samples into EOPE and late-PE;
importantly, no cases clinically classified as LOPE by the authors
were re-labelled as EOPE using predicted GA (Supplementary Table

TABLE 1 Arrangement of datasets from the Gene Expression Omnibus into the three study groups. Samples in the training and validation groups only included
those samples labelled as EOPE and nPTB by dataset authors. Samples from GSE100197, GSE103253, GSE57767, GSE73375, GSE125605, GSE98224, and
GSE203396 that were not included in the training and validation groups (i.e., from etiologies other than EOPE or nPTB) are in the exploratory group.

Training Validation Exploratory

GSE100197 • •

GSE103253 • •

GSE57767 • •

GSE73375 • •

GSE125605 • •

GSE98224 • •

GSE203396 • •

GSE75196 •

GSE120981 •

GSE49343 •
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S1). Genetic ancestry and cell composition were also calculated for
all samples using planet (Yuan et al., 2019; 2021; Yuan, 2023).

Data processing

Data were downloaded as IDAT files wherever possible,
otherwise methylated and unmethylated intensities were used.
The training, validation, and exploratory group, and the cord
blood dataset, were each processed independently using the same
sample exclusion criteria, probe filtering criteria, and normalization
method, beta-mixture quantile (BMIQ) from the R package
wateRmelon (Pidsley et al., 2013).

After normalization, samples were removed from downstream
analyses if they failed any of the following checks: i) mean inter-
array correlation <95% (Edgar et al., 2017) ii) discordance between
reported sex and chromosomal sex as inferred by X and Y
chromosome fluorescence intensities (Heiss and Just, 2018), or
iii) a measure of sample contamination based on allelic ratios of
single-nucleotide polymorphism (SNP) probes implemented in the
ewastools package (Heiss and Just, 2018). CpG probes were removed
if they had poor quality signal in more than 5% of samples (detection
p value > 0.01 or bead count < 3) (Aryee et al., 2014) or targeted loci
cross-hybridizing to multiple sites (Price et al., 2013; Zhou et al.,
2017), overlapped polymorphisms in the genome (Zhou et al., 2017),
mapped to the X and Y chromosomes (Bibikova et al., 2011), or were
non-variable both in this dataset and were reported as non-variable

probes in the placenta (Edgar et al., 2017). To allow future
application of eoPred on data collected with the Infinium
MethylationEPIC v1.0 Beadchip array (EPIC), probes were
filtered to those in common between the HM450K and EPIC
platforms prior to developing the model. Probe filtering was only
applied to the training group; to ensure that all 45 CpGs were present
when applying eoPred, the other groups were normalized and
checked for sample quality, but not filtered for poor-quality probes.

Lastly, batch correction was applied to the training group only
using ComBat with the R package sva (Edgar et al., 2017) to correct
for dataset differences. A model matrix was created with variables of
interest (condition, sex, GA, and European and Asian ancestry
coordinates assigned to each sample by planet (Yuan, 2023)) to
preserve their variation, as recommended in (Leek et al., 2012). No
batch correction was applied to the validation, exploratory, or cord
blood groups.

After processing, 341,281 CpGs and 83 samples remained in the
training group. The validation group consisted of 49 samples, the
exploratory group was composed of 329 samples, and the cord blood
data was comprised of 110 samples. Demographic data of the three
constructed groups is shown in Table 1.

Model development

RMarkdown source files and knitted reports for the analysis can
be found on GitHub at https://github.com/iciarfernandez/eoPred/.

TABLE 2 Demographic characteristics of each constructed group included in this study. The data reflects the number of samples after processing.

Training
cohort N (%)

Validation
cohort N (%)

Exploratory
cohort N (%)

GSE110829 N (%)

Early-onset preeclampsia (EOPE) 42 (51%) 38 (78%) 2 (1%) 10 (9%)

Gestational age range (weeks) 31.6 (25–37) 33.25 (26–39) 32.78 (32–33) 29.91 (26–33)

Placental sex (XY/XX) 23/19 16/22 1/1 2/8

Late preeclampsia (Late-PE) 0 0 86 (26%) 10 (9%)

Gestational age range (weeks) NA NA 36.97 (34–41) 35.57 (34–38)

Placental sex (XY/XX) NA NA 45/41 3/7

Fetal growth restriction (FGR) 0 0 42 (14%) 0

Gestational age range (weeks) NA NA 36.43 (28–40) NA

Placental sex (XY/XX) NA NA 24/22 NA

Normotensive preterm birth (nPTB) 41 (49%) 11 (22%) 3 (1%) 47 (43%)

Gestational age range (weeks) 33.76 (25–36) 34.42 (31–36) 33.11 (28–37) 30.44 (23–37)

Placental sex (XY/XX) 23/18 5/6 2/1 29/18

Normotensive term birth (nTB) 0 0 181 (55%) 43 (39%)

Gestational age range (weeks) NA NA 38.62 (37–42) 38.58 (37–41)

Placental sex (XY/XX) NA NA 92/89 19/24

Trisomy 16 confined to the placenta (CPM16) 0 0 10 (3%) 0

Gestational age range (weeks) NA NA 34.10 (25–39) NA

Placental sex (XY/XX) NA NA 5/5 NA
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The R package mixOmics was used for all steps in model
development and assessment (Rohart et al., 2017). Other R
packages used to calculate model metrics were cvms (Renbo,
2016), MLmetrics (Yan, 2017), and caret (Kuhn, 2008). To
maximize the use of the data, repeated (n = 50) M-fold (n = 3)
cross-validation was used to develop and assess the performance of
eoPred. Three folds were chosen to ensure that enough samples were
present in each fold, given the relatively small sample size of the
cohort. One fold was reserved to assess model performance, and the
remaining two folds were used to train the model. This process was
repeated 50 times, and each of the 50 performance estimations were
averaged to produce a single estimation.

The model was trained on mean DNAme beta values, using
sparse partial least squares discriminant analysis (sPLS-DA), which
performs simultaneous dimensionality reduction and feature
selection to find a molecular signature that can discriminate
samples based on an outcome category (in this case, EOPE or
nPTB). sPLS-DA has been previously shown to perform well on
high-dimensional genomics data (Lê Cao et al., 2011). After the
optimal parameters (number of components, and number of
features per component) were selected during cross-validation, a
final model was fit to the entire training data.

Overall misclassification error rate, receiver operating
characteristic and area under the curve (ROC-AUC), sensitivity,
and Brier score were the metrics used to assess the performance of
the final model. A permutation test was run where a model with
randomly permuted labels was trained and compared to the final
model. The stability of the predictive DNAme-signature was also
assessed using the perf function of the mixOmics package, which
computes the frequency at which each CpG is selected in each cross-
validation run, and uses this to evaluate each CpG’s stability (i.e., a
CpG selected with low frequency across all cross-validation runs
may suggest that it is relevant to a certain split of the training data,
but not to others and is thus “low stability”) (Rohart et al., 2017).

Model validation

To test the performance of eoPred, the predict function in
mixOmics (Rohart et al., 2017) was used to assign a predicted

class to each of the 48 samples in the validation group. The
maximum prediction distance was chosen as it resulted in the
lowest error rate during the cross-validation process. Each sample
is thus assigned two prediction distances (one per outcome category)
and the predicted class is the outcome category with the largest
predicted dummy value. Class probabilities were calculated from
transformed prediction distances using the softmax function, such
that each sample was assigned two estimated probabilities of being
classified as either EOPE or nPTB, which sum to 1. Each sample was
then predicted to be the class with the largest class probability.

Results

Development of a supervised model using
placental DNAme that predicts EOPE

To develop a placental DNAme-based classifier that predicts the
placental phenotype of EOPE, we used sparse partial least
discriminant analysis (sPLS-DA) to select the CpG sites with the
greatest ability to discriminate between EOPE and controls. We
developed this model in a training group composed of 4 distinct
cohorts, and then applied it to predict the disease status of samples in
an independent validation group composed of three separate
cohorts.

Repeated cross-validation was used to select the optimal number
of components and features (CpGs) per component, with a
component being constructed from a linear combination of the
features. One component constructed from 90 CpGs resulted in the
lowest average overall misclassification error rate (OER) across all
cross-validation folds. The optimal number of components is
typically K-1, with K being the number of classes to be predicted
by the model. Introducing more components in the model did not
significantly improve cross-validation performance. While this
model performed well (OER = 0.10, AUC = 0.97), 35% of the
90 CpGs selected had low stability (frequency of selection across
cross-validation folds < 0.5). These CpGs also contributed less than
those with higher stability to the model’s discriminative ability,
suggesting that a simpler model with less CpGs may be equally
successful in predicting the outcome of new samples. To test this, we

TABLE 3 Average performance metrics from cross-validation folds in the seven models tested during development, and in the permuted model. OER is the overall
error rate, defined as the number of all incorrect predictions divided by the total number of samples in the data. OER (EOPE) is calculated exclusively over the EOPE
samples (n = 38), and OER (nPTB) is calculated over the nPTB samples (n = 11). AUC is the area under the receiver operating characteristic curve, it is a measure of
separability. The Brier score measures the accuracy of probabilistic predictions.

Model OER OER SD OER (EOPE) OER (nPTB) AUC Brier score

90 CpGs 0.10 0.01 0.13 0.07 0.95 0.14

75 CpGs 0.11 0.02 0.13 0.08 0.95 0.14

60 CpGs 0.11 0.02 0.14 0.08 0.95 0.14

45 CpGs (Final Model) 0.11 0.01 0.13 0.08 0.95 0.14

45 CpGs (Permuted Model) 0.53 0.05 0.52 0.55 0.45 0.26

30 CpGs 0.12 0.02 0.14 0.09 0.95 0.14

15 CpGs 0.12 0.02 0.15 0.09 0.95 0.14

5 CpGs 0.13 0.13 0.15 0.10 0.93 0.14
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developed six additional models by selecting the number of CpGs a
priori (n = 75, 60, 45, 30, 15, or 5) and assessed their performance on
cross-validation.

Decreasing the number of CpGs did not significantly affect
model performance compared to the 90-CpG model, as evaluated
using two discrete classification metrics (OER, ROC-AUC) and one
probability-based metric (Brier score) (Table 3). The mean OER
value of the seven models with different numbers of CpGs was 0.11
(±0.01 standard deviation); we saw a slight but non-significant
increase in OER as the number of CpGs decreased (Figure 1A;
Table 3). For all seven models, we also assessed the area under the
curve (AUC, Table 3) of the receiver operating characteristic (ROC,
Figure 1B) curve, which informs about the trade-off between the true
positive rate and the false positive rate. Once again, the difference
between the seven models on this metric was not significant, and all
seven showed outstanding discrimination with an AUC of 0.95
(Applied Logistic Regression, 2023). Lastly, we computed the
average Brier score across cross-validation folds for each model,
which measures the mean squared difference between the predicted
probability assigned to the possible outcomes for a given sample, and
its actual outcome. All seven models had an average Brier Score of
0.14 (Table 3), which confirmed that the predicted probability of

most samples matched the true likelihood of the outcome of interest,
i.e., most true EOPE samples had a probability of EOPE closer to 1,
where 1 is EOPE and 0 is nPTB.

While a model relying on a very small number of CpGs (e.g., 5)
may demonstrate a good average performance on cross-validation, it
might not be as generalizable to new data. At the same time, the
larger model (90 CpGs) initially selected by cross-validation does
not perform significantly better than any of the smaller models
(Figure 1, Table 3). Therefore, we chose a model with an
intermediate number of features (45 CpGs) to evaluate on new
data (Supplementary Table S2).

Lastly, we compared the average performance across cross-
validation folds of the final 45 CpG model to a 45 CpG model
that was trained on randomly permuted labels. The goal of this
permutation test was to assess whether our final model performs
better than a random model, in which case we can infer that the
CpGs selected in our model are likely biologically relevant to
preeclampsia. Across all metrics, it was clear that the model with
randomly permuted labels performed significantly worse (0.52 OER,
AUC = 0.45) as compared to our final model trained on true EOPE/
nPTB labels (Table 3), confirming the biological relevance of the 45-
CpG signature. The characteristics of the final 45 CpGs that

FIGURE 1
Cross-validation performance of sevenmodels based on varying number of CpGs indicates no substantial performance difference betweenmodels
regardless of the number of CpGs included. The performance of each model computed across cross-validation folds is indicated according to (A) to the
overall classification error rate (OER); (B) The receiver operating characteristic (ROC) curve; (C) The precision-recall curve.
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comprise the predictive signature (genomic location, overlapping
genes, etc.) are described in Supplementary Table S2.

As the performance of machine learning models can be affected
by data transformations, we evaluated the performance of eoPred
with 7 common normalization methods using a subset of the
validation group data with IDATs available (GSE98224 and
GSE125605, n = 44). These methods included beta-mixture
quantile normalization (BMIQ) (Teschendorff et al., 2013),
quantile normalization (QN) (Aryee et al., 2014), subset-quantile
within array normalization (SWAN) (Maksimovic et al., 2012),
Dasen (Pidsley et al., 2013), noob (Triche et al., 2013), QN +
BMIQ, and noob + BMIQ. While our model was trained on
BMIQ normalized data, it performed better on other iterations
with different normalization methods (Supplementary Table S3).
Specifically, eoPred applied to quantile-normalized data
demonstrated the best performance across all metrics evaluated
(Supplementary Table S3). However, this evaluation is strictly based
on machine learning evaluation metrics and does not consider
model interpretability. As our sample size is small, we cannot

conclude that a given normalization method will consistently
outperform others and testing on more data in future will be
required to systematically assess the effect of normalization on
eoPred’s performance.

eoPred demonstrated good discriminatory
ability (AUC = 0.73) in an independent
validation group

To test the ability of eoPred to identify the placental phenotype
of EOPE, we applied it to predict the disease status of 49 samples
(38 EOPE, 11 nPTB) in the validation group. Each sample was
assigned a probability (from 0 to 1) of being classified as either EOPE
or nPTB; some were labelled with a high confidence and others were
intermediate (Figure 2B). We then wanted to determine what
probability cut-off would best discriminate between EOPE and
nPTB. Youden’s J statistic, defined as the sum of sensitivity and
specificity minus one, was used to choose an optimal threshold of

FIGURE 2
Probability of EOPE in the validation group (n = 48) and in the exploratory group (n = 328). eoPred was used to predict the outcome of BMIQ
normalized samples in the validation and exploratory groups (the two groups were normalized separately). There are 11 nPTB samples, and 38 EOPE
samples in the validation group. (A) Receiver operating characteristic (ROC) curve in the validation group. A classification threshold of 55%was selected to
maximize Youden’s J statistic (sensitivity + specificity—1). The diagonal line indicates the curve for a classifier that predicts the majority class in all
cases. (B) Probability of EOPE of samples in the validation and exploratory groups. EOPE and nPTB samples in the plot belong to the validation group. (C)
Gestational age of EOPE samples in the validation group. eoPred predicted 23 samples as EOPE and 15 as nPTB, using a 55% probability of EOPE as the
classification threshold. The difference in gestational age between EOPE samples classified as EOPE and those classified as nPTB is significant. (D)
Gestational age of EOPE samples in the validation group, faceted by ancestry groups. Ancestry was assigned to samples using planet probabilities. The
probability of EOPE is not significantly different across ancestries in those samples correctly classified as EOPE.
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55% to classify samples in our data (Figure 2A). This threshold
can be modified by the user in the eoPred function such that
users can explore the spread of probabilities in their data and
determine a threshold that fits their question best. For example,
higher probabilities of EOPE may be used to select samples with
a more homogeneous placental phenotype, while lower
probabilities might capture those placentas with sub-clinical
levels of pathology.

Of the 38 EOPE samples in the validation group, 23 were predicted
as EOPE (60% sensitivity) with a mean EOPE probability of 70%
(Figure 2). The EOPE samples that were correctly classified as EOPE
(31.9 weeks) had significantly lower average gestational age (p = 0.0004)
than those that were classified as nPTB (35.5 weeks) (Figure 2C). In
addition, of 15 EOPE samples that were misclassified as nPTB, all
originated from the same dataset (GSE125605), which consisted of
samples of Han Chinese ancestry (Figure 2D). In contrast, all samples
from a separate dataset in the validation group, GSE98224 (16 EOPE,
5 nPTB), were correctly classified, suggesting either a dataset or ancestry
effect inGSE125605. There was awide range of EOPE probability values
in the EOPE group, ranging from 56% to 82% (Figure 2B), which may
reflect the spectrum of placental findings that is observed within this
subtype of PE.

In the small sample size (n = 11) of nPTB cases in the validation
group, eoPred had a high specificity of 91%. The probability of EOPE
assigned to nPTB cases, 10 of which were correctly classified as nPTB
using a 55%probability threshold, ranged from 24% to 53% (Figure 2B),
with an average of 41%. The misclassified nPTB sample had a EOPE
probability of 67%. While we do not have information on the cause for
preterm birth for these samples labelled as nPTB but predicted to be
EOPE, we can assume a variety of etiologies within this group—thus,
the placental phenotype is likely also heterogeneous and, in some cases
may share certain features with EOPE.

Applying eoPred to the validation cohort produced an area under
the curve (AUC) value of 0.725, meaning that 73% of the time, for a

randomly selected pair of nPTB and EOPE samples, the model will
correctly assign a higher absolute EOPE risk to the sample with EOPE
than to the nPTB sample. Importantly, this indicates that regardless of
the varied causes of preterm birth within the nPTB group, eoPred is
successful at discriminating between the placental phenotype of EOPE
and that of other etiologies that may lead to preterm birth.

Lastly, we also tested the 5 CpGmodel in the validation group. The
predictions made by eoPred (45 CpGs) and the 5 CpGmodel were very
similar (MAE in EOPE probability between the two models = 0.4). The
5 CpG model predicted EOPE with 61% sensitivity, and correctly
classified 25 EOPE samples. The 5 CpG model demonstrated 91%
specificity, only misclassifying 2 more nPTB samples than eoPred
(Supplementary Figure S3). The threshold chosen as optimal for the
5 CpG model using Youden’s J statistic (56%) was also remarkably
similar to the 55% threshold identified as optimal for the 45CpGmodel.

FGR and late-PE cases with earlier
gestational ages tend to be classified as
EOPE

An overlap in placental findings from pregnancies affected by
EOPE and those affected by FGR without preeclampsia or by late
onset PE has been reported based onDNAme (Wilson et al., 2018), gene
expression (Leavey et al., 2018), as well as placental pathology (Roberts
and Escudero, 2012). To further explore the overlap between these
conditions, we investigated the EOPE probability value for cases from
pathologies that may overlap with the placental phenotype of EOPE,
such as FGR and late-PE. We thus applied eoPred to 328 diverse
samples in the exploratory group, which included 2 EOPE, 86 late-PE,
3 nPTB, 181 nTB, 46 FGR, and 10 CPM16 cases.

Of cases knownwith high confidence to be normotensive, 91%were
correctly classified using the 55% probability cutoff as nPTB (n = 184,
181 nTB and 3 nPTB), with a mean EOPE probability of 31%. The

TABLE 4 Characterization of late-PE and FGR cases in the exploratory cohort, by their predicted outcome. p-values for categorical values were calculated with
Fisher’s exact test. Welch’s t-test was used to compute the p-values of the continuous variables.

Late-preeclampsia (n = 86) Fetal growth restriction (n = 46) p

Predicted outcome EOPE nPTB EOPE nPTB

Total N (%) 24 (28%) 62 (72%) 9 (20%) 37 (80%)

Probability of EOPE (range) 0.70 (0.57–0.82) 0.34 (0.13–0.54) <2.2e–16 0.68 (0.55–0.79) 0.35 (0.13–0.55) 3.05E-08

Inferred weeks of gestational age (range) 35.65 (34.02–38.80) 37.48 (34.65–40.69) 5.41E-07 33.37 (28.17–37.65) 37.18 (32.16–39.75) 8.22E-05

Placental sex (XY/XX) 14/10 31/31 0.63 4/5 18/19 1

Predicted ancestry 0.32 0.17

African 5 23 2 5

Asian 3 9 3 5

European 16 30 4 27

FGR status 0.03 NA

Yes 4 2 9 37

No 4 5 0 0

Unknown 16 55 0 0
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2 EOPE cases in the exploratory group were correctly assigned a high
EOPE probability of 73% and 86%, respectively (Figure 2B). In addition,
22 of 86 (28%) late-PE cases and 9 of 46 FGR (20%) cases were
predicted as EOPE, which could reflect the subset of cases in these
groups with similar molecular pathology to EOPE. Both late-PE and
FGR cases classified as EOPE had significantly lower gestational ages
than their counterparts predicted to be normotensive (Table 4), with
late-PE cases classified as EOPE having an average GA of 35.65 weeks
and nPTB classified as EOPE having an average GA of 33.37 weeks.
Moreover, of the 6 late-PE cases that presented with co-occurring FGR
(which is commonly associated with EOPE), 4 were classified as EOPE
with a mean EOPE probability of 69%, whereas 2 were predicted to be
normotensive with 54% and 28% EOPE probability, respectively. Late-
PE + FGR cases were more likely to be predicted EOPE than nPTB
(mean p(EOPE) = 69%); but were not significantly more likely to be
predicted EOPE than late-PE samples without FGR (mean P(EOPE) =
41%, p-value = 0.15).

Confined placental mosaicism for chromosome 16 (CPM16) is
highly associated with EOPE and almost always results in FGR.
DNAme patterns of CPM16 placentae were previously reported to
overlap with those observed in EOPE (Yong et al., 2003). Using the
same data as in (Yong et al., 2003), we evaluated how eoPred would
classify CPM16 samples (n = 10). Five of the 10 CPM16 samples
were also diagnosed as EOPE; eoPred correctly predicted four of
these samples as EOPE, while the fifth fell just below our 55%
probability cut-off. All 5 CPM16 samples in which PE had not been
diagnosed were correctly classified as nPTB.

Influence of biological variables on eoPred

Several variables have been reported to influence the placental
DNA methylome throughout gestation, including cell composition
and genetic ancestry (Khan et al., 2023). We therefore sought to
investigate the effect of placental cell composition on eoPred CpGs,
tissue-specificity of eoPred, and the effect of genetic ancestry on
eoPred CpGs as well as the EOPE estimates.

There were significant differences (Bonferroni adjusted p-value <
0.05) in the PlaNET-predicted proportion of stromal and Hofbauer cells
between the original author labels of EOPE and nPTB in the training
data, and in the proportion of stromal but not Hofbauer cells by EOPE
status in the author-labelled validation data (Supplementary Figure S4).

However, none of the 45 predictive CpGs overlapped with any of the first
or third trimester cell-type specific CpGs used by PlaNET to estimate cell
composition, suggesting that these CpGs are not strongly driven by cell
composition differences and should be robust to minor cell composition
variation arising from sampling differences. The eoPred-derived
probability of EOPE was not strongly and significantly associated with
any cell type proportion (R> 0.3 and p-value<0.05), with the exception of
cytotrophoblast, which was moderately (R = 0.31, p = 0.005) associated
with the probability of EOPE in samples in the validation and exploratory
groups predicted as EOPE (Figure 3). Overall, these results suggest a
limited effect of cell composition on eoPred predictions.

We also used the placental methylome browser (Yuan, 2021) to
assess the cell-specific DNAme signature of the top five most
predictive CpGs (cg10994126, cg26787199, cg14605117,
cg10246581) in the model (i.e., those that were selected as most
stable in the cross-validation process). While the cell types did
display differences in average DNAme at these eoPred CpGs, there
were no consistent changes: some CpGs had higher DNAme in
trophoblast cells than other cell types, whereas Hofbauer cells had
the highest DNAme at other eoPred CpGs (Supplementary Figure
S5). These results further confirm the absence of a consistent cell
composition effect at the most predictive eoPred CpGs.

Moreover, PE-associated DNAme alterations have been reported
both in cord blood and placenta, with little overlap between CpGs
reported to be differentially methylated in the two, likely due to tissue-
specificity of DNAme. We thus applied eoPred to 110 cord blood
samples (including EOPE, LOPE, nPTB and nTB) to test whether the
45 CpG sites in our placental model could predict disease status in cord
blood. All 110 samples were predicted as nPTB (average probability of
93%), demonstrating that the DNAme signature of EOPE developed in
this study is specific to placental tissue.

Ancestry probabilities computed with PlaNET indicated that 65% of
samples in the training group and 61% in the validation and exploratory
groups were primarily of European ancestry (>75% probability)
(Supplementary Figure S6). We measured the strength of association
between the probability of EOPE and each of the three ancestry
probabilities using Spearman’s rank order correlation for all samples
in the validation and exploratory cohorts. None of the three PlaNET
ancestry probabilities (African/Asian/European) were strongly
associated with the probability of EOPE (ρ < 0.2).

We then compared how the β values at the 45 predictive CpGs
varied by ancestrywithin the EOPE and nPTB groups. Ancestrywas not

FIGURE 3
Relationship of eoPred’s EOPE probability and predictive CpG signature with placental cell types. Relationship between cell type proportions and
probability of EOPE of 38 EOPE samples in the validation group. Syncytiotrophoblast and trophoblast are moderately associated with the probability of
EOPE of samples misclassified as nPTB.
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associated with DNAme at 43 of the 45 (96%) eoPred CpGs in nPTB,
suggesting that these CpGs are not systematically affected by genetic
ancestry (Supplementary Figure S7). However, ancestry was associated
with CpGmethylation within the author–assigned EOPE group at 35 of
the 45 CpGs. While cohort was confounded with ancestry, differences
in diagnostic criteria between cohorts might explain this effect.
Interestingly, when using the eoPred-predicted groups, rather than
author-assigned diagnosis, the differences at these 45 CpGs across
ancestries were much smaller (Supplementary Figure S7,
Supplementary Figure S8). In addition, none of the 45 predictive
CpG probes in eoPred have been reported as influenced by nearby
SNPs in the placenta (Delahaye et al., 2018).

Lastly, we explored how eoPred’s predictions may be affected by
ancestry (European, Asian, and African) by assessing the average
DNAme β values of EOPE versus nPTB samples in the training and
validation cohorts at the 45 predictive CpGs (Table 5). DNAme was, as
expected, significantly lower in EOPE compared to nPTB samples
(p-value < 0.05) within each ancestry group, and within each of the
datasets included in the training and validation groups, with the
exception of GSE125605 (Table 5). The mean β of EOPE samples in
this dataset, which is comprised exclusively of samples of Asian
ancestry, was also higher than all the other datasets in both the

training and validation groups (Table 4). In contrast, for the training
group, the mean β of EOPE samples of Asian ancestry was very similar
to those of European ancestry (Table 4), and the mean β value of the
4 EOPE samples of Asian ancestry from GSE98224 was also similar
(0.40). This suggests that the misclassification of a greater proportion of
EOPE samples in GSE125605 compared to GSE98224 may be due to a
dataset effect rather than to genetic ancestry. We confirmed that there
were no major cell composition differences due to sampling between
GSE125605 and GSE98224, which could have been a potential source
for this dataset effect (Supplementary Figure S9).

Discussion

Previous studies of placental DNAme have shown that placentae
from pregnancies affected by preeclampsia exhibit DNA methylome
differences as compared to placentae from uncomplicated pregnancies
(Blair et al., 2013; Yeung et al., 2016; Leavey et al., 2018; Wilson et al.,
2018). We used placental DNAme to develop a supervised model,
“eoPred,” to classify placentae according to their DNAme patterns into
those with and without EOPE. This tool can be applied by users to
define i) homogeneous subgroups of placentae with an EOPE-

TABLE 5 Average β values at 45 predictive CpGs, by dataset and by ancestry. The mean β at the 45 predictive CpGs was computed for EOPE and nPTB samples
separately, using author-assigned labels. Δβ is defined as the absolute difference between EOPE mean β and nPTB mean β. p-values were computed with an
unpaired t-test.

EOPE mean β (N) nPTB mean β (N) Δβ p-value

Training group (N = 83)

All samples 0.47 (42) 0.61 (41) 0.14 < 2.2e-16

By inferred ancestry

Asian ancestry 0.49 (7) 0.62 (6) 0.13 < 2.2e-16

African ancestry 0.48 (7) 0.62 (5) 0.14 < 2.2e-16

European ancestry 0.48 (28) 0.62 (30) 0.14 < 2.2e-16

By dataset

GSE100197 0.48 (22) 0.62 (28) 0.14 < 2.2e-16

GSE103253 0.47 (11) 0.61 (8) 0.15 < 2.2e-16

GSE57767 0.52 (5) 0.59 (3) 0.07 0.000408

GSE73375 0.38 (4) 0.48 (2) 0.1 3.57E-06

Validation (N = 49)

All samples 0.49 (38) 0.55 (11) 0.06 5.73E-10

By inferred ancestry

Asian ancestry 0.51 (26) 0.55 (2) 0.04 0.06439

African ancestry 0.43 (5) 0 NA NA

European ancestry 0.43 (7) 0.55 (9) 0.12 < 2.2e-16

By dataset

GSE98224 0.42 (16) 0.56 (5) 0.14 < 2.2e-16

GSE125605 0.53 (22) 0.54 (1) 0.006 0.8235

GSE203396 0 0.53 (5) NA NA
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associated DNAme phenotypes, rather than relying on clinical
measures for group definition or ii) assigning a probability score
allowing the phenotype to be assessed on a continuous scale.

We anticipate that one of the major values of eoPred will be that it
can be used by researchers to identify placentae that share a similar
placental phenotype with EOPE, even if the pregnant parent was not
diagnosed with PE. For instance, pregnancy complications such as FGR
or preterm birth, as well as environmental conditions during gestation
(i.e., smoking, stress) are associated with an increased risk of developing
PE (Lisonkova and Joseph, 2013; Bartsch et al., 2016). DNAme patterns
have been reported to be similar (Wilson et al., 2018) between samples
with EOPE and those with co-occurring late-PE and FGR diagnosed
between 34 and 36 weeks; an overlap between the nPTB and EOPE
phenotypes is also reflected by the rate at which nPTB samples were
predicted to be EOPE by eoPred. We thus hypothesize that eoPred will
be helpful in investigating the extent to which such aforementioned
environmental exposures affect the placental DNA methylome at
different degrees and time points in gestation. This will broaden the
scope of available studies beyond current analysis limitations of
clinically-confirmed and reported cases of PE and provide more
insight into the pathogenesis of PE. Lastly, eoPred has the potential
to generate translational impact in the development of early-diagnostic
tools based on cell-free placental DNA methylation: as non-invasive
methods are developed to assess fetal health during gestation (e.g.,
placental-derived cell free DNA and DNA methylation in maternal
blood) the utility of the signature of EOPE described in our study can be
assessed (Kwak et al., 2020; Palei, 2021; Moufarrej et al., 2022).

The relatively low sensitivity of our model (60%) primarily arose
from one of the two datasets in the validation group. All samples in one
of our validation datasets (GSE98224) were correctly classified, while in
the other (GSE125605), which is comprised exclusively of samples of
Asian ancestry, 15/22 EOPE samples were misclassified as nPTB.
Notably, the 7 samples in this dataset which were correctly predicted
as EOPE had a significantly lower GA than those predicted as nPTB.
Without further independent clinical data, we cannot be sure that the
diagnostic criteria were identical in each dataset. The interpretation of
this finding is currently limited by the fact that all 15 misclassified
samples are affected by the confounding effects of dataset, ancestry, and
gestational age. Our finding that 1) the 45 predictive CpGs do not vary by
ancestry within normotensive preterm samples and 2) there is a
significant difference in β values at the 45 predictive CpGs between
EOPE and nPTB samples in samples of Asian ancestry from datasets
other than GSE125605, both in the training and validation groups,
suggests that the high misclassification rate in this dataset may not be a
result of ancestry but rather a dataset effect (e.g., systemic differences in
how cases were ascertained and classified as EOPE or in sample and
array processing). However, European ancestry is overrepresented in a
majority of placental DNAme datasets, andmore genetically diverse data
is needed to appropriately assess the utility of eoPred in different
populations. Ideally, a new iteration of the tool can be built with a
larger and more diverse sample size to further investigate this.

While more validation is needed, many of the top CpGs selected as
predictive by ourmodel are relevant to preeclampsia. For example, there
were 3 eoPred CpGs in the PAPPA-2 gene in chromosome 1, which
were some of most stable features in our model. PAPPA-2 is highly
expressed in the placenta (Wang et al., 2009; Sifakis et al., 2018) and has
been reported to be upregulated in cases of severe PE (Macintire et al.,
2014; Kramer et al., 2016). In addition, two predictive CpGs mapped to

each of SYDE1 and FLNB, which have also been reported as potentially
involved in FGR and PE (Tejera et al., 2013; Lo et al., 2017; Leavey et al.,
2018; Huang et al., 2022). In addition, the model demonstrated a high
specificity in both validation and exploratory groups, where 171 of
195 normotensive samples were predicted correctly, adding confidence
to the utility of eoPred.

The performance of machine learning models on new data may be
affected by data transformations (e.g., normalization), particularly if
these differ from the transformations that were applied to the data that
the model was trained on. We found that that the prediction ability of
eoPred is improvedwith quantile normalization, while our training data
was normalized using BMIQ. The better performance of eoPred on
quantile normalized data may be explained by the fact that quantile
normalization is a between-array method, which means it considers all
samples in the data, and transforms the data to minimize global
DNAme differences between samples (Hicks et al., 2018). As such,
quantile normalization could be correcting for dataset-associated
differences in a similar way to batch correction, thus reducing noise
arising from technical variation, which could improve the performance
of eoPred. As gestational age was lower in EOPE samples classified as
EOPE than in those classified as nPTB, it is also possible that EOPE
samples with a low EOPEprobability have amilder placental phenotype
that is more similar to that of late-onset preeclampsia. However, given
the overrepresentation of samples from GSE125605 among the
misclassifications, this is difficult to assess. We encourage users to
make an informed choice on what the best normalization method is in
the context of their data, and if choosing amethod other than BMIQ, we
recommend comparing eoPred’s predictions to those achieved in
BMIQ-normalized data.

Placental DNAme from whole tissue is a composite of cell-specific
DNAme patterns, and while placental cell composition often varies
between cohorts due to sampling differences, it has also been proposed
to vary in preeclamptic placentae for biological reasons (Yuan et al.,
2021; Campbell et al., 2023). Furthermore, preeclampsia-associated
differentially expressed genes in cell-free RNA were reported to be
tissue- or cell-type specific (Moufarrej et al., 2022). Although EOPE
samples in our training and validation groups had less predicted stromal
and Hofbauer cells compared to nPTB, the magnitude of change was
small, and no difference was observed for the two trophoblast subtypes,
which make up the bulk of the placental (chorionic villus) sample.
Furthermore, DNAme variation at the 45 EOPE predictive CpGs did
not appear to be driven by cell composition. We observed that the
probability of EOPE was moderately associated with increased
cytotrophoblast estimates particularly within samples predicted as
EOPE in the validation and exploratory groups, but not at any of
the other cell types. Overall, the EOPE-associated DNAme signature
used by eoPred does not seem to be driven by cell composition.

There are several strengths and limitations inherent to howwe have
constructed eoPred given the available data and how it was clinically
characterized. The Illumina HM450K array is the most common
platforms used for placental studies of PE, and eight Illumina
HM450K publicly available on GEO were used to train, validate,
and explore the utility of our model. Our use of the HM450K
platform in this study will increase eoPred’s relevance to future
EWAS studies, as will our choice to train the model on CpGs that
are also present on the EPIC array, which will enable the use of eoPred
with new datasets as they are generated. While the HM450K array only
measuresDNAmethylation at ~1%of all CpGs in the genome, there are
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widespread changes in PE at several regions covered by this array.
Secondly, re-utilization of public data is essential to maximize research
time and resources, but it comes with limitations when the purpose is to
ask new questions. In compliance with privacy and confidentiality
agreements, public data often lacks extensive clinical and/or
phenotypical characterization of samples. This limited our ability to
interpret our findings; in particular, we would like to investigate
whether the probability of EOPE is associated with severity of
clinical measures and/or placental histopathology, and whether the
placental samples from other reported etiologies with high EOPE
probability exhibited characteristic pathological features also seen in
EOPE. More generally, public datasets of chorionic villi samples of
various etiologies are sparse, which limited the design of our predictor.
As suggested by Myatt et al. (Leslie et al., 2014), comparing PE to
“normal” outcomes will inevitably lead to false predictive capability,
begging the question of whether PE will be adequately identified as
distinct from other outcomes, both normal and abnormal. While this is
certainly a limitation of our study, we chose a binary classification
model as opposed to a multiclass model due to the size constraints of
our data, and we developed eoPred as a tool with research utility in
mind, with the aim that its application to future datasets may provide
insight into the pathophysiology of PE in the placenta, and other
associated outcomes.

Conclusion

In this study, we develop eoPred, which is a tool that can be applied
to DNAme data to classify placentae as likely to be EOPE or nPTB, as
well as to output a continuous measure of the placental phenotype of
EOPE. This tool has been included in the PlaNET R package and is
available at https://www.bioconductor.org/packages/release/bioc/html/
planet.html. We anticipate that eoPred will be useful in future EWAS
studies to measure the influence of EOPE on the placental DNA
methylome, and to study the effect of other variables of interest
such as maternal exposures, chromosomal sex, and stress on a
molecularly homogeneous subtype of preeclampsia. Importantly, we
confirmed that this measure of EOPE probability is robust to cell
composition differences that can arise from sampling and/or pathology,
and that it works adequately with a variety of DNAme normalization
methods. Lastly, the 45 CpG DNAme signature of EOPE appears to be
shared with other pregnancy complications that have some overlapping
clinical and placental phenotypes with EOPE, illustrating the overlap
between pregnancy complications mediated by the placenta.
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